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Abstract

Prior work applying semiparametric theory to

causal inference has primarily focused on deriving

estimators that exhibit statistical robustness under

a prespecified causal model that permits identi-

fication of a desired causal parameter. However,

a fundamental challenge is correct specification

of such a model, which usually involves making

untestable assumptions. Evidence factors is an ap-

proach to combining hypothesis tests of a common

causal null hypothesis under two or more candi-

date causal models. Under certain conditions, this

yields a test that is valid if at least one of the under-

lying models is correct, which is a form of causal

robustness. We propose a method of combining

semiparametric theory with evidence factors. We

develop a causal null hypothesis test based on joint

asymptotic normality of K asymptotically linear

semiparametric estimators, where each estimator

is based on a distinct identifying functional derived

from each of K candidate causal models. We show

that this test provides both statistical and causal

robustness in the sense that it is valid if at least one

of the K proposed causal models is correct, while

also allowing for slower than parametric rates of

convergence in estimating nuisance functions. We

demonstrate the effectiveness of our method via

simulations and applications to the Framingham

Heart Study and Wisconsin Longitudinal Study.

1 INTRODUCTION

Prior work at the intersection of semiparametric theory and

causal inference has primarily focused on deriving estima-

tors that possess statistical robustness properties under a

prespecified causal model that permits identification of a

causal parameter of interest. For example, in the backdoor

causal model where treatment assignment is assumed to

be ignorable given observed covariates, the average causal

effect (ACE) is identified via the backdoor formula [Robins,

1986, Pearl, 2009], and the augmented inverse probability

weighted estimator (AIPW) of this parameter [Bang and

Robins, 2005] exhibits statistical robustness to specification

of the propensity score and outcome regression estimators.

In particular, the AIPW estimator is doubly robust, meaning

that it is consistent if either the propensity score or out-

come regression estimator is consistent, and it can attain

the parametric n−1/2 rate of convergence to the true ACE

even when using data-adaptive estimators of the propensity

score and outcome regression that may have convergence

rates slower than n−1/2. General semiparametric estima-

tion strategies with similar robustness properties have been

derived in settings where the causal model is represented

as a causal graph with latent confounders [Fulcher et al.,

2020, Jung et al., 2021, Bhattacharya et al., 2022]. However,

valid causal interpretation of these semiparametric estima-

tors relies on correct specification of the causal model. Fur-

thermore, causal models typically include assumptions that

are untestable using the observed data, and which can only

be justified using scientific arguments—classic examples

are the conditional ignorability assumption in the backdoor

model and the exclusion restrictions in the instrumental vari-

able (IV) [Balke and Pearl, 1993, Angrist et al., 1996] and

front-door models [Pearl, 1995a].

In some cases, there are multiple plausible causal mod-

els identifying a causal effect in a single observed dataset.

For example, the data may contain a set of covariates for

which conditional ignorability is plausible, and also contain

a plausible IV. Evidence factors is an approach to combining

hypothesis tests of a common causal null hypothesis under

two or more candidate causal models [Rosenbaum, 2010,

2011, Karmakar et al., 2019]. Under certain conditions, ev-

idence factors methodology yields a test that is valid if at

least one of the underlying causal models is correct, without

knowing which of the models is correct. This is a form of

causal robustness because the test is robust to misspecifica-
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tion of some of the causal models as long as one is correctly

specified. This approach allows the analyst to make weaker

causal assumptions at the expense of stronger statistical

assumptions, since a well-behaved statistical test must be

constructed using each posited causal model.

In this paper, we propose methods for combining semipara-

metric theory with evidence factors to produce tests that

exhibit both statistical and causal robustness. Our proposed

approach is built upon the evidence factors design, where

multiple analyses are used to test a common causal null

hypothesis using a single dataset. We propose tests based

on joint asymptotic normality of multiple asymptotically

linear semiparametric estimators, where each estimator is

based on a distinct identifying functional derived from a

(possibly incorrect) causal model. We show our tests have

asymptotically valid type I error rate if at least one of the

causal models is correct.

Advantages of our method: Our tests have several advan-

tages over existing evidence factors methods, including re-

laxing some of the conditions required by standard evidence

factors designs [Rosenbaum, 2010, 2011, 2021].

(i) Since our tests are based on semiparametric estima-

tors, they possess the types of statistical robustness

discussed above.

(ii) We remove the need to demonstrate that the joint dis-

tribution of the p-values from multiple tests stochas-

tically dominates the uniform distribution under the

null, which is commonly used to demonstrate that the

combined p-value from an evidence factors analysis

has valid size under the null. Asymptotic validity of

our test is guaranteed by joint convergence in distri-

bution of the estimators, which is a consequence of

asymptotic linearity of semiparametric estimators.

(iii) Finally, our method does not require that the candidate

causal models have non-overlapping sources of bias.

In other words, our test is valid even if the assumptions

of two or more of the candidate causal models are

invalidated by the same source of bias; e.g., the same

unmeasured confounder.

The weaker conditions of our proposed approach allow us to

readily apply our method to complex settings. We illustrate

this with two examples that have not been studied before

to the best of our knowledge. In the first example, we con-

sider three candidate causal models: backdoor, front-door,

and IV. In the second example, we consider three candidate

backdoor models with different adjustment sets. We evalu-

ate the effectiveness of our proposed test using simulations.

We then demonstrate our method with two real-world ap-

plications. First, we study the effect of smoking on blood

glucose levels using data from the Framingham Heart Study

[Kannel and Gordon, 1968] by combining analyses from a

backdoor, front-door and IV model. Finally, we compare our

methods with evidence factors analysis using the Wisconsin

Longitudinal study [Karmakar et al., 2021].

Other related work: In addition to the evidence factors

work cited earlier, we note that Sun et al. [2021] proposed

a multiply robust method for estimating causal effects in a

Mendelian randomization setting. Their work is specific to

a setting where the candidate models are all IV models. An

advantage of our work is that it can be applied in settings

where the candidate models are qualitatively distinct. We

also note that there is prior research on specification testing

for causal models—e.g., Entner et al. [2013] and Shah et al.

[2022] proposed tests for conditional ignorability models,

Bhattacharya and Nabi [2022] proposed tests for front-door

models, and Pearl [1995a] and Wang et al. [2017] proposed

tests for IV models. In contrast, we do not aim to test the

specification of causal models. Instead, our goal is to test a

causal null hypothesis provided that assumptions of at least

one of the underlying causal models hold, without knowing

which set of assumptions holds.

2 MOTIVATING EXAMPLE

We first describe an empirical example to motivate our gen-

eral theory and methods. We present the results of data

analysis for this example in Section 5. We are interested in

testing the causal null hypothesis that there is no average

causal effect (ACE) of smoking on glucose levels because

high glucose levels are a cause of diabetes. We use data from

the Framingham Heart Study [Kannel and Gordon, 1968]

to test this null hypothesis. The data are observational, and

consist of n = 3477 fully observed realizations of the data

structure O = {C,Z,A,M, Y }, and we will assume these

data are independent and identically distributed from a distri-

bution P . In this data, C denotes a set of baseline covariates

containing age, sex, BMI, past history of heart disease, and

past glucose level;A is binary current smoking status, which

is our treatment of interest; Y is glucose level, which is our

continuous outcome of interest;M is hypertension, which is

our candidate mediator; and Z is past hypertension, which is

our candidate IV. We define the ACE of smoking on glucose

as ´ = E[Y (A = 1)] − E[Y (A = 0)], where Y (A = 1)
and Y (A = 0) denote potential outcomes under assignment

to smoking and no smoking, respectively. Our causal null

hypothesis is H0 : ´ = 0.

Identification of the causal parameter ´ using the distribu-

tion of the observed data relies on assumptions encoded in

a causal model. Here, as is often the case, there are multi-

ple plausible causal models. Figure 1 shows three plausible

causal models for this study using causal directed acyclic

graphs (DAGs) [Spirtes et al., 2000, Pearl, 2009]. Each

causal DAG only includes the subset of variables important

for identification. Solid blue edges represent causal rela-

tions that are permitted by the model—i.e., do not violate

its identifying assumptions if present in the underlying data
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Figure 1: Plausible causal models and violations of their as-

sumptions (shown via red dashed edges). M1 is a backdoor

model, M2 is a front-door model, and M3 is an IV model.

generating process—and red dashed edges represent causal

relations that are not permitted by the model.

Model M1 is a model that assumes the smoking-glucose

relationship is unconfounded given the observed covariates

C. Under M1, the ACE ´ is identified with the observed

data parameter È1(P ) given by the backdoor formula

È1,P = E [µ(1, C)− µ(0, C)] , (1)

where µ(a, c) := E(Y | A = a, C = c) [Robins, 1986,

Pearl, 1995a]. For brevity, we will refer to models like M1

that permit identification via the backdoor formula as back-

door models. Model M2 is a front-door model that assumes

that smoking only impacts glucose through its effect on

hypertension, but permits unmeasured common causes of

smoking and glucose (but not hypertension). Under M2,

the ACE is identified with the parameter È2,P given by

È2,P := E {E [µ(M,C) | A = 1, C]

− E [µ(M,C) | A = 0, C]} ,
(2)

where µ(m, c) := E[µ(m,A, c) | C = c] for µ(m, a, c) :=
E(Y |M = m,A = a, C = c) [Pearl, 1995a]. Model M3

is an IV model that assumes prior hypertension is exogenous

and only impacts glucose through its effect on smoking,

but permits unmeasured common causes of smoking and

glucose (but not previous hypertension). Under M3, the

ACE is identified with È3,P given by

È3,P =
E(Y | Z = 1)− E(Y | Z = 0)

E(A | Z = 1)− E(A | Z = 0)
(3)

[Balke and Pearl, 1993, Angrist et al., 1996]. We note that

each causal model above also includes non-graphical as-

sumptions, such as positivity, for identification to hold.

These will be stated in Section 4.

Semiparametric estimators that exhibit robustness to nui-

sance estimation have been developed for È1,P , È2,P , and

È3,P . For example, the AIPW estimator of È1,P [Bang and

Robins, 2005] is doubly robust with respect to estimators

of the outcome regression and propensity score, the aug-

mented primal IPW estimator of È2,P [Fulcher et al., 2020,

Bhattacharya et al., 2022] is doubly robust with respect to

estimators of the outcome regression and conditional distri-

bution of the mediator, and the empirical plug-in estimator

of È3,P does not require any nuisance estimators.

If the assumptions in causal model Mk hold, a semiparamet-

ric estimator of the corresponding identified parameter Èk,P

can be used to construct a statistically robust hypothesis

test of the causal null hypothesis that ´ = 0. For example,

if the backdoor model M1 holds, then a hypothesis test

based on the AIPW estimator will have power tending to

one as long as either the outcome regression or propensity

score estimator is consistent, and will have asymptotically

valid type I error rate as long as the outcome regression

and propensity score estimators achieve sufficient rates of

convergence (which may be slower than n−1/2).

If the causal model Mk fails to hold, a hypothesis test based

on Èk,P may not provide any information about whether

´ = 0. Furthermore, it is often the case that some of the

assumptions in a causal model do not imply any testable con-

straints on the observed data distribution. Indeed, in all three

models proposed in Figure 1, the absence of the red dashed

edges is untestable. The IV assumptions can be falsified via

an inequality constraint, but not confirmed [Pearl, 1995b,

Wang et al., 2017]. Therefore, the plausibility of causal mod-

els typically relies on substantive arguments. In the context

of observational studies, such substantive arguments are

frequently tenuous. For example, health consciousness is

an unmeasured covariate in the Framingham Heart Study

that could impact the likelihood of smoking and impact

glucose levels through its effect on diet and exercise. If so,

the backdoor model M1 may not hold. It is also possible

that smoking impacts glucose through mechanisms other

than hypertension, such as reduced likelihood of exercising

or reduced appetite, which would invalidate the front-door

model M2. Finally, past history of hypertension may not

be exogenous, because diet and exercise may be associated

with both hypertension and glucose, which would invalidate

the IV model M3.

To relax the reliance on a single causal model, evidence

factors can be used to derive a test of the null hypothesis

H0 : ´ = 0 that is valid as long as at least one of M1, M2,

or M3 is true, without knowing which is true. This is a form

of causal robustness. Evidence factors typically require that

the joint distribution of the individual p-values stochastically

dominates the uniform distribution under the null. In our

approach, asymptotic validity of the test is instead guaran-

teed by joint convergence in distribution of the estimators,

which follows directly from asymptotic linearity of semi-

parametric estimators. In addition, standard evidence factors

analyses require that the source of bias that invalidates one



causal model does not necessarily bias other causal models.

For example, the presence of an unmeasured confounder

U that also causes past history of hypertension, such as

health consciousness, biases M3 and may bias M1 as well

unless the backdoor paths through Z and U are blocked by

C. Previous evidence factors literature has used blocking

or stratification to preclude such cases [Zhao et al., 2022,

Karmakar et al., 2021], which can reduce effective sample

size and statistical power. Our proposed approach relaxes

this condition and allows one source of bias to potentially

invalidate multiple analyses, and adds statistical robustness

to the analyses as described above.

3 METHOD FOR COMBINING

EVIDENCE FACTORS

We propose a new method for combining evidence factors

that takes advantage of the asymptotic linearity of influ-

ence function-based estimators. We first outline our formal

problem setup. Let ´ denote the causal parameter of inter-

est, such as the average causal effect or conditional aver-

age causal effect. The causal null hypothesis of interest is

H0 : ´ = 0. We assume the observed data consists of n
realizations O1, . . . , On drawn IID from an unknown distri-

bution P . We suppose that the analyst is considering K > 1
causal models M1, . . . ,MK , and that Èk,P is an identify-

ing functional for ´ under Mk. That is, if the assumptions

of Mk are true, then ´ = Èk,P , which further implies that

H0 holds if and only if Èk,P = 0. Hence, if at least one

of the causal models M1, . . . ,MK is true, then under the

causal null hypothesisH0, at least one of È1,P , . . . , ÈK,P is

zero. Equivalently, if at least one of the K causal models is

true, then H0 implies that
∏K

k=1
Èk,P = 0. This motivates

our approach to testing H0. We note that the reverse impli-

cation is not necessarily true; we discuss this further later in

this section.

For each k, we suppose we can construct an asymp-

totically linear estimator Èk,n of Èk,P with influence

function ϕk,P under statistical conditions Ck, meaning

Èk,n − Èk,P = Pnϕk,P + oP(n
−1/2), where Pnf =

1

n

∑n
i=1

f(Oi). Here, ϕk,P may depend on P , and is as-

sumed to satisfy E(ϕk,P ) = 0 and E(ϕ2k,P ) < ∞. The

statistical conditions Ck typically include rates of conver-

gence and complexity constraints for nuisance estimators

such as outcome regression or propensity score estimators,

as well as constraints on P such as finite moments or semi-

parametric or parametric modeling assumptions.

3.1 JOINT DISTRIBUTION OF

ASYMPTOTICALLY LINEAR ESTIMATORS

Asymptotic linearity implies the marginal convergence

result n1/2(Èk,n − Èk,P ) →d N(0, Ã2

k,P ) for Ã2

k,P :=

E(ϕ2k,P ), which can be used to construct asymptotically

valid Wald-style confidence intervals for Èk,P . A natu-

ral estimator of the asymptotic variance Ã2

k,P is given by

Ã2

k,n := Pnϕ
2

k,n, where ϕk,n is an estimator of the influence

function ϕk,P . This is known as the influence function-based

variance estimator [van der Vaart, 2000]. However, asymp-

totic linearity is stronger than marginal convergence. In

particular, by the multivariate central limit theorem, asymp-

totic linearity of any finite collection of estimators implies

joint convergence in distribution of the estimators. Denoting

ψP := (È1,P , . . . , ÈK,P )
′ and ψn := (È1,n, . . . , ÈK,n)

′

as vectors of the true and estimated parameters, respectively,

and φP := (ϕ1,P , . . . , ϕK,P )
′ as the vector of influence

functions, if all the statistical conditions C1, . . . , CK hold,

then

ψn −ψP = PnφP + oP(n
−1/2).

This implies n1/2(ψn −ψP ) →d NK(0,ΣP ), where ΣP

is defined as










E(ϕ2
1,P ) E(ϕ1,Pϕ2,P ) · · · E(ϕ1,PϕK,P )

E(ϕ2,Pϕ1,P ) E(ϕ2
2,P ) · · · E(ϕ2,PϕK,P )

...
...

. . .
...

E(ϕK,Pϕ1,P ) E(ϕK,Pϕ2,P ) · · · E(ϕ2K,P )











.

We can estimate ΣP using the influence function-based

covariance estimator Σn by estimating E(ϕj,Pϕk,P ) with

Pnϕj,nϕk,n. If Σn →P ΣP and ΣP is invertible, it follows

that n1/2Σ−1/2
n (ψn − ψP ) →d NK(0, IK), where IK is

the K ×K identity matrix and Σ
−1/2
n is the inverse of the

matrix square root of Σn.

3.2 TESTS OF THE IMPLIED NULL BASED ON

JOINT ASYMPTOTIC NORMALITY

We propose using the joint convergence implied by asymp-

totic linearity to derive tests of the null hypothesis that

Èk,P = 0 for at least one k. By the delta method we have

n1/2
(

∏K
k=1

Èk,n −
∏K

k=1
Èk,P

)

→d N (0,γ′
PΣPγP ) ,

where γP := (µ1,P , . . . , µK,P )
′ for µk,P :=

∏

j ̸=k Èj,P .

We recall that if at least one of the causal models is correctly

specified, then the causal null hypothesis H0 implies that
∏K

k=1
Èk,P = 0, which then implies that

Tn := n1/2 (γ′
nΣnγn)

−1/2 ∏K
k=1

Èk,n →d N(0, 1).

Therefore, a two-sided test of H0 with asymptotically

valid type I error rate is given by rejecting at level ³ if

|Tn| > q1−α/2, where qp denotes the pth quantile of a

standard normal distribution. The following result formally

demonstrates that this proposed test has asymptotically valid

type I error rate.

Theorem 1. Suppose that for each k ∈ {1, . . . ,K}, Èk,n

is an asymptotically linear estimator of Èk,P with influence

function ϕk,P ,
∏K

k=1
Èk,P = 0, and Σn →P ΣP , where

γ′
PΣPγP > 0. Then P

(

|Tn| > q1−α/2

)

−→ ³.



A proof of Theorem 1 is given in the Appendix. Theorem 1

is stated in terms of the statistical properties of the test,

and we now elaborate on how this relates to our goal of de-

veloping tests with causal model and statistical robustness.

Theorem 1 implies that if at least one of the causal models

M1, . . . ,MK is true and all of the statistical conditions

C1, . . . , CK implying asymptotic linearity of the estimators

È1,n, . . . , ÈK,n are true, then the test that rejects the causal

null hypothesis H0 : ´ = 0 when |Tn| > q1−α/2 has

asymptotic size ³. Hence, increasing K relaxes the causal

conditions at the expense of stronger statistical conditions.

By using semiparametric estimators rather than estimators

based on parametric models, we increase the statistical ro-

bustness in conditions C1, . . . , CK .

We now briefly comment on some conditions under which

we may not get precise type I error control, and justify

why these situations may not be considered problematic

in practice. First, if more than one Èk,P equals zero, then

γP = 0, which implies that γ′
PΣPγP = 0. Hence, our

method only yields precise type I error control when ex-

actly one of È1,P , . . . , ÈK,P equals zero. If two or more

equal zero, then the rate of convergence of
∏K

k=1
Èk,n is

faster than n−1/2, and so our test will be asymptotically

conservative. This will be illustrated in simulations in Sec-

tion 4 discussed further in Section 6. Briefly, this might

occur when the null hypothesis is true and the analyst has

successfully specified two or more causal models correctly.

In practice, however, we expect a scenario in which the

analyst is able to specify more than one model correctly to

be exceptionally rare—often our concern is if even a single

model has been correctly specified. Readers interested in

learning more about developing tests in such scenarios may

also refer to Miles and Chambaz [2021] for a test developed

in a separate context that has better power in the special case

of K = 2 and diagonal ΣP . To our knowledge, no such test

yet exists in the general case.

Second, we note that γ′
PΣPγP may equal 0 if E(ϕ2k,P ) =

0. Hence, precise type I error control using our method

also relies on the variances E(ϕ2k,P ) being positive when

Èk,P = 0. In some cases, Èk,P = 0 implies that E(ϕ2k,P ) =
0. If this happens, our test may again be asymptotically

conservative. For example, suppose the null hypothesis H0

is the strong causal null hypothesis that there is no causal

effect of a binary treatment A on an outcome Y for any unit

in the population. Under the backdoor model, H0 implies

that È := E{[µ(1, C) − µ(0, C)]2} = 0, where µ(1, c) −
µ(0, c) is the conditional average treatment effect. When

È = 0, its efficient influence function is 0 [Levy et al., 2021].

However, since the strong null hypothesis implies the weak

null hypothesis that the ACE equals zero, the problem can

be avoided in this case by testing the weak null instead.

Finally, γ′
PΣPγP may equal 0 if two or more of the influ-

ence functions are linearly dependent under the null hypoth-

esis. Fortunately, this can be checked by the researcher prior

to using the method.

The next result provides conditions under which the power

of the test goes to one under fixed alternatives.

Theorem 2. Suppose that for each k ∈ {1, . . . ,K},

Èk,n →P Èk,P , where
∏K

k=1
Èk,P ̸= 0, and Σn = OP(1).

Then P
(

|Tn| > q1−α/2

)

−→ 1.

A proof of Theorem 2 is provided in the Appendix. The

conditions of Theorem 2 are substantially weaker than those

of Theorem 1. In particular, Theorem 2 only requires consis-

tency of the estimators, which for doubly robust estimators

can hold as long as at least one nuisance estimator is consis-

tent.

We note that
∏K

k=1
Èk,P ̸= 0 requires that each Èk,P ̸= 0.

If Mk is a correct causal model, then Èk,P ̸= 0 if and only

if ´ ̸= 0. However, if Mk is invalid, then Èk,P does not nec-

essarily have any correspondence with ´, and hence Èk,P

may equal 0 even if ´ ̸= 0. Hence, the power of the pro-

posed test may not converge to one under certain alternatives

even if at least one of M1, . . . ,MK is true and all of the

statistical conditions C1, . . . , CK are true. This phenomenon

will be illustrated in numerical studies in Section 4. It ap-

pears that developing a consistent test in situations where

´ ̸= 0 but some Èk,P = 0 would require being able to

determine which models are invalid, which as discussed

above is typically not possible. However, in some cases,

even when Mk is invalid, Èk,P = 0 is an “unlikely" event

when ´ ̸= 0 in the sense that it requires exact cancellations

of certain causal effects. This is related to the faithfulness

assumption in DAGs [Spirtes et al., 2000], which states that

(conditional) independence between variables under P can

always be attributed to the structure of the causal graph. In

causal graphical selection, P is often assumed to be faith-

ful with respect to a causal graph with the justification that

unfaithful distributions are rare [Spirtes et al., 2000]. If 1)

the distribution P is faithful and 2) Èk,P = 0 if and only

if Y §§ A | R, where R denotes other observed variables

appearing in Èk,P , then ´ ̸= 0 implies that Èk,P ̸= 0.

Condition 2) holds in, for example, some linear Gaussian

models. An example of a causal model violating faithfulness

is shown in the Appendix.

4 PRACTICAL APPLICATIONS OF THE

GENERAL METHOD

As noted in Section 3, our method can be applied to any set

of causal models as long as we can construct asymptotically

linear estimators of each Èk,P . Recent developments in

semiparametric theory allow us to do this for any identified

query of the ACE given a causal graph with unmeasured

confounders [Bhattacharya et al., 2022, Jung et al., 2021].

We highlight two important examples here: (i) three qualita-

tively distinct causal models—backdoor, front-door, and IV,



Figure 2: Size (left) and power (right) of the test as a function of sample size when at least one of backdoor, front-door, or

IV are true. Panel labels indicate which model(s) are correct (TRUE) and incorrect (FALSE).

and (ii) multiple plausible backdoor models. We assess the

performance of our proposed test using numerical studies

in both examples. In Section 5 we demonstrate an applica-

tion of (i) to the Framingham Heart Study, as highlighted in

our motivating example. We also compare our method with

prior evidence factors work using the Wisconsin Longitu-

dinal Study using two distinct IV models and a backdoor

model.

4.1 BACKDOOR, FRONT-DOOR, AND IV MODELS

We return to the three candidate causal models introduced

in Section 2 and displayed in Figure 1: the backdoor, front-

door, and IV models. Before describing the numerical study,

we provide additional details about the causal models and

estimators. We are interested in testing the weak causal null

hypothesis H0 : ´ = E[Y (A = 1) − Y (A = 0)] = 0.

Causal model M1 is the backdoor model. In addition to

SUTVA and consistency, the assumptions of M1 are: (i)

Y (A = a) §§ A | C for a ∈ {0, 1} (conditional ignorabil-

ity), and (ii) 0 < Ã(C) < 1 almost surely for a ∈ {0, 1}
for Ã(c) := P (A = 1 | C = c) (positivity). Under these

conditions, ´ = È1,P defined in (1). The nonparametric

efficient influence function of È1,P is ϕ1,P = ϕ◦
1,P − È1,P ,

where ϕ◦
1,P (y, a, c) is given by

{y − µ(a, c)}

{

a− Ã(c)

Ã(c)[1− Ã(c)]

}

+ {µ(1, c)− µ(0, c)} .

The AIPW estimator [Bang and Robins, 2005] is an asymp-

totically linear estimator of È1,P with influence function

ϕ1,P under doubly robust conditions on estimators µn and

Ãn of µ and Ã, respectively.

Causal model M2 is the front-door model. The key assump-

tions of M2 are: (i) Y (A = a,M = m) = Y (M = m) for

a,m ∈ {0, 1} (no direct effect of treatment on the outcome);

(ii) Y (M = m) §§M(A = a) | C for a,m ∈ {0, 1} (con-

ditional ignorability of the mediator-outcome relationship);

(iii) M(A = a) §§ A | C for a ∈ {0, 1} (conditional ignor-

ability of the treatment-mediator relationship); (iv) Y (M =
m) §§M | A,C; and (v) 0 < P (A = a,M = m | C) < 1
almost surely for each a,m ∈ {0, 1} (positivity). Unob-

served confounding between A and Y is permitted. Under

these conditions, ´ = È2,P defined in (2). The nonpara-

metric efficient influence function ϕ2,P (y,m, a, c) of È2,P

is

³(m | 1, c)− ³(m | 0, c)

³(m | a, c)
{y − µ(m, a, c)}

+

{

a− Ã(c)

Ã(c)[1− Ã(c)]

}

{µ(m, c)− Ä(a, c)}

+ {¸(1, a, c)− ¸(0, a, c)} − È2,P ,

where ³(m | a, c) := P (M = m | A = a, C = c),
¸(a0, a, c) := E[µ(M,a, c) | A = a0, C = c], and

Ä(a, c) := E[¸(a,A, c) | C = c]. The augmented primal

IPW estimator of È2,P [Fulcher et al., 2020, Bhattacharya

et al., 2022] is asymptotically linear with influence function

ϕ2,P under double robust conditions on estimators of the

sets {Ã, µ} and {³}.

Finally, causal model M3 is an IV model. The key assump-

tions of M3 are: (i) Y (Z = z) §§ Z, for z ∈ {0, 1} (ran-



domized instrument); (ii) Y (Z = z,A = a) = Y (A = a)
for each a, z ∈ {0, 1} (no direct effect of the instrument

on the outcome); (iii) P (A(Z = 0) = 1, A(Z = 1) =
0) = 0 (monotonicity); (iv) E[A(Z = 1) − A(Z =
0)] ̸= 0 (non-null effect of the instrument on treatment); (v)

Var{Y (A = 1)− Y (A = 0)} = 0 (homogeneity); and (vi)

0 < P (Z = 1) < 0 (positivity). Unobserved confounding

of the treatment-outcome relationship is again permitted.

Under these conditions, ´ = È3,P defined in (3). We note

that without the homogeneity assumption, È3,P is identified

with the ACE among compliers, so we use it here to identify

our actual target ´. The nonparametric efficient influence

function ϕ3,P (y, a, z) of È3,P is

[{y − µ(z)} {Ã(1)− Ã(0)} − {a− Ã(z)} {µ(1)− µ(0)}]

×
z/· − (1− z)/(1− ·)

{Ã(1)− Ã0(0)}2
,

where µ(z) := E(Y | Z = z), Ã(z) := P (A = 1 | Z = z),
and · := P (Z = 1). Since A and Z are binary, an asymp-

totically linear estimator of È3,P with influence function

ϕ3,P can be constructed by replacing the conditional expec-

tations in the definition of È3,P given in (3) with empirical

conditional expectations.

We note that it is possible that M1, M2, and M3 are in-

validated by a common source of bias. For example, if Z
has a direct effect on Y , this invalidates both the IV model

M3 and the backdoor model M1 (if Z is not in the ad-

justment set C). Unlike previous evidence factors analyses

[Karmakar et al., 2021, Zhao et al., 2022], we do not alter

the adjustment sets nor impose any restrictions on the order

of analyses to prevent the source of bias of one model from

invalidating others.

In the first numerical study, we consider testing the causal

null hypothesisH0 : ´ = 0 against the two-sided alternative

using our proposed test with K = 3 using the three causal

models M1, M2, and M3 defined above. We consider

settings where the assumptions of all causal models hold,

where the assumptions of two of the models hold, and where

the assumptions of just one model holds. For each setting,

we consider data-generating distributions where the iden-

tified functional in the incorrect models is 0 or is different

from 0 because we expect this to impact the rejection rate of

the test, as discussed in Section 3.2. To violate the assump-

tions of M1, we either include unmeasured confounders

or adjust for colliders. To violate the assumptions of M2,

we either include an effect of A on Y not mediated through

M or include unmeasured confounding between A and M
or between M and Y . To violate the assumptions of M3,

we include a direct effect of Z on Y , include unmeasured

confounding between Z, A, and Y , or violate monotonicity.

To simultaneously violate the assumptions of M1 and M2,

we use a common source of bias: a direct effect of Z on Y .

The full details of the data-generating processes for each

setting are in the Appendix.

For each data-generating distribution, we simulate data un-

der the null and alternative hypotheses for sample sizes

n ∈ {100, 250, 500, 750, 1000}. For each simulated dataset,

we use our proposed test with the estimators and influence

functions described above. We estimate outcome regression

and propensity score functions using generalized additive

models. For each setting and sample size, we conduct 1000

simulations and record the fraction of the time that our test

rejected the null hypothesis at level ³ = 0.05.

Figure 2 displays the size and power of the test as a function

of sample size under the different settings. The results are

consistent with our expectations based on the theory of

Section 3.2. Under the null (left panel of Figure 2) the size

of the test converges to ³ = 0.05 when two of the causal

models are wrong and both identified functionals in the

wrong models are not zero. The size is close to zero when

more than one of the causal models are correct or when

the identified functional in the wrong model is zero. This is

because, as discussed in Section 3.2, our test is conservative

when more than one Èk,P equals zero. Under the alternative

(right panel of Figure 2), the power of the test converges

rapidly to 1 in all cases when the identified functionals in

the wrong model are not zero. The test has low power when

identified functional in the wrong model equals zero as

discussed in Section 3.2.

We also consider our proposed test with K = 2 using all

three pairs of models: M1 and M2, M1 and M3, and M2

and M3. The simulation results for these settings can be

found in the Appendix, and again align with our theoretical

expectations.

4.2 MULTIPLE BACKDOOR MODELS

In the second example, we consider K = 3 backdoor mod-

els with different adjustment sets. Figure 4 displays the true

causal graph. The adjustment set of the first backdoor model

is {C1, C2, C3, C4}. This model is correct because this set

satisfies the backdoor criterion with respect toA and Y . The

second adjustment set is {C1, C3}, and the third adjustment

set is {C1, C4}, so both of these adjustment sets are invalid

because they omit the confounder C2. As long as the com-

mon source of bias shared by multiple analyses does not

affect all candidate models, then our approach can still be

valid, which is again one of the stated advantages of our

method over standard evidence factors designs.

We use our proposed test with three AIPW estimators with

the three different adjustment sets. We use generalized addi-

tive models to estimate the outcome regression and propen-

sity score. Figure 3 displays the results of the second numer-

ical study. The results are consistent with our expectations.

Under the null, the size of the test converges to ³ = 0.05,

but is slightly anti-conservative for n = 250. Under the

alternative, the power of the test is close to 1 for all n be-



Figure 3: Size (left) and power (right) of the test as a function of sample size for the second numerical study.

A YC1

C2 C3C4

Figure 4: True causal DAG for the backdoor models.

cause in this case, the identified functionals in the backdoor

models with invalid adjustment sets are not zero.

5 REAL DATA APPLICATIONS

In this section we evaluate our methods using two real-

world studies. The first is the Framingham Heart Study as

introduced in our example in Section 2. The second is the

Wisconsin Longitudinal Study that has been analyzed using

classical evidence factors methods by Karmakar et al. [2021]

and thus allows us to compare our methods with prior work.

5.1 FRAMINGHAM HEART STUDY

We first use our methods to test the effect of smoking on

glucose levels using the Framingham Heart Study [Kannel

and Gordon, 1968]. We use the backdoor, front-door, and IV

models defined in Sections 2 and 4 as our candidate models.

Our treatment A is a binary indicator of current smoking

status and our outcome Y is a continuous measure of blood

glucose level. We adjust for baseline covariatesC containing

age, sex, BMI, past history of heart disease, and past glucose

level in the backdoor model. We propose hypertension as

a candidate mediator M for the front-door model, and past

history of hypertension as a candidate instrumental variable

Z for the IV model. We estimate the ACE in each candidate

model using the methods described in Section 4.

Table 1 displays the estimates, 95% confidence intervals,

and p-values from the tests of the null hypothesis of zero

ACE using each causal model individually. The tests based

on the backdoor and front-door models fail to reject the

null hypothesis that smoking status has no effect on glu-

cose levels. The test based on the IV model rejects the null

hypothesis at significance level 0.05 and produces an esti-

mated ACE less than zero, suggesting that smoking reduces

glucose levels. However, these results all rely on validity

of the single causal model on which they are based. The

joint test proposed here is valid if any of the three causal

models is valid and returns a p-value of 0.68. Hence, we do

not find evidence of a statistically significant causal effect

of smoking on glucose levels.

Method ÂCE (95% CI) p-value

Backdoor 0.32 (-1.2, 1.8) 0.67

Front-door -0.038 (-0.090, 0.014) 0.15

IV -47.7 (-62.8, -32.6) 6.5× 10−10

Table 1: Results from the analysis of the effect of smoking

on glucose from the Framingham heart study.

5.2 WISCONSIN LONGITUDINAL STUDY

We next evaluate our method with the Wisconsin Lon-

gitudinal Study (WLS) dataset from the R package

blockingChallenge [Karmakar, 2018]. We compare

our methods and results to evidence factors analysis for this

data [Karmakar et al., 2021].

The WLS data contains a sample of 4450 male students

who completed high school in Wisconsin in 1957. The bi-

nary exposure of interest is whether the student attended a

Catholic high school, and the outcome is income in 1974.

Karmakar et al. [2021] considered three causal models: (1)

an IV model using whether the student’s family resided



in an urban or rural area during high school as an instru-

ment; (2) an IV model using whether the student’s family

was Catholic as an instrument and urban/rural residence as

a covariate; and (3) a backdoor model adjusting for both

urban/rural residence and Catholic religion as covariates.

Each model also included IQ score prior to high school,

father’s and mother’s education, parents’ income, father’s

occupation score, and occupational prestige score as covari-

ates. Letting ´ be the ACE of attending a Catholic school

on income, we use the methods of Karmakar et al. [2021]

to test the null hypothesis that ´ = 0 versus the alternative

that ´ ̸= 0 in these three models, and combine these three

causal models using evidence factors methodology. We as-

sume that at least one model is correct, so we combine the

individual p-values from the evidence factors analysis by

taking the maximum of the three.

We apply our proposed test with the three causal models

described above with slight modifications using the methods

described in Section 4. For the two IV models, we do not

adjust for any covariates, and for the backdoor model, we

adjust for all covariates excluding the two candidate IVs.

Urban IV Catholic IV Backdoor Combined

Evidence Factors Analysis

< 0.0001 0.0084 0.0098 0.0098

Asymptotic Joint Test

3.3× 10−14 0.0094 0.0004 0.0950

Table 2: Results comparing of our method to evidence fac-

tors analysis in analyzing the effect of Catholic schooling

on wages from the Wisconsin longitudinal study.

Table 2 displays the p-values from the three individual tests

and the combined test using the evidence factors method-

ology and our methodology. While all individual p-values

are statistically significant at the 0.01 level, our combined

p-value is not. This is because the three individual p-values

using our proposed models are positively correlated, while

the p-values using the evidence factors methods are nearly

independent of each other under the null by carefully con-

structing each evidence factor analysis. In particular, the

estimated correlation between the AIPW estimator and the

IV estimators from the Catholic religion and urban/rural IV

models are 0.42 and 0.22, respectively. Therefore, whereas

the combined p-value from the evidence factors analysis

simply takes the maximum among the three p-values, our

method takes into account the correlations among the three

tests. Our method produces a valid test even if the individual

p-values are positively correlated and does not require par-

ticular causal models to make p-values from each analysis

nearly independent under the null.

6 CONCLUSION

Many of the assumptions of causal models in the context

of observational data are strong and empirically untestable.

It is desirable to use methods that are as robust as possi-

ble in such settings in order to relax the strength of the

assumptions. In this paper, we proposed a method of testing

a causal null hypothesis in the presence of several candi-

date causal models that provides both statistical and causal

robustness. Our test is valid if at least one of the proposed

causal models is correct, without knowing which one is

correct. Furthermore, our test is based on semiparametric

estimators, which possess desirable statistical robustness

properties. Our methods also relax standard evidence fac-

tors conditions in two ways: we remove the requirement that

non-overlapping biases invalidate the causal models, and

we do not need to show the distribution of the p-values from

each factor dominates the uniform distribution under the

null. This has allowed us to apply our method to new settings

for which evidence factors have not yet been developed. We

expect there are applications of our work to additional new

settings, as well as extensions to causal sensitivity analysis.

The relaxation of the second condition comes at the cost of

statistical power when more than one causal model is correct.

Some evidence factor analyses allow researchers to assume

J g 2 of the K causal models are correct, without knowing

which J causal models are correct [Rosenbaum, 2010, 2011].

The resulting combined test is more powerful as J increases,

at the expense of stronger conditions and less robustness

to invalid causal models. In particular, if the practitioner

assumes that J > 1 models are correct, when in truth fewer

than J are correct, then the resulting test has invalid type

I error rate. Here, we only considered the situation where

J = 1, and if the number of true causal models exceeds one,

our test is valid but tends to be conservative. Extending our

approach to settings where J g 2 models are correct is an

important area of future research.

Our theory covers the case where the number of causal

models K is fixed, and we were primarily focused on the sit-

uation where K is relatively small. Another interesting area

of future research is to quantify the trade-offs in robustness

and power as a function of K and the dependence between

the estimators in each model. We expect that increasing K
typically comes with a reduction in power. However, we

also believe that qualitatively distinct causal models, such

as the backdoor, front-door, and IV models considered here,

leads to less power reduction than qualitatively similar mod-

els, such as multiple backdoor models, because the power

of the combined test is lower when the individual p-values

are positively correlated.

Finally, we focused here on testing causal null hypotheses

because testing is the main focus of the evidence factors

literature, and is an important aspect of causal inference

across various disciplines such as epidemiology [Swanson



et al., 2018], political science [Eggers et al., 2023], and eco-

nomics Angrist and Kuersteiner [2011]. However, as with

evidence factors, we expect that our tests can be inverted to

construct robust confidence sets. This too is an important

topic of future research.
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A PROOF OF THEOREMS

Proof of Theorem 1. Asymptotic linearity of ψn implies that n1/2(ψn −ψP ) →d N(0,ΣP ), where ΣP := E[φPφ
′
P ] is

the asymptotic covariance matrix. Let h : RK → R be defined pointwise as h(x1, x2, . . . , xK) :=
∏K

k=1
xk. Then h is a

continuously differentiable function with ∂h
∂xk

(x1, x2, . . . , xK) =
∏

j ̸=k xj for each k. Denoting the gradient mapping of h
by ∇h, by the delta method,

n1/2 [h(ψn)− h(ψP )] = n1/2
(

∏K
k=1

Èk,n −
∏K

k=1
Èk,P

)

→d N(0, Ã2

P )

for

Ã2

P := ∇h(ψP )
′
ΣP∇h(ψP ) = γ

′
PΣPγP .

Since Σn →P ΣP by assumption, by the continuous mapping theorem [Mann and Wald, 1943], (γ′
nΣnγn)

1/2
→P

(γ′
PΣPγP )

1/2
= ÃP , which is positive by assumption. Therefore, since

∏K
k=1

Èk,P = 0,

n1/2 (γ′
nΣnγn)

−1/2 ∏K
k=1

Èk,n →d N(0, 1).

The result follows.

Proof of Theorem 2. By the continuous mapping theorem [Mann and Wald, 1943],
∏K

k=1
Èk,n →P

∏K
k=1

Èk,P ̸= 0, and

γn →P γP . Since Σn = OP(1), (γ
′
nΣnγn)

1/2 = OP(1) as well. Therefore, |Tn| →P +∞, which yields the result.

B EXAMPLE OF A CAUSAL MODEL VIOLATING FAITHFULNESS

Figure 5 shows an example of a causal model that violates faithfulness due to exact cancellation and where ´ ̸= 0 but

Èk,P = 0 when applying the backdoor formula with observed covariates. In this example, each variable is equal to a

linear function of its direct causes and an independent noise term; e.g., Y = 2A− 2U + 4C + ϵY . Here, the causal null

H0 that A has no causal effect on Y is false – the causal effect of A on Y is the coefficient 2. This distribution violates

faithfulness because A and Y are not d-separated given C [Pearl, 2009], but nevertheless it turns out that Y §§ A | C.

To see this, we use Wright’s rules of path analysis (assuming all variables are standardized) [Wright, 1921] to find that

Cor(A, Y | C) = −2×1+2 = 0. Since Y is given by a linear combination of its causes, this implies Y §§ A | C. Since the

conditional independence Y §§ A | C does not correspond to a property of the graph, it violates faithfulness. Furthermore,

while the backdoor model with conditioning set C is false due to the unblocked backdoor path through U , the observed data

parameter identified by the backdoor model is given by È1,P = Cor(A, Y | C) = 0 as above. Hence, È1,P = 0 even though

´ ̸= 0, which is due to the violation of faithfulness.
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Figure 5: A causal model violating faithfulness.

C ADDITIONAL DETAILS FOR SIMULATIONS STUDIES

Here we provide details for the data-generating processes for the simulation studies presented in Section 4. The coefficient ´
was set to 0 under the null and set to 10 under alternatives. We define expit(x) := 1/[1 + exp(−x)] for x ∈ R. Throughout,

“Bern(p)" is shorthand for the Bernoulli distribution with probability p, “Unif(a, b)" is shorthand for the continuous uniform

distribution on the interval [a, b], and N(µ, Ã2) is shorthand for the normal distribution with mean µ and variance Ã2.

C.1 BACKDOOR, FRONT-DOOR, AND IV MODELS
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Figure 6: Causal DAGs for the data-generating distribution for the simulation with backdoor, front-door, and IV models.

Violation of assumptions is shown via solid black edges.

We begin with data-generating processes for the simulation study combining the backdoor, front-door, and IV models, the

results of which are shown in Figure 2 and discussed in Section 4. Figure 6 shows the causal DAGs for this simulation.

Figure 6(a) shows the causal DAG in the setting where all three models are valid, which was used to generate the lines in



the bottom right panels under the null and alternative of Figure 2. The precise data-generating process for this setting is as

follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define

Ã(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)} .

We then simulate Ā(1) ∼ Bern(Ã(C1, C2, C3)) and Ā(0) ∼ Bern(1 − Ã(C1, C2, C3)). To make the monotonicity

assumption hold for the IV model, we then convert all defiers to compliers by setting A(1) = 1 and A(0) = 0 if Ā(1) = 0
and Ā(0) = 1, and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as

A = A(Z). Finally, we set

M ∼ Bern (expit{5A− 1 + C2})

Y ∼ N
(

´M + 3U + 2
√

|C1|+ sin(C4), 1
)

.

Figure 6(b) shows the causal DAG in the setting where the front-door and IV models are valid, but the backdoor model is

invalid due to an unblocked path from A to Y through U . This DAG was used to generate the both lines in the bottom left

panels under the null and alternative of Figure 2. The data-generating process for this setting when the identified backdoor

functional is not zero under the null and alternative is the same as that described for (a) above, but we change Ã to

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

The data-generating process for the setting when the identified backdoor functional equals zero under the null is the same as

that described for (a) above, but we change the equations for Ã and Y to

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3)− u}

Y ∼ N
(

´M + U + 2
√

|C1|+ sin(C4), 1
)

.

The data-generating process for the setting when the identified backdoor functional equals zero under the alternative is the

same as that described for (a) above, but we change the equations for Ã, M , and Y to

Ã(c1, c2, z, u) = expit {−0.5 + 5z + c1 + expit(c2)− 0.97u}

M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(

´M + 5U − 2
√

|C1|+ sin(C4), 1
)

.

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is

invalid.

Figure 6(c) shows the causal DAG in the setting where the backdoor and front-door models are valid, but the IV model is

invalid due to a direct effect of Z on Y . This DAG was used to generate the line corresponding to “Identified functional in

wrong model ̸= 0" in the second-from-bottom right panel under the null of Figure 2. The data-generating process for this

setting is the same as that described for (a) above, but we change the equation for Y to

Y ∼ N
(

´M + U + 2
√

|C1|+ sin(C4) + 2Z, 1
)

.

Since Z now has a direct effect on Y , the IV model is invalid.

To simulate data where the front-door and backdoor models are valid, but the IV model is invalid (second-from-bottom right

panels of Figure 2) under the null when the identified functional in the IV model equals 0 and under the alternative, we

make the IV model invalid by violating the monotonicity assumption. This violation does not have a graphical visualization,

so it is not displayed in Figure 6. The equations for U , C, Z, and Ã are as described for setting (a) above. We then simulate



A(1) ∼ Bern(Ã(C1, C2, C3)) and A(0) ∼ Bern(1 − Ã(C1, C2, C3)), and we set A = A(Z). Finally, we change the

equations for M and Y to

M ∼ Bern (expit{³1A+ ³2I{A(0) < A(1)}A− 1 + C2})

Y ∼ N
(

´M + U + 2
√

|C1|+ sin(C4), 1
)

.

Here, we set ³1 = 5 and ³2 = −3 under the null, we set ³1 = 5 and ³2 = −2.838 under the alternative if the identified IV

functional equals zero, and we set ³1 = 2 and ³2 = 3 under the alternative if the identified IV functional is not zero. Since

there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

Figure 6(d) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid

due to an unblocked path from A to Y through V and the IV model is invalid due to an unblocked path from Z to Y
through U . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the

second-from-bottom left panel under the null of Figure 2. The data-generating process for this setting is the same as that

described for (a) above, but we add V ∼ Unif(−2, 2) and change the equations for Z, Ã, M and Y to

Z ∼ Bern (expit{2 + 2U})

Ã(c1, c2, c3, v) = expit {c1 + expit(c2) + sin(C3) + v}

M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(

´M + 2U + V + 2
√

|C1|+ sin(C4), 1
)

.

Since V has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is

invalid. Since U has an effect on both Z and Y , but is not in the adjustment set for the IV model, the IV model is invalid.

To simulate data where the front-door model is valid but the backdoor and IV models are invalid (second-from-bottom

left panels of Figure 2) under the null when “Identified functional in wrong model = 0" and under the alternative when

“Identified functional in wrong model = 0", we make the IV model invalid by violating the monotonicity assumption. This

violation does not have a graphical visualisation, so it is not displayed in Figure 6. The backdoor model is invalid due to an

unblocked path from A to Y through U. The equations for U , C, Z, and Y are as described for setting (a) above. We change

the equation for Ã to

Ã(c1, c2, c3, u) = expit(c1 + expit(c2) + sin(c3) + u).

We then simulate A(1) ∼ Bern(Ã(C1, C2, C3, U)) and A(0) ∼ Bern(1 − Ã(C1, C2, C3, U)), and we set A = A(Z).
Finally, we change the equations for M and Y to

M ∼ Bern (expit{³1A+ ³2I{A(0) < A(1)}A− 1 + C2})

Y ∼ N
(

´M + U + 2
√

|C1|+ sin(C4), 1
)

.

Here, we set ³1 = 5 and ³2 = −3 under the null, and we set ³1 = 5 and ³2 = −2.63 under the alternative. Since U has an

effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is invalid. Since there

are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

Figure 6(e) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid due

to an unblocked path from A to Y through Z and the IV model is invalid due to a direct effect of Z on Y . This DAG was

used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the second-from-bottom left panel

under the alternative of Figure 2. The data-generating process for this setting is the same as that described for (a) above, but

we change the equations for Ã, M , and Y to

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3)}

M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(

´M + 3U + 2
√

|C1|+ sin(C4) + 2Z, 1
)

.

Since Z has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is

invalid. Since Z has a direct effect on Y , the IV model is invalid.

Figure 6(f) shows the causal DAG in the setting where the backdoor and IV models are valid, but the front-door model is

invalid due to a direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in



wrong model = 0" in the third-from-bottom right panels under the null and alternative of Figure 2. The data-generating

process for this setting is the same as that described for (a) above, but we change the equation for Y to

Y ∼ N
(

´A+ 3U + 2
√

|C1|+ sin(C4), 1
)

.

Since A now has a direct effect on Y , the front-door model is invalid.

Figure 6(g) shows the causal DAG in the setting where the backdoor and IV models are valid, but the front-door model

is invalid due to an unblocked path from M to Y through U . This DAG was used to generate the line corresponding to

“Identified functional in wrong model ̸= 0" in the third-from-bottom right panels under the null and alternative of Figure 2.

The data-generating process for this setting is the same as that described for (a) above, but we change the equation for M to

M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U now has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model

is invalid.

Figure 6(h) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to

controlling for the collider C5 and the front-door model is invalid due to an unblocked path from M to Y through U and

because M does not fully mediate the effect of A on Y . This DAG was used to generate the line corresponding to “Identified

functional in wrong model ̸= 0" in the third-from-bottom left panel under the null of Figure 2. The data-generating process

for this setting is the same as that described for (a) above, but we change the equations for Ã, M , and Y to

Ã(c1, c2, c3) = expit {c4 + expit(c2) + sin(c3)}

M ∼ Bern(expit{5A− 1 + C2 + 2U})

Y ∼ N (´M + U + sin(C4), 1)

and we simulate C5 ∼ N (3A− Y, 1). Since C5 is a A-Y collider and it is adjusted for in the backdoor model, the backdoor

model is invalid. Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the

front-door model is invalid.

Figure 6(i) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to

an unblocked path from A to Y through U and the front-door model is invalid due to an unblocked path from M to Y
through U . This DAG was used to generate the line corresponding to “Identified functional in wrong model = 0" in the

third-from-bottom left panel under the null and the line corresponding to “Identified functional in wrong model ̸= 0" in the

third-from-bottom left panel under the alternative of Figure 2. The data-generating process for this setting is the same as that

described for (a) above, but we change the equations for Ã and M to

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u}

M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is

invalid. Since U has an effect on both M and Y , but is not included in the adjustment set for the font-door model, the

front-door model is invalid.

Figure 6(j) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to

controlling for the collider C5 and the front-door model is invalid due to an unblocked path from A to M through U and

because M does not fully mediate the effect of A on Y . This DAG was used to generate the line corresponding to “Identified

functional in wrong model = 0" in the third-from-bottom left panel under the alternative of Figure 2. The data-generating

process for this setting is the same as that described for (a) above, but we change the equations for Ã, M , and Y to

Ã(c1, c2, c3, u) = expit {c4 + sin(c3)− u}

M ∼ Bern {expit(5A− 1 + C2 − 2U)}

Y ∼ N (´M − 5 sin(C4), 1)

and we simulate C5 ∼ N (−2A− 5Y, 1). Since C5 is a A-Y collider and it is adjusted for in the backdoor model, the

backdoor model is invalid. Since U has an effect on both A and M but is not in the adjustment set for the front-door model,

the front-door model is invalid.
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Figure 7: Causal DAGs for the data-generating distribution for the simulation with backdoor and front-door models. Violation

of assumptions is shown via solid black edges.

Figure 6(k) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid

due to an unblocked path from M to Y through U and the IV model is invalid due to a direct effect of Z on Y . This DAG

was used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the top right panel under the

null of Figure 2. The data-generating process for this setting is the same as that described for (a) above, but we change the

equations for M and Y to

M ∼ Bern (expit{2A− 1 + C2 + U})

Y ∼ N
(

´M − 3U + 2
√

|C1|+ sin(C4) + 2Z, 1
)

.

Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model is

invalid. Since Z has a direct effect on Y , the IV model is invalid. We note that Z is included in the adjustment set for the

backdoor model, since otherwise there would be an unblocked path from A to Y through Z.

To simulate data where the backdoor model is valid but the front-door and IV models are invalid (top right panels of Figure 2)

under the null when “Identified functional in wrong model = 0" and under the alternative when “Identified functional in

wrong model ̸= 0", we make the IV model invalid by violating the monotonicity assumption. As above, this violation does

not have a graphical visualisation, so it is not displayed in Figure 6. The front-door model is invalid due to an unblocked

path from M to Y through U. The equations for U , C, Z, and Ã are as described for setting (a) above. We then simulate

A(1) ∼ Bern(Ã(C1, C2, C3)) and A(0) ∼ Bern(1− Ã(C1, C2, C3)), and we set A = A(Z). We also change the equations

for M and Y to

M ∼ I{A(0) < A(1)}Bern (expit{5A− 1 + C2 + U}) + I{A(0) g A(1)}Bern (expit{2A− 1 + C2 + U})

Y ∼ N
(

´M − 3U + 2
√

|C1|+ sin(C4), 1
)

.

Since U has an effect on both M and Y , but is not in the adjustment set for the front-door model, the front-door model is

invalid. Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

To simulate data where the backdoor model is valid but the front-door and IV models are invalid in the top right panel under

the alternative of Figure 2 when “Identified functional in wrong model = 0", we make the IV model invalid by violating the

monotonicity assumption. As above, this violation does not have a graphical visualisation, so it is not displayed in Figure 6.

The front-door model is invalid due to a direct effect of A on Y. The equations for U , C, Z, and Ã are as described for setting

(a) above. We then simulate A(1) ∼ Bern(Ã(C1, C2, C3)) and A(0) ∼ Bern(1− Ã(C1, C2, C3)), and we set A = A(Z).
We also change the equations for M and Y to

M ∼ I{A(0) < A(1)}Bern (expit{2A− 1 + C2}) + I{A(0) g A(1)}Bern (expit{5A− 1 + C2})

Y ∼ N
(

´A+ 3U + 2
√

|C1|+ sin(C4), 1
)

.

C.2 BACKDOOR AND FRONT-DOOR MODELS

We next present the data-generating processes for the simulation study combining the backdoor and front-door models, the

results of which are shown in Figure 10. Figure 7 shows the causal DAGs for this simulation. Figure 7(a) shows the causal

DAG in the setting where both models are valid, which was used to generate the lines in the bottom right panels under the



null and alternative of Figure 10. The precise data-generating process for this setting is as follows. We generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

A ∼ Bern (expit {C1 + expit(C2) + sin(C3)})

M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(

´M + 2U + 2
√

|C1|+ sin(C4), 1
)

.

Figure 7(b) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid due

to an unblocked path from A to Y through U . This DAG was used to generate both lines in the bottom left panels under the

null and alternative of Figure 10. The data-generating process for this setting when “Identified functional in wrong model ̸=
0" under the null and under the alternative is the same as that described for (a) above, but we change the formula for A to

A ∼ Bern (expit {C1 + expit(C2) + sin(C3) + U}) .

The data-generating process for this setting when “Identified functional in wrong model = 0" under the null is the same as

that described for (a) above, but we change the equations for A, M , and Y to

A ∼ Bern (expit {C1 + expit(C2) + sin(C3)− 0.05U})

M ∼ Bern (expit{5A− 1 + C2})

Y ∼ N
(

´M + 0.05U + 2
√

|C1|+ sin(C4), 1
)

.

The data-generating process for this setting when “Identified functional in wrong model = 0" under the alternative is the

same as that described for (a) above, but we change the equations for A, M , and Y to

A ∼ Bern (expit {C1 − expit(C2)− sin(C3) + 0.6U})

M ∼ Bern (expit{0.37A− 1 + C2})

Y ∼ N
(

´M − 0.9U + 2
√

|C1|+ sin(C4), 1
)

.

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is

invalid.

Figure 7(c) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid due

to a direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model

= 0" in the top right panels under the null and alternative of Figure 10. The data-generating process for this setting is the

same as that described for (a) above, but we change the formula for Y to

Y ∼ N
(

´A+ 2U + 2
√

|C1|+ sin(C4), 1
)

.

Since A has a direct effect on Y , the front-door model is invalid.

Figure 7(d) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid

due to an unblocked path from M to Y through U . This DAG was used to generate the line corresponding to “Identified

functional in wrong model ̸= 0" in the top right panels under the null and alternative of Figure 10. The data-generating

process for this setting is the same as that described for (a) above, but we change the formula for M to

M ∼ Bern (expit{2A− 1 + C2 + U}) .

Since U has an effect on both M and Y , but is not included in the adjustment set for the front-door model, the front-door

model is invalid.

C.3 BACKDOOR AND IV MODELS

We next present the data-generating processes for the simulation study combining the backdoor and IV models, the results

of which are shown in Figure 11. Figure 8 shows the causal DAGs for this simulation. Figure 8(a) shows the causal DAG in
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Figure 8: K = 2 with backdoor and IV models. Violation of assumptions is shown via solid black edges.

the setting where both models are valid, which was used to generate the lines in the bottom right panels under the null and

alternative of Figure 11. The precise data-generating process for this setting is as follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define

Ã(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)} .

We then simulate Ā(1) ∼ Bern(Ã(C1, C2, C3)) and Ā(0) ∼ Bern(1−Ã(C1, C2, C3)). As above, to make the monotonicity

assumption hold for the IV model, we then convert all defiers to compliers by setting A(1) = 1 and A(0) = 0 if Ā(1) = 0
and Ā(0) = 1, and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as

A = A(Z). Finally, we set

Y ∼ N
(

´A+ 2U + 2
√

|C1|+ sin(C4), 1
)

.

Figure 8(b) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to an

unblocked path from A to Y through U . This DAG was used to generate the line corresponding to “Identified functional in

wrong model = 0" in the bottom left panel under the null of Figure 11. The data-generating process for this setting is the

same as that described for (a) above, but we change the formula for Ã to

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is

invalid.

Figure 8(c) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to

controlling for the collider C5. This DAG was used to generate the lines corresponding to “Identified functional in wrong

model ̸= 0" in the bottom left panels under the null and alternative of Figure 11 as well as the line corresponding to

“Identified functional in wrong model = 0" in the bottom left panel under the alternative of Figure 11. The data-generating

process for this setting when “Identified functional in wrong model ̸= 0" under the null is the same as that described for (a)

above, but we change the equations for Ã and Y to

Ã(c1, c2,c3) = expit {c4 + expit(c2) + sin(c3)}

Y ∼ N (´A+ 2U + sin(C4), 1) .

We then simulate C5 as

C5 ∼ N (2A+ Y, 1) .

The data-generating process for this setting when “Identified functional in wrong model ̸= 0" under the alternative is the

same as that described for (a) above, but we change the equations for Ã and Y to

Ã(c1, c2, c3) = expit {c4 + expit(c2) + sin(c3)}

Y ∼ N (´A+ 2U + sin(C4), 1) .



We then simulate C5 as

C5 ∼ N (A+ Y, 1) .

The data-generating process for this setting when “Identified functional in wrong model = 0" under the alternative is the

same as that described for (a) above, but we change the equations for Ã and Y to

Ã(c1, c2,c3) = expit {c4 + expit(c2) + sin(c3)}

Y ∼ N (´A− 3U − sin(C4), 1) .

We then simulate C5 as

C5 ∼ N (0.6A+ 2Y, 1) .

Since C5 is a collider and is included in the adjustment set for the backdoor model, the backdoor model is invalid.

Figure 8(d) shows the causal DAG in the setting where the backdoor model is valid, but the IV model is invalid due to a

direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸=
0" in the top left panel under the null of Figure 11. The data-generating process for this setting is the same as that described

for (a) above, but we change the equation for Y to

Y ∼ N
(

´A+ 2U + 2
√

|C1|+ sin(C4) + 2Z, 1
)

.

Since Z has a direct effect on Y , the IV model is invalid.

To simulate data where the backdoor model is valid but the IV model is invalid (top right panels of Figure 11) under the null

when the identified functional in the IV model equals 0 and under both cases for the alternative, we make the IV model

invalid by violating the monotonicity assumption. As above, this violation does not have a graphical visualisation, so it

is not displayed in Figure 8. The equations for U , C, Z, and Ã are as described for setting (a) above. We then simulate

A(1) ∼ Bern(Ã(C1, C2, C3)) and A(0) ∼ Bern(1− Ã(C1, C2, C3)), and we set A = A(Z). We also change the equation

for Y to

Y ∼ N
(

´1A+ ´2I{A(0) > A(1)}A+ 2U + 2
√

|C1|+ sin(C4), 1
)

Here, we set ´1 = 0 and ´2 = 0 under the null, we set ´1 = 5.75 and ´2 = 4.25 under the alternative if the identified IV

functional equals zero, and we set ´1 = 10 and ´2 = −8 under the alternative if the identified IV functional is not zero.

Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

C.4 FRONT-DOOR AND IV MODELS

We next present the data-generating processes for the simulation study combining the front-door and IV models, the results

of which are shown in Figure 12. Figure 9 shows the causal DAGs for this simulation. Figure 9(a) shows the causal DAG in

the setting where both models are valid, which was used to generate the lines in the bottom right panels under the null and

alternative of Figure 12. The precise data-generating process for this setting is as follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define

Ã(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

We then simulate Ā(1) ∼ (Ã(C1, C2, C3, U)) and Ā(0) ∼ (1− Ã(C1, C2, C3, U)). To make the monotonicity assumption

hold for the IV model, we then convert all defiers to compliers by settingA(1) = 1 andA(0) = 0 if Ā(1) = 0 and Ā(0) = 1,

and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as A = A(Z). Finally, we

set

M ∼ (expit{5A− 1 + C2})

Y ∼ N
(

´M + 3U + 2
√

|C1|+ sin(C4), 1
)

.
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Figure 9: Causal DAGs for the data-generating distribution for the simulation with front-door and IV models. Violation of

assumptions is shown via solid black edges.

Figure 9(b) shows the causal DAG in the setting where the IV model is valid, but the front-door model is invalid due to a

direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model =
0" in the bottom left panels under the null and alternative of Figure 12. The data-generating process for this setting is the

same as that described for (a) above, but we change the equations for Ã and Y to

Ã(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)}

Y ∼ N
(

´A+ 3U + 2
√

|C1|+ sin(C4), 1
)

.

Since A has a direct effect on Y , the front-door model is invalid.

Figure 9(c) shows the causal DAG in the setting where the IV model is valid, but the front-door model is invalid due to an

unblocked path from M to Y through U . This DAG was used to generate the line corresponding to “Identified functional in

wrong model ̸= 0" in the bottom left panels under the null and alternative of Figure 12. The data-generating process for this

setting is the same as that described for (a) above, but we change the equations for Ã and M to

Ã(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)}

M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model is

invalid.

Figure 9(d) shows the causal DAG in the setting where the front-door model is valid, but the IV model is invalid due to

direct effect of Z on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸=
0" in the top right panels under the null and alternative of Figure 12. The data-generating process for this setting is the same

as that described for (a) above, but we change the equation for Y to

Y ∼ N
(

´M + 3U + 2
√

|C1|+ sin(C4) + 2Z, 1
)

.

Since Z has a direct effect on Y , the IV model is invalid.

To simulate data where the front-door model is valid but the IV model is invalid (top right panels of Figure 12) under the

null and alternative when the identified functional in the IV model equals 0, we make the IV model invalid by violating the

monotonicity assumption. As above, this violation does not have a graphical visualisation, so it is not displayed in Figure 9.

The equations for U , C, Z, and Ã are as described for setting (a) above. We then simulate A(1) ∼ (Ã(C1, C2, C3, U)) and

A(0) ∼ (1− Ã(C1, C2, C3, U)), and we set A = A(Z). We change the equations for M and Y under the null to

M ∼ I{A(0) < A(1)} (expit{2A− 1 + C2})

+ I{A(0) g A(1)} (expit{5A− 1 + C2})

Y ∼ N
(

´M + 2U + 2
√

|C1|+ sin(C4), 1
)

,



and we change the equations for M and Y under the alternative to

M ∼ I{A(0) < A(1)} (expit{2.38A− 1 + C2}) + I{A(0) g A(1)} (expit{5A− 1 + C2})

Y ∼ N
(

´M + U + 2
√

|C1|+ sin(C4), 1
)

.

Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

C.5 BACKDOOR MODELS WITH DIFFERENT ADJUSTMENT SETS

Finally, we present the data-generating processes for the simulation study combining three backdoor models with different

adjustment sets, the results of which are shown in Figure 4 and discussed in Section 4. We simulate data as follows:

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

A ∼ Bern (expit {C1 + C2})

Y ∼ N (´A+ 4C2 + C3 + U, 1) .

D ADDITIONAL SIMULATION RESULTS

Figures 10, 11, and 12 display the size and power of the test for the case of K = 2 when combining the backdoor and

front-door, backdoor and IV, and front-door and IV models, respectively.

Figure 10: Size (left) and power (right) of the test when combining the backdoor model M1 and front-door model M2

when at least one of the models holds.



Figure 11: Size (left) and power (right) of the test when combining the backdoor model M1 and IV model M3 when at

least one of the models holds.

Figure 12: Size (left) and power (right) of the test when combining the front-door model M2 and IV model M3 when at

least one of the models holds.
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