Invertible Fourier Neural Operators for Tackling Both Forward and Inverse
Problems

Qiwei Yuan

Yin Yang Shandian Zhe

Kahlert School of Computing, University of Utah

Da Long Zhitong Xu
{da.long, ul502956, joshua.yuan,
Abstract

Fourier Neural Operator (FNO) is a powerful
and popular operator learning method. However,
FNO is mainly used in forward prediction, yet a
great many applications rely on solving inverse
problems. In this paper, we propose an invert-
ible Fourier Neural Operator (iIFNO) for jointly
tackling the forward and inverse problems. We
developed a series of invertible Fourier blocks
in the latent channel space to share the model
parameters, exchange the information, and mutu-
ally regularize the learning for the bi-directional
tasks. We integrated a variational auto-encoder
to capture the intrinsic structures within the in-
put space and to enable posterior inference so
as to mitigate challenges of illposedness, data
shortage, noises that are common in inverse prob-
lems. We proposed a three-step process to com-
bine the invertible blocks and the VAE component
for effective training. The evaluations on seven
benchmark forward and inverse tasks have demon-
strated the advantages of our approach. The
code is available at https://github.com/
BayesianAIGroup/iFNO.

1 INTRODUCTION

Operator learning (OL) is currently at the forefront of Al for
science. It seeks to estimate function-to-function mappings
from data and can be used as a valuable surrogate in various
applications related to scientific simulation. Among the
notable approaches in this domain is the Fourier neural
operator (FNO) (Li et al., 2020). Leveraging the convolution
theorem and fast Fourier transform (FFT), FNO executes a
sequence of global linear transform and nonlinear activation
within the functional space to capture complex function-to-

Proceedings of the 28" International Conference on Artificial In-
telligence and Statistics (AISTATS) 2025, Mai Khao, Thailand.
PMLR: Volume 258. Copyright 2025 by the author(s).

yin.yang}Qutah.edu,

zhe@cs.utah.edu

function mappings. FNO is computationally efficient, and
has shown excellent performance across many OL tasks.

Despite many success stories (Pathak et al., 2022; Kovachki
et al., 2023; Kashefi and Mukerji, 2024), FNO is primarily
applied for solving forward problems. Typically, it is used
to predict solution functions based on the input sources,
parameters of partial differential equations (PDEs), and/or
initial conditions. However, practical applications often
involve another crucial category of tasks, namely inverse
problems (Stuart, 2010). For instance, given the solution
measurements, how to deduce the unknown sources, how
to determine the PDE parameters, or identify the initial
conditions? Inverse problems tend to be more challenging
due to issues such as ill-posedness (Tikhonov, 1963; Engl
and Groetsch, 2014), noisy measurements, and limited data
quantity. Even if one attempts to directly train an FNO to
map the measured solution function back to the input of
interest, the aforementioned challenges persist.

To bridge this gap, we propose iFNO, a novel invertible
Fourier neural operator jointly addressing both forward and
inverse problems. Due to the sharing of the model param-
eters, the co-learning for the bi-directional tasks enables
efficient information exchange and mutual regularization,
enhancing performance on both fronts and mitigating chal-
lenges especially for inverse problems. Specifically, we first
develop a series of invertible Fourier blocks in the lifted
channel space, capturing rich representation information.
Each block takes a pair of inputs with an equal number of
channels, generating outputs through the Fourier layer of
FNO, softplus transform, and element-wise multiplication.
This ensures a rigorous bijection pair between the inputs
and outputs during expressive functional transforms in the
latent channel space. To enable inverse prediction in the
original space, we incorporate a pair of multi-layer percep-
tions (MLPs) that lift the final prediction’s channel back to
the latent space and project the latent channels to the input
space. Second, to capture intrinsic structures within the in-
put space and further mitigate challenges like ill-posedness
and data shortage, we introduce a low-dimensional repre-
sentation and integrate a variational auto-encoder (VAE) to
reconstruct the input function values. The VAE component

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

also enables generation of posterior samples for prediction.
Third, for effective training, we developed a three-step pro-
cess: We first train the invertible blocks and the VAE com-
ponent separately, then combine them to continue training,
resulting in the final model.

For evaluation, we examined our method in seven bench-
mark problems, including scenarios based on Darcy flow,
second-order wave propagation, diffusion reaction, and
Naiver-Stoke (NS) equations. In addition to forward solu-
tion prediction, our method was tested for inverse inference,
specifically deducing permeability, square slowness, initial
conditions, earlier system states from (noisy) solution or
system state measurements. We compared with the recent
inverse neural operator (Molinaro et al., 2023) designed
explicitly for solving inverse problems, and invertible deep
operator net (Kaltenbach et al., 2022). Comparisons were
also made with FNO and another recent state-of-the-part
attention-based neural operator, both of which were trained
separately for forward and inverse prediction. In addition,
we tested with adapting FNO to the classical framework for
solving inverse problem. That is, one optimizes the input
to the forward model to match the prediction with obser-
vations. Across all the tasks, iFNO consistently delivers
the best or near-best performance, often outperforming the
competing methods by a large margin. In the vast majority
of cases, iFNO significantly improves upon the standard
FNO in both forward and inverse predictions. Visualization
of the predictive variance for the inverse problems reveals
intriguing and reasonable uncertainty calibration results.

2 PRELIMINARIES

Operator Learning. Consider learning a mapping between
two function spaces (e.g., Banach spaces) ¢ : H — U. We
collect a training dataset that consists of pairs of discretized
input and output functions, denoted by D = {(f,,, u,,) })_;.
Each f,, and u,, represents samples from an input func-
tion f, € H and the corresponding output function w,, =
¥(fn) € U, respectively. Both f,, and u,, are sampled at
evenly-spaced locations, e.g., over a 64 x 64 grid in [0, 1]%.

Fourier Neural Operator (FNO) first lifts the sampled
input function values f into a higher-dimensional feature
space (via an MLP) to enrich the representation. Then it
uses a series of Fourier layers to alternatingly conduct linear
transforms and nonlinear activation,

vi1(x) 0 (th(x) + /KJ(X — x’)vt(x’)dx’) , (1)
where v, is the input to the ¢-th layer, v,y the output, &
the integration kernel, and o the activation. Utilizing the
convolution theorem expressed as

//{(x — XY (x)dx’ = F~ [Flx] - Flug] (x),

where F and F ! denote the Fourier and inverse Fourier

transforms, respectively, the Fourier layer first executes a
fast Fourier transform (FFT) over v;, then multiplies the re-
sult with the discretized representation of in the frequency
domain, i.e., F[x], and executes inverse FFT; Wuv;(x) per-
form a location-wise linear transform. Owning to FFT, the
Fourier layer is computationally efficient. The storage of
F k] can be memory intensive. In practice, one often trun-
cates the high frequency modes to save the memory cost.
After several Fourier layers, another MLP is used to project
back from the latent space to generate the final prediction.
The training is typically carried out by minimizing a relative
Lo loss.

3 INVERTIBLE FOURIER NEURAL OP-
ERATORS

Neural operators, including FNO, are commonly employed
to address forward problems. Taking PDE systems as an
example, the input typically comprises external sources or
forces, system parameters, and/or initial conditions, with
the output representing the corresponding solution function.
However, many applications require deducing unknown
causes from the observed effect or measurement data, a
scenario known as inverse problems. For instance, this
involves inferring unknown sources, system parameters,
or initial conditions from solution measurements. Inverse
problems have broad significance in scientific and engineer-
ing domains, e.g., (Tanaka and Dulikravich, 1998; Yilmaz,
2001; Nashed and Scherzer, 2002). However, tackling in-
verse problems is notably challenging due to their inherently
ill-posed nature (Tikhonov, 1963; Stuart, 2010; Engl and
Groetsch, 2014). In contrast to forward problems, inverse
problems often lack a unique solution and are highly sen-
sitive to variations in data. These challenges are further
compounded in complex applications where measurement
data is often limited, noisy, and/or inaccurate.

To better address these challenges, we propose iFNO, an
invertible Fourier neural operator jointly tackling both the
forward and inverse problems. Gven the training dataset
D = {f,,u,,}_,, our goal is to jointly learn the forward
and inverse mappings via a unified neural operator. By shar-
ing the model parameters across both tasks, we conduct
co-learning for the bi-directional tasks to enable efficient
information exchange and mutual regularization, so as to
improve performance on both fronts and alleviate aforemen-
tioned challenges like ill-posedness and data noise. The
details of iFNO are specified as follows.

3.1 Invertible Fourier Blocks in Latent Space

To enable invertible computing and prediction while preserv-
ing the expressiveness of the original FNO, we first design
and stack a series of invertible Fourier blocks in the latent
channel space. Specifically, following the standard FNO, we
apply a multi-layer preceptron (MLP) P over each element

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

- Separate Training

| f DecoderH Encoder f | :E>
—> >
H Encoder; Q' -

" Jointly Continue Training

Forward mapping

} | V

{ vll(o> X Fourier Layer <7lv11(+1)

SP/RSP SP/RSP) L u
(vﬁ — Fourier Layer X Viet1 P’ <—I
5 B
Invertible Fourier Block XK

Inverse mapping

Figure 1: An Overview of iFNO. Left panel: the 3-VAE module and the invertible Fourier blocks. Right panel: the entire architecture.
“SP” and “RSP” denote softplus and the reciprocal of the softplus, respectively. We first train separately the 5-VAE module and invertible
Fourier blocks as shown in the first panel. Then we combine them to continue training the entire model as depicted in the right panel.

of the discretized input function f and the sampling loca-
tions to map f into a higher-dimensional latent space with 2d
channels. That means, at each sampling location, we have a
2d-dimensional feature representation. We split the channels
of P(f) into halves, each with d channels, and feed them
into a series of invertible Fourier blocks ZF1,...,ZF k.
Each block ZF, receives a pair of inputs v}, and v3, and
produces a pair of outputs v}, and v7_ ,, which are then
fed into ZFj41. All the input and outputs possess the same
number of channels. We use the framework in (Dinh et al.,
2016) to design each block Z Fy,

Vi < Vi © S(L(v})),
Vi Vi ©S(L(Viy1)),)

where © is the element-wise multiplication, £ is the
Fourier layer of the standard FNO that fulfills the linear
transform and nonlinear activation as expressed in (1),
and S is the element-wise softplus transform!, S(z) =
771 log (1 + exp(7x)), where T is a hyperparameter to ad-
just the shape. In this way, {vi, v} and {v}_ ,,vi 4}
form a bijection pair. Given the outputs {v}_ |, v}, }, the
inputs can be inversely computed via

Ve Vi 0 [S(L(vi))] T
vievia o [S(ervi)] T 3)

where [-]~! denotes the element-wise reciprocal.

The outputs of the last invertible Fourier block, v} and
2

v, are concatenated and fed into a second MLP Q, which

projects back to generate the prediction of the output func-
tion at the sampling locations,

1 2

Yirno(f) = Q(vi, Vi) “)

'We did not use the exponential transform as suggested in (Dinh

et al., 2016). We empirically found that the softplus transform is

numerically more stable and consistently achieved better perfor-
mance.

Next, to fulfill the inverse prediction from the (discretized)
output function u back to the input function, we introduce
another pairs of MLPs, P’ and @', for which, P’ first maps
u back to the latent space to predict the outputs of the last
invertible Fourier block,

V}OV% = P/(u)7

then inversion (3) is sequentially executed to predict the in-
puts to each block until the first one, and finally Q' projects
the inputs to the first invertible Fourier block back to gener-
ate the prediction of the original input function,

Yimo(W) = Q'(vi,vY). (5)

One might question why not position the invertible Fourier
blocks directly in the original space, eliminating channel
lifting and projection. Adopting this approach will limit
the representation power and miss the rich information in
the higher-dimensional latent space. Additionally, decid-
ing whether to split the original input function samples
into halves or duplicate them into two copies becomes a
challenge. The former can potentially disrupt the internal
structures of the input function, while the latter introduces
additional training issues, such as how to enforce the pre-
diction of the two inputs to be identical. We found that
empirically in both our model and standard FNO, channel
lifting is crucial to achieve promising performance.

3.2 Embedding Intrinsic Structures

To extract the intrinsic structures within the input space so as
to further mitigate challenges for solving inverse problems,
we integrate a J-variational auto-encoder (5-VAE) (Higgins
et al., 2016) into our model. Specifically, after projecting
{v1,v?} back to the input space — see (5) — we feed the
results to the an encoder network to obtain a stochastic latent
embedding z. Then through a decoder network, we produce
the prediction of the input function values. We henceforth

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

modify (5) as the follows,

z = Encoder (Q'(v{,v3),€), €~ N(0,I),
f = Yo (1) = Decoder (z) . (6)

We leverage the auto-encoding variational Bayes frame-
work (Kingma and Welling, 2013) to estimate the posterior
distribution of z. This allows us to generate the posterior
samples of the prediction for f, enabling the evaluation of
the uncertainty. Our overall model is illustrated in Fig. 1.

3.3 Three-Step Training

For effective learning, we perform three steps. We first train
the invertible Fourier blocks to fully capture the supervised
information (i.e., using (5); without VAE). The loss is:

Jirs = Jrwp + Jiny + Jp o + Jpr 0, (7N
where
1 N ”un - wiFNO(fn)H
Jrwp = —)
N Zn:l ||11n||
(u) |l
Jnv = Viro (8
O

measure the data fitness for forward and inverse predictions,
|| - || is the Frobenius norm, and

£, — Q' (P(£,))]]
o= NZ anu ’

Jpro = =% Z [u, — Q(P'(un))| 9)

HunH

are two additional reconstruction loss terms that encour-
age the invariance of the original information after channel
lifting and projection at both the input and output ends.

Next, we train the 5-VAE component to fully capture the
hidden structures wthin the input function values. We mini-
mize a variational free energy,

LN

Taousm = L nz::l I (10)
f,, — Decoder(z,,

Ju = BKL(q(zn) [p(20)) + E, [” £ =),

where KL is the Kullback-Leibler divergence, (3 is a hyper-
parameter, z,, is the stochastic embedding representation of
f,,, and q(z,,) is the posterior distribution. The samples from
q(zy,) is generated by: z,, = Encoder(f,, €), € ~ N(0,I).

Finally, we combine the two trained models, start with their
current parameters, and train the entire model by minimizing
a joint loss,

J = Jrwp + Jp,or + Jpr.0 + Js—vaE, (11)

where according to (6), the inverse prediction is now
Vo (Un) = Decoder(zy,), and the input to the encoder
network for each z,, is generated by lifting u,, with P’, go-
ing through invertible Fourier blocks, ZF g, ...,ZF1, and
then applying projection MLP Q’. See Figure 1. One might
consider directly minimizing the joint loss (11) instead, but
this could introduce complications and reduce the efficiency
in extracting both supervised and structural knowledge from
data. Empirically, we found that our tree-step training pro-
cess results in more stable predictive performance.

4 RELATED WORK

Operator learning is a rapidly advancing research field, with
various methods falling under the category of neural opera-
tors, primarily based on neural networks. Alongside FNO,
other notable approaches have been proposed, such as low-
rank neural operator (LNO) (Li et al., 2020), multiwavelet-
based NO (Gupta et al., 2021), and convolutional NOs
(CNO) (Raonic et al., 2023). Recently, Li et al. (2024)
proposed active learning methods for multi-resolution FNO.
Deep Operator Net (DON) (Lu et al., 2021) is another pop-
ular approach, which consists of a branch net and a trunk
net. The branch net is applied over the input function values
while the trunk net over the sampling locations. The predic-
tion is generated by the dot product between the outputs of
the two nets. To improve the stability and efficiency, Luetal.
(2022) replaced the trunk net by the POD (PCA) bases. An-
other line of research uses transformers to build NOs (Cao,
2021; Li et al., 2022; Hao et al., 2023). Recent works have
also explored kernel operator learning approaches (Long
et al., 2022; Batlle et al., 2023).

Molinaro et al. (2023) proposed neural inverse operator
(NIO), explicitly designed for address inverse problems.
NIO sequentially combines DeepONet and FNO, where the
DeepONet takes observations and querying locations as the
input, and the outputs are subsequently passed to FNO to
obtain the prediction for the inverse problems. NIO does
not offer uncertainty quantification. Kaltenbach et al. (2023)
designed an invertible version of DeepONet. The key idea
is to modify the branch net to be invertible following the
framework of (Dinh et al., 2016). Given the observations,
the approach starts by solving a least-squares problem to
restore the output of the branch net, and then proceeds to
back-predict the input function values. The least-squares
problem is further casted into a Bayesian inference task and
a Gaussian mixture prior is assigned for the unknown output
of the branch net. One potential constraint of this approach
is that the input and output dimensions of the branch net
must be identical for invertibility. When the dimensionality
or resolution is high, it can substantially raise the model
size and the computational costs, posing learning challenges
(see Sec 5).

The classical methods for solving inverse problem is based
on the assumption that the forward system is known, e.g., a

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

particular PDE system (Stuart, 2010). Then one optimizes
the input to the forward system to match the system out-
put and measurement data. Markov-Chain Monte-Carlo
(MCMC) sampling is often used to import prior knowledge
and to quantify uncertainty. However, the classical methods
require extensively simulating the forward system, such as
running a numerical solver, which is very expensive in com-
putation. The recent work (Zhao et al., 2022) inherits the
classical framework, but use a data-driven surrogate model,
such as MeshGraphNet (Pfaff et al., 2020) and U-Net (Ron-
neberger et al., 2015) to replace the forward simulator, so as
to accelerate the optimization procedure. Though effective,
these approaches need massive simulation examples to train
an enough accurate surrogate. Moreover, one has to conduct
numerical optimization from scratch for every prediction,
which is still quite expensive. See run time comparison in
Appendix Table 3.

5 NUMERICAL EXPERIMENTS

We evaluated our method on seven benchmark problems,
each covering both the forward and inverse scenarios.
These problems are grounded in Darcy flow, wave propaga-
tion, diffusion-reaction, and Navier-Stokes (NS) equations,
which are commonly used in the literature of operator learn-
ing and inverse problems (Li et al., 2020; Lu et al., 2022;
Takamoto et al., 2022; Iglesias et al., 2016; Chada et al.,
2018; Zhang et al., 2018). We summarize the benchmark
problems as follows.

* D-LINE: We considered a single-phase 2D Darcy Flow
equation. We are interested in predicting from the
permeability field to the fluid pressure field (forward)
and from pressure field recovering the permeability
(inverse). The permeability field is piece-wise constant
with a linear interface.

* D-CURYV: Similar to D-LINE, but the permeability is
piece-wise constant with a curved interface.

* W-OVAL: We considered a seismic survey based on
an acoustic seismic wave equation (Zhang et al., 2018).
Given an external wave source, the forward task is to
predict from the square slowness of the physical media
to the wave measurements at the signal receivers. The
inverse task is to recover the square slowness from
the measurements. The square slowness is piece-wise
constant with an oval-shaped interface.

e W-Z: Similar to W-OVAL, except that the square slow-
ness takes a Z-shaped interface.

* NS: We considered a viscous, incompressible flow gov-
erned by the 2D Navier-Stokes (NS) equation. The
forward task is to predict from the initial conditions to
the solution at ¢ = 10, and the inverse task is to recover
the initial condition from the solution at ¢ = 10.

* DR: We employed the PDEBench dataset (Takamoto
et al., 2022) for a 2D diffusion-reaction system. The
forward task is to predict the activator state at time step
5 based on time step 1, while the inverse problem aims
to recover the state at step 1 from step 5.

¢ CFD: We used the PDEBench dataset for computa-
tional fluid dynamics (CFD) governed by a 2D com-
pressible Navier-Stokes (NS) equation. The forward
problem involves predicting the fluid state at time step
2 from the initial state, while the inverse task aims to
recover the initial state from time step 2.

We employed 800 training examples for D-LINE, D-CURY,
DR and CFD, 400 for W-OVAL and W-Z, and 1,000 for
NS. Each task was evaluated using 200 test examples. To
access the robustness of our method against data noise and
inaccuracy, we conducted additional tests on the first five
benchmarks, including D-LINE, D-CURV, W-OVAL, W-
Z and NS. We injected 10% and 20% white noises into
the training dataset. Specifically, for each pair of f,, and
u,, generated from the numerical solvers, we corrupted
them via updating f,, < f,, + nos © €, and u,, + u,, +
no, © &,, where) € {0.1,0.2} represents the noise level,
o and oy are the per-element standard deviation of the
sampled input and output functions, and €, &, ~ N (0,1)
are Gaussian white noises. The details of data generation
for each benchmark are provided in Appendix Section A.1.

Methods. We compared iFNO with the invertible Deep Op-
erator Net (iDON) (Kaltenbach et al., 2022), neural inverse
operator (NIO) (Molinaro et al., 2023), the standard FNO,
and a recent state-of-the-art attention-based neural opera-
tor model, GNOT (Hao et al., 2023). We evaluated all the
methods in both forward and inverse tasks, except for NIO,
which is exclusively designed for inverse prediction. In ad-
dition, we adapted FNO to the classical framework (Stuart,
2010) for solving inverse problems. Specifically, we trained
FNO for forward prediction. Then we optimized the input to
FNO to match the forward prediction and observations. To
leverage the intrinsic structures within the input space, we
also used B-VAE to extract a low-dimensional representa-
tion for the input functions values at the sampling locations.
We optimize the embedding with ADAM. We denote this
method as Input Optimization over Forward Model IOFM).
Note that we found directly optimizing the function val-
ues consistently results in large prediction errors, indicating
failure. We implemented iFNO with PyTorch and used the
original implementation of all the competing methods.

Experimental Settings. For each approach, we used 100
random examples as the validation set (non-overlapping
with the test set) to identify the optimal hyperparameters
for each task. The same validation set was used across all
the methods for consistency. We employed grid search to
select the best hyperparameters, with the specific ranges
provided in the Appendix Section A.2. Notably, FNO and

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

Table 1: Relative Ly Error on First Five Benchmarks, where “D-" and “W-" indicate Darcy flow and wave propagation, respectively,
“LINE”, “CURV”, “OVAL”, and “Z” represent linear, curved, oval, and z-shaped interfaces, respectively as explained in detail in Appendix
Section A.1.1 and A.1.2; and 0%, 10%, 20% indicate the noise level in the training data. N/A indicates absence of reasonable results due

to numerical instabilities.

(a) Forward Prediction

Method

IFNO

IDON

FNO

GNOT

0% noise

D-LINE
D-CURV
W-OVAL
Ww-Z

NS

3.60e-2 £+ 5.1e-4
3.25e-2 £ 9.3e-4
4.41e-2 £ 3.2e-3
3.12e-1 £ 6.9¢-3
1.94e-2 £ 5.0e-4

4.71e-1 £ 3.7e-2
7.68e+0 £ 3.0e-1
3.28e-1 £ 3.2e-3
9.88e-1 + 9.8¢e-4
2.70e-1 + 1.8e-3

7.20e-2 + 3.5¢-3
3.88e-2 £ 3.1e-4
5.52e-2 £ 1.3e-3
4.15e-1 4 3.3e-3
1.54e-2 + 8.9¢-5

3.90e-2 £ 1.6e-3
2.98e-2 £ 2.0e-4
4.50e-2 £ 4.0e-3
N/A
2.54e-2 £ 5.0e-4

10% noise

D-LINE
D-CURV
W-OVAL
Ww-Z2

NS

5.38e-2 £+7.0e-4
4.96e-2 +1.5e-3
6.15e-2 +7.7¢-3
3.13e-1 £3.1e-2
2.49e-2 +4.0e-4

5.12e-1 £4.2e-2
7.58e+0 +5.4e-1
3.38e-1 £5.3e-3
9.90e-1 £2.4e-3
2.75e-1 £3.9¢-3

8.40e-2 +6.2e-4
5.73e-2 £1.5e-3
7.88¢e-2 £8.9¢-4
4.25e-1 +1.9e-3
2.62e-2 £2.6e-4

6.90e-2 £1.2e-3
1.50e-1 +4.1e-2
4.70e-2 +4.0e-3
N/A
2.75e-2 £4.0e-4

20% noise

D-LINE
D-CURV
W-OVAL
W-Z

NS

7.29e-2 £2.1e-3
6.38e-2 +2.8¢-3
7.57e-2 £4.5¢-3
3.14e-1 £7.2e-3
3.48e-2 £9.7e-4

6.74e-1 £5.1e-2
8.85e+0 +1.4e+0
3.69¢e-1 £1.2e-2
9.92e-1 £3.0e-3
2.95e-1 £1.3e-2

9.96e-2 £1.5e-3
7.42e-2 £5.3e-4
1.20e-1 £4.3e-3
4.42e-1 +1.8e-3
3.70e-2 £3.1e-4

1.06e-1 £3.0e-3
2.07e-1 +6.8e-2
5.42e-2 £8.0e-3
N/A
2.07e-1 £6.0e-4

(b) Inverse Prediction

Method

IFNO

IDON

NIO

FNO

GNOT

0%

D-LINE
D-CURV
W-OVAL
W-Z

NS

5.66e-2 £1.0e-3
5.54e-2 £9.4e-4
5.74e-2 £1.3e-3
2.01e-1 £3.3e-3
5.09e-2 +6.4e-4

2.98e-1 +6.9¢-2
2.20e-1 £5.3e-3
1.42e-1 £3.4e-3
2.6le-1 £2.2e-3
1.84e-1 £9.9¢-3

2.42e-1 £5.7e-3
7.83e-2 £1.4e-3
8.51e-2 +6.2¢-4
2.13e-1 £9.8e-4
7.07e-2 £2.6e-4

1.90e-1 £2.6e-2
6.84e-2 +5.3e-4
7.64e-2 +7.1e-4
2.28e-1 +7.6e-4
5.71e-2 £8.9¢-5

2.48e-1 £1.5e-1
1.19e-1 £9.0e-3
7.50e-2 £1.0e-2
4.08e-1 £6.0e-4
1.10e-1 £2.7¢-3

10%

D-LINE
D-CURV
W-OVAL
W-Z

NS

8.99¢-2 £1.4e-3
7.94e-2 £9.7e-4
7.19e-2 £1.6e-3
1.91e-1 +3.1e-3
6.66e-2 £2.6e-4

3.50e-1 +4.5¢-2
2.25e-1 £9.3e-3
1.47e-1 £9.3e-4
2.90e-1 +5.5¢e-4
1.84e-1 £1.8e-2

1.72e-1 £1.1e-3
2.14e-1 £3.8e-3
1.08e-1 £6.2¢e-4
2.22e-1 £4.4e-4
1.04e-1 +6.2e-4

1.63e-1 £3.8e-3
8.80e-2 +4.9e-4
8.49e-2 +5.8¢e-4
2.30e-1 +4.4e-4
8.96e-2 +5.8¢e-4

3.40e-1 £1.2e-1
2.09e-1 £9.0e-3
7.90e-2 £1.1e-2
4.08e-1 £1.0e-3
1.09e-1 £8.0e-3

20%

D-LINE
D-CURV
W-OVAL
W-Z

NS

1.13e-1 £9.0e-4
9.58e-2 +1.2e-3
8.85e-2 £2.6e-3
2.00e-1 +3.1e-3
7.52e-2 +4.7e-4

4.22e-1 £7.4e-3
2.51e-1 £1.2e-2
1.51e-1 £4.0e-4
2.92e-1 £9.8¢e-3
1.84e-1 £2.6e-2

1.89¢-1 £2.3e-3
2.39e-1 £3.9¢-3
1.19e-1 £6.7e-4
2.27e-1 £8.9e-4
1.20e-1 +1.7e-4

1.73e-1 £5.5e-3
1.07e-1 £5.3e-4
9.71e-2 +6.7e-4
2.31e-1 £1.5e-3
1.16e-1 £1.6e-3

4.53e-1 £3.7e-2
2.23e-1 +3.0e-2
7.92¢-2 £1.1e-2
4.09e-1 £9.0e-4
1.20e-1 £9.3e-3

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

Table 2: Relative Ly Error on Benchmarks DR and CFD.

(a) Forward Prediction

Method IFNO IDON FNO GNOT
DR 9.45e-2 +£4.97e-4 9.08e-1 +5.83e-5 9091e-2 £ 1.34e-4 6.05e-1 + 6.70e-2
CFD 1.43e-1 4+ 2.44e-5 1.55e-1 £5.03e-4 1.46e-1 + 6.26e-4 1.44e-1 &= 7.47e-5
(b) Inverse Prediction
Method IFNO IDON NIO FNO GNOT
DR 2.58e-1 £9.65¢-4 9.81e-1 +£8.72e-5 7.42e-1 +£1.22e-2 3.26e-1 £8.05e-4 8.83e-1 £2.22¢-2

CFD 8.97e-2 £9.65e-4 1.17e-1 £1.75e-2

1.09e-1 £1.44e-3 9.90e-2 £2.24e-3

9.08e-2 £5.55e-5

GNO performed separate validation processes for forward
and inverse predictions, obtaining different sets of hyperpa-
rameters optimized exclusively for each task. In contrast,
iFNO and iDON performed validation only once, where
the validation error is the sum of the forward and inverse
prediction errors, and then they used the same set of hy-
perparameters to train a single model for both predictions.
Following (Lu et al., 2022), for each method, we selected
the optimal hyperparameters, and then conducted stochastic
training for five times, reporting the average relative Lo test
error along with the standard deviation.

5.1 Predictive Performance

The relative L error of each method is reported in Table 1
and 2. Due to the space limit, the error of IOFM is given
in Appendix Table 5. As shown, in the vast majority of the
cases, iFNO achieves the best performance, often outper-
forming the competing approaches by a large margin. In a
few cases, iFNO is slightly second to GNOT (e.g., D-CURV
with 0% noise, and W-OVAL with 10% noise for forward
prediction). This might be mainly caused by FNO itself,
which gives 23%-120% larger error than GNOT. However,
in the forward prediction tasks for W-Z, GNOT consistently
encountered numerical issues, and was unable to deliver
reasonable prediction errors. Hence we marked its results
as N/A. iFNO greatly surpasses FNO in all the cases, ex-
cept that in NS forward prediction with 0% training noise,
iFNO is slightly worse than FNO. This highlights that our
co-learning approach, utilizing a shared FNO architecture,
can substantially enhance the performance in both forward
and inverse tasks.

While iDON can also perform joint forward and inverse
predictions, it employs an invertible architecture only in
the branch network. For inverse prediction, iDON needs to
back-solve the latent output of the branch network before
predicting the input function. This additional step might
introduce learning challenges and can substantially increase
computational costs. We report the average running time of
each method in Table 3.

Table 3: Average Running Time of Each Method, including both
training and prediction, measured at a Linux workstation with
NVIDIA GeForce RTX 3090. m: minutes; h: hours.

Method D-LINE D-CURV ~ W-OVAL W-Z NS

iFNO 17m 68m 13m 22m 50m
IDON 5.7h 15.3h 7.8h 7.9h 36.8h
NIO Sm 10m Sm 4m 13m
FNO 11m 31m 20m 15m 40m
GNOT 23m 36m 33m 29m 56m
I0OFM 99m 119m 40m 35m 77m

5.2 Pointwise Error and Prediction Uncertainty

For a detailed assessment, we performed a fine-grained eval-
uation by visualizing the pointwise prediction error of iFNO
in ten randomly selected instances within the inverse sce-
nario. Additionally, we investigated prediction uncertainty
by sampling 500 predictions from the VAE component (re-
fer to (6)) for each instance. The standard deviation of these
predictions at each location is then calculated. The point-
wise error is determined based on the predictive mean of the
encoder. The outcomes are depicted in Figure 2.

Overall, it is evident that the error grows as the noise level
increases, mirroring a similar trend in prediction uncertainty.
For problems involving Darcy flow and wave propagation
(the first eight instances), the pointwise error is predomi-
nantly concentrated at the interfaces between different re-
gions. This pattern is echoed in the prediction uncertainty
of iFNO, with the standard deviation being significantly
larger at the interfaces compared to other locations. These
findings are not only intriguing but also intuitively reason-
able. Specifically, since the ground-truth permeability and
square slowness (that we aim to recover) are identical within
the same region but distinct across different regions, pre-
dicting values within each region becomes relatively easier,
resulting in lower uncertainty (higher confidence). Con-
versely, at the interfaces, where the ground-truth undergoes
abrupt changes, predicting values becomes more challeng-
ing, leading to an increase in prediction uncertainty to reflect
these challenges (lower confidence). In the initial condition
recovery problem (the last two instances), the pointwise pre-

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

6 9 2 4 0.04 0.08

(9]
[S%]
(]

0.2 0.4

Y B\

-0.25 0.25 A 0.1 0.2 0.005 - 0.010

-0.25 0.25 0.06 0.12 0.004 0.008

\0

e S R X o
S =y

)
>

Figure 2: iFNO Pointwise Inverse Prediction Error and Predictive Standard Deviation, denoted by “Error” and “SD” respectively
followed with noise levels in training data.

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

diction error is primarily concentrated near the boundary of
the domain. Correspondingly, the predictive standard devia-
tion of iIFNO is larger near the boundary. As the noise level
increases, the error at the boundary also increases, along
with the calibration of uncertainty.

The comparison of pointwise errors with the competing
methods is presented in Figure 4 and 5 of the Appendix,
encompassing both forward and inverse predictions. The
results reveal that competing methods frequently manifest
significantly larger errors in various local regions, as illus-
trated by instances such as iDON in the second and third
instance, NIO in the sixth and seventh instance, and FNO
in the seventh and eighth instance in Appendix Fig. 4, and
iDON and FNO in nearly all the instances of Appendix Fig.
5. We did not include the pointwise error of IOFM due to
its much inferior performance as compared to all the other
methods.

These results affirm that iFNO not only achieves superior
global accuracy but also excels in local ground-truth recov-
ery. Furthermore, iFNO demonstrates the ability to provide
reasonable uncertainty estimates, aligning with the predic-
tive challenges encountered across various local regions.

Ablation Study. Finally, we investigated how the perfor-
mance of iFNO varies with the model size. Basically, we
found that using three to four invertible Fourier blocks con-
sistently yields optimal performance for iFNO. The detailed
results and discussion are provided in Section B of the Ap-
pendix.

6 CONCLUSION

We have introduced iFNO, an invertible Fourier Neural
Operator designed to jointly address forward and inverse
problems. By co-learning the bi-directional tasks within a
unified architecture, iFNO enhances prediction accuracy for
both tasks. Additionally, iFNO demonstrates the capabil-
ity to provide uncertainty calibration for inverse prediction.
Through seven benchmark numerical experiments, iFNO
showcases promising predictive performance. Our architec-
ture can be easily extended to integrate with other neural
operator architectures, such as attention layers. In the future,
we plan to explore such extensions, and design a hybrid
of exiting or innovative units in the invertible blocks, not
necessarily restricted to the Fourier layers. We will con-
tinue investigating our method in a broader range of forward
prediction and inverse inference tasks.

Acknowledgements

This work has been supported by MURI AFOSR grant
FA9550-20-1-0358, NSF CAREER Award 1IS-2046295,
and NSF CSSI-2311685.

References

Batlle, P., Darcy, M., Hosseini, B., and Owhadi, H. (2023).
Kernel methods are competitive for operator learning.
arXiv preprint arXiv:2304.13202.

Cao, S. (2021). Choose a transformer: Fourier or

galerkin. Advances in neural information processing
systems, 34:24924-24940.

Chada, N. K., Iglesias, M. A., Roininen, L., and Stuart,
A. M. (2018). Parameterizations for ensemble kalman
inversion. Inverse Problems, 34(5):0550009.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Engl, H. W. and Groetsch, C. W. (2014).
ill-posed problems, volume 4. Elsevier.

Gupta, G., Xiao, X., and Bogdan, P. (2021). Multiwavelet-
based operator learning for differential equations.
Advances in neural information processing systems,
34:24048-24062.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. (2023). Gnot: A gen-
eral neural operator transformer for operator learning.
In International Conference on Machine Learning, pages
12556-12569. PMLR.

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot,
X., Botvinick, M., Mohamed, S., and Lerchner, A.
(2016). beta-vae: Learning basic visual concepts with
a constrained variational framework. In International
conference on learning representations.

Iglesias, M. A., Lu, Y., and Stuart, A. M. (2016). A
Bayesian level set method for geometric inverse prob-
lems. Interfaces and free boundaries, 18(2):181-217.

Kaltenbach, S., Perdikaris, P., and Koutsourelakis, P.-
S. (2022). Semi-supervised invertible deeponets
for bayesian inverse problems. arXiv_preprint
arXiv:2209.02772.

Kaltenbach, S., Perdikaris, P., and Koutsourelakis, P.-S.
(2023). Semi-supervised invertible neural operators for
bayesian inverse problems. Computational Mechanics,
pages 1-20.

Kashefi, A. and Mukerji, T. (2024). A novel fourier neu-
ral operator framework for classification of multi-sized
images: Application to 3d digital porous media. arXiv
preprint arXiv:2402.11568.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational Bayes. arXiv preprint arXiv:1312.6114.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. (2023).
Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning
Research, 24(89):1-97.

Inverse and

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

Li, S., Yu, X., Xing, W., Kirby, R., Narayan, A., and Zhe,
S. (2024). Multi-resolution active learning of fourier neu-
ral operators. In International Conference on Artificial
Intelligence and Statistics, pages 2440-2448. PMLR.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., Anandkumar, A., et al. (2020).
Fourier neural operator for parametric partial differen-
tial equations. In International Conference on Learning

Representations.

Li, Z., Meidani, K., and Farimani, A. B. (2022). Transformer
for partial differential equations’ operator learning. arXiv
preprint arXiv:2205.13671.

Long, D., Mrvaljevic, N., Zhe, S., and Hosseini, B. (2022).
A kernel approach for pde discovery and operator learn-
ing. arXiv preprint arXiv:2210.08140.

Lu, L., Jin, P, Pang, G., Zhang, Z., and Karniadakis, G. E.
(2021). Learning nonlinear operators via deeponet based
on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218-229.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang,
Z., and Karniadakis, G. E. (2022). A comprehensive and
fair comparison of two neural operators (with practical
extensions) based on fair data. Computer Methods in
Applied Mechanics and Engineering, 393:114778.

Molinaro, R., Yang, Y., Engquist, B., and Mishra, S. (2023).
Neural inverse operators for solving pde inverse problems.
arXiv preprint arXiv:2301.11167.

Nashed, M. Z. and Scherzer, O. (2002). Inverse Problems,
Image Analysis, and Medical Imaging: AMS Special
Session on Interaction of Inverse Problems and Image
Analysis, January 10-13, 2001, New Orleans, Louisiana,
volume 313. American Mathematical Soc.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li,
Z., Azizzadenesheli, K., et al. (2022). Fourcastnet: A
global data-driven high-resolution weather model us-
ing adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. (2020). Learning mesh-based simulation
with graph networks. arXiv preprint arXiv:2010.03409.

Raonic, B., Molinaro, R., De Ryck, T., Rohner, T., Bar-
tolucci, F., Alaifari, R., Mishra, S., and de Bézenac, E.
(2023). Convolutional neural operators for robust and ac-
curate learning of pdes. Advances in Neural Information
Processing Systems, 36.

Ronneberger, O., Fischer, P, and Brox, T. (2015).
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical image computing and
computer-assisted intervention—-MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234-241.
Springer.

Stuart, A. M. (2010). Inverse problems: a Bayesian perspec-
tive. Acta numerica, 19:451-559.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay,
D., Alesiani, F., Pfliger, D., and Niepert, M. (2022).
Pdebench: An extensive benchmark for scientific
machine learning. Advances in Neural Information
Processing Systems, 35:1596-1611.

Tanaka, M. and Dulikravich, G. S. (1998). Inverse problems
in engineering mechanics. Elsevier.

Tikhonov, A. N. (1963). On the solution of ill-posed
problems and the method of regularization. In Doklady
akademii nauk, volume 151, pages 501-504. Russian
Academy of Sciences.

Yilmaz, O. (2001). Seismic data analysis: Processing,
inversion, and interpretation of seismic data. Society of
exploration geophysicists.

Zhang, W., Joardar, A. K., et al. (2018). Acoustic based
crosshole full waveform slowness inversion in the time
domain. Journal of Applied Mathematics and Physics,
6(05):1086.

Zhao, Q., Lindell, D. B., and Wetzstein, G. (2022). Learning
to solve pde-constrained inverse problems with graph
networks. arXiv preprint arXiv:2206.00711.

ChecKklist

The checklist follows the references. For each question,
choose your answer from the three possible options: Yes,
No, Not Applicable. You are encouraged to include a justifi-
cation to your answer, either by referencing the appropriate
section of your paper or providing a brief inline description
(1-2 sentences). Please do not modify the questions. Note
that the Checklist section does not count towards the page
limit. Not including the checklist in the first submission
won’t result in desk rejection, although in such case we will
ask you to upload it during the author response period and
include it in camera ready (if accepted).

In your paper, please delete this instructions block and
only keep the Checklist section heading above along with
the questions/answers below.

1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm. [Yes]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

(a) Statements of the full set of assumptions of all
theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results. [Not
Applicable]

(c) Clear explanations of any assumptions. [Not Ap-
plicable]

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or statis-
tics and error bars (e.g., with respect to the ran-
dom seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applicable.
[Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

Appendix
A Experimental Details

A.1 Data Preparation
A.1.1 Darcy Flow

A single-phase 2D Darcy Flow equation was employed,

—V - (a(x)Vu(x)) = g(x) x € (0,1)?
u(x) =0, x¢€9(0,1)2 (12)

where a(x) is the permeability field, «(x) is fluid pressure, and g(x) is an external source. We considered a practically
useful case where the permeability is piece-wise constant across separate regions {R;}$, where Ry U...UR¢c = (0,1)2,
and

C
ax) = 3 4.1k, ().
=1

For the forward scenario, we are interested in predicting the pressure field u(x) based on the given permeability field
a(x). Conversely, in the inverse scenario, the goal is to recover a(-) from the measurement of the pressure field u(-). We
considered two benchmark problems, each featuring the permeability with a different type of geometric structures. For both
problems, we fixed g(z) to 1.

Linear permeability interface (D-LINE). In the first problem, the domain was divided into three regions (namely C' = 3),
and the interfaces were represented by parallel lines inclined at a 45-degree angle from the horizontal axis; see Figure 6 for
an example. The permeability value in each region was sampled from a uniform distribution U (0, 10). To determine the
position of these sections, we sampled the endpoints of interface lines, denoted by {(wy,0), (0, w;)} for the first interface,

and {(w2,0), (0, w2)} for the second interface, respectively, where wy ~ U(0, 1) and wa ~ U(3, 2).

Curved permeability interface (D-CURY). In the second problem, the domain was also partitioned into three regions, but
the interfaces were curves; see Figure 7 for an illustration. We sampled the first interface as 2o = p; +0.1sin(2.57(x1 +71))
and the second x5 = py + 0.1s8in(2.57(z1 + r2)), where p; ~ U4(0.15,0.4), po ~ U(0.6,0.85), and ry, 73 ~ U(0, 1). The
permeability value in each region was sampled from U (0, 15).

To prepare the dataset, we followed (Li et al., 2020) to apply a second-order finite difference solver and collected pairs of
permeability and pressure field on a 64 x 64 grid. To assess the robustness of our method against data noise and inaccuracy,
we conducted tests by injecting 10% and 20% white noises into the training datasets, as described in the main paper. We
provide the signal-to-noise ratios in Table 4.

A.1.2 Wave Propagation

We employed an acoustic seismic wave equation to simulate seismic surveys,

du(x,t du(z,t
mi) 20D gy 4200), e
d 0
u(x,0) = % =0,x€Q, u(x,t)=0,x €09,

where m(x) is square slowness, defined as the inverse of squared wave speed in the given physical media, ¢(t) expresses
the external wave source, and 7 is the damping mask. In the simulation, the physical media was placed in the domain
Q =(0,1.28 km)z, where Vx = (x1,22) € Q, x1 and x5 represent the depth and width, respectively. For each survey,
an external source was positioned at particular location to initiate seismic waves. A row of receivers were placed at a
particular depth to record the wave measurements across time; see Figure 3 for an illustration. We conducted simulation
over a duration of one second. In the forward tasks, we intended to predict the wave measurements at the receivers based on
the square slowness m(x), while for the inverse tasks, the goal was to recover m(x) from the measurements at the receivers.
We designed two benchmark problems, each corresponding to a different class of structures for m(x). In both problems, we

set q(t) = (1 — 272 f2(t — %)z)e_ﬂg'fg(t_%), where fo = 0.01. This implies that the peak frequency of the source wave
is 10 Hz.

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

@ Source

[] Receivers

Figure 3: An Illustration of The Seismic Surveys, where the shaded region is the physical media of interest and dashed lines are the
interface for different regions of square slowness.

Oval-shaped square slowness (W-OVAL). In the first problem, the source was placed at a depth of 50m and horizontally
in the middle. The receivers were positioned at a depth of 20m. The domain was partitioned into two regions, with m(x)
being the same within each region. See Figure 8 for an example and the surveyed data by the receivers. The interface is
an oval, defined by its center (1., 22.), and two radii w and h. We sampled @1, z2c ~ U(5 x 1.28km, 3 x 1.28km),
and w, h ~ U(Tlo x 1.28 km, % x 1.28km). Inside the ellipse, we set the value of m to 3, while the outside the ellipse,
we sampled the value from 2/(1,2). We used the Devito library? to simulate the receivers’ measurements. The square
slowness was generated on a 128 x 128 grid, and the measurements were computed at 614 time steps. The data was then

downsampled to a 64 x 64 grid and 62 time steps.

Z-shaped square slowness (W-Z). In the second problem, the source was positioned at a depth of 80m (still horizontally
in the middle). The domain was divided into four regions, with the interfaces between these regions forming a z-shape.
The values of m(x) inside each region are identical; see Figure 9 for an example. We represented the end points
of these interfaces by (1.28km, 0), (z1,1.28km), (22,0), and (23,1.28km), where z; ~ U(2 x 1.28km, 1.28km),
zo ~ U(% x 1.28km, 3 x 1.28km), and z3 ~ U(% x 1.28km, 3 x 1.28km). We set m = 3.5 in the bottom region,
and sampled the value of m(x) for each of the other three regions from ¢/(0.5, 3.5). The receivers’ measurements were
computed at 573 time steps with spatial resolution 128, and then downsampled at 58 steps with spatial resolution 64.

A.1.3 Navier-Stoke Equation (NS)

We considered the 2D Navier-Stokes (NS) equation as used in (Li et al., 2020). The solution represents the vorticity of
a viscous, incompressible fluid within the spatial domain x = (z1,22) € [0, 1]?. The viscosity was set to 10~3. In the
forward scenario, we aim to predict the vorticity at time £ = 10 from the initial condition. Correspondingly, in the inverse
scenario, the goal is to reconstruct the initial condition wy from the observed vorticity at ¢ = 10. We generated the initial
condition by wq(z1, z2) = Z?:l 2321 gij sin(am(z1 +¢5)) - ¢i5 cos(oym(x2 + ¢5)), where oy ~ U(0.5,1),¢; ~U(0,1),
and ¢;; ~ U(—1,1). An example is given by Figure 10. For each experiment, we used 1000 training examples and 200 test

https://github.com/devitocodes/devito

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

examples generated at a 64 x 64 grid. Again, we performed additional tests by injecting 10% and 20% noises into both the
training input and output function samples.

A.1.4 Diffusion Reaction (DR)

We employed a PDEBench dataset for a 2D diffusion reaction system with two non-linearly coupled variables,

Oru = DyOpgtt + Dy Oyt + Ry, (13)
Ov = Dy0rav + DyOyyv + Ry, (14)
where z,y € (—1,1), v = u(t,x,y) is the activator, v = v(¢,z,y) is the inhibitor, and the diffusion coefficients

D, =1x10"%and D, = 5 x 10~3. The activator and inhibitor are coupled via the Fitzhugh-Nagumo equation,

Ru(u,v) =u —u® -k — v, (15)
R, (u,v) =u—wv. (16)

The initial condition is generated from a standard normal distribution. We extracted the original dataset on a 64 x 64 grid.
A.1.5 Computational Fluid Dynamics (CFD)

We used a CFD dataset from PDEBench. The governing equation is a 2D Compressible Navier-Stokes equation,

Op+V-(pv)=0, (17)

p(Orv +v - VV) = =Vp+nAv + ((+1/3)V(V - v), (18)
pv* pv* ,

8t[e+2}—|—v-[(e+p+2>v—v~0']:0, (19)

where p, v, p, € are the mass density, velocity, gas pressure, and internal energy, respectively. We used the simulation data
with Mach number M = @ = 0.1, where c; is the sound velocity, and with shear and bulk viscosity n = { = 0.1.

A.2 Methods

All the models were trained with AdamW or the Adam optimizer with exponential decay strategy or the reducing learning
rate on plateau strategy. The learning rate was chosen from {107°,107%,5 x 107%,1073,10~2}. We varied the mini-batch
size from {10, 20, 50}.

* iFNO. We selected the number of invertible Fourier blocks from {1, 2, 3, 4}, the channel lifting dimension from {32,
64, 128}, the number of Fourier modes (for frequency truncation) from {8, 12, 16, 32}, the number of training epochs
for invertible Fourier blocks from {100, 200, 500}, the number of training epochs for 5-VAE from {200, 500, 1000},
and the number of joint training epochs was set from {50, 100, 500}. The architecture of 5-VAE is the same accross
all the benchmarks. We employed a Gaussian encoder that includes five convolutional layers with 32, 64, 128, 256
and 512 channels respectively. The decoder first applies five transposed convolutional layers to sequntially reduce the
number of channels to 512, 256, 128, 64, and 32. Then a transposed convolutional layer (with 32 output channels) and
another convolutional layer (with one output channel) are applied to produce the prediction of f. We set 5 = 0.01 for
all the benchmarks except for Darcy flow, we set 3 = 1076,

* FNO. We wused the original FNO implementation (https://github.com/neuraloperator/
neuraloperator). To ensure convergence, we set the number of training epochs to 1000. The lifting
dimension was chosen from {32, 64, 128}. The number of Fourier modes was tuned from {8, 12, 16, 32}. The number
of Fourier layers was selected from {1, 2, 3,4}.

¢ iDON. We used the Jax implementation of iDON from the authors (https://github.com/pkmtum/
Semi-supervised_Invertible_Neural_Operators/tree/main). The number of training epochs was
set to 1000. We varied the number of layers for the branch net and trunk set from {1, 3, 4, 5}. Note that to ensure
invertibility, the width of the branch net must be set to the dimension of the (discretized) input function. For instance,
if the input function is sampled on a 64 x 64 grid, the width of the branch net will be 4096. The inner-width of the
trunk net was selected from {5, 10, 20} and the width of the branch net. For a fair comparison, only the forward and
backward supervised loss terms were retained for training.

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

B

Table 4: The Signal-To-Noise Ratios (SNR) in DB for Datasets With Noises.

Benchmark Forwgrd Prediction_ Inver.se Prediction_
10% noise 20% noise 10% noise 20% noise
D-LINE 222 16.1 28.4 224
D-CURV 20.1 14.1 28.5 22.5
W-OVAL 20.0 13.9 324 26.4
W-Z 20.0 13.9 29.7 23.6
NS 20.7 14.7 214 15.4

* NIO. We used the PyTorch implementation from the authors (https://github.com/mrobertol66/nio). We
employed 1000 training epochs. NIO used convolution layers for the branch net of the deepONet module. We tuned the
number of convolution layers from {6, 8, 10}, and kernel size from {3, 5}, and padding from {1, 3}. The stride is fixed
to 2. For the trunk net, we tuned the number of layers from {2, 3,4}, and the layer width from {32, 64,128, 256}. For
the FNO component, we varied the number of Fourier layers from {1, 2, 3, 4}, lifting dimension from {32, 64,128},
and the number of Fourier modes from {8, 12, 16, 32}.

* JIOFM. We used the original FNO implementation from the authors (https://github.com/
neuraloperator/neuraloperator) to train the forward model. The hyper-parameter selection and
training follow the same way as we used FNO for forward and backward prediction. We used the same 3-VAE as in
iFNO. To conduct inverse prediction, we ran 1000 ADAM epochs optimize the input embeddings. The step-size for the
optimization was selected from {1073,1072,1071,0.2,0.5}

* GNOT. We used the original implementation from authors (https://github.com/HaoZhongkai/GNOT) to
train forward and inverse prediction models. For hyper-parameter selection, we varied the dimension of the embeddings
from {64, 128,256} and number of attention layers from {2, 3,4, 5}. We used the default data normalization(unit) as
in their repository. The model was trained with the default optimizer(ADAMW), with weight decay of SE-6, gradient
clip of 0.999, with 50 warm up epochs and 500 training epochs in total.

Ablation Study

We further investigate how the performance of iFNO varies along with model size. To this end, we ran iFNO on D-LINE
and W-OVAL, with 10% noise level in the training data. For D-LINE, we fixed the number of Fourier modes to 32 and the
channel lifting dimension to 64. For W-OVAL, we fixed the number of Fourier modes to 8 and the channel lifting dimension
to 64. We varied the number of invertible Fourier blocks from {1, 2, 3, 4}. The test relative Lo error for the forward and
inverse prediction is shown in Fig. 11 and Fig. 12. As we can see, with more blocks, the prediction accuracy of iFNO can be
further improved. The best performance is achieved at three and four blocks for D-LINE and W-OVAL, respectively, in
terms of the average error for the forward and inverse prediction.

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

0.00

0.15 0.30 0.45 0.60 0.75

0.5 00
— ————————

-04 00 04 0.0 0.1 0.2 0.3 0.4 0.5
S ’ .
06'@ S s* Sl S I\@\e)\3\ \@\° \@\°
& <5 g o o © S o o

Figure 4: Pointwise Error of Inverse Prediction, where “-0%” and “-10%” indicate the noise level in the training data.

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

0.000 0.008 0.000 0.005 0.010 0.015

0.000 0.025 0.00 0.02 0.04

0.000 0.008

0.000 0.006

(=)
o]
wn

»u

N

' / . v

S
—
S

)

|
(=)
Ju—

|

Figure 5: Pointwise Error of Forward Prediction, where “-0%” and “-10%” indicate the noise level in the training data.

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

4 6 0.006 0.012

[oeeesssses NN EEE—

0.0 0.0

05

1. 1.0
%.0 0.5 1.0 0.0 0.5 1.0
X2 X2
(a) Permeability (b) Solution

Figure 6: Darcy Flow with Piece-Wise Permeability and Linear Interfaces.

5 10 0.004 0.008

[oo NEEEEEEEN aaa— |

0.0 0.0

T 05

1.0
0.0 0.5 1.0 0.0 0.5 1.0
X2 X2
(a) Permeability (b) Solution

Figure 7: Darcy Flow with Piece-Wise Permeability and Curved Interfaces.

2 3 0 30
[| EE 00
0.0 0.0 A
B - N
=< 0.64 +~ 051 .
L2450 0.64 28 o 0.64 1.28
X2 X2
(a) Square Slowness (b) Measurements at Receivers

Figure 8: Wave Propagation via Piece-Wise Square Slowness and Oval-Shaped Interface.

Da Long, Zhitong Xu, Qiwei Yuan, Yin Yang, Shandian Zhe

1.28
0.0 0.64 1.28
X2

(a) Square Slowness

~

0.0

0.51

“.__

| ——
1.0 y
0.0 0.64 1.28

X2

(b) Measurements at Receivers

Figure 9: Wave Propagation via Piece-Wise Square Slowness and Z-Shaped Interface.

-1 0 1
[

0.0

X2
(b) Solution at t = 10

Figure 10: Solution of NS Equation.

0.5
oy
1.0
0.0 0.5 1.0
X2
(a) Initial Condition
g
E 0.060 —— [FNO
SV
~
Q
E 0.055
Q
(a7
1 2 3 4
Number of blocks
(a) Forward

©
[
[S—,

e
—
=)

Relative Lo error

1 2 3
Number of blocks

(b) Inverse

Figure 11: Relative L Error of iFNO on D-LINE with 10% Noise in Training Data.

Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems

Table 5: Relative Lo Error on Each Inverse Prediction Task with IOFM.

=)
[
N

o
[
(\9]

Relative Lo error

<
[E—
S

Method IFNO IOFM
0%
D-LINE 5.66e-2 +1.0e-3 5.25e-1 + 3.13e-2
D-CURV 5.54e-2 +9.4e-4 1.78e-1 + 4.61e-3
W-OVAL 5.74e-2 +£1.3e-3 2.9le-1 4 2.33e-2
W-Z 2.01e-1 £3.3e-3 7.42e-1 £ 5.96¢e-2
NS 5.09¢e-2 +6.4e-4 5.78e-2 + 1.79¢-3
10%
D-LINE 8.99¢-2 +1.4e-3 4.61le-1 + 2.05e-2
D-CURV 7.94e-2 +9.7e-4 2.17e-1 + 3.40e-3
W-OVAL 7.19e-2 +1.6e-3 2.29¢e-1 + 1.12e-2
W-Z 1.91e-1 +3.1e-3 7.02e-1 + 4.38¢-2
NS 6.66e-2 £2.6e-4 9.02e-2 £ 1.79¢-3
20%
D-LINE 1.13e-14+9.0e-4 3.6le-1 + 2.14e-2
D-CURV 9.58e-2 +1.2¢-3 2.35¢-1 & 8.14e-3
W-OVAL 8.85e-2 +2.6e-3 2.0le-1 + 7.02e-3
W-Z 2.00e-1 £3.1e-3 8.53e-1 &+ 7.96¢e-2
NS 7.52e-2 +£4.7e-4 2.36e-1 + 6.22¢-3

S

=

5 0.095

Al

-

(]

= 0.090

3

&

i o) 3 i 0.085 i o) 3
Number of blocks Number of blocks
(a) Forward (b) Inverse

Figure 12: Relative Lo Error of iFNO on W-OVAL with 10% Noise in Training Data.

	INTRODUCTION
	PRELIMINARIES
	INVERTIBLE FOURIER NEURAL OPERATORS
	Invertible Fourier Blocks in Latent Space
	Embedding Intrinsic Structures
	Three-Step Training

	RELATED WORK
	NUMERICAL EXPERIMENTS
	Predictive Performance
	Pointwise Error and Prediction Uncertainty

	CONCLUSION
	Experimental Details
	Data Preparation
	Darcy Flow
	Wave Propagation
	Navier-Stoke Equation (NS)
	Diffusion Reaction (DR)
	Computational Fluid Dynamics (CFD)

	Methods

	Ablation Study

