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Abstract— Interesting and efficient collective behavior ob-
served in multi-robot or swarm systems emerges from the
individual behavior of the robots. The functional space of
individual robot behaviors is in turn shaped or constrained
by the robot’s morphology or physical design. Thus the full
potential of multi-robot systems can be realized by concurrently
optimizing the morphology and behavior of individual robots,
informed by the environment’s feedback about their collective
performance, as opposed to treating morphology and behavior
choices disparately or in sequence (the classical approach).
This paper presents an efficient concurrent design or co-
design method to explore this potential and understand how
morphology choices impact collective behavior, particularly in
an MRTA problem focused on a flood response scenario, where
the individual behavior is designed via graph reinforcement
learning. Computational efficiency in this case is attributed
to a new way of near exact decomposition of the co-design
problem into a series of simpler optimization and learning
problems. This is achieved through i) the identification and use
of the Pareto front of Talent metrics that represent morphology-
dependent robot capabilities, and ii) learning the selection
of Talent best trade-offs and individual robot policy that
jointly maximizes the MRTA performance. Applied to a multi-
unmanned aerial vehicle flood response use case, the co-design
outcomes are shown to readily outperform sequential design
baselines. Significant differences in morphology and learned
behavior are also observed when comparing co-designed single
robot vs. co-designed multi-robot systems for similar operations.

I. Introduction

Inspired by natural systems, Multi-Robot systems (MRS)

and Swarm Systems (SS) employ collective intelligence

principles to exhibit emergent behavior to accomplish tasks

that are beyond the capabilities of any single robot. Emergent

behavior results from simple rules followed by each entity

and their interaction with each other and their environment

[1]. These interactions give rise to complex adaptive behav-

iors that are robust and efficient. Usually such collective

behavior is not readily predictable (e.g., via scaling or
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simple equations) from individual behavior without the use

of empirical evaluations via simulations. This is because

appropriate design and behavior choices at the individual

robot level can lead to collective performance that is greater

than the sum of its parts

Now, the physical design aka morphology of individual

robots, including geometry and component choices w.r.t.

sensors, actuators, computing, communication, etc., influence

and constrain their operating envelope and functionalities.

These design choices define the individual robot’s capa-

bilities (e.g., range, nominal power consumption, weight,

sensing FoV, payload capacity, turning radius, etc.), and

constrain the behavior space in which the robot can oper-

ate. On the other hand, the behavior (decision-system that

perceives the environment and provides action) must align

with the capabilities defined by its morphology. This creates

a coupling of morphology and behavior individually. When

working as a team, due to its task parallelization property,

there are non-linear shifts in these constraints that affect its

collective behavior. Realizing the true potential of swarm

systems involves addressing formidable challenges regarding

the design choices and behavior of the individual members.

Even minor modifications in the design of individual robots

might necessitate completely different behaviors.

A common approach to designing swarm systems is by

trial and error [2]. The alternate method is the automated

design approach, where the behavior is formulated as an

optimization problem to be solved [3]–[8]. These methods

optimize the behavior of the individual robots using evolu-

tionary methods and Reinforcement Learning (RL) methods

to find the optimal behavior of individual robots that leads to

the desired collective performance [9], [10], [11], [12]. By

optimizing or prescribing the morphology first (as is typical),

the capability space is inherently confined without consider-

ing the behavioral space, leading to a sub-optimal emergent

behavior. The intricate interplay between morphology and

behavior must be carefully crafted together to explore how

efficiently the swarm as a whole can achieve a desired

collective behavior.

There is a notable body of work on concurrent design

or co-design of morphology and behavior for individual

robots [13]–[20] and most of these methods use evolu-

tionary approach, which however suffers from computational

inefficiency and consider only the bounds of morphology

space without taking geometric constraints into considera-

tion. There is limited literature on co-design in multi-robot

systems [2], [21]. Most of these works are based on common

simpler multi-robot problems such as foraging, aggregation,
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and formation. there is also a lack of computational frame-

works for co-design that allow better understanding of how

swarm systems compare with single-robot systems in terms

of performance and how that relates to difference in morphol-

ogy or behavior. To address these gaps, this paper proposes

a computational framework that enables co-optimization of

morphology and behavior of individual robots in a swarm or

MRS to maximize collective performance, while also allow-

ing compare/contrast analysis of single vs. swarm for a given

problem. Here, we utilize our previously proposed concept

of artificial-life-inspired talent metrics [22], [23] that are

physical quantities of interest, reflective of the capabilities

of an individual robotic system. Talent metrics represent a

compact yet physically interpretable parametric space that

connects the behavior space and morphology space. We use

this to decompose the morphology-behavior co-optimization

into a sequence of talent-behavior optimization problems that

can effectively reduce the overall search space (for each

individual problem) with marginal compromise in the ability

to find optimal solutions. In other words, the decomposition

approach presented here is nearly lossless, i.e., a solution that

can be found otherwise with a brute-force nested optimiza-

tion approach to co-design will also exist in the overall search

space spanned by our decomposed co-design approach (albeit

assuming that each search process is ideal). We also propose

a novel talent-infused policy gradient method to concurrently

optimize the talents and learn the behavior.

To study operationally relevant behavior in this context,

here we use a decentralized Multi-Robot Task Allocation

(MRTA) problem, which finds applications in a wide range

of real-world scenarios, some of which are search and rescue,

disaster response, last-mile delivery, space exploration, and

precision agriculture [24]–[26]. In this paper, we consider a

flood response scenario in which a group of UAVs collec-

tively supply emergency packages throughout the environ-

ment. In our previous work, we proposed a graph capsule

network-based RL policy for sequential task selection in

such MRTA problems [27] which demonstrated superior

performance compared to other baseline methods and proved

to be scalable in terms of task space [28]. Therefore, it is

adopted here to guide the behavior of the multi-robot system,

which will now be co-optimized alongside the morphology

of the individual robots, specifically UAVs in this scenario.

Thus, the primary contributions of this paper are as fol-

lows: 1) Present a new formulation and decomposed solution

approach to concurrent (optimal) design of the morphology

and learning-based behavior of multi-robot systems that are

significantly more efficient than a nested co-design approach.

2) Develop an extension of the policy architecture used to

embody the behavior (decisions) of robots in MRTA to also

include (morphology-dependent) talents that can be simul-

taneously optimized through a policy gradient process. 3)

Implement this new co-design approach to a flood response-

inspired MRTA problem to identify and analyze the distinct

morphology/behavior combinations obtained when using a

single robot vs. using a multi-robot team (comprised of rela-

tively simple individual robots) . In section II, we present the

co-design problem formulation, and section III presents the

learning-based MRTA planning approach that encompasses

the behavior of the robots. Subsequently, the case study

and its results are presented in Section IV, followed by

concluding remarks in Section V.

II. Co-Design Framework

Consider a disaster response scenario in which a team of

Unmanned Aerial Vehicles (UAVs) is deployed to deliver

emergency relief supplies. The set of morphological vari-

ables, including physical form/geometry, component choices,

and their physical properties (such as the motor and propeller

sizes) can be expressed as XM. This vector comprises values

[X1,X2, . . .Xn], each corresponding to a distinct morphologi-

cal variable. These robots follow a policy or behavior denoted

byΦ (representing policy parameters) to efficiently plan their

mission. The collective performance based on this behavior

can be represented by fC, e.g., expressing metrics such as

the number of packages delivered. The primary objective of

co-design is to maximize the collective performance fC by

simultaneously optimizing the morphological variables and

the behavior while subject to geometric and other behavioral

constraints. The optimization problem can thus be expressed

as,

Max: fC(XM,Φ)

S. t.: Xmin ≤ XM ≤ Xmax, Φmin ≤Φ ≤Φmax, g(XM) ≤ 0
(1)

where g(XM) represent purely morphology-dependent con-

straints (e.g., geometric conflicts and component incompati-

bilities), and [Xmin,Xmax] and [Φmin,Φmax] are respectively

the (lower, upper) bounds on the morphological and behav-

ioral (policy) parameters. Figure 1 depicts the four steps

involved in our proposed co-design framework, which are

explained in the later subsections.

A. Talent Metric Selection based on Morphological Con-

straints

During the mission, at each decision-making instance, i.e.,

after a package is delivered (one task completed), and the

next location is determined, the robots have to consider the

feasibility of proceeding to that location and completing

the task. This includes assessing several factors such as the

robot’s remaining payload and its remaining range (ensuring

it possesses enough battery to at least reach the location and

return to depot afterward). These factors, which influence

collective behavior, are bounded by the capability of indi-

vidual robots such as max flight range and max payload

capacity, which are in turn dependent on morphology. Such

capabilities are used here as “talent” metrics, as given by:

YTL =
[

YTL,1,YTL,2, . . . ,YTL,m

]

= fM(XM) (2)

where fM represents the function that maps candidate mor-

phology variable vector to the set of m talent metrics. Typi-

cally, in model-based design, such talent metrics or properties

are computed using computational analysis models.

Identifying talent metrics should follow four principles: 1)

The talent metrics must be solely a function of morphology
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Fig. 1: Flowchart of our co-design framework; a) Morphology and its dependent talent parameters are derived; b) Based on

the talents, a Pareto front is created; c) The Talent-infused policy-gradient method is used to train the associated behavior

and talents; d) Final morphology is obtained via constrained optimization subject to the learnt talent and behavior.

(not affected by behavior). 2) Talent metrics should exhibit

the monotonic goodness property, meaning that for each

metric, there should be a consistent direction of improvement

(either the greater the better, or the smaller the better). 3)

Talent metrics should be collectively sufficient in comput-

ing state transitions of the system (for the given behavior

context), and in determining the impact of morphology on

behavior choices, meaning there cannot be a case where

constraints or bounds on behavior can change with a fixed

value of YTL. 4) Talent metrics should satisfy the basic multi-

objective search property, i.e., they must conflict with each

other in at least part of the (morphology) design space

By adhering to these principles for identifying the talent

metrics, we can reduce the computationally burdensome

morphology-behavior co-optimization problem to a sequence

of 1) a multi-objective optimization to find the best trade-

off talents, aka talent Pareto, and 2) a talent/behavior co-

optimization subject to not violating the determined talent

Pareto. To elaborate, the second optimization must ensure

that talent combinations that are beyond (or dominates) the

talent Pareto front are not chosen during this process, since

such combinations are in principle infeasible to achieve

within the allowed morphological design space. Note that,

in most robotic or complex engineering systems the di-

mensionality of XM is usually much larger than that of

YTL (the morphology space is considerably larger than the

talent space), and thus this approach is also expected to

enable searching a lower dimensional space during the co-

optimization. This talent/behavior co-optimization process

can be expressed as:

Max: fC(YT L,Φ)

S. t.: min(YTL,1) ≤ YTL,1 ≤max(YTL,1)

Q(0.05|YTL,1, · · · ,YTL,i-1) ≤ YTL,i ≤ Q(0.95|YTL,1, · · · ,YTL,i-1)

∀ i ∈ 2, . . . ,m−1

Φmin ≤Φ ≤Φmax

(3)

Here, Q represents the quantile regression model, and for

every talent metric YTL,i except the first one (i.e., ∀i > 1),

we progressively capture the 5th and 95th percentile values

conditioned on (YTL,1, · · · ,YTL,i-1) to use it as a lower bound

and upper bound of YTL,i, respectively. For the first talent

variable, we can directly acquire the bounds using the Pareto

points. During co-optimization, allowed talent values must

satisfy these bound constraints estimated thereof.

B. Talent Pareto Boundary Construction

Consider a set of two talent metrics. Figure 1 b) represents

the feasible talent space, and based on example min-min and

max-max scenarios, the lower left and upper right boundaries

of this space respectively represent the Pareto front. So, for

say a max-max scenario (e.g., consisting of the flight range

and nominal speed of the UAV), any point further North-East

of the upper right boundary is not achievable, i.e., gives an

infeasible morphology candidate. In other words, the Talent

Pareto not only bounds all feasible combinations of flight

range and speed, but also allows us to pick best trade-off

(non-dominated) combinations and ignore dominated ones

– thus both constraining and reducing the search space of

candidate talent combinations to consider downstream. Now,

two steps are needed to identify and parametrically model

this talent (Pareto) boundary:



i)Multi-talent optimization: A set of best trade-off talent

combinations (Pareto solutions) can be obtained by solving

the following multi-objective optimization problem, e.g.,

using a standard genetic algorithm.

Max: (YTL,1, . . . ,YTL,m) = fM(XM)

S. t.: Xmin ≤ XM ≤ Xmax, g(XM) ≤ 0
(4)

ii) Modeling the Pareto front: A parametric representation

of the Pareto front, fS, namely the m-th talent expressed as

a mathematical function of the remaining talent metrics, can

be obtained by using a surrogate model such as a polynomial

response surface to fit the computed talent Pareto solutions,

i.e.:

YTL,m = fS

(

YTL,1, . . . ,YTL,m−1

)

(5)

C. Behavior Learning with Talent optimization

To generate the behavior (policy) model, we use the

actor-critic method, while other standard policy gradient

techniques can be exploited here as well. The structure of

the policy model will depend on the nature of the behavior

being learnt. A generic example of neural net based policy,

aka the actor network, is shown in Fig. 1 c)(black).

Talent-infused Actor-critic: To co-optimize the behavior

policy along with the talents, subject to the talent Pareto

boundary obtained in the previous step (Fig. 1 b)), we

introduce a second small 2-layer fully connected neural net

called the talent network, as shown in blue color in 1 c. The

talent network architecture includes biases that are randomly

initialized and pass through a linear activation layer. The

resulting values are then forwarded to the output layer, which

has m− 1 neurons with sigmoid activation, where m is the

number of talents. So, the talent network does not essentially

have any input layers or inputs, and is defined by the biases

in the first and outputs layers and weights connecting these

two layers, which are the parameters optimized during train-

ing. This network is concatenated to the behavior (policy)

network. Let’s consider this combined network to be the

new actor network. The policy of this actor network is given

by π((a|s, ŶTL,1, · · · , ŶTL,m-1);θ), where a is the behavioral

action, ŶTL,1, · · · , ŶTL,m-1 are the talent values from the talent

network and θ indicates the parameters of the combined actor

network.

Training Phase for talent-behavior co-optimization: In

RL, a common strategy for exploration involves sampling

actions from a distribution. Here, since the talents are con-

tinuous, a Gaussian distribution can be utilized. During the

first step of each episode, we do a forward pass in the actor

network (consisting of both the talent network and behavior

network), followed by sampling from the distribution. The

augmented output of the actor network is given by

Aθ(st) = (at , ŶTL,1, ŶTL, 2, . . . , ŶTL, m-1), for all t ∈ {1, . . . ,T } (6)

where Aθ(st) signifies the output of actor policy at time step

t with input state st, and at represents the action for state st,

ŶTL,1, ŶTL, 2, .., ŶTL, m-1 represents the talent values from 1

to m−1. These m−1 values are subsequently processed by

a talent decoder, which scales them based on the upper and

lower bounds of their respective talent metric. For the first

talent metric, we get:

YTL,1 = ŶTL,1(max(ŶTL,1)−min(ŶTL,1))+min(ŶTL,1) (7)

For remaining, 2nd to m− 1, talents, we use the following

equation:

YTL,i = ŶTL,i
(

Q(0.95|YTL,1, . . . ,YTL,i−1) −Q(0.05|YTL,1, . . . ,YTL,i−1)
)

+

Q(0.05|YTL,1, . . . ,YTL,i−1), ∀i ∈ {2, . . . ,m−1}
(8)

To obtain the last talent in the set, namely, YTL,m, we use

the surrogate model created with eqn. 5 in the previous step

of our co-design approach. After deciding on actions and

talents, we input these into the simulation. Robots are created

using these talents. Note that for the MDP computations,

the robot capabilities expressed as the talent set is necessary

and sufficient to model or embody the robot agent in the

simulation (their morphology doesn’t need to be explicitly

determined). Once the talent based robot has been defined,

the computed action at is taken to get rewards and new states,

that are returned to the actor network. Crucially, after the

first step of the episode, talents are not sampled from the

distribution, since they are not input dependent. Moreover,

changing the talent and thus the robot design during an

episode would not be physically meaningful. Thus, only

behavioral actions are forward propagated throughout the

episode, i.e., the states and actions update with each step,

as shown in the eqn 6.

The critic network, which primarily gets the states as input,

is modified to receive state-talent values. Now, instead of

calculating the state value, the critic network calculates the

state-talent values. The new critic policy can be represented

as V(st, ŶTL;w). The Temporal Difference (TD) error is then

computed based on δ = r+γV(s(t+1), ŶTL;w)−V(st, ŶTL;w)

Since the talent values remain the same throughout the

episode, it is necessary that we collect experiences containing

batches of episodes and update the actor and critic networks

over this batch. The TD error can be used to update the critic

to optimally estimate the state-talent value. Consequently,

the actor network is updated to increase the probability of

providing us with the optimal Talents and behavior (actions

based on states). Once the training converges, the determinis-

tic actor provides the optimal talents (Y∗
TL

), and the behavior

policy.

D. Morphology Finalization

Utilizing the optimized or learnt talent metrics Y∗
TL

, we

determine the final robot morphology through another sin-

gle objective optimization process, as shown in fig. 1 d).

The goal of this optimization is to now explicitly find the

morphology that corresponds to (as closely as possible) the

optimal talent metrics obtained in the previous step. This

optimization can be expressed as,

Min: f f = ||YTL(XM)−Y∗TL ||

S. t.: Xmin ≤ XM ≤ Xmin, g(XM) ≤ 0
(9)



Parameter

States

Task graph (G)

current mission time (t)

current location of the robot (xt
r ,y

t
r)

remaining battery of robot r (φt
r)

capacity of robot r (ct
r)

destination of its peers (xk ,yk ,k ∈ [1,NR],k , r)

Remaining battery of peers (φt
k
,k ∈ [1,NR],k , r)

Capacity of peers (ct
k
,k ∈ [1,NR],k , r)

Destination time of peers(tnext
k
,k ∈ [1,NR],k , r)

Talents (ŶTL,1 and ŶTL,2)

Actions Task to allocate (0, . . . ,NT )

TABLE I: The state and action parameters of the graph

learning policy for MRTA-Flood

Any standard non-linear constrained optimization solver can

be used here. In this paper, we use a Particle Swarm

Optimization implementation [29].

III. Multi-Robot Task Allocation for Flood Response

In this work, we focus on a multi-unmanned aerial vehicle

(UAV) flood disaster response problem adopted from [28],

[30], which we refer to as MRTA-Flood. It consists of NT

task locations in a flood-affected area waiting for a survival

package to be delivered by a team of NR UAVs. Here, the

goal is to drop survival packages to as many task locations as

possible before the water level rises significantly, submerging

all the locations. We assume that each location requires

just one survival package. The predicted time at which a

location i gets completely submerged (τi) is considered as

the deadline of the task i, by which time that task must be

completed. Each UAV has a max package (payload) capacity,

max flight speed and max flight range, which comprise the

set of talents. We consider a decentralized asynchronous

decision-making scheme. The following assumptions are

made: 1) All UAVs are identical and start/end at the same

depot; 2) The location (xi,yi) of task-i and its time deadline

τi are known to all UAVs; 3) Each UAV can share its state

and its world view with other UAVs; and 4) A linear charging

model with a charging time from empty to full range being

50 minutes, the charging happens every time the UAV visits

the depot.

A. MRTA-Flood Problem Formulation

Here, we present a summary of the Markov Decision Pro-

cess (MDP) formulation of this multi-UAV flood-response

problem.

MDP over a Graph:

The MRTA-Flood problem involve a set of nodes/vertices

(V) and a set of edges (E) that connect the vertices to

each other, which can be represented as a complete graph

G = (V,E,Ω), where Ω is a weighted adjacency matrix. Each

node represents a task, and each edge connects a pair of

nodes. For MRTA with NT tasks, the number of vertices and

the number of edges are NT and NT (NT −1)/2, respectively.

Node i is assigned a 3-dimensional feature vector denoting

the task location and time deadline, i.e., ρi = [xi,yi, τi] where

i ∈ [1,NT ]. Here, the weight of the edge between nodes

ÿ�

Ā�
TABLE II: UAV talent metrics and design variables obtained

in co-design compared with baseline designs for MRTA and

single robot task allocation (SRTA)

i and j is ωi j (∈ Ω), which can be computed as ωi j =

1/(1+

√

(xi− x j)2+ (yi− y j)2+ (τi−τ j)2), where i, j ∈ [1,NT ].

The MDP defined in a decentralized manner for each

individual UAV (to define its task selection process) can be

expressed as a tuple < S,A,Pa,R >. The State Space (S)

consists of the task and peer robot properties and mission-

related information. The Action Space (A) is the index of

the task selected to be completed next {0, . . . ,NT } with the

index of the depot as 0. The full state and action space is

shown in table I. The (Reward function (R)) is defined as

10×Nsuccess/NT , where Nsuccess is the number of successfully

completed tasks and is calculated at the end of the episode.

Since here we do not consider any uncertainty, the state

transition probability is 1.

B. Graph-Based Behavior Policy Network

Motivated by the generalizability and scalability benefits

reported in [27], [28], [31], we construct a policy network

based on specialized Graph Neural Networks (GNN) which

maps the state information to an action. The behavior

policy network consists of a Graph Capsule Convolutional

Neural Network (GCAPCN) [32] for encoding the graph-

based state information (the task graph). The remaining state

information, which includes the state of the robot tasking

decision, the peer robots, and the maximum range (ŶTL,1),

and maximum speed (ŶTL,2), are concatenated as a single

vector and passed through a linear layer to obtain a vector

called the context (Fcontext ∈ R
hl×1, where hl is the length of

the context vector). The encoded and context information are

then processed by a decoder to compute the actions, namely

the probability of selecting each available task. Figure 2

shows the overall policy network. Further details of the

GCAPCN encoder and the MHA-based decoder can be found

in our previous works [27], [31], [33], and are thus not

elaborated here.

IV. Case study - Results and Discussion

This section showcases the implementation and results of

each step of the co-design framework applied to the MRTA-

Flood problem.

A. Talent metrics and Pareto Front

For the MRTA-Flood problem, we consider a quadcopter

with a Blended-Wing-Body (BWB) design integrated into
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an H-shaped frame [22]. The key morphological parameters

that influence performance are the length and width of

quadcopter arms, motor power, battery capacity, payload,

and propeller diameters, although a much larger or more

granular set of design variables can also be readily consid-

ered in future implementations. As stated earlier, the talent

set comprises flight range (YTL,1), nominal speed (YTL,2),

and the payload or package capacity (YTL,3) of the UAV.

We consider each package to have 400 grams of emergency

supplies. Computational underlying the design objective and

constraint calculations (eq. 2) for this UAV can be found

in [22]. In order to identify the Pareto points as explained

in section II-B, we utilize the NSGA-II (Non-dominated

Sorting Algorithm II) solver. For robustness, the optimization

process involved conducting six separate runs, with each

run consisting of a population of 120 and 40 generations

each. Subsequently, the Pareto points obtained through six

runs are subjected to another final non-dominated sorting

process to acquire the final set of Pareto points. After the final

sorting process, we identified a total of 289 Pareto solutions.

Finally, to capture and model the Pareto front, we utilize

2D Quadratic regression, considering Range and Speed as

independent variables and package capacity as the dependent

variable, YTL,m. The resulting Pareto front is shown in figure

3 a).
B. Behavior Learning subject to Talent Boundary

We use the Stable-baselines3 [34] library to implement

our custom policy and distribution as elaborated in section

III. The policy generates outputs for flight range (ŶTL,1) and

speed (ŶTL,2), both in a range of [0,1]. The flight range

is scaled using the upper and lower bounds of the flight

range of the Pareto front given in table II. The speed output

ŶTL,2 undergoes scaling based on the 5th and 95th percentile

values (upper and lower limits) of speed conditioned on the

flight range. The number of packages is estimated using the

polynomial regression created with flight range and speed

as inputs. The behavioral action (a) is also determined as a

part of the policy, indicating the next task to complete. The

training area is 5 sq. km, the number of robots is 5, the task

size is 50, and the total mission time is 2 hours, which is

kept fixed for ease of computation. For each episode, the

depot, task locations, and the time deadline for each task are

randomly generated across the environment.

The policy is trained using Talent-infused Proximal policy

optimization (PPO) for approximately 350k episodes. Figure

4 shows the convergence history of talents and rewards.

During the initial part of the training, the standard deviation

of the policy is higher, and as the training progresses and

rewards (Figure 4 a) start to converge, the uncertainty of

talents (Figure 4 b,c,d) reduces, signifying a stable learning

process. The final cumulative standard deviation of the policy

narrows down to 6.9%, indicating a high level of precision

and consistency in the learning outcomes.

C. Baseline Comparison

To compare our co-design policy’s performance, we

trained two baseline policies, and each has fixed talents:

one possessing a higher package capacity and increased

speed and the second baseline with a lower package capacity

and higher range compared to our co-designed talents. The

baseline talents are also selected from the Pareto front

obtained through optimization (so they are competitive best

trade-offs). The baselines represent typical automated se-

quential designs. Furthermore, by selecting the candidates

from the Pareto front, we ensure that our co-design policy

is benchmarked against design candidates that are better in

one or more talents.

Identical RL settings have been used throughout the

experiments in this paper. The baseline behavior policies

and the co-designed policy are evaluated with 3 different

task sizes and robot counts across 250 episodes each. The

task completion rate by each policy is compared in Figure

6. In the training environment, which has 50 tasks and 5

UAVs, the co-designed policy demonstrated a median task

completion rate of approximately 90%, outperforming the

baseline policies, which achieved around 83% median task

completion rate. As the environment was scaled to include

100 tasks with 10 UAVs and further to 150 tasks with 15

UAVs, the performance advantage of co-design over the

baselines remained agnostic to scaling, further demonstrating

the benefits of the co-design over sequential design.



Fig. 3: Talent Pareto front approximated by polynomial regression; limits of talents captured with quantile regression. a)

Pareto front for MRTA morphology constraints, b) Pareto front for SRTA morphology constraints

Fig. 4: Training history for MRTA co-design policy (Talents

and overall reward): (a) Reward, (b) Cruise speed, (c) Flight

range, (d) Package Capacity

Fig. 5: Training history for Single Robot Task Allocation

(Talents and overall reward): (a) Reward, (b) Cruise speed,

(c) Flight range, (d) Package Capacity

D. Single Robot Task Allocation

A single robot task allocation (SRTA) co-design case study

is also performed here, to provide insights with regards

to: 1) At what scale of problems do co-designed multi-

robot teams – by virtue of task parallelism and emergent

collective performance – start providing benefits over a

co-designed single robot deployment, where the latter is

allowed a much larger or generous range of morphological

choices (considering similar overall investment). 2) How

the behavior/morphology combinations and inherent talents

obtained from a single robot co-design differ from that of

multi-robot co-design for the same operation.
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Fig. 6: Multi-Robot Case: Task completion rate of co-

designed policy and baseline policies with various task and

UAV Scale

E. Talent Boundaries and Behavior Learning

The upper bounds of our morphology variables are scaled

3-4 times in the single robot co-design baseline. Table II

shows the upper and lower bounds of our morphology space

for this single robot study. We obtained our Talent Pareto

following the same method as before, and the resulting

Pareto front is shown in Fig. 3 b). When compared with the

Pareto front obtained for multi-robot morphology settings,

the single robot Pareto front differs significantly, indicating

that the influence of morphology on capability space is non-

linear. The convergence history of talents and the rewards for

Talent-infused learning in the single robot case are shown in

Fig. 5. The co-design policy converges to a higher speed

rather than a higher payload or flight range. A single UAV

needs the speed to go to multiple locations and complete the

tasks, while an appropriate balance between the number of

packages it can carry and range is also necessary. A fixed

design baseline policy is trained using talents from the single

UAV Pareto front that have a higher payload than the single

UAV co-designed talents. Both the baseline and optimized

talents are shown in table II. In testing settings similar to the

MRTA-Flood Problem, the single-robot co-designed policy

surpasses the multi-robot policy in the training environment.

However, its performance drops to 65% when the number

of tasks double and falls below 50% when the number of

tasks triple. Since scalability is an essential component in

any task allocation problem, when the number of tasks is

changed, multi-robot systems provide a clear advantage. This

hypothesized benefit remains evident even under co-designed

outcomes (which arguably bring out the near-best of both

worlds, single vs. multi-robot systems).

F. Final Morphology

The final morphologies for both the single-robot task

allocation and multi-robot task allocation problems are pro-

vided in table II. While the upper bounds in morphology

for a single robot system are scaled 3 to 4 fold for each

variable, the optimized talents do not utilize the full bounds

for most parameters. Interestingly, certain variables, such as
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Fig. 7: Single Robot Case: Task completion rate of co-

designed policy and baseline policy with various task counts

the length and propeller size, were optimized to dimensions

even smaller than the morphology observed in multi-robot

configurations. In order to perform a more direct comparison

of single-sophisticated and multi-(simple)-robot performance

and how the behavior/morphology combinations offer dis-

tinct, not necessarily intuitive, trade-offs, an anchor is needed

to equate the overall investment across these cases, e.g., total

cost or mass (pertinent in space applications), and would be

investigated in future work.

G. Computing Costs Analysis

Our talent-behavior learning was performed in a worksta-

tion with Intel CPU-12900k (24 Threads), NVIDIA 3080ti,

and 64 GB of RAM. The computation times for each step

in our co-design framework for MRTA-Flood problem are:

6.7 minutes for 6 runs of NSGA-II to obtain talent Pareto

solutions, just 3.5 seconds for generating the Pareto boundary

regression model, 9 hours 57 minutes to train the talent-

infused Actor-Critic policy, and 2.3 minutes for morphology

finalization with MDPSO [29]. Overall, our co-design frame-

work incurs a total computational cost of approximately 10

hours and 5 minutes. Using the policy training time (of 6

hours 49 minutes) with fixed morphology (namely the inner

loop search) as reference, a nested co-design is estimated to

take 272 hours if using NSGA-II for solving the outer level

optimization.

V. Conclusion

In this paper, we introduced a new computational frame-

work to concurrently design the learning-based behavior and

morphology of individual robots in a multi-robot system, ap-

plied to the multi-robot task allocation context. Regression-

based representation of the relation between the best trade-

off talent choices (that represent robot capabilities), and

formulation of a talent-infused actor critic policy, play key

roles in enabling this new framework, with significant gains

in computing efficient compared to a vanilla nested co-

design approach. Applied to a multi-UAV flood response

scenario, with the individual UAV behavior expressed by

a graph neural network, the co-designed UAV team readily

outperforms two sequential design baselines in terms task

completion performance evaluated over unseen test scenar-

ios. The framework also provides transparent insights into

when a multi-UAV team becomes more beneficial com-

pared to using a stand-alone more capable single UAV, and

what morphological trades-offs occur between these two

options. In its current form, the talent metrics must be

purely functions of morphology, as well as be collectively

sufficient to simulate the state transition underlying the robot

behavior, which might be challenging to apply in settings

with more complex robot/environment interactions. Future

work can thus investigate talent representations that alleviate

these assumptions, and thus allow wider application of the

proposed co-design concept.
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