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Abstract

Given a set of probability distributions, the Wasserstein barycenter problem asks to compute a distribution
that minimizes the average Wasserstein distance, or optimal transport cost, from all the input distributions.
Wasserstein barycenters preserve common geometric features of the input distributions, making them useful
in machine learning and data analytics tasks.

We present a near-linear time algorithm that computes the Wasserstein barycenter within a relative (1+ε)-
approximation in fixed dimensions. We are not aware of an efficient relative-approximation algorithm for
this problem even in two dimensions. To obtain our results, we first present a near-linear-time dynamic-
programming-based primal-dual algorithm to compute an optimal Wasserstein barycenter under a tree metric.
We then combine our tree-based algorithms with the boosting framework to obtain a (1 + ε)-approximation
in near-linear time.

1 Introduction
Optimal transport (OT) is a popular method for comparing a pair of distributions based on the displacement of
mass, and thus the OT cost depends on the shape of the distributions. OT has been widely studied across many
disciplines, including mathematics, statistics, economics, engineering, machine learning, and computer vision; see
the books [35, 40] and recent survey papers [24, 33]. However in many of these applications, the number of
distributions is large and one wants to compute a representative distribution of these distributions, or cluster
them and compute a representative distribution for each cluster. This raises the problem of computing an average
distribution among a group of distributions, which is referred to as the Wasserstein barycenter. The barycenter
problem is then the natural extension of displacement interpolation to more than two distributions.

Despite significant progress on computing optimal transport efficiently, the barycenter problem remains
computationally challenging and relatively little is known. This paper aims to make progress in this direction.

1.1 Problem statement. Let µ : A → [0, 1] and ν : B → [0, 1] be two discrete probability distributions with
finite support A,B ⊂ Rd, respectively. Additionally let ||x− y|| be the Euclidean distance between pairs of points
x, y in Rd. A discrete transport plan is a mapping f : A × B → R≥0 that assigns the mass transported along
each edge (a, b) ∈ A × B such that

∑
b∈B f(a, b) = µ(a) for each point a ∈ A, and

∑
a∈A f(a, b) = ν(b) for

each point b ∈ B. The cost of f is given by ¢(f) =
∑

(a,b)∈A×B f(a, b)||a − b||. The discrete optimal transport
(OT) problem asks for a discrete transport plan f with the minimum cost. We refer to such a minimum cost
plan as an OT plan, and to the cost of the OT plan, denoted by w(µ, ν), as the 1-Wasserstein distance (or earth
mover’s distance) between µ and ν, i.e. w(µ, ν) = minf ¢(f). In general, for a fixed p ≥ 1, one can define

¢(f) =
(∑

(a,b)∈A×B f(a, b)||a− b||p
) 1

p

and the cost of the cheapest plan under this cost function is referred to as
the p-Wasserstein distance between µ and ν. In this paper, we focus on p = 1. There is much work for the case
of p = 2 as well; see [40].

Given a family µ = ⟨µ1, . . . , µk⟩ of k discrete probability distributions µi : Xi → [0, 1] for i = 1, . . . , k, where
Xi ⊆ Rd for each i ≤ k and

∣∣∣⋃k
i=1Xi

∣∣∣ ≤ n, the Wasserstein barycenter (or simply barycenter for brevity) of

µ is a probability distribution µ∗ : X → [0, 1], where X ⊂ Rd is a finite point set, such that
∑k

i=1 w(µ
∗, µi) is
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minimized1. The barycenter problem asks for computing µ∗ along with optimal transport plans f∗ = ⟨f∗1 , . . . , f∗
k ⟩,

where f∗i is a transport plan from µi to µ∗. Define Γ(µ∗) = ¢(f∗) :=
∑k

i=1 ¢(f∗i ) =
∑k

i=1 w(µ
∗, µi). A probability

distribution µ̃ is called a (1 + ε)-approximate barycenter if Γ(µ̃) ≤ (1 + ε) · Γ(µ∗).

Reduction to flow-like problem. Let G = (V,E) with |V | = n be an undirected weighted graph, where
c : E → R≥0 denotes the cost function. Let µi : V → [0, 1], for 1 ≤ i ≤ k, be k probability distributions on G.
The barycenter problem over the graph G asks for a probability distribution µ : V → [0, 1] where the average
optimal transport cost from µ to each of the distributions µi is minimized. To reduce the barycenter problem to
the flow problem, we replace each edge (u, v) ∈ E with directed edges u→ v and v → u and define flow functions
f = ⟨f1, . . . , fk⟩ on this directed graph. Then, computing an optimal barycenter distribution µ along with the
flow functions f can be formulated as the following LP:

min
µ,f=⟨f1,...,fk⟩

∑
i

∑
(u→v)∈E

fi(u→ v)c(u, v)

s.t.
∑

u→v∈E

fi(u→ v)−
∑

v→u∈E

fi(v → u) = µi(u)− µ(u) ∀u ∈ V, i ≤ k,∑
u

µ(u) = 1, fi, µ ≥ 0.

Recall that ¢(fi) =
∑

(u,v)∈E fi(u → v)c(u, v) denotes the cost of fi. Then the primal objective function is
¢(f) =

∑
i ¢(fi). The dual of the above LP is

max
ϕ,λ

∑
i

∑
u∈V

ϕi(u)µi(u) + λ

s.t. ϕi(u)− ϕi(v) ≤ c(u, v) ∀(u, v) ∈ E,∑
i

ϕi(v) + λ ≤ 0 ∀v ∈ V.

Again, we use ϕ = ⟨ϕ1, . . . , ϕk⟩ to denote the family of dual functions ϕi for each index i. The key difference
between the dual barycenter problem and the dual LP for min-cost flow in a graph lies in the constraints∑

i ϕi(v) + λ ≤ 0.

1.2 Related work. The discrete OT problem is a special case of the minimum-cost flow problem on complete
bipartite graphs, and therefore can be solved exactly using primal-dual algorithms in O(n3 log n) time [34].
With the recent breakthroughs on the minimum-cost flow problem, the OT problem can also be solved in
n2+o(1)poly(log(∆), log(U)) time, where ∆ is the spread, i.e., the ratio of the distance of the farthest to the
closest pair of points in A ∪B, and U depends on the minimum non-zero values of µ and ν [16]. An ε-OT under
the Euclidean metric in fixed dimension can be computed in O(nε−2d−5 log n log2d+5 log n) time with constant
probability [2] or in O(nε−d−2 log5 n log log n) time deterministically [21]. For higher dimensions, one can use
similar techniques as in [2, 21] to compute 2c-approximate OT plans in d3n1+

1
c2 logO(1) n time. Recently a

subquadratic algorithm for computing 2-OT was proposed in [7]. There is also much work on computing an
additive approximation of OT [3, 18, 27, 32].

In contrast to the OT problem, which is known to be solvable exactly in polynomial time, the barycenter
problem is known to be NP-hard in arbitrary dimensions [5] and can be computed within additive error ε > 0 in
(nk)O(d)poly log ε−1 time if d is constant [4]. We are unaware of any efficient (relative-)approximation algorithm
for the barycenter problem, but an ε-additive approximation can be computed in O(n2kε−2) time [11, 19, 26]. As
for the OT problem, much of the work on additive approximations study regularized versions of the barycenter
problem. There is also a slew of results on other first-order numerical algorithms such as accelerated gradient

1Strictly speaking, we should take the infimum over an arbitrary distribution possibly with continuous support. It is known,
however, that if each input support is a set of n points, then even if the Wasserstein barycenter objective is taken with respect to a
continuous distribution, there exists an optimal barycenter distribution with a finite support of size O(nk) [6].
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descent and stochastic gradient descent, which in some cases provide comparable convergence guarantees for ε-
additive approximations [17, 20, 22, 30]. Finally, we refer the reader to [13, 28, 36, 39] for several fast heuristics.
We emphasize that much of the existing work studies the barycenter problem when the support of the barycenter
is considered fixed [31].

Computing the Wasserstein distance under tree metrics can be expressed as computing the ℓ1-distance between
two points [15, 23, 29]. This suggests that computing the barycenter under tree metrics could be reduced to
computing the ℓ1 median of a set of points. This approach was studied experimentally [28]. However, this is
not necessarily true, i.e., if we use the ℓ1-embedding of input distributions, the barycenter is not necessarily the
ℓ1-median of the resulting points.

1.3 Summary of results. Our main result (Section 3) is the first near-linear time algorithm for computing a
(1 + ε)-approximate barycenter in any fixed dimensional Euclidean space:

Theorem 1.1. Let µ = ⟨µ1, . . . , µk⟩ be a family of k discrete probability distributions with finite support sets
Xi ⊂ Rd for some fixed d ≥ 1, and ε > 0 a parameter. Set |

⋃
iXi| = n. Then a discrete probability distribution

µ̃ of support size O(nε−d log n) can be computed in O
(
nkε−2d−4 log5 n log(nk) log log n

)
time that is a (1 + ε)-

approximate barycenter with probability at least 1/2.

A key step of our algorithm is a near-linear exact primal-dual algorithm for computing the barycenter of a
family of distributions under tree metrics (Section 2), which is of independent interest.

Theorem 1.2. Let T = (V,E) be a tree with |V | = n, height h, and edge costs c : E → R≥0. Given a collection
of k distributions µi : V → [0, 1] for 1 ≤ i ≤ k, an optimal barycenter µ∗ : V → [0, 1] along with corresponding
flow functions and dual functions can be computed in O(nkmin{log2 n, h}) time.

While OT under tree metrics can be computed by a simple greedy algorithm, this approach does not extend
to the barycenter problem. We therefore propose a dynamic programming based primal-dual algorithm that not
only computes µ∗ and the transport maps between µ∗ and µi’s, but also computes an optimal dual solution. Our
approach can be thought of as constructing all k transport plans simultaneously by modifying a feasible solution
via alternating paths that reduce the barycenter cost. The tree structure then forces the alternating paths for each
distribution to be identical if one wishes to preserve feasibility. This is not true in arbitrary graphs, where it is
possible to get stuck at a local minimum if one forces alternating paths for all distributions to be identical. With
the proper choice of initial flows and a feasible probability distribution, one can use this structure to construct
good alternating paths quickly and guarantee only a small number of paths are needed. Once an optimal primal
solution is computed, an optimal dual solution can be computed by a single additive update rule along edges
through a tree traversal starting from one source point of the optimal barycenter distribution µ∗.

Given Theorem 1.2, we compute a (1+ε)-approximate barycenter under the Euclidean metric in three stages.
First, adapting the ideas from the construction of approximate Voronoi diagrams [8, 10], we construct a set V ⊇ X
of O(nε−d) points that is a good candidate set for the support of a (1+ ε)-approximate barycenter. In particular,
our candidate support size is near-linear in n for fixed dimension d and does not depend on the diameter of the
point set. Next, we construct a hierarchical graph G = (V,E) that is a (1 + ε)-spanner of V in expectation and
that contains a randomized tree T = (V,E′) (a variant of a randomly shifted quadtree) as its subgraph such that
T is an O(log n)-spanner of G. Finally, we use a multiplicative weight update (MWU) method for computing a
(1 + ε)-approximate barycenter for the shortest path metric on G. Our approach is an extension of the MWU
algorithms developed for minimum-cost flows [37, 41]. We use our tree algorithm at each step of the MWU
algorithm as the oracle.

2 Computing Barycenters in Trees
Let T = (V,E) be a tree with |V | = n, let c : E → R≥0 be a cost function, and let µi : V → [0, 1], for 1 ≤ i ≤ k,
be k probability distributions on V . For simplicity, we assume the tree T to be a binary tree. Otherwise, any tree
can be converted to a binary tree, potentially at the cost of increasing its height. Let h be the height of T . For a
non-root node u ∈ T , let p(u) denote its parent in T , and let C[u] denote the children of u. For a pair of nodes
u, v ∈ T , let u⇝ v denote the unique path from u to v in T , and let lca(u, v) denote their least common ancestor
in T .
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We describe a primal-dual barycenter algorithm Tree-Barycenter that computes, in near-linear time, a
barycenter distribution µ∗ of µ = ⟨µ1, . . . , µk⟩ on T , corresponding transport plans f = ⟨f1, . . . , fk⟩ from µ∗ to µi,
and dual weights corresponding to each input distribution. We first prove a few properties of the barycenter and
the corresponding optimal flows on T . Next, we describe a dynamic programming based algorithm to compute
the optimal solution using these properties that runs in O(nkh) time, where h is the height of T . By using the
link-cut tree [38], we improve the runtime to O(nkmin{h, log2 n}).

2.1 Properties of an optimal solution. We begin by proving a few properties of the optimal flow in T .

Circulation. Given a feasible solution (µ,f) for T , define a circulation to be a collection of functions gi : E → R
for 1 ≤ i ≤ k such that fi + gi for 1 ≤ i ≤ k is a feasible solution to the barycenter problem. By standard use of
flow conservation constraints, it can be shown that a feasible collection of flows fi, 1 ≤ i ≤ k, and distribution µ is
a barycenter if and only if there do not exist circulations gi : E → R, for 1 ≤ i ≤ k, such that

∑
i ¢(fi+gi) < ¢(f).

In fact, this property holds for the barycenter problem over any graph. One obtains the following stronger
guarantee for trees, which is the key property, using the fact that trees have single-edge cuts.

Lemma 2.1. A feasible collection of flows fi, 1 ≤ i ≤ k, and distribution µ is a tree barycenter if and only if
there does not exist a circulation g : E → R such that the flows f ′i := fi + g for 1 ≤ i ≤ k are feasible and∑

i ¢(fi + g) < ¢(f).

Proof. Suppose f = ⟨f1, . . . , fk⟩ and f ′ = ⟨f ′1, . . . , f ′
k⟩ are two distinct feasible solutions to the flow problem.

Define the circulation gi = f ′i − fi. To prove this lemma, it suffices to show that if the network G = (V,E) is a
tree, then gi = gj for all i, j. Since fi is a feasible solution, for all i, j and all u ∈ V ,∑

v→u∈E

fi(v → u)−
∑

u→v∈E

fi(u→ v) + µi(u) =
∑

v→u∈E

fj(v → u)−
∑

u→v∈E

fj(u→ v) + µj(u).

That is, there is a probability distribution µ induced by the flow fi and the constraints of the linear program.
The analogous statement for f ′i , f ′j holds for all i, j and all u ∈ V . Let a→ b be an arbitrary edge in the tree G,
and let (A,B) be the cut defined by the edge a→ b where a ∈ A and b ∈ B. Summing over vertices in A, for any
1 ≤ i ≤ k, ∑

u∈A

( ∑
v→u∈E

fi(v → u)−
∑

u→v∈E

fi(u→ v) + µi(u)

)

=
∑
u∈A

( ∑
v∈B:v→u∈E

fi(v → u)−
∑

v∈B:u→v∈E

fi(u→ v) + µi(u)

)
= fi(b→ a)− fi(a→ b) +

∑
u∈A

µi(u),

where the first equality holds due to the cancellation of edges u → v in the summation where both u and v are
in A. Hence, for all 1 ≤ i, j ≤ k,

(2.1) fi(b→ a)− fi(a→ b) +
∑
u∈A

µi(u) = fj(b→ a)− fj(a→ b) +
∑
u∈A

µj(u).

The analogous computation for f ′i gives

(2.2) f ′i(b→ a)− f ′i(a→ b) +
∑
u∈A

µi(u) = f ′j(b→ a)− f ′j(a→ b) +
∑
u∈A

µj(u)

for all i, j since f ′ is also a feasible solution. By taking the difference of (2.1) and (2.2),(
f ′i(b→ a)− f ′i(a→ b) +

∑
u∈A

µi(u)

)
−

(
fi(b→ a)− fi(a→ b) +

∑
u∈A

µi(u)

)

=

(
f ′j(b→ a)− f ′j(a→ b) +

∑
u∈A

µj(u)

)
−

(
fj(b→ a)− fj(a→ b) +

∑
u∈A

µj(u)

)
.
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Canceling
∑

u∈A µi(u) and substituting gi(b→ a) = f ′i(b→ a)− fi(b→ a) gives the expression

gi(b→ a)− gi(a→ b) = gj(b→ a)− gj(a→ b)

for all i, j. Note the edge a→ b was chosen arbitrarily, so this holds for all edges a→ b ∈ E.

Net cost of a path. The above lemma suggests that if fi’s are not optimal flows, then we can improve the
solution by transporting the same mass of all distributions across each edge. We next define the net cost of
transporting additional mass on the edge u → v, which captures the rate of change in the cost of flows fi when
we transport an additional infinitesimal mass of all distributions along the directed edge u → v (if the mass
transported along the edge v → u is positive, then we decrease the flow).

Given a feasible family of flows f = ⟨f1, . . . , fk⟩, define two sets Kf
1 (u → v) and Kf

2 (u → v) for each
directed edge u → v of T as Kf

1 (u → v) := {i : fi(u → v) > 0} and Kf
2 (u → v) := {i : fi(u → v) = 0}.

These sets describe the distribution indices where flow along edge u → v is positive and zero, respectively.
Additionally define kfj (u → v) := |Kf

j (u → v)| for j = 1, 2. Note that kf2 (u → v) = kf2 (v → u) and
kf1 (v → u) = k − kf1 (u → v) − kf2 (u → v). The change in cost after transporting mass along u → v can be
broken into two components:

1. αf (u → v) :=
(
kf1 (u→ v)− kf1 (v → u)

)
· c(u, v), which is the change in the cost by adjusting the flow to

the distributions that already committed to a direction along the edge u→ v, and

2. βf (u → v) := kf2 (u → v) · c(u, v), which is the change in cost of adjusting flow to the distributions that
have no flow along u→ v.

Using αf and βf , we define the net cost θf (u→ v) of the edge u→ v as

θf (u→ v) := αf (u→ v) + βf (u→ v) = (k − 2kf1 (v → u)) · c(u, v).

If f = ⟨f1, . . . , fk⟩ is clear from context, we drop the superscript f for brevity. Note that θ is not skew symmetric;
that is, θ(u→ v) ̸= −θ(v → u). However,

(2.3) θ(v → u) = −α(u→ v) + β(u→ v).

A key observation is that θ is monotone in the following sense.

Lemma 2.2. Suppose f ′ = ⟨f ′1, . . . , f ′
k⟩ and f = ⟨f1, . . . , fk⟩ are two feasible flows for the barycenter problem on

tree T = (V,E). For any u→ v ∈ E, if f ′i(u→ v) ≥ fi(u→ v) for all i ≤ k, then θf
′
(u→ v) ≥ θf (u→ v).

Proof. If f ′i(u → v) ≥ fi(u → v) for all i, then we observe that Kf ′

1 (v → u) ⊆ Kf
1 (v → u) by the definition of

K1. Therefore, kf
′

1 (v → u) ≤ kf1 (v → u) and kf
′

1 (u → v) + kf
′

2 (u → v) ≥ kf1 (u → v) + kf2 (u → v). The result
follows from the definition of net cost.

Negative cost augmenting path. Let P = u ⇝ v be the path from u to v in T . We define the net cost of
P to be θ(P ) :=

∑
x→y∈P θ(x → y). P is called a negative net-cost path if θ(P ) < 0. Furthermore, given a

feasible solution (µ,f) to the barycenter problem, define an augmenting path to be a path P = ⟨u1, . . . , ut⟩ where
µ(u1) > 0. Building on Lemma 2.1, we prove the following property of an optimal solution.

Lemma 2.3. A feasible solution (µ,f) is a barycenter of ⟨µ1, . . . , µk⟩ if and only if there is no negative net-cost
augmenting path in T .

Proof. If there exists a negative net cost augmenting path u ⇝ w in T , then by the definition of an augmenting
path, µ(u) > 0. Define

δ := min

{
µ(u), min

x→y∈u⇝w
min

i∈K1(y→x)
fi(y → x)

}
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as the amount of additional mass that can be transported through the path u⇝ w before the net cost θ(u⇝ w)
changes. Note that δ > 0, by the definitions of K1 and augmenting paths. Define

g(x→ y) =


δ, x→ y ∈ u⇝ w,

−δ, y → x ∈ u⇝ w,

0, otherwise.

Then ∑
i

¢(fi + g)− ¢(f) =
∑

x→y∈u⇝w

θ(x→ y) · δ = δ · θ(u⇝ w) < 0,

which means
∑

i ¢(fi + g) < ¢(f) and by Lemma 2.1, (µ,f) is not an optimal solution. Therefore, if (µ,f) is a
barycenter of ⟨µ1, . . . , µk⟩, then there are no negative net cost augmenting paths in T .

Next, suppose (µ,f) is a feasible solution that has no negative net cost augmenting paths in T . Let (µ∗,f∗)
be an optimal solution where µ∗ ̸= µ. Let g = f∗i − fi denote the circulation deforming f into f∗. We note that
by Lemma 2.1, f∗i −fi = f∗j −fj for all i, j, i.e. g is a single flow function. By standard flow decomposition, g can
be decomposed into a sequence of flows g1, . . . , gz for some z ≥ 1, where each gi routes some δi > 0 mass along a
path ui ⇝ vi, g =

∑
i g

i, and for every edge u→ v, if gi(u→ v) > 0 for some i, then gj(u→ v) ≥ 0 for all j (i.e.
all paths in the path decomposition route flow in the same direction along every edge). By the assumption that
there are no negative net cost augmenting paths in T , we get θ(ui ⇝ vi) ≥ 0 for all i. Since θ is non-decreasing
by Lemma 2.2 and the construction of the path decomposition (direction along every edge is the same), after
augmenting f by the circulation g,

¢(f∗) ≥ ¢(f) +
z∑

i=1

θ(ui ⇝ vi) · δi ≥ ¢(f),

where the first inequality follows from the fact that θ is non-decreasing after augmenting along each path
(Lemma 2.2) and the second inequality follows from the assumption that θ(ui ⇝ vi) ≥ 0 for all i. Recall
that (µ∗,f∗) is an optimal feasible solution; therefore, (µ,f) is an optimal feasible solution

Lemma 2.3 immediately gives an algorithm for computing a barycenter, analogous to a min-cost flow
algorithm. We start with an arbitrary feasible solution, repeatedly find negative net-cost augmenting paths,
transport the mass of all distributions along that path, and repeat. This algorithm may not converge quickly, so
we prove an additional property.

Minimum net-cost augmenting paths. Suppose we initially compute a feasible flow f by pushing all mass
up the tree to its root r. For every edge u → v in T where u is a child of v, set the flow fi(u → v) = µi(u) if u
is a leaf and fi(u → v) = µi(u) +

∑
w∈C[u] fi(w → u) otherwise; here, C[u] denotes the set of children of u. Set

µ(r) = 1. While there exists a negative net cost augmenting path, we send mass from every distribution through
the minimum net-cost augmenting path u ⇝ v until either (i) µ(u) becomes 0, or (ii) k1(y → x) decreases for
some edge x → y on u ⇝ v. We prove that the minimum net-cost augmenting path always starts from the root
of T to a node, i.e., we always augment mass down the tree from its root.

Let P1, P2, . . . be the sequence of minimum (negative) net-cost augmenting paths computed by the algorithm.
We prove each Pi is a downward path by induction on the number of steps. Since initially, only the root has
non-zero mass, P1 is obviously a downward path starting at the root. Suppose each Pt, for all t < t′, is a downward
path from the root. Then we prove that Pt′ is also a downward path from the root.

Suppose to contrary, Pt′ = u⇝ v is not a downward path starting from the root, i.e., u ̸= r. Let w = lca(u, v)
be the least common ancestor of u and v. Note that w can be u or v itself. Since u has non-zero mass and initially
µ(u) = 0, there was an augmenting path Pt0 for 1 ≤ t0 < t′ that pushed the mass from r to u. Let t0 < t′

be the last time such that Pt0 = r ⇝ u. We use the following additional time-dependent notations. Since
K1(·),K2(·), α(·), β(·), and θ(·) vary over time, we use Kt

1(·),Kt
2(·), αt(·), βt(·), and θt(·) to denote their values in

the beginning of step t. We will be interested in time steps t < t′ when the augmenting path Pt passed through
an edge of the path w ⇝ u. For an edge x→ y with y being the child of x, let τ(x→ y) denote the max value of
t < t′ for which Pt contained x→ y, i.e.,

τ(x→ y) = max{t < t′ : x→ y ∈ Pt}.
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Figure 1: An example of the paths Pti with corresponding endpoints ui and branching points wi, for 0 ≤ i ≤ s.

We also define τ(y → x) = τ(x→ y). For simplicity, we define

ψ(x→ y) = θτ(x→y)(x→ y),

i.e., its net cost just before the last time a flow was augmented through it prior to time t′. For a path P in T ,
define ψ(P ) =

∑
x→y∈P ψ(x→ y). Let t0 < t1 < t2 < · · · < ts < t′ be the time instances such that ti = τ(x→ y)

for some edge x → y ∈ w ⇝ u; t0 ≤ ti ≤ t′. Suppose Pti = r ⇝ ui for 1 ≤ i ≤ s, and let wi = lca(u, ui). Set
u = u0, w0 = u, and ws+1 = w. Then wi is a descendant of wi+1, and all of them are descendants of w = ws+1;
see Figure 1. Therefore r ⇝ wi ⊆ Pt0 ∩ Pti and wi ⇝ ui = Pti \ Pt0 . Furthermore, by definition of ψ(·),

(2.4) ψ(wℓ+1 ⇝ wℓ) = θtℓ(wℓ+1 ⇝ wℓ), 0 ≤ ℓ ≤ s.

We now prove a sequence of lemmas that will contradict the assumption that Pts is the minimum net-cost
path at ts.

Lemma 2.4. Let u, v be two nodes in T with u being an ancestor of v. Then for any t < t′,

(i) θt(u⇝ v) ≤ θt+1(u⇝ v),

(ii) θt(v ⇝ u) ≤ θt+1(v ⇝ u), and

(iii) if the augmenting path Pt passed through v, then θt(u⇝ v) = −θt+1(v ⇝ u).

Proof. Parts (i) and (ii) follow immediately from Lemma 2.2 because all augmenting paths before t′ are downward.
To prove part (iii), we observe that at time t, mass was transported along the path u ⇝ v. Therefore, any flow
which was zero along an edge of u⇝ v becomes positive in this direction, and any flow which became zero along
an edge of u⇝ v must have been canceled with some positive flow in the v ⇝ u direction. We conclude that for
every edge x⇝ y on the path u⇝ v,

1. Kt+1
1 (x→ y) = Kt

1(x→ y) ∪Kt
2(x→ y), and

2. Kt+1
1 (y → x) ∪Kt+1

2 (x→ y) = Kt(y → x).
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By definition of θ, α, β, and the above properties, we have

θt(x→ y) = αt(x→ y) + βt(x→ y)

= ((kt1(x→ y)− kt1(y → x)) + (kt2(x→ y))) · c(x→ y)

= ((kt1(x→ y) + kt2(x→ y))− (kt1(y → x))) · c(x→ y)

= ((kt+1
1 (x→ y))− (kt+1

1 (y → x) + kt+1
2 (y → x))) · c(x→ y)

= −αt+1(y → x)− βt+1(y → x)

= −θt+1(y → x)

for every edge x→ y on the path u⇝ v. The lemma now follows.

Lemma 2.5. ψ(w ⇝ u) ≤ θts(w ⇝ us).

Proof. We claim that for any 0 ≤ ℓ ≤ s,

ψ(w ⇝ wℓ) + θtℓ(wℓ ⇝ uℓ) ≤ ψ(w ⇝ wℓ+1) + θtℓ+1(wℓ+1 ⇝ uℓ+1).

Assuming this claim is true, then by induction on ℓ and using (2.4), we obtain

ψ(w ⇝ u) ≤ ψ(w ⇝ ws) + θts(ws ⇝ us)

= θts(w ⇝ ws) + θts(ws ⇝ us) (by (2.4))

= θts(w ⇝ us).

To prove the claim, we observe that θtℓ(wℓ+1 ⇝ uℓ) ≤ θtℓ(wℓ+1 ⇝ uℓ+1) because we chose r ⇝ uℓ instead of
r ⇝ uℓ+1 in step tℓ. Then it follows that

ψ(w ⇝ wℓ) + θtℓ(wℓ ⇝ uℓ) ≤ ψ(w ⇝ wℓ+1) + ψ(wℓ+1 ⇝ wℓ) + θtℓ(wℓ ⇝ uℓ)

= ψ(w ⇝ wℓ+1) + θtℓ(wℓ+1 ⇝ uℓ) (by (2.4))

≤ ψ(w ⇝ wℓ+1) + θtℓ(wℓ+1 ⇝ uℓ+1)

≤ ψ(w ⇝ wℓ+1) + θtℓ+1(wℓ+1 ⇝ uℓ) (by Lemma 2.4(i)).

This completes the proof.

Using the above two lemmas, we obtain the following.

Lemma 2.6. If u⇝ v is a negative net-cost path at time t′, where u is not a root and the minimum net-cost path
Pt starts at the root for all t < t′, then θts(r ⇝ v) < θts(r ⇝ us).

Proof. Since u ⇝ v is a negative net-cost path at time t′, θt
′
(u ⇝ v) < 0. Since no augmenting path Pt for

t > tℓ, 0 ≥ ℓ ≥ s, touches wℓ+1 ⇝ wℓ and Ptℓ contains wℓ+1 ⇝ wℓ, by Lemma 2.5, θt
′
(u ⇝ w) = −ψ(w ⇝ u).

Therefore

θt
′
(u⇝ v) = θt

′
(u⇝ w) + θt

′
(w ⇝ v)

≥ −ψ(w ⇝ u) + θt
′
(w ⇝ v) (by Lemma 2.4)

≥ −θts(w ⇝ us) + θt
′
(w ⇝ v) (by Lemma 2.5)

= −θts(r ⇝ w)− θts(w ⇝ us) + θts(r ⇝ w) + θt
′
(w ⇝ v)

= −θts(r ⇝ us) + θts(r ⇝ v).

The lemma now follows because θt
′
(u⇝ v) < 0.

The above lemma implies that if u is not the root of T then the minimum net-cost path at time ts was not
r ⇝ us but instead r ⇝ v. Putting everything together, we obtain the main lemma.

Lemma 2.7. If the algorithm chooses a minimum (negative) net-cost augmenting path at each step, then the
minimum net-cost path at any time step is a downward path starting from the root.
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2.2 Algorithm description. By Lemmas 2.3 and 2.7, we proceed as follows: At each step, we find a minimum
net-cost augmenting path of the form r ⇝ u for some u ∈ T . If θ(r ⇝ u) > 0, we stop. Otherwise, we augment
the mass and flows as described above. We use a dynamic programming based approach to compute the described
augmenting path and maintain some auxiliarly information at each node and edge of T . For each edge u→ v ∈ E,
we maintain the values of K1(u→ v),K(u→ v) and θ(u→ v). For each interior node v, define

Θ(v) = min{0, min
u∈C[v]

{Θ(u) + θ(v → u)}}

to be the net cost of the minimum net-cost augmenting path going down the tree starting from v. Define ζ(v),
the preferred child of v, to be v if Θ(v) = 0 and argminu∈C[v] Θ(u) + θ(v → u) otherwise. Additionally, let ζ∗(v),
the end of the minimum net cost down-tree augmenting path starting from v, be v if Θ(v) = 0 and ζ∗(ζ(v))
otherwise.

Next, we define the bottleneck flow that can be sent along the minimum net-cost augmenting path starting
from v through the preferred child, as follows. Let

ψ(v) = min
i∈K1(v→p(v))

fi(v → p(v))

be the smallest positive flow along the edge from v to its parent p(v). We denote this value as the bottleneck flow
value along edge v → p(v). Set the bottleneck δ(v) of a node v to be

δ(v) =

{
ψ(v), Θ(v) = 0

min{δ(ζ(v)), ψ(v)}, otherwise.

That is, δ(v) is the minimum of ψ(v) along the most negative net-cost path starting from v. We denote this value
as the bottleneck flow value along the minimum net cost down-tree augmenting path starting from v.

We now describe the algorithm. Compute initial flows f and set µ(r) = 1 as above. By traversing the tree in
a bottom-up manner, we compute Θ(v), ζ(v) and ζ∗(v) for all nodes v of T . Repeat the following two steps until
either µ(r) = 0 for the root node r or Θ(r) ≥ 0, i.e., the minimum net-cost of an augmenting path starting from
the root r is not negative. Suppose Θ(r) < 0, µ(r) > 0, and ζ∗(r) = z. The minimum net-cost path r ⇝ z can
be retrieved by following ζ(·) pointers.

1. Augment: Let δ∗ = min{δ(r), µ(r)}. For each u→ v along the minimum net cost augmenting path r ⇝ z,
increment the down-flow g(u→ v) by δ∗. Set µ(r) = µ(r)− δ∗ and µ(ζ∗(r)) = µ(ζ∗(r)) + δ∗.

2. Update: If K2(u → v) ̸= ∅, then set K2(u → v) = ∅ and K1(u → v) = K1(u → v) ∪ K2(u → v).
Additionally, for any i ∈ K1(v → u) such that fi(v → u) = δ∗, remove i from K1(v → u) and add i to
K2(u → v). For each edge u → v on the path r ⇝ ζ∗(r), from the updated sets Kj(u → v) for j = 1, 2,
recompute kj(u → v) = |Kj(u → v)| and θ(u → v) = (k − 2k1(v → u)) · c(u, v). Finally, update Θ(v), ζ(v)
and ζ∗(v) for all nodes v on r ⇝ ζ∗(r). We note that the value of k1(u→ p(u)) does not increase over time.
So θ(p(u)→ u) and Θ(u) are monotonically non-decreasing functions.

It is easily seen that each iteration of the algorithm takes O(h) time. There are O(nk) events since each
iteration reduces |K1(u → p(u))| of at least one node u of T . Therefore, the overall runtime is O(nkh), which
is Ω(n2k) in the worst case. Next, we show that the runtime can be improved to O(nkmin{h, log2 n}) using the
link-cut tree data structure [38].

A faster implementation. We compute a path decomposition P of T as follows. We call an edge u→ v, where
v ∈ C[u], solid if Θ(u) < 0 and v = ζ(u), and dashed otherwise. A maximal sequence of solid edges is a path
P in the decomposition P. There is at most one path in P that contains the root r of T , which we denote by
P ∗ —it is the most negative net-cost path descending from r. We store each path P of P in a balanced tree
TP so that the lowest edge of P is the leftmost leaf of TP . For each edge u → p(u), we implicitly maintain
g(p(u) → u), ψ(u) and θ(p(u) → u). Note that for any node v ∈ P , ζ∗(v) is the lowest node of P . By storing
auxiliary information, we can also maintain Θ(v) and δ(v) for any node v ∈ P , as well as the lowest node,
denoted by η(v), that realizes δ(v) —the predecessor of v on P with the minimum value of ψ. For a non-root
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node u ∈ T , let ω(u) = Θ(u) + θ(p(u) → u). For a node u with children x and y such that ζ(u) = x, we define
∆ω(u) = ω(x)− ω(y). We use ∆ω(u) to determine when ζ(u) changes —ζ(u) switches from x to y when ∆ω(u)
becomes positive. We augment TP so that we can maintain maxu ∆ω(u), where the maximum is taken over all
nodes of P except the lowest one.

At each step, we perform operations on P ∗. First, we increase g(p(u) → u) by δ∗ = min{δ(r), µ(r)}. Let
z = η(r). Next, we check whether ψ(z) = g(p(z)→ z), i.e., one of the i’s needs to be moved from K1(z → p(z)) to
K2(z → p(z)). This in turn updates ψ(z) and δ(r). Change in K1(z → p(z)) also increases θ(z → p(z)) and Θ(v)
for all successors v of z. We maintain this change at O(log n) nodes of the tree. Each of these operations can be
performed in O(log n) time. We repeat this step until there is no edge u→ p(u) in P ∗ with g(p(u)→ u) = ψ(u).
Next, we check if maxz∈P∗ ∆ω(z) > 0. Let z be the lowest node for which ∆ω(z) = 0. In this case, let x = ζ(z)
and let y be the sibling of z. We make x → z as a dashed edge. If ω(y) < 0, we make the edge y → z a solid
edge. This in turn modifies P ∗ —we cut the edge x → z from P ∗. The prefix of P ∗ ending at x becomes a new
path in P. Let P1 be the suffix of P ∗ starting from z, and let P2 be the path in P ending at y. Then we set
P ∗ = P2 ◦ y → z ◦ P1. Finally, if ω(y) ≥ 0, then we set P ∗ = P1. Modifying P ∗ takes O(log n) time. We repeat
this step as long as there is a node on P ∗ with ∆ω(z) > 0. We omit the details of the data structure from this
version as they are similar to those in [38]. We now sketch the analysis of the overall runtime.

The preprocessing step takes O(nk) time since one computes O(k) values to store at each of the n vertices.
In each iteration of the algorithm, we either decrease µ(r) to zero (happens at most once) or decrease the value
of k1(u→ p(u)) for some u. There are at most O(n) vertices, and for each vertex u we have |K1(u→ p(u))| ≤ k.
Therefore, there must be at most O(nk) iterations of the algorithm. In each iteration, we augment some nonzero
mass along the minimum net cost path P ∗, recompute ψ, and increase the values of θ along the path P ∗. Each
of these operations can be done implicitly in O(log n) time (exact values can be recovered as a prefix sum or
minimum along a path). Then using updated values of θ, we modify the path P ∗. In the event of a change in
preferred child, we link the new preferred child to the tree TP∗ in O(log n) time. Therefore, it suffices to bound
the number of times a solid edge becomes a dashed edge.

We use the standard heavy-light decomposition [38]. Define an edge v → u such that u ∈ C[v] as heavy if
|T (u)| > 1

2 |T (v)| where T (w) denotes the subtree of T rooted at w. Let any edge that is not heavy be called light.
For every vertex v, at most one of its child edges is heavy by defintion. Let P ∗ be the minimum net cost path
at a fixed iteration. Then observe there are at most O(log n) light edges on the path P ∗. So at most O(log n)
light edges change from solid to dashed in this iteration, since only edges of P ∗ can change from solid to dashed.
Now suppose a heavy edge changes from solid to dashed during this iteration of the algorithm. Then either it
is the first time this heavy edge changes away from solid to dashed, or in a prior iteration it became solid after
the sibling light edge changed from solid to dashed. Therefore, after m circulations, the total number of times
some heavy edge can become dashed is O(m log n)+ (n− 1). We conclude that the total number of times an edge
becomes dashed is O(nk log n) since there are at most m = O(nk) augmenting paths computed by the algorithm.

Putting everything together, we obtain the following.

Lemma 2.8. Let T = (V,E) be a tree with |V | = n, height h, and edge costs c : E → R≥0. Given a collection
of k distributions µi : V → [0, 1] for 1 ≤ i ≤ k, our algorithm computes an optimal barycenter µ∗ : V → [0, 1] in
O(nkmin{log2 n, h}) time.

2.3 Computing dual weights. We now describe an algorithm for computing an optimal dual solution using
the primal solution we computed. We begin by proving a useful property of an optimal dual solution.

Lemma 2.9. There exists an optimal solution (ϕ, λ) to the dual barycenter problem where λ = 0.

Proof. Suppose (ϕ∗ = ⟨ϕ∗1, . . . , ϕ∗k⟩, λ∗) is an optimal solution to the dual problem. Let ϕi(u) = ϕ∗i (u)+
λ∗

k . Then,

∑
i

∑
u∈V

ϕi(u)µi(u) =
∑
i

∑
u∈V

(
ϕ∗i (u) +

λ∗

k

)
· µi(u)

=
∑
i

∑
u∈V

ϕ∗i (u)µi(u) + λ∗,
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since
∑

u µi(u) = 1. Moreover,

ϕi(u)− ϕi(v) =
(
ϕ∗i (u) +

λ∗

k

)
−
(
ϕ∗i (v) +

λ∗

k

)
= ϕ∗i (u)− ϕ∗i (v)

for all (u, v) ∈ E. Finally, ∑
i

ϕi(v) =
∑
i

(
ϕ∗i (v) +

λ∗

k

)
=
∑
i

ϕ∗i (v) + λ∗

for all v ∈ V . We conclude that (ϕ = ⟨ϕ1, . . . , ϕk⟩, 0) is a feasible solution with the same objective cost as the
optimal solution (ϕ∗, λ∗).

Therefore it suffices to compute ϕi(u) for all 1 ≤ i ≤ k and for all u ∈ T assuming λ = 0. Using Lemma 2.3,
we compute a dual feasible solution that satisfies complementary slackness, i.e.,

(C1) if fi(u→ v) > 0, then ϕi(u)− ϕi(v) = c(u, v), and

(C2) if µ(u) > 0, then
∑

i ϕi(u) = 0.

For i = 1, 2, and an edge u → v of T , let K∗
i (u → v) and k∗i (u → v) be the values of Ki(u → v) and

ki(u → v) with respect to the optimal flow computed above. Similarly define α∗(u → v), β∗(u → v) and
θ∗(u → v). Intuitively, one can view α∗(u → v) as a required difference in potential from u to v to preserve the
complementary slackness condition and β∗(u→ v) as the amount of flexibility we have on the dual weights of the
distributions which have no flow.

We choose an arbitrary vertex z ∈ V with µ(z) > 0 and reroot T so that z is the new root. Define Θ∗(u)

based on this new root z. For a node u ∈ T , define Φ(u) =
∑k

i=1 ϕi(u). We compute ϕi’s recursively in a top-down
manner. Set ϕi(z) = 0 for all 1 ≤ i ≤ k. Let u be a non-root node, and let v be its parent such that we have
computed ϕi(v). We set

(2.5) ϕi(u) :=


ϕi(v) + c(u, v), i ∈ K∗

1 (u→ v),

ϕi(v)− c(u, v), i ∈ K∗
1 (v → u),

ϕi(v) + min
{
c(u, v), −Φ(v)+Θ∗(u)−α∗(u→v)

k∗
2 (u→v)

}
, i ∈ K∗

2 (u→ v).

The total time spent in computing the dual solution is O(nk). Using the above definition of ϕi(u), we obtain the
following:

Lemma 2.10. Given an edge u→ v of T where u is a child of v after rerooting the tree at z,

Φ(u) = min{Φ(v) + θ∗(u→ v),Θ∗(u)}.

Proof.

Φ(u) =
∑
i

ϕi(u)

=
∑
i

ϕi(v) + k∗1(u→ v) · c(u, v)− k∗1(v → u) · c(u, v)

+ k∗2(u→ v) ·min

{
c(u, v),

−Φ(v) + Θ∗(u)− α∗(u→ v)

k∗2(u→ v)

}
= Φ(v) + α∗(u→ v) + min {β∗(u→ v),−Φ(v) + Θ∗(u)− α∗(u→ v)}
= min{Φ(v) + θ∗(u→ v),Θ∗(u)}.(2.6)

The last equality follows because θ∗(u→ v) = α∗(u→ v) + β∗(u→ v).

We now prove feasibility and optimality of the constructed dual weights.
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Lemma 2.11. The dual solution computed by the algorithm is feasible and optimal.

Proof. We first prove the feasibility. By definition of Φ and Θ∗, Φ(u) ≤ Θ∗(u) ≤ 0. Hence, it suffices to prove
that for any node u and its parent v, |ϕi(u)− ϕi(v)| ≤ c(u, v).

For every i ∈ K∗
1 (u→ v)∪K∗

1 (v → u), we observe that |ϕi(u)−ϕi(v)| ≤ c(u, v) follows from the construction.
Moreover, by the definition of ϕi,

ϕi(u)− ϕi(v) ≤ c(u, v)

for all i ∈ K∗
2 (u→ v). What remains is to show that ϕi(u)− ϕi(v) ≥ −c(u, v) for i ∈ K∗

2 (u→ v). Suppose

−Φ(v) + Θ∗(u)− α∗(u→ v)

k∗2(u→ v)
< −c(u, v).

Then using definitions of θ and Θ,

Φ(v) > −α∗(u→ v) + k∗2(u→ v) · c(u, v) + Θ∗(u)

= −α∗(u→ v) + β∗(u→ v) + Θ∗(u)

= α∗(v → u) + β∗(v → u) + Θ∗(u) (see (2.3))
= θ∗(v → u) + Θ∗(u)

≥ Θ∗(v),

i.e. Φ(v) > Θ∗(v), which contradicts Lemma 2.10. Hence, we conclude that |ϕi(u) − ϕi(v)| ≤ c(u, v) for all
(u→ v) in T .

Next, we prove that the dual solution satisfies the complementary slackness conditions (C1) and (C2). If
fi(u → v) > 0 then by construction of ϕi, ϕi(u) − ϕi(v) = c(u, v). So we just need to prove (C2). First, note
that for the (new) root z of T , µ∗(z) > 0 and Φ(z) = 0. Let u be a non-root node such that µ∗(u) > 0. By
Lemma 2.10 and definition of Θ∗, Φ(u) ≤ Θ∗(u) ≤ 0. Suppose Φ(u) < 0. Let u = v0, v1, v2, . . . , vt = z be the
path P (u⇝ z) from u to z in T . If Φ(vi) = Φ(vi+1) + θ∗(vi → vi+1) for all i < t, then

Φ(u) =

t−1∑
i=1

θ∗(vi → vi+1) + Φ(z) ≥ Θ∗(z) + Φ(z) = 0.

Hence, Φ(u) = 0 in this case. Therefore assume that Φ(vi) < Φ(vi+1) + θ∗(vi → vi+1) for some i < t.
Let j < t be the smallest index for which Φ(vj) = Θ∗(vj). Let w be the descendant of vj such that
Θ∗(vj) =

∑
x→y∈vj⇝w θ

∗(x→ y). Then

Φ(u) =

j−1∑
i=1

θ∗(vi → vi+1) + Φ(vj)

=
∑

x→y∈u⇝vj

θ∗(x→ y) + Θ∗(vj)

=
∑

x→y∈u⇝vj

θ∗(x→ y) +
∑

x→y∈vj⇝w

θ∗(x→ y)

=
∑

x→y∈u⇝w

θ∗(x→ y).

If Φ(u) < 0 then we have a path u ⇝ w in T of negative net cost and µ∗(u) > 0, which contradicts Lemma 2.3.
Hence, (C2) holds.

Putting everything together, the dual solution is feasible and satisfies (C1) and (C2). Therefore by the theory
of LP duality [12], the dual solution is optimal.

Lemmas 2.8 and 2.11 together prove Theorem 1.2, the main result of this section.
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3 Approximate Barycenter in Euclidean Space
We now describe the algorithm for constructing a (1+ ε)-approximate barycenter in Rd. We first give a high-level
overview (Section 3.1), then describe the key steps in detail (Sections 3.2-3.5), and finally analyze its correctness
and runtime (Section 3.6).

3.1 High-level overview. We begin by computing a small support set Y ⊇ X (see Section 3.2) over which
there exists a distribution µ : Y → [0, 1] satisfying Γ(µ) ≤ (1 + ε)minµ∗ Γ(µ∗), where Γ(µ) denotes the cost of a
barycenter distribution µ and the minimum is taken over all distributions µ∗ with arbitrary support.

We then construct a randomized weighted graph G = (V,E) with Y ⊆ V ⊂ Rd and |E| = O(nε−2d log n)
whose shortest path metric πG is a (1 + ε)-approximation of the Euclidean metric in expectation (see Section 3.4
below). Furthermore, G contains a randomly shifted binary tree T (which can be viewed as a variant of the
BBD-tree [9], see Section 3.3) as a subgraph, and the tree metric πT induced by T approximates πG up to a
multiplicative factor.

Recall that X ⊆ Y ⊆ V . For 1 ≤ i ≤ k, let µi : V → R≥0 be the input probability distribution with µi(p) = 0
for all p ∈ V \X. We compute a (1 + ε)-approximate barycenter µ̂ for µ1, . . . , µk with Y as support and πG as
the metric and using the flow formulation given in Section 1.1, as follows.

First, we call the Tree-Barycenter algorithm once on T to obtain an O(log n)-approximate barycenter
objective cost, i.e., we compute a flow satisfying w∗ ≤ g̃ ≤ c log n ·w∗ where w∗ is the optimal barycenter objective
cost and c is a constant. Next, we perform a binary search in the range

[
g̃

c logn , g̃
]

to compute a (1+ε)-approximate
barycenter. At each step of binary search, we have an interval [g−, g+] and flow functions f with ¢(f) ≤ (1+ ε

3 )g
+

and g− ≤ w∗. Therefore if g+ ≤ (1+ ε
3 )g

−, we return the probability distribution µ̂ associated with f . So assume
that g+ > (1 + ε

3 )g
−. We set g = g++g−

2 and use a MWU-based algorithm (see Section 3.5) that either computes
a collection f = ⟨f1, . . . , fk⟩ of flows fi : E → R with ¢(f) ≤ (1 + ε

3 )g or a set of dual weights ϕ = ⟨ϕ1, . . . , ϕk⟩
that certify g < w∗. We shrink the interval to [g−, g] in the former case and to [g, g+] in the latter case, and
continue until the binary search interval has size at most ε

3g
−. Let µ̂ be the probability distribution returned by

this procedure. By Lemma 3.3, µ̂ is a (1 + ε)-approximate barycenter of µ1, . . . , µk under the Euclidean metric
in expectation.

3.2 Small candidate support set. For 1 ≤ i ≤ k, let µi be the input distribution with finite support Xi ⊂ Rd.
Set X =

⋃k
i=1Xi and n = |X|. We construct the desired set Y ⊇ X as follows.

For any set A ⊆ Rd, we define the diameter of A as diam(A) := maxx,y∈A ||x − y||. Let X ⊂ Rd be a set of
n points. Then given any arbitrary ε > 0, an ε-well separated pair decomposition (WSPD) is a set W of pairs of
subsets A,B ⊆ X satisfying:

1. max{diam(A), diam(B)} ≤ ε ·mina∈A,b∈B ||a− b|| for every (A,B) ∈W , and

2. for every x ̸= y ∈ X, there exists some (A,B) ∈W such that x ∈ A, y ∈ B.

The first condition guarantees that each pair is ε-well separated, while the second condition guarantees the
pairs of sets cover all possible pairs of points in the original point set. We construct an ( ε4 )-WSPD W =
{(A1, B1), . . . , (Am, Bm)} of size m = O(nε−d) in O(nε−d + n log n) time using the algorithm by Callahan and
Kosaraju [14]. Choose representative points ai ∈ Ai and bi ∈ Bi arbitrarily for each pair (Ai, Bi) ∈W .

Let β0 and β1 be some fixed constants. Given a length ℓ > 0, define the grid Gℓ to be the uniform grid in Rd

of side length ℓ. Set t = β1 log(ε
−1). For 1 ≤ i ≤ m and for 0 ≤ j ≤ t, let δij = 2j β0ε

2
√
d
∥ai − bi∥. Let Cij denote

the set of hypercubes of the grid Gεδj intersecting D (ai, δj) ∪D (bi, δj). Set C =
⋃m

i=1

⋃t
j=0 Cij . For a grid cell

□, let c□ be its center. We set Y as Y = X ∪ {c□ : □ ∈ C}.

Lemma 3.1. Let µ∗ : Rd → [0, 1] be an arbitrary probability distribution with finite support. Then there exists a
distribution µ : Y → [0, 1] satisfying Γ(µ) ≤ (1 + ε)Γ(µ∗).

Proof. For a finite set S ⊂ Rd, let χ(S) ∈ Rd denote the 1-median of S, i.e., χ(S) = argminx∈Rd

∑
p∈S ||x − p||.

As shown in [6], we can assume the support of optimal barycenter µ∗ is a subset of the 1-medians of all k-tuples
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in
∏k

i=1Xi:

supp(µ∗) ⊆

{
χ(S) : S ∈

k∏
i=1

Xi

}
.

Let Z = supp(µ∗) be the finite support of µ∗ for convenience. Additionally, let f∗i : Xi × Z → [0, 1] be optimal
transport plans from µi to µ∗ for 1 ≤ i ≤ k.

For each z ∈ Z, by the definition of the transport plan f∗i , we know for every 1 ≤ i ≤ k there must exist some
xi ∈ Xi such that f∗i (xi, z) > 0. Suppose, for some arbitrary z ∈ Z, we have S = (x1, . . . , xk) ∈

∏k
i=1Xi satisfies

f∗i (xi, z) > 0 for all 1 ≤ i ≤ k. With some slight abuse of notation, we will write f∗(S, z) = mini f
∗
i (xi, z). We

can also assume if f∗(S, z) > 0 then z = χ(S). By construction of of the collection of hypercubes C, which covers
a 1

εdiam(∪iXi) diameter ball about ∪iXi, we note that every z ∈ Z is contained in some □ ∈ C. It then suffices
to prove that reassigning the mass µ∗(z) to the center c□ of the hypercube □ in C containing z will incur an
ε-relative error.

For an arbitrary S = (x1, . . . , xk) ∈
∏k

i=1Xi where f∗(S, χ(S)) > 0, define i(S) = argmini ||xi−χ(S)|| to be
the index of the point of S closest to χ(S). We drop the dependence on S when S is clear from context. Observe
that by construction of each Cij , for any j ̸= i(S),

||χ(S)− c□|| ≤ λε||xj − χ(S)||

for some fixed constant λ > 0 depending on β0, β1 and d. We then charge the additive error for xi to the other
indices j ̸= i to get the desired result, assuming k ≥ 2. Observe that

k∑
i=1

||xi − c□|| ≤
k∑

i=1

||xi − χ(S)||+ ||χ(S)− c□|| =

(
k∑

i=1

||xi − χ(S)||

)
+ k||χ(S)− c□||

=

(
k∑

i=1

||xi − χ(S)||

)
+

(
1 +

1

k − 1

) ∑
j ̸=i(S)

||χ(S)− c□||

≤

(
k∑

i=1

||xi − χ(S)||

)
+ 2λε

∑
j ̸=i(S)

||xj − χ(S)|| ≤ (1 + 2λε)
k∑

i=1

||xj − χ(S)||.

We have therefore concluded that for any S = (x1, . . . , xk) ∈
∏k

i=1Xi, there exists a cell □ ∈ C (in particular the
cell containing χ(S)) satisfying

k∑
i=1

||xi − c□|| ≤ (1 +O(ε))
k∑

i=1

||xj − χ(S)||.

3.3 Randomized binary tree. We follow a construction similar to Fox and Lu [21]. Suppose we are given a d-
dimensional axis-aligned box B =

∏d
i=1[ai, bi] and a finite set Y ⊂ Rd with |Y | = n and spread ∆ =

maxa,b∈Y ∥a−b∥
mina,b∈Y ∥a−b∥ .

Let ℓi(B) = bi−ai be the length of B in dimension i, ℓ(B) = mini ℓi and ℓ(B) = maxi ℓi. Given a fixed dimension
i and point y ∈ B ∩ Y , define the moat of y in dimension i to be the interval

[
yi − ℓ(B)

n3 , yi +
ℓ(B)
n3

]
. A value

vi ∈ [0, ℓi(B)] is called safe with respect to the set Y and box B if v does not lie within any moats of B ∩ Y , i.e.,
|ai + vi − yi| ≥ ℓ(B)

n3 for all y ∈ Y ∩B.
We construct a randomized binary tree with moats T = T (Y ) on Y , given ε > 0. Assume Y ⊆ [−∆,∆]d

without loss of generality. Let □∗ = [−2∆, 2∆]d be the root cell of the tree. Add c□∗ as a vertex to T . For each
cell B of T , we perform the following.

Define A[B] to be the smallest ancestor cell of B such that ℓ(B) ≤ ε
144d logn · ℓ(A[B]) if it exists, i.e., if B is

not too close to the root cell. If A[B] exists and |A[B] ∩ Y | = 1, we create an edge from the unique leaf element
y of A[B] ∩ Y to cB . Furthermore, if 0 < diam(B ∩ Y ) ≤ ℓ(B)

n4 , we recursively construct a tree with moats TB∩Y

on B ∩ Y . Let r be the root of TB∩Y . Create an edge from r to cB with cost ∥r − cB∥.
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In the event that neither of these conditions are met, we split B into child cells. Let i∗ ∈ argmaxi ℓi. Then
choose a safe value vi∗ ∈

[
ℓ(B)
3 , 2ℓ(B)

3

]
with respect to Y uniformly at random. We use the data structure of [21]

to check whether vi∗ is safe in O(log n) time. Define the children of B as C[B] = {B′ ∈ {B1, B2} : B′ ∩ Y ̸= ∅},
where B1 = {x ∈ B : xi ≤ ai∗ + vi∗} and B2 = {x ∈ B : xi ≥ ai∗ + vi∗}. For each B′ ∈ C[B], add cB′ to T along
with an edge (cB′ , cB) of cost ∥cB′ − cB∥. We recurse on each B′ ∈ C[B].

This concludes the construction of the randomized binary with moats. Let πT denote the shortest path
distance on the tree T = T (Y ). As shown in [1, 21], this construction gives O(log n) distortion in expectation.

Lemma 3.2. The randomized binary tree T has size |T | = O(n log n) and can be constructed in O(n log3 n) time
with high probability. Furthermore, for any two points x, y ∈ Y , we have E [πT (x, y)] ≤ O(log n) · ∥x− y∥.

3.4 Randomized graph construction. First, construct a randomized binary tree with moats T = (V,EV )
on Y as described above. Let πT : V × V → R≥0 be the tree metric induced by T . The weighted graph G will
be formed by adding extra edges to T to guarantee pairwise (Euclidean) distances between points of Y are well
approximated. Call the edges EV of T the vertical edges or tree edges of G.

We add the following edges to T to form G. For each cell B in T , define the subcells of B, written as S[B], to
be the set of all descendants B′′ of B in T where A[B′′] = B and no ancestor B′ of B′′ satisfies A[B′] = B. Then by
definition of A[B′′], we have that ℓ(B′′) ≤ ε

144d logn ·ℓ(B). We construct a ε√
d
-well separated pair decomposition [14]

on the centers of subcells in S[B] and add an edge for each pair in the following way. Add an edge between cB1

and cB2
with cost ∥cB1

− cB2
∥ for every pair B1, B2 ∈ S[B] where ∥cB1

− cB2
∥ ≤ 3√

dε
maxi diam(Bi). Also add an

edge between cB′
1

and cB′
2

with cost ∥cB′
1
− cB′

2
∥ for every maximal pair of ε√

d
-well separated descendants B′

1, B
′
2

of B. Let EB denote the set of edges added in this process on pairs of cells between B and S[B] in the tree T .
We refer to EH =

⋃
B∈T EB as the horizontal edges or shortcut edges of G. This concludes the construction of G.

Let πG : V ×V → R≥0 be the shortest path metric of G. By Lemma 3.2, |V | = O(nε−d log n). It can be shown
that |EH | = O(nε−2d log n) since EH includes a subset of pairs of cells in the WSPD construction [14] plus up to
O(ε−d) edges for each cell B. We emphasize ℓ(B)/ℓ(B) ≤ 3 for any cell B ∈ T since we always divide B along
its largest dimension. Thus G has O(nε−d log∆) vertices and O(nε−2d log∆) edges. The following property of G,
taken from [2, 21, 25], is crucial for our algorithm.

Lemma 3.3. For any pair of points a, b ∈ Y ,

(i) πG(a, b) ≥ ||a− b||, and

(ii) E [πG(a, b)] ≤ (1 + ε)||a− b||.

Furthermore, for any edge e = (u, v) ∈ E,

(iii) πT (u, v) ≤ O
(

logn
ε

)
· πG(u, v).

Remark: We note that G is basically a (1 + ε)-spanner of Y , i.e. πG approximates Euclidean distances up to a
(1 + ε)-factor. Instead of using a deterministic algorithm for constructing a spanner (e.g. based on WSPD [14]),
we use this randomized construction to ensure (iii) of Lemma 3.3, which will be critical for the analysis of our
algorithm.

3.5 Multiplicative weight update procedure. Let G = (V,E) be the graph constructed above. Recall that
|V | = O(nε−d log n) and |E| = O(nε−2d log n). We replace each undirected edge (u, v) ∈ E with the directed edges
u → v and v → u for convenience; their costs are ||u − v||. Assume we have the algorithm Tree-Barycenter,
which, given the tree T = (V,ET ) and distributions µi : V → R satisfying

∑
v∈V µi(v) = 1 for all i, computes a

primal solution (µ,f) and dual solution ϕ satisfying:

(a.) ϕi(u)− ϕi(v) ≤ ρ · ||u− v|| for all u→ v ∈ E, where ρ = c1 logn
ε ,

(b.) the pair (µ,f) is a feasible primal solution on input µi, and

(c.) ¢(f) ≤
∑

i

∑
v∈V ϕi(v)µi(v).
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Let τ = ⌈8ε−2ρ2 log(k|E|)⌉. The algorithm will run in at most τ iterations. During each iteration, we maintain a
(possibly infeasible) guess f t of the optimal primal solution with ¢(f t) ≤ g. Initially, assign

f0i (u→ v) =
g

k · ||u− v|| · |E|
for every directed edge u→ v ∈ E and every distribution i. Then, for each iteration 1 ≤ t ≤ τ , define

µt
i(u) = µi(u)−

∑
v:(u,v)∈E

(
f t−1
i (u→ v)− f t−1

i (v → u)
)

over all u ∈ V . The values of µt
i denote the infeasibility of the current primal solution guess f t−1

i . Run
Tree-Barycenter with input µt

i to obtain primal variables (µt,f
t
) and dual variables ϕt that satisfy Lemma 3.4.

We note that
∑

u µ
t
i(u) =

∑
u µi(u) for any i, and therefore the barycenter µt by itself is a feasible barycenter

distribution and each flow f t−1
i + f

t

i is a feasible flow that transports µi to µ. If ¢(f t−1 + f
t
) ≤ (1 + ε)g, then

we have found a feasible flow f t−1 + f
t

and barycenter µt with cost at most (1 + ε)g. Return this primal pair
(µt,f t−1 + f

t
).

Otherwise, ¢(f
t
) > εg and there is some non-trivially large barycenter mass which is not yet assigned naturally

by the maintained guess f t−1. We update the guessed flow on each edge (u→ v) using the computed dual solution.
Define the slack of the dual solution along edge u→ v as

sti(u→ v) =
ϕ
t

i(u)− ϕ
t

i(v)

||u− v||
.

Then for all u→ v ∈ E and for all 1 ≤ i ≤ k, set

f ti (u→ v)← exp

(
ε

2ρ2
· sti(u→ v)

)
· f t−1

i (u→ v).

We emphasize that flow along an edge is increasing if the slack is large. After this multiplicative update,
we rescale f ti by g

¢(ft) to maintain ¢(f t) ≤ g. If the algorithm does not terminate within τ rounds, we conclude

that 1
τ

∑
i

∑τ
t=1 ϕ

t

i certifies that g ≤ w∗. This concludes the description of the algorithm for computing (1 + ε)-
approximate barycenters in Euclidean space.

3.6 Analysis. Lemma 3.1 implies that there exists a (1 + ε)-approximate barycenter with support of Y , and
Lemma 3.3 states E [πG(a, b)] ≤ (1 + ε)∥a− b∥ for all a, b ∈ Y . Therefore, the optimal solution to the barycenter
flow problem on graph G is a (1 + ε)-approximation of the Wasserstein barycenter problem in expectation.

Set ρ = maxu,v∈V
πT (u,v)
πG(u,v) . By Lemma 3.3, ρ = O(ε−1 log n). The following lemma follows from Lemma 2.11,

the fact that T is a subgraph of G, and the strong duality of linear programs.

Lemma 3.4. Given µ = ⟨µ1, . . . , µk⟩, the Tree-Barycenter algorithm outputs a flow family f = ⟨f1, . . . , fk⟩,
distribution µ and dual weights ϕ = ⟨ϕ1, . . . , ϕk⟩ that satisfy the following desired conditions of the oracle from
Section 3.5:

(T1.) ϕi(u)− ϕi(v) ≤ ρ · ∥u− v∥ for all u→ v ∈ E,

(T2.) (µ,f) is a feasible solution to the barycenter problem, and

(T3.) ¢(f) ≤
∑

i

∑
v∈V µi(v)ϕi(v).

Then using the same analysis as in [41], we can prove the following lemma.

Lemma 3.5. Given a guess g of the barycenter objective value on the graph G and an algorithm
Tree-Barycenter which computes a primal-dual pair satisfying conditions (T1)-(T3) in Q(n) time, the multi-
plicative weight update algorithm either returns a family of flows f = ⟨f1, . . . , fk⟩ satisfying ¢(f) ≤ (1 + ε)g or
dual weights ϕ = ⟨ϕ1, . . . , ϕk⟩ certifying g ≤ w∗ in O((Q(n) + k|E|)ρ

2 log k|E|
ε2 ) time.

Plugging in ρ = O(ε−1 log n), |E| = O(nε−2d log n), and Q(n) = O(nkε−d log3 n), Lemma 3.5 implies that
each step of the binary search takes O(nkε−2d−4 log5 n log(nk)) time. Since the binary search takes O(log log n)
steps, the overall runtime is O(nkε−2d−4 log5 n log(nk) log log n). This proves Theorem 1.1.
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4 Conclusion
In this work, we presented the first (1 + ε)-approximation algorithm for the Wasserstein barycenter problem for
p = 1. Our algorithm exploits the geometry of distributions in Euclidean space to push the runtime to near-linear.
In the process, we also presented the first near-linear time exact algorithm for the Wasserstein barycenter problem
on trees. We leave a few open problems as future work.

• First, no known (1 + ε)-relative approximation algorithm for the 2-Wasserstein barycenter problem exists.
Is it possible to extend existing subquadratic time approximation algorithms for 2-Wasserstein distances to
the barycenter problem?

• Second, our algorithm incurs exponential dependence on the dimension. Can one compute a (1 + ε)-
approximate barycenter in n2−δ(dε−1)O(1) time for some δ > 0?

• Finally, the existing polynomial-time algorithms for Wasserstein barycenters in constant dimension are
only weakly polynomial time. This raises the question of whether there exists a strongly polynomial time
algorithm which computes an exact Wasserstein barycenter in fixed dimensions.
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