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"People posing for a picture”

Figure 1. Set difference captioning. Given two sets of images D4 and Dpg, output natural language descriptions of concepts which are
more true for D 4. In this example, D4 and Dp are images from the “Dining Table” class in ImageNetV2 and ImageNet, respectively.

Abstract

How do two sets of images differ? Discerning set-level
differences is crucial for understanding model behaviors
and analyzing datasets, yet manually sifting through thou-
sands of images is impractical. To aid in this discovery pro-
cess, we explore the task of automatically describing the
differences between two sets of images, which we term Set
Difference Captioning. This task takes in image sets D x
and Dp, and outputs a description that is more often true
on Dy than Dp. We outline a two-stage approach that first
proposes candidate difference descriptions from image sets
and then re-ranks the candidates by checking how well they
can differentiate the two sets. We introduce VisDiff, which
first captions the images and prompts a language model
to propose candidate descriptions, then re-ranks these de-
scriptions using CLIP. To evaluate VisDiff, we collect VisD-
iffBench, a dataset with 187 paired image sets with ground
truth difference descriptions. We apply VisDiff to various
domains, such as comparing datasets (e.g., ImageNet vs.
ImageNetV2), comparing classification models (e.g., zero-
shot CLIP vs. supervised ResNet), characterizing differ-
ences between generative models (e.g., StableDiffusionVI
and V2), and discovering what makes images memorable.
Using VisDiff, we are able to find interesting and previously
unknown differences in datasets and models, demonstrating

*Equal contribution. TEqual advising. Both orders decided by coin flip.

its utility in revealing nuanced insights.!

1. Introduction

What kinds of images are more likely to cause errors in one
classifier versus another [11, 18]? How do visual concepts
shift from a decade ago to now [20, 33, 53]? What types
of images are more or less memorable for humans [17]?
Answering these questions can help us audit and improve
machine learning systems, understand cultural changes, and
gain insights into human cognition.

Although these questions have been independently stud-
ied in prior works, they all share a common desidera-
tum: discovering differences between two sets of images.
However, discovering differences in many, potentially very
large, sets of images is a daunting task for humans. For
example, one could gain insights into human memory by
discovering systematic differences between memorable im-
ages and forgettable ones, but finding these differences may
require scanning through thousands of images. An auto-
mated solution would be more scalable.

In this work, we explore the task of describing differ-
ences between image sets, which we term Set Difference
Captioning (Figure 1). Specifically, given two sets of im-

Project page available at https://understanding-visual-
datasets.github.io/VisDiff-website/.
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Step 1: Propose Differences
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Given the captions for sets A and B:

—r>A: woman riding a horse in a rodeo
A: a group of jockeys and horses are racing on a grassy field

—>B: a woman in white riding a grey horse

B: a person riding a horse in an equestrian competition

List concepts that are more true for set A than set B.

PROPOSER

Candidate Differences Score

y1: “horses racing on track” 0.70

> y,: “multiple jockeys” 0.87
y3: “horse racing events” 0.91

= v(by,y3) = CLIP(
Step 2: Rank Differences

3

") - CLIP(“horse racing events”)

RANKER

I

AUROC(Up, v(ayys) | Up, v(byys))

Figure 2. VisDiff algorithm. VisDiff consists of a GPT-4 proposer on BLIP-2 generated captions and a CLIP ranker. The proposer takes
randomly sampled image captions from D 4 and Dpg and proposes candidate differences. The ranker takes these proposed differences and
evaluates them across all the images in D 4 and Dp to assess which ones are most true.

ages D4 and Dp, set difference captioning aims to find the
most salient differences by generating natural language de-
scriptions that are more often true in D4 than Dg. We
show in Section 6 that many dataset and model analysis
tasks can be formulated in terms of set difference caption-
ing, and methods that address this problem can help humans
discover new patterns in their data.

Set difference captioning presents unique challenges to
current machine learning systems, since it requires reason-
ing over all the given images. However, no existing mod-
els in the vision and language space can effectively reason
about thousands of images as input. Furthermore, while
there are usually many valid differences between D4 and
Dp, end users are typically interested in what can most ef-
fectively differentiate between the two sets. For example,
“birthday party” is a valid difference in Figure 1, but “peo-
ple posing for a picture” better separates the sets.

We introduce a two-stage proposer-ranker approach [49,
50, 53] for set difference captioning that addresses these
challenges. As shown in Figure 2, the proposer randomly
samples subsets of images from D4 and Dp to generate a
set of candidate differences in natural language. The ranker
then scores the salience and significance of each candidate
by validating how often this difference is true for individual
samples in the sets. Within the proposer-ranker framework,
there are many plausible design choices for each compo-
nent, and in this work we investigate three categories of
proposers and rankers that utilize different combinations of
models pre-trained with different objectives.

To evaluate design choices, we construct VisDiffBench
(Figure 3), a dataset consisting of 187 paired image sets
with ground-truth differences. We also propose a large lan-
guage model-based evaluation to measure correctness. By
benchmarking different designs on VisDiffBench, we iden-

tify our best algorithm, VisDiff, which combines a proposer
based on BLIP-2 captions and GPT-4 with a ranker based on
CLIP features. This method accurately identifies 61% and
80% of differences using top-1 and top-5 evaluation even
on the most challenging split of VisDiffBench.

Finally, we apply VisDiff to a variety of applications,
such as finding dataset differences, comparing model be-
haviors, and understanding questions in cognitive science.
VisDiff identifies both differences that can be validated
by prior works, as well as new findings that may moti-
vate future investigation. For example, VisDiff uncovers
ImageNetV2’s temporal shift compared to ImageNet [5,
35], CLIP’s strength in recognizing texts within images
compared to ResNet [13, 34], StableDiffusionV2 gener-
ated images’ stylistic changes compared to StableDiffu-
sionV1 [38], and what images are more memorable by hu-
mans [16]. These results indicate that the task of set dif-
ference captioning is automatic, versatile, and practically
useful, opening up a wealth of new application opportuni-
ties for future work and potentially mass-producing insights
unknown to even experts across a wide range of domains.

2. Related Works

Many prior works explored difference captioning [1, 21, 22,
46] and change captioning [2, 19, 31], which aim to de-
scribe differences between a single pair of images with lan-
guage. Recent large visual language models (VLMs) like
GPT-4V [30] have shown promise in describing differences
in small groups of images. However, the question of how
to scale this problem to sets containing thousands of images
remains unanswered. Meanwhile, some existing works in
vision tackle understanding large amounts of visual data
through finding concept-level prototypes [8, 42], “averag-
ing” large collections of images [52], using simple methods
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like RGB value analysis [28, 41], or using a combination
of detectors and classifiers to provide dataset level statis-
tics [44]. However, they do not describe the differences in
natural language, which is flexible and easy to interpret.

Our work draws inspiration from D3 [49] and D5 [50]
frameworks, which use large language models (LLMs) to
describe differences between text datasets. A recent work
GS-CLIP [53] applied a similar framework as D3 in the
image domain, using CLIP features to retrieve differences
from a pre-defined text bank. While this work targets the
task of set difference captioning, it struggles at generating
descriptive natural language and has a limited evaluation on
the MetaShift [24] dataset that we found contains a signif-
icant amount of noise. Inspired by D3 [49], our study ad-
vances a proposer-ranker framework tailored for the visual
domain, leveraging large visual foundation models and a
well-designed benchmark dataset. The versatility and effec-
tiveness of our approach are further demonstrated through
applications across a variety of real-world scenarios, under-
scoring its potential impact and utility in practical settings.

Lastly, the set difference captioning setting is closely
related to the field of explainable computer vision. Tra-
ditional explainable computer vision methodologies have
predominantly concentrated on interpreting features or neu-
rons within deep neural networks, as exemplified by ap-
proaches like LIME [37], CAM [51], SHAP [27], and MI-
LAN [15]. Recent shifts towards a data-centric Al paradigm
have sparked a wave of research focusing on identifying in-
fluential data samples that impact predictions [32, 39], and
on discerning interpretable data segments [4, 6, 11], thereby
elucidating model behaviors. Our set difference caption-
ing aligns with these objectives, offering a unique, purely
data-driven approach to understanding and explaining dif-
ferences in image sets with natural language.

3. Set Difference Captioning

In this section, we first describe the task of set difference
captioning, then introduce VisDiffBench, which we use to
benchmark performance on this task.

3.1. Task Definition

Given two image datasets D4 and Dp, the goal of ser dif-
ference captioning (SDC) is to generate a natural language
description y that is more true in D4 compared to Dp. For
example, in Figure 3, both D4 and Dp contain images of
horses, but the images from D 4 are all from racing events,
so a valid choice of y would be “horse racing events”.

In our benchmarks below, we annotate (D 4, D) with a
ground truth y* based on knowledge of the data-generating
process. In these cases, we consider an output y to be cor-
rect if it matches y* up to semantic equivalence (see Sec-
tion 3.3 for details). In our applications (Section 6), we also
consider cases where the ground truth y* is not known.

Dataset # Paired Sets  # Images Per Set
ImageNetR (sampled) 14 500
ImageNet™ (sampled) 23 500
PairedImageSets

(Easy/Medium/Hard) 50/50/50 100/100/100

Table 1. Summary of VisDiffBench. In experiments, we merge
ImageNetR and ImageNet™ because they have limited sets.

3.2. Benchmark

To evaluate systems for set difference captioning, we con-
struct VisDiffBench, a benchmark of 187 paired image sets
each with a ground-truth difference description. To create
VisDiffBench, we curated a dataset PairedImageSets that
covers 150 diverse real-world differences spanning three
difficulty levels. We supplemented this with 37 differences
obtained from two existing distribution shift benchmarks,
ImageNet-R and ImageNet*. Aggregate statistics for VisD-
iffBench are given in Table 1.

ImageNet-R: ImageNet-R [14] contains renditions of
200 ImageNet classes across 14 categories (e.g., art, car-
toon, painting, sculpture, sketch). For each category, we set
y* to be the name of the category, D4 to be 500 images
sampled from that category, and Dp to be 500 original Im-
ageNet images sampled from the same 200 classes.

ImageNet*: ImageNet* [43] contains 23 categories of
synthetic images transformed from original ImageNet im-
ages using textual inversion. These categories include par-
ticular style, co-occurrence, weather, time of day, etc. For
instance, one category, “at dusk,” converts ImageNet im-
ages with the prompt “a photo of a [inverse image token] at
dusk”. We generated differences analogously to ImageNet-
R, taking D4 to be 500 image samples from the category
and Dp to be 500 original ImageNet images.

PairedImageSets: ImageNetR and ImageNet* mainly
capture stylistic differences, and only contain 37 differ-
ences in total. To address these shortcomings, we con-
struct PairedlmageSets, consisting of 150 paired image sets
representing diverse differences. The dataset was built by
first prompting GPT-4 to generate 150 paired sentences
with three difficulty levels of differences (see Appendix A
for exact prompts). Easy level represents apparent differ-
ence (e.g., “dogs playing in a park” vs. “cats playing in
a park”), medium level represents fine-grained difference
(e.g., “SUVs on the road” vs. “sedans on the road”), and
hard level represents subtle difference (e.g., “people practic-
ing yoga in a mountainous setting” vs. “people meditating
in a mountainous setting”).

Once GPT-4 generates the 150 paired sentences, we
manually adjusted the annotated difficulty levels to match
the criteria above. We then retrieved the top 100 images
from Bing for each sentence. As a result, we collected 50
easy, 50 medium, and 50 hard paired image sets, with 100
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People practicing
yogaina
mountainous setting

People meditating %
in a mountainous .
setting .
<
S

Caption-based Image-based Feature-based
“Women doing yoga poses” (0.87) “Yoga poses” (0.86)  “awoman is standing with her arm up on a table” (0.79)
“Yoga pose on a wooden deck in the snow” (0.87) “People doing yoga” (0.80) “a person with arms and legs and a hand in a pose” (0.77)
“Yoga poses” (0.86)  “People in athletic clothing” (0.75)  “a woman standing in front of some cars” (0.70)
“Handstand poses in nature” (0.86)  “Group activities” (0.60)  “the fenty handbag in white” (0.66)
“Yoga on a pier” (0.85) “Outdoor activities” (0.58)  “acouple looking at a photo of a person in a bathing suit” (0.65)

Figure 3. Top 5 descriptions generated by the caption-based, image-based, and feature-based proposer. All the top 5 descriptions
from the caption-based proposer and the top 2 from the image-based proposer identify the ground-truth difference between “practicing
yoga” and “meditating”, while feature-based fails. We report AUROC scores from the same feature-based ranker described in Section 4.2.

images for each set. One example pair from this dataset is
shown in Figure 3, with further examples and a complete
list of paired sentences provided in Appendix A. We will
release this dataset and the data collection pipeline.

3.3. Evaluation

To evaluate performance on VisDiffBench, we ask algo-
rithms to output a description y for each (D 4, Dp) pair and
compare it to the ground truth y*. To automatically compute
whether the proposed difference is semantically similar to
the ground truth, we prompt GPT-4 to categorize similarity
into three levels: 0 (no match), 0.5 (partially match), and 1
(perfect match); see Appendix A for the exact prompt.

To validate this metric, we sampled 200 proposed dif-
ferences on PairedImageSets and computed the correlation
of GPT-4’s scores with the average score across four inde-
pendent annotators. We observe a high Pearson correlation
of 0.80, consistent with prior findings that large language
models can align well with human evaluations [9, 48].

We will evaluate systems that output ranked lists of pro-
posals for each (D 4, Dp) pair. For these systems, we mea-
sure Acc@k, which is the highest score of any of the top-k
proposals, averaged across all 187 paired image sets.

4. Our Method: VisDiff

It is challenging to train a neural network to directly predict
y based on Dy and Dp: D4 and Dp can be very large in
practice, while currently no model can encode large sets of
images and reliably reason over them. Therefore, we em-
ploy a two-stage framework for set difference captioning,
using a proposer and a ranker [49, 50]. The proposer takes
random subsets Sy C D4 and Sp C Dp and proposes dif-
ferences. The ranker takes these proposed differences and
evaluates them across all of D4 and Dpg to assess which

ones are most true. We explore different choices of the pro-
poser and ranker in the next two subsections. Full experi-
ment details for this section, including the prompts for the
models, can be found in Appendix B.

4.1. Proposer

The proposer takes two subsets of images S4 and Sp as
inputs and outputs a list Y of natural language descriptions
that are (ideally) more true on S4 than Sp. We leverage
visual language models (VLM) as the proposer in three dif-
ferent ways: from the images directly, from the embeddings
of the images, or by first captioning images and then using
a language model. In all cases, we set |S4| = |Sp| = 20.

Image-based Proposer: We arrange the 20+20 input
images into a single 4-row, 10-column grid and feed this
as a single image into a VLM (in our case, LLaVA-1.5 [25]
and GPT-4V [30]). We then prompt the VLM to propose
differences between the top and bottom half of images.

Feature-based Proposer: We embed images from Sy
and Sp into the VLM’s visual representation space, then
subtract the mean embeddings of S4 and Sp. This sub-
tracted embedding is fed into VLM’s language model to
generate a natural language description of the difference.
We use BLIP-2 [23] for this proposer.

Caption-based Proposer: We first use the VLM to gen-
erate captions of each image in S4 and Sp. Then, we
prompt a pure language model to generate proposed differ-
ences between the two sets of captions. We use BLIP-2 to
generate the captions and GPT-4 to propose differences.

Experiments in Section 5.1 show that the caption-based
proposer works best, so we will take it as our main method
and the other two as baselines. To further improve perfor-
mance, we run the proposer multiple times over different
sampled sets S4 and Sp, then take the union of the pro-
posed differences as inputs to the ranker.
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Proposer Ranker ImageNet-R/* PIS-Easy PIS-Medium PIS-Hard
Acc@1 Acc@5 | Acc@1 Acc@5 | Acc@1  Acc@5 | Acc@1  Acc@5

Feature (BLIP-2) Feature (CLIP) 0.68 0.85 0.48 0.69 0.13 0.33 0.12 0.23
Image (LLaVA-1.5) Feature (CLIP) 0.27 0.39 0.71 0.81 0.39 0.49 0.28 0.43
Caption (BLIP-2 + GPT-4)  Caption (Vicuna-1.5) 0.42 0.70 0.60 0.92 0.49 0.77 0.31 0.61
Caption (BLIP-2 + GPT-4) Image (LLaVA-1.5) 0.78 0.88 0.78 0.99 0.58 0.80 0.38 0.62
Image (GPT-4V) Feature (CLIP) 0.86 0.92 0.95 1.00 0.75 0.87 0.57 0.74
Caption (BLIP-2 + GPT-4)  Feature (CLIP) 0.78 0.96 0.88 0.99 0.75 0.86 0.61 0.80

Table 2. Results on VisDiffBench. GPT-4V image-based and BLIP-2 caption-based proposers with CLIP feature-based rankers consis-
tently outperform other proposers and rankers by a large margin. We use the caption-based proposer with the CLIP ranker as the final
VisDiff algorithm because it obtains the highest accuracy on the PairedImageSets-Hard and is cheaper than the GPT-4V image proposer.

4.2. Ranker

Since the proposer operates on small subsets S4 and Sp
and could generate invalid or noisy differences, we em-
ploy a ranker to validate and rank the proposed differences
y € Y. The ranker sorts hypotheses by computing a dif-
ference score s, = Eyep,v(z,y) — Ezepyv(2,y), where
v(z,y) is some measure of how well the image x satisfies
the hypothesis y. As before, we leverage VLMs to com-
pute the ranking score v(z,y) in three ways: from images
directly, from image embeddings, and from image captions.

Image-based Ranker: We query the VQA model
LLaVA-1.5 [25] to ask whether the image x contains y, and
set v(z,y) = VQA(x, y) to be the resulting binary output.

Caption-based Ranker: We generate a caption ¢ from
x using BLIP-2 [23], then ask Vicuna-1.5 [3] whether the
caption ¢ contains y. We set v(x,y) = QA(c,y) to be the
resulting binary output.

Feature-based Ranker: We use CLIP ViT-G/14 [34] to
compute the cosine similarity between the image embed-
ding e, and text embedding e,, so that v(z,y) = ﬁﬁy”
In contrast to the other two scores, since v(z,y) is contin-
uous rather than binary, we compute s, as the AUROC of
using v to classify between D 4 and Dp.

Experiments in Section 5.2 show that the feature-based
ranker achieves the best performance and efficiency, so we
use it as our main method and the other two as baselines. We
also filter out proposed differences that are not statistically
significant, by running a t-test on the two score distributions
v(x,y) with significance threshold 0.05.

5. Results

In this section, we present experimental results to under-
stand 1) which proposer / ranker works best, 2) can our al-
gorithm consistently find the ground truth difference, and 3)
can our algorithm work under noisy settings.

5.1. Which Proposer is Best?

Our comparative results, presented in Table 2, demonstrate
that the caption-based proposer consistently outperforms
its image-based and feature-based counterparts by a large

margin across all subsets of the VisDiffBench. This dif-
ference is particularly pronounced in the most challenging
subset, PairedImageSets-Hard. While the captioning pro-
cess may result in some loss of information from the orig-
inal images, the strong reasoning capabilities of large lan-
guage models effectively compensate for this by identifying
diverse and nuanced differences between image sets. We
provide a qualitative example in Figure 3.

The LLaVA image-based proposer shows commend-
able performance on PairedImageSets-Easy but signifi-
cantly lags behind the caption-based proposer on the
PairedImageSets-Medium/Hard subsets. Similarly, GPT-
4V outperforms the caption-based proposer on the easy sub-
set but underperforms on the hard subset. This discrepancy
can be attributed to the loss of visual details when aggregat-
ing numerous images into a single gridded super-image.

The feature-based proposer outperforms the LLaVA
image-based proposer on ImageNetR and ImageNet* but
is much less effective across all subsets of PairedImage-
Sets. We believe this is because the feature-based ap-
proach excels at distinguishing groups when one possesses
attributes absent in the other (e.g., “clipart of an image”
minus “an image” equates to ‘“clipart”). Most cases in
ImageNetR/ImageNet* fit this scenario. However, this ap-
proach falls short in other situations where vector arithmetic
does not yield meaningful semantic differences (e.g., “cat”
minus “dog” is not semantically meaningful), which is a
common scenario in PairedImageSets.

5.2. Which Ranker is Best?

In Table 2, our results demonstrate that the feature-based
ranker consistently outperforms both the caption-based and
image-based rankers, particularly in the most challeng-
ing subset, PairedImageSets-Hard. The feature-based ap-
proach’s advantage is primarily due to its continuous scor-
ing mechanism, which contrasts with the binary scores out-
put by image-based and caption-based question answering.
This continuous scoring allows for more fine-grained im-
age annotation and improved calibration. It is also logical
to observe the image-based ranker outperforms the caption-
based one, as answering questions from original images
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tends to be more precise than from image captions.

Moreover, the efficiency of the feature-based ranker is
remarkable. In scenarios where M hypotheses are evalu-
ated on [V images with N > M, the computation of image
features is required only once. This results in a computa-
tional complexity of O(M + N) ~ O(N), compared to
O(MN) for both image-based and caption-based rankers.
Hence, the feature-based ranker requires significantly less
computation, especially when ranking many hypotheses.
This efficiency is crucial in practical applications, as we
have found that a higher volume of proposed differences
is essential for accurately identifying correct differences in
the Appendix C.

5.3. Can Algorithm Find True Difference?

In Table 2, the results demonstrate the effectiveness of
our algorithm in discerning differences. The best algo-
rithm, comprising a GPT-4 [30] caption-based proposer and
a CLIP [34] feature-based ranker, achieves accuracies of
88%, 75%, and 61% for Acc@1, and 99%, 86%, and 80%
for Acc@5 on the PairedlmageData-Easy/Medium/Hard
subsets, respectively. The PairedlmageData-Hard subset
poses a significant challenge, requiring models to possess
strong reasoning abilities to perceive extremely subtle vari-
ations, such as distinguishing between “Fresh sushi with
salmon topping” and “Fresh sushi with tuna topping”, or
possess enough world knowledge to discern “Men wear-
ing Rolex watches” from “Men wearing Omega watches”.
Despite these complexities, our model demonstrates im-
pressive performance, accurately identifying specifics like
“Sushi with salmon” and “Men wearing Rolex watches”.

5.4. Performance Under Noisy Data Splits

In the VisDiffBench dataset, image sets are composed with
perfect purity. For instance, D 4 exclusively contains cat im-
ages (100%), while Dp is entirely made up of dog images
(100%). However, this level of purity is rare in real-world
scenarios. Typically, such sets include a mix of elements —
for example, D 4 might comprise 70% cat images and 30%
dog images, and Dp vice versa. To evaluate the robustness
of the VisDiff algorithm against such noise, we introduced
randomness in VisDiffBench by swapping a certain percent-
age of images between D 4 and Dp. Here, 0% purity signi-
fies 50% image swapping and an equal distribution of two
sets, whereas 100% purity indicates no image swapping.
Figure 4 presents the Acc@1 and Acc@5 performance
of VisDiff across various purity levels, tested on 50 paired
sets within PairedImageSets-Hard. As anticipated, a decline
in purity correlates with a drop in accuracy since identifying
the difference becomes harder. However, even at 40% pu-
rity, Acc@1 remains at 49%, only modestly reduced from
63% at 100% purity. This result underscores the robust-
ness of the VisDiff algorithm to noisy data. It is also worth

0.79 0.80
0.8 —o— Acc@l 0.70
0.63 0.63
0.6 Acc@5 0.53 o
049 @
0.4 03;/
02
()
0.2
88
0.0 =
0 20 40 60 80 100

Purity (%)

Figure 4. VisDiff performance under noise. We randomly swap
different percentages of images between D4 and Dp to inject
noise. Results are computed on 50 paired sets in PairedImageSets-
Hard. 95% confidence intervals are reported over three runs.

noting that VisDiff reaches near 0% accuracy at 0% purity,
which is expected since the two sets have exactly the same
distribution and our method filters out invalid differences.

Other ablations of VisDiff algorithm. In Appendix C,
we further discuss how caption style, language model, sam-
ple size, and # sampling rounds affect VisDiff performance.

6. Applications

We apply the best configuration of our VisDiff method to a
set of five applications in computer vision: 1) comparing
ImageNet and ImageNetV2 (Section 6.1), 2) interpreting
the differences between two classifiers at the datapoint level
(Section 6.2), 3) analyzing model errors (Section 6.3), 4)
understanding the distributional output differences between
StableDiffusionV1 and V2 (Section 6.4), and 5) discovering
what makes an image memorable (Section 6.5). Since Vis-
Diff is automatic, we used it to discover differences between
(1) large sets of images or (2) many sets of images, thus
mass-producing human-interpretable insights across these
applications. In this section, we report VisDiff-generated
insights including some that can be confirmed with existing
work and others that may motivate future investigation in
the community. Additional details for each application can
be found in Appendix D.

6.1. Comparing ImageNetV2 with ImageNet

In 2019, a decade after ImageNet [S] was collected, Recht et
al. introduced ImageNetV2 [35], which attempted to mirror
the original ImageNet collection process, including restrict-
ing data to images uploaded in a similar timeframe. How-
ever, models trained on ImageNet showed a consistent 11-
14% accuracy drop on ImageNetV2, and the reasons for this
have remained unclear. While some studies have employed
statistical tools to reveal a distributional difference between
ImageNet and ImageNetV2 [10], we aim to discover more
interpretable differences between these two datasets.

To uncover their differences, we first ran VisDiff with
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Class More True for ImageNetV2 Class Acco Accr More Correct for CLIP

Dining Table People posing for a picture Tobacco Shop  0.96 0.50 Sign hanging from the side of a building
Wig Close up views of dolls Digital Watch 0.88 0.52 Watches displayed in a group
Hand-held Computer Apps like Twitter and Whatsapp Missile 0.78 0.42 People posing with large missiles
Palace East Asian architecture Pot Pie 0.98 0.66 Comparison of food size to coins

Pier Body of water at night Toyshop 0.92 0.60 People shopping in store

Table 3. Top per-class differences between ImageNet and V2.

D4 as all of ImageNetV2 images and Dp as all of Ima-
geNet images. Interestingly, the highest scoring descrip-
tion generated by our system is “photos taken from Insta-
gram”. We conjecture that this highlights temporal distribu-
tion shift as a potential reason behind model performance
drops on ImageNetV2 vs V1. Indeed, while ImageNetV2
aimed to curate images uploaded in a similar timeframe to
ImageNet, all images in ImageNet were collected prior to
2012 whereas a portion of ImageNetV2 was collected be-
tween 2012 and 2014 [35]. This shift in years happens to
coincide with the explosion of social media platforms such
as Instagram, which grew from 50M users in 2012 to 300M
users in 2014 [7]. In this case, we hypothesize that a small
difference in the time range had a potentially outsized im-
pact on the prevalence of Instagram-style photos in Ima-
geNetV2 and the performance of models on this dataset.

Beyond dataset-level analysis, we applied VisDiff to
each of the 1,000 ImageNet classes, comparing Ima-
geNetV2 images (D 4) against ImageNet images (Dp). No-
table class-specific differences are listed in Table 3, ranked
by difference score, with visualizations in Figure 12. Sev-
eral of these differences suggest more specific examples
of Instagram-style photos, consistent with our dataset-level
finding. For example, for the class “Dining Table”, Ima-
geNetV?2 contains substantially more images showing “peo-
ple posing for a picture”, visualized in Figure 1. For the
class “Horizontal Bar”, ImageNetV2 is also identified to
have more images of “men’s gymnastics events.” Upon
manual inspection, we find that this highlights the differ-
ence that ImageNetV2 happens to contain photographs of
the Men’s High Bar gymnastics event in the 2012 Olympics,
which occurred after the ImageNet collection date. These
examples illustrate how VisDiff can be used as a tool for
surfacing salient differences between datasets.

6.2. Comparing Behaviors of CLIP and ResNet

In 2021, OpenAl’s CLIP [34] showcased impressive zero-
shot object recognition, matching the fully supervised
ResNet [13] in ImageNet accuracy while showing a smaller
performance drop on ImageNetV2. Despite similar in-
distribution performance on ImageNet, CLIP and ResNet
differ in robustness [29]. This naturally leads to two ques-
tions: 1) do these models make similar predictions on indi-
vidual datapoints in ImageNet? 2) on what datapoints does
CLIP perform better than ResNet in ImageNetV2?

To investigate these questions, we analyzed ResNet-50

Table 4. Top per-class differences between CLIP and ResNet.
Accc and Accr are accuracy of CLIP and ResNet, respectively.

and zero-shot CLIP ViT-H, which achieve similar accu-
racies of 75% and 72% on ImageNet, respectively. To
study the first question, VisDiff was applied to the top 100
classes where CLIP surpasses ResNet. D4 comprised im-
ages correctly identified by CLIP but not by ResNet, and
Dp included all other images. The top discoveries included
“close-ups of everyday objects”, “brands and specific prod-
uct labeling”, and “people interacting with objects”. The
first two align well with existing works that show CLIP
is robust to object angles and sensitive to textual elements
(e.g., afruit apple with text “iPod” on it will be misclassified
as “iPod”) [12, 34]. In addition, we ran VisDiff at finer gran-
ularity on each of the top 5 classes where CLIP outperforms
ResNet. The discovered class-level differences are shown
in Table 4, demonstrating CLIP’s proficiency in identify-
ing “tobacco shops with signs”, “group displays of digital
watches”, and “scenes involving missiles and toyshops with
human interactions”, which echos the dataset-level findings
about label, object angle, and presence of people.

To study the second question, we applied VisDiff to
ImageNetV2’s top 100 classes where CLIP outperforms
ResNet. We set D4 as images where CLIP is correct and
ResNet is wrong, and Dp as the rest. The top three dif-
ferences are: 1) “Interaction between humans and objects”,
suggesting CLIP’s robustness in classifying images with hu-
man presence; 2) “Daytime outdoor environments”, indicat-
ing CLIP’s temporal robustness; and 3) “Group gatherings
or social interactions”, which is similar to the first differ-
ence. These findings provide insight into CLIP’s strengths
versus ResNet on ImageNetV2, and are also consistent with
the findings in Section 6.1 that ImageNetV2 contains more
social media images with more presence of people.

6.3. Finding Failure Modes of ResNet

We utilize VisDiff to identify failure modes of a model
by contrasting images that are correctly predicted against
those that are erroneously classified. Using a ResNet-50 and
ResNet-101 [13] trained on ImageNet, we set D4 as Ima-
geNet images misclassified by both ResNet-50 and ResNet-
101 and Dp as correctly classified images. The two high-
est scoring descriptions were “humanized object items” and
“people interacting with objects”, suggesting that ResNet
models perform worse when the images include human sub-
jects, echoing the finding in Section 6.2.

To validate this hypothesis, we applied a DETR [36] ob-
ject detector to find a subset of ImageNet images with hu-
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Figure 5. StableDiffusionV2 vs. V1 generated images. For the same prompt, StableDiffusionV2 images often contain more “vibrant
contrasting colors” and “artworks placed on stands or in frames”. Randomly sampled images can be found in Figure 15.

Model Images w/ Person  Images w/o Person
ResNet50 67.24% 69.96%
ResNet101 68.75% 72.30%
Ensemble 74.86% 77.32%

Table 5. Accuracy on images with / without people.

man presence. Using the classes which have a roughly equal
number of human/no-human images, we evaluated ResNets
on this subset and their accuracy indeed declined 3-4%, as
shown in Table 5.

6.4. Comparing Versions of Stable Diffusion

In 2022, Stability Al released StableDiffusionV1 (SDvl),
followed by StableDiffusionV2 (SDv2) [38]. While SDv2
can be seen as an update to SDvl, it raises the question:
What are the differences in the images produced by these
two models?

Using the prompts from PartiPrompts [47] and Diffu-
sionDB [45], we generated 1634 and 10000 images with
SDv2 and SDvl1, respectively. The Parti images are used to
propose differences and the DiffusionDB images are used
to validate these differences transfer to unseen prompts.

The top differences show that SDv2 produces more “vi-
brant and contrasting colors” and interestingly “images with
frames or borders” (see Table 10). We confirmed the color
difference quantitatively by computing the average satura-
tion: 112.61 for SDv2 versus 110.45 for SDv1 from Par-
tiPrompts, and 97.96 versus 93.49 on unseen DiffusionDB
images. Qualitatively, as shown in Section Figure 5, SDv2
frequently produces images with white borders or frames,
a previously unknown characteristic. This is further sub-
stantiated in Section Appendix D, where we employ edge
detection to quantify white borders, providing 50 random
image samples from both SDv1 and SDv2.

6.5. Describing Memorability in Images

Finally, we demonstrate the applicability of VisDiff in
addressing diverse real-world questions beyond machine
learning, such as computational cognitive science. A key
area of interest, especially for photographers and advertis-
ers, is enhancing image memorability. Isola et al. [16] ex-
plored this question and created the LaMem dataset, where
each image is assigned a memorability score by humans in

Figure 6. Memorable(top) vs. forgettable(bottom) images.
Memorable images contain more “humans”, “close-up views of
body part or objects”, and “humorous settings”, while forgettable

images contain more “landscapes” and “urban environments”

the task of identifying repeated images in a sequence.

Applying VisDiff to the LaMem dataset, we divided im-
ages into two groups: D4 (the most memorable 25th per-
centile) and Dp (the least memorable 25th percentile). Our
analysis found that memorable images often include “pres-
ence of humans”, “close-up views”, and “humorous set-
tings”, while forgettable ones feature “landscapes” and “ur-
ban environments”. These findings are consistent with those
of Isola et al. [16], as further detailed qualitatively in Fig-
ure 6 and quantitatively in Appendix D.

7. Conclusion

In this work, we introduce the task of set difference caption-
ing and develop VisDiff, an algorithm designed to identify
and describe differences in image sets in natural language.
VisDiff first uses captioning and large language models to
propose differences based on image captions and then em-
ploys CLIP to effectively rank these differences. We eval-
uate VisDiff’s various design choices on our curated VisD-
iffBench, and show VisDiff’s utility in finding interesting
insights across a variety of real-world applications.

Limitations. As we see in Section 5, VisDiff still has a
large room for improvement and hence far from guaranteed
to uncover all meaningful differences. Furthermore, VisDiff
is meant to be an assistive tool for humans to better under-
stand their data and should not be applied without a human
in the loop: the users hold the ultimate responsibility to in-
terpret the descriptions by VisDiff properly. As VisDiff re-
lies heavily on CLIP, GPT, and BLIP, any biases or errors
these models may extend to VisDiff. Further investigation
of VisDiff’s failure cases can be found in Appendix E.
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