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—— Abstract

In a celebrated result from the 60’s, Berlekamp showed that feedback can be used to increase the

maximum fraction of adversarial noise that can be tolerated by binary error correcting codes from %
to % However, his result relies on the assumption that feedback is “continuous”, i.e., after every
utilization of the channel, the sender gets the symbol received by the receiver. While this assumption
is natural in some settings, in other settings it may be unreasonable or too costly to maintain.

In this work, we initiate the study of round-restricted feedback channels, where the number r
of feedback rounds is possibly much smaller than the number of utilizations of the channel. Error
correcting codes for such channels are protocols where the sender can ask for feedback at most r
times, and, upon a feedback request, it obtains all the symbols received since its last feedback
request. We design such error correcting protocols for both the adversarial binary erasure channel
and for the adversarial binary corruption (bit flip) channel. For the erasure channel, we give an
exact characterization of the round-vs-resilience tradeoff by designing a (constant rate) protocol
with r feedback rounds, for every r, and proving that its noise resilience is optimal.

Designing such error correcting protocols for the corruption channel is substantially more involved.
We show that obtaining the optimal resilience, even with one feedback round (r = 1), requires
settling (proving or disproving) a new, seemingly unrelated, “clean” combinatorial conjecture, about
the maximum cut in weighted graphs versus the “imbalance” of an average cut. Specifically, we
prove an upper bound on the optimal resilience (impossibility result), and show that the existence
of a matching lower bound (a protocol) is equivalent to the correctness of our conjecture.
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1 Introduction

Cybernetics. Consider the following two scenarios. Scenario one: a steersperson wishes to
steer a longship to shore. She maintains a steady course in a changing environment (wind,
waves, storms, currents, tides, etc.) by adjusting her steering in continual response to the
effect it is observed as having. Scenario two: a teacher has a semester-worth of topics he
wishes to teach to his class. He schedules exams throughout the semester to help him adapt
his pace and determine what material should be repeated.

The above two scenarios are examples of cybernetics, a field that studies self-requlating
processes. A core concept in cybernetics is circular causality, which is typically implemented
using feedback mechanisms, where the observed outcomes of actions are taken as inputs for
further actions. This is the case for, e.g., spacecraft navigators, artificial limbs, and our
bodies’ regulation of hormone and blood sugar levels. The term Cybernetics! was coined in
1948 by the mathematician and philosopher Norbert Wiener for “the science of control and
communication in the animal and the machine” [37], following exchanges between numerous
fields during the 1940s, including anthropology, mathematics, neuroscience, psychology, and
engineering.

Feedback in information theory. Cybernetics grew alongside and built on Claude Shannon’s
information theory, that was developed to improve the transmission of information and
introduced the notion of error correcting codes. Shannon was interested in knowing whether
the existence of a “feedback link” in the channel, where after every utilization of the channel,
the (possibly incorrect) symbol obtained by the receiver is also given to the sender, allows for
better codes. A discouraging early result by Shannon showed that feedback does not improve
the capacity of memoryless channels [31]. It would be another decade or so before Berlekamp
proves that feedback can, in fact, increase the maximum fraction of adversarial errors that
can be tolerated. Specifically, Berlekamp showed that the mazimum noise resilience of the
(adversarial) binary channel increases from % to & given feedback [4, 5] (also see [39, 35, 1]).
A key property of the feedback channel exploited by Berlekamp’s result, as well as by
follow up work, is that it supports “continuous” feedback — after every communication round,
the sender gets the symbol received by the receiver. This assumption is natural in some
settings, e.g., in scenario one, the steersperson continuously watches the ship’s motion as she
steers. However, this assumption may be unreasonable or too costly to maintain in other
settings, e.g., in scenario two, the teacher may not want to continuously quiz his students.

This work: round-restricted feedback. Motivated by such examples, in this work, we
initiate the study of round-restricted feedback channels, where the number of feedback rounds
is possibly much smaller than the number of communication rounds. Specifically, we wish to
design protocols with optimal noise resilience that allow the sender (Alice) to transmit a
message to the receiver (Bob), where during the execution of the protocol, the sender can ask
for feedback at most r times. Upon such a request, the sender obtains all the bits received
by the receiver from the last time feedback was solicited.

One can consider two models for scheduling the feedback rounds: the adaptive and
the non-adaptive models. In the non-adaptive model, the sender decides ahead of time
(before the protocol is run and before the input is known) when to schedule the r feedback
rounds, while in the adaptive model, the timing of each feedback request may depend on the
previously received feedback. In the second scenario, for example, the non-adaptive setting

! Interestingly, Cybernetics comes from the Greek word “Kubernetes”, which means steersperson.
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corresponds to scheduling all exams at the beginning of the semester, while the adaptive
setting corresponds to scheduling the next exam after the previous one was given. While our
techniques hold for both the adaptive and non-adaptive settings, we choose to present our
results for the non-adaptive setting. See Section 1.3 and Section 2.1 for a discussion of the
implication of our techniques for the adaptive setting.

We consider such message transmission protocols with r feedback rounds over both the
(adversarial) binary erasure channel, that erases some of the sent bits (those bits are received
as “1”), and over the (adversarial) binary corruption channel, that flips some of the sent
bits. As was mentioned before, classical results in information theory show that with no
feedback the maximum noise resilience of the binary corruption channel is i [25], while with
continuous feedback, the maximum resilience improves to % [4, 5]. For the binary erasure
channel, it is known that with no feedback the maximum resilience is %, and it is easy to see
that with continuous feedback it approaches 1: the sender re-transmits each symbol until the
receiver receives it.

We mention that rounds (or passes) are often considered to be a scarce resource and that
round-restricted algorithms are extensively studied in other communication settings, e.g.,
communication complexity, distributed computing, streaming algorithms, and cryptographic
protocols, and that we draw inspiration from these settings.

1.1 Our Results and Conjecture

Due to page limit, sections containing formal discussion on the corruption case and all proofs
are deferred to the full version [8]. Here, we focus on the erasure case and only provide high
level ideas for the corruption case.

1.1.1 The (Adversarial) Binary Erasure Channel

As discussed above, the maximum resilience of the erasure channel is known for the extreme
cases of no feedback and of continuous feedback. Our first result is an optimal round-
vs-resilience tradeoff for the erasure channel with any number of non-adaptive feedback
rounds.

» Theorem 1. The mazimum noise resilience of the (adversarial) binary erasure channel

with v rounds of feedback is % ifr=1and1— Wll) if r > 1. Furthermore, the maximum

noise resilience can be obtained by a deterministic, constant-rate protocol.

Theorem 1 can be viewed as a “hierarchy theorem”, showing that more feedback rounds
allow for strictly better resilience. On the other hand, Theorem 1 also shows that a constant
number O.(1) of feedback rounds already suffices to get a noise resilience of 1 — € for the
erasure channel.

Techniques. The main ingredient in our proof of Theorem 1 is the construction of a list
decodable code for the binary erasure channel with m codewords, for all (not necessarily
asymptotic) values of m. Our code is optimal in the sense that it achieves the maximum
error resilience for every list size simultaneously. We emphasize that for our protocols, we
need such a code for all possible m, which corresponds to all possible “block sizes”. We
call codes with small m’s “small codes”. Given these codes, the protocols we use to prove
Theorem 1 are rather simple — after every feedback round, Alice and Bob agree on a (smaller,
unless there was a lot of noise) set I of candidate inputs 2 and Alice encodes x with our
optimal list decodable code with m = |I'| codewords. On the analysis front, we are able to
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argue that, unless the adversary erases many of the sent bits, the size of the candidate set
I" shrinks substantially between feedback rounds, and measure this shrinkage exactly. See
Section 2.1 for a detailed overview.

1.1.2 The (Adversarial) Binary Corruption Channel

Theorem 1 gives a complete characterization of the noise resilience of the erasure feedback
channel as a function of the number of feedback rounds. However, as will be explained next,
the case of corruptions is much more involved, and we will focus on protocols with one round
of feedback. We mention that since the adaptive and non-adaptive models are the same for
protocols with one feedback round, the results in this section hold for both the adaptive and
non-adaptive settings. Our next theorem gives an upper bound on the noise resilience of
such one-round protocols.

» Theorem 2. The mazimum noise resilience of the (adversarial) binary corruption channel
with one round of feedback is at most %

We conjecture that the upper bound of % on the noise resilience in Theorem 2 is tight, and
that it can be achieved by a constant-rate protocol. Perhaps surprisingly, proving this is
equivalent to showing the following combinatorial conjecture about the existence of large cuts
in graphs.

» Conjecture 3. Let G be a graph with n vertices and non-negative edge weights summing
up to 1. Let wt(S) be the sum of weights of all the edges with both endpoints in the subset of
vertices S, and let Max-Cut(G) be the maximum total weight of all the edges across any cut
in G. Then,?

Max-Cut(G) > 2 — 12 - S]CE%n] [min (wt(S), wt(S))]. (1)

We prove Conjecture 3 for (large enough) graphs where all edges have equal weight, i.e.,
“unweighted” graphs. However, the case for general weighted graphs seems much harder,
and, despite our best effort, we were unable to prove (or disprove) it. We also mention that
Conjecture 3 is tight for some graphs (e.g., cliques of size 3 and 5 with edges of equal weight),
and related bounds on Max-Cut were studied in other contexts, e.g., [26, 2, 22].

The next theorem gives the equivalence between Conjecture 3 and the tightness of
Theorem 2.

» Theorem 4. Theorem 2 is tight if and only if Conjecture 8 holds. Furthermore, Conjecture 3
implies a constant rate protocol achieving the mazimum noise resilience.

In essence, Theorem 4 connects the problem of designing optimal error correcting protocols
with one round of feedback to a combinatorial question about graphs. As we discuss later in
Section 2.2, our techniques can also be used to connect the problem of designing optimal
error correcting protocols with multiple rounds of feedback to similar questions about graphs.

2 As the expectations of wt(S) and wt(S), for a uniformly random S, are 1, Equation (1) can be

equivalently written as Max-Cut(G) > & + = - Escn Hwt(S) —wt(S)
expectation is the “imbalance” of a random cut.

], where the term inside the
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Techniques. The proof of Theorem 4 is technically involved and a detailed overview can
be found in Section 2.2. At a high level, the main ingredient in designing our protocol
is the construction of a special type of “weighted” codes, called dc-codes. A dc-code C' is
parameterized by a “distance contribution function” dc that assigns a value in [0, 1] to each
possible message x € {0,1}". We require that for all z # 2’ € {0,1}*, the codewords C(z)
and C(z') are at least (relative) Hamming distance dc(z) + dc(a’) apart. Equivalently, we
ask that the balls of radii dc(z) around C(x) are all disjoint.> We note that unlike traditional
error correcting codes that have only one distance guarantee for all pairs of codewords (i.e.,
the minimum distance), the distance guarantees for different pairs of codewords in a dc-code

are different. In fact, traditional codes can be viewed as dc-codes for a constant dc function.

dc-codes for non-constant dc functions are useful for our protocol as if the adversary
already used up many of its corruptions before the feedback round, Alice knows she can
afford to send her message = encoded with an error correcting code that does not guarantee
a large distance between C(z) and the other codewords. Geometrically, designing a dc-code
is a sphere packing problem where we need to pack spheres of different radii dc(z). As for
some z’s a small radius dc(x) suffices, some of the spheres are small, which allows the other
spheres being packed to be larger.

The proof of Theorem 4 shows that Conjecture 3 implies the existence of dc-codes that
are needed for our protocol to work. We assume that Alice uses a uniformly random code to
encode her message before the feedback. The codeword sent by Alice can be corrupted by the
channel in many ways, and each such way would imply a function dc such that Alice would
like to use a dc-code to encode her message after the feedback. We denote by @ the set of dc
functions for which the corresponding dc-codes are needed by our protocol. We also denote
by P the set of dc functions for which dc-codes exist. We wish to show @ C P. To this
end, we show that both P and @ are closed and convex, and that in every direction z, the
extremal point of P in direction z is “farther” than the extremal point of @) in direction z. We
then recast this geometric problem as a combinatorial problem by interpreting the direction
vector z as a weighted graph G, and show that the extremal point of P in direction z
corresponds to a Max-Cut in G (as in the left hand side of Conjecture 3), while the extremal
point of @ in direction z corresponds to the right hand side of Conjecture 3.

For the converse direction of Theorem 4, we show that the arguments in the above
paragraph are actually equivalences, except for the assumption that Alice uses a randomly
sampled code to encode her message before the feedback. At a high level, we use Ramsey
theory to show that the assumption that this code is a random code is, at least in some sense,
without loss of generality (see Section 2.2.2 for a more precise statement).

1.2 Related Work

Feedback channels were studied since the early days of information theory and are still
actively studied [31, 24, 14, 5, 9, 27, 32, 13, 33, 34, to cite a few]. While feedback does not
increase the capacity of discrete memoryless channels with vanishing error, there are settings
where feedback is known to allow improvement, like in the O-error capacity case [31], and
under variable decision time [9].

Partial feedback. Haeupler, Kamath, and Velingker [23] considered the setting where
the feedback is partial, and showed that even if Alice receives feedback bits from Bob for
an arbitrarily small constant fraction of her transmissions, resilience close to (the optimal

3 We mention that dc-codes are an example of non-equally spaced codes defined in [11].
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resilience of) % is possible using a randomized protocol. However, the number of feedback
rounds their protocol needs grows linearly with n, the length of Alice’s input. See [36] for a
subsequent result.

Independently and concurrently to our work, [15] improved [23] and showed a determin-
istic protocol that uses O(logn) feedback bits over O(1) feedback rounds to get resilience
approaching %, along with a similar result for the erasure channel showing that the resilience
approaches 1 for this channel. The main difference between [15] and the current work is
that we focus on finding the optimal resilience for any given number r of feedback rounds
whereas [15] focuses on showing that the resilience approaches the optimal value as the
constant r increases. Additionally, their work measures both the number of feedback rounds
and the number of feedback bits, while we only focus on the number of rounds.

Two-way codes and interactive codes. As discussed above, feedback is also known to
increase the noise resilience of the adversarial binary corruption channel [4, 5], and this
result played a big role in recent work in interactive coding [10, 18, 17] and two-way coding
[16, 19, 11]. In interactive coding [28, 29, 30], we wish to simulate a communication protocol
IT that was designed to work over the noiseless channel, by a protocol IT’ that works over
a noisy channel. In the setting of two-way codes, like in the setting of traditional error
correcting codes, Alice wishes to transmit a message x to Bob over a noisy channel. However,
unlike the case of traditional codes, where Alice is the only party that can transmit messages,
in two-way codes Bob can also use the (noisy) channel to transmit messages back to Alice.

Observe that since Bob has no input, any two-way code can be run over the feedback
channel and thus two-way error correcting codes can be viewed as protocols over a noisy
feedback channel. In particular, since the noise tolerance of the binary corruption channel is
only %, the noise resilience of binary two-way codes over the binary corruption channel is at
most % In the same way, results for the bounded round feedback channel give upper bounds
on the noise resilience of the corresponding two-way channels.

Gupta, Kalai, and Zhang [16, 19] studied two-way error correcting codes over the binary
erasure channel. Their main result is a code that is resilient to a % fraction of adversarial
errors, improving on the noise tolerance of the one-way binary erasure channel that is known
to be 2. We mention that the two-way coding schemes of [16, 19] exchange (almost) linear
number of messages. The work of [16] also gives an upper bound of % on the maximum
tolerance of the two-way binary erasure channel, and an upper bound of % on the maximum
tolerance of the two-way binary corruption channel. Given those upper bounds, a corollary of
our results is that even a single round of noiseless feedback allows for a better error tolerance
than any number of noisy feedback rounds over both the erasure and corruption channels?.

The recent work of Efremenko, Kol, Saxena, and Zhang [11] shows that the maximum
noise resilience of two-way error correcting codes for the binary corruption channel is strictly
better than the noise resilience of traditional error correcting codes for this channel, which is

To see why, observe that if Bob’s messages are noiseless, we can assume without loss of generality that
Bob’s messages are much shorter, say at most an ¢ fraction, of Alice’s messages. Indeed, if not, consider
a modified protocol where all messages from Alice are repeated k times, for some large k. For the
erasure channel, either all the repetitions of a bit from Alice are erased or Bob knows the bit exactly.
Thus, his communication does not grow with k. For the corruption channel, it suffices for Bob to say
how many of the repetitions were received as 1, which can be done using log k < k bits.

Moreover, we mention that for this claim, we do not need to rely on Conjecture 3, as a lower bound slightly
smaller than % (but greater than %) on the maximum error resilience of protocols with one feedback
round over the binary corruption channel can be obtained unconditionally using our techniques (but is
not included in the current work).
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known to be i [25]. At a very high level, those results for two-way codes are obtained by
implementing a (weak) feedback mechanism over channels with no built-in feedback. Related
ideas were used in [10, 18, 17] to give interactive binary error correcting codes with high
noise resilience.

List decodable codes. List decodable codes were introduced in the 50’s [12, 38] and have
been studied over numerous papers and found many applications since then. We next list the
works most related to ours. Most of the work on list decoding was done in the asymptotic
regime, where the number of codewords goes to infinity. In this work, we are interested in the
optimal list decodable codes for any (potentially small) number of codewords. However, as
an ingredient in our proof, we use the asymptotic results of [3] (see also [6, 21, 7]) for optimal
list decoding of the corruption channel (see Lemma 11). The list decoding question was also
considered for other channels, for example, over the corruption channel with feedback [32]
and the erasure channel [20].

1.3 Open Problems

Our work suggests the study of feedback channels through a new lens, namely, their feedback
round complexity. We next list some suggestions for future work in this direction.

Graph-theoretic conjectures. The most immediate question we leave open is proving
Conjecture 3 for all weighted graphs. We also propose the following potentially related
conjecture, which is tight for all odd cliques with edges of equal weight.

» Conjecture 5. Let G be a graph with n vertices and non-negative edge weights summing
up to 1. Let wt(i) be the sum of weights of all edges incident on vertex i. Then,

+ % Y wt (i)

i€[n]

Max-Cut(G) >

N |

Round-vs-resilience tradeoff for other channels. Proving Conjecture 3 would imply that
our protocol in Theorem 4 has optimal noise resilience among protocols with one round
of feedback over the corruption channel. Obtaining a general round-vs-resilience tradeoff
for any number of feedback rounds r for the corruption channel and for other well-studied
channels (e.g., the binary insertion-deletion channel®, the binary deletion-only channel, and
non-binary channels), would be interesting.

Adaptive corruptions over the erasure channel. Theorem 1 considers the case of non-
adaptive feedback rounds, where Alice decides ahead of time when to ask for feedback. It
can be shown that the case of adaptive feedback rounds, where Alice chooses when to ask
for another round of feedback after seeing the previous feedback, allows for (strictly) better
round-vs-resilience tradeoffs. Our techniques can be used to write a recursive formula for
the noise resilience in the adaptive case, and finding a “clean”, closed-form formula for this
setting (if one exists) is left open (see Section 2.1).

5 We note that this first requires a suitable definition for the insertion-deletion channel with constant
number of rounds.
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2 Proof Overview

In this section, we overview the proofs of Theorems 1 and 4, starting with the relatively
easier Theorem 1.

2.1 Result for the Erasure Channel — Theorem 1

The defining feature of the erasure channel is that the receiver (Bob) either receives the bit
sent by Alice or receives a special erasure symbol L. This means that in any round where
Bob receives L, he is certain that this is due to the erasures in the channel, while if he
receives a symbol different from L, he is certain that the symbol must be what Alice sent in
that round. In turn, this means that Bob knows exactly the amount of erasures introduced
by the channel and also means that Bob can (recall that he is trying to determine Alice’s
input) remove from consideration any candidate input that is “inconsistent” and would make
Alice send a different symbol in any such round.

The general format of a protocol. The above observation implies that protocols for the
erasure channel with 7 rounds of feedback (and therefore r + 1 messages from Alice) have
the following format: Alice starts with an input z € Ty = {0,1}". For her first message,
she takes a code® Cpy : T'g — {0,1}" and sends Cy(z) to Bob. Some of the bits of Cy(z) are
received correctly by Bob, while the remaining bits are erased and replaced with L. Using
the bits he received correctly, Bob can calculate the number of erasures N; introduced by
the channel in this round and can identify a subset I'y C I’y of inputs for Alice that are
consistent with the message he received. Note that Alice’s input  must be in I';.

Then, a feedback round takes place, and as Alice learns all the received symbols, she can
also compute Ny and I';. As both parties now know these values, they can now “forget” this
round and “reduce”” to a smaller problem where Alice wants to transmit an element z € T'
to Bob using a protocol with 7 — 1 rounds of feedback and the maximum number of erasures
the channel can insert is N; lower than what it was before. Continuing this way, the goal of
the parties is to reduce to a problem with 0 rounds of feedback, and set of inputs I',. such
that there exists a (standard) error correcting code for elements in T',. resilient to the number
of erasures that the channel can insert in the last round.

List-decodable small codes. It is readily seen that the protocol format described above
does not care about the exact strings in the sets I'g,...,[',., as long as their sizes stay the
same. Thus, the question of whether or not the above protocol format can be instantiated
to get a protocol that is resilient to 6 fraction of adversarial erasures, for some 6 € [0, 1],
reduces to determining when to schedule the feedback rounds, and given two feedback rounds,
determining the codes C; to be used by Alice between these rounds. The codes C; should be
such that, given an initial set size m = |I';| and a target set size® k = |I'; 41|, the number

At this point, it may be helpful to view this as a function instead of a code. We explain why we
are calling it a code later. Also, a more precise way to state this would be to say that there exists
an L > 0 such that Cp : T'o — {0, I}L, as all codewords need to be of the same length to avoid the
parties from signaling through the length of the codeword. Nonetheless, we stick with statements like
Co : To — {0,1}" throughout this sketch for simplicity.

We elaborate what this means exactly in the paragraph on adaptive feedback rounds below.

Note that k is not known to the parties in advance, and thus it will be ideal if the code used is optimal
for all £ simultaneously.
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of erasures required to reduce the set size from m to k is the highest. Using such codes,
Alice ensures that unless the adversary invests many erasures, the set of candidates shrinks
substantially between feedback rounds. We first focus on designing such codes.

Codes like the above are known as list decodable codes, and have been well studied in
the asymptotic regime, where m tends to infinity, and exact answers are known (see, e.g.,
[12, 38, 6, 20, 7, 3, 32] and Lemma 11). However, for our purposes, we need the exact answer
for smaller values of m as well. Codes with small m, i.e., “small codes” or codes with few
codewords, have recently received a lot of attention and have proven to be useful in designing
binary protocols with high error resilience in several contexts [10, 11, 16, 18, 19]. In the
current paper, we provide a complete analysis of the list-decodability of these codes for the
erasure channel, giving a function d(m, k) that characterizes exactly the minimum amount of
erasure noise needed such that for any code C': [m] — {0,1}", one can erase d(m, k) fraction
of the bits and ensure that Bob gets a list of candidates of length strictly smaller than k.

The formula for d(m, k) is given in Equation (7). Proving that this formula is correct
requires showing both a construction (of codes with resilience approaching d(m, k)) and an
impossibility result. Our construction has the nice property that the same code is tight
simultaneously for all values of k. Roughly speaking, our code achieves this optimal erasure
noise resilience by ensuring that every coordinate is as differentiating as possible, i.e., we
ensure that for all coordinates j, exactly L%J (uniformly chosen) codewords have 0 in that
coordinate, while the remaining {%] codewords have 1 (see Lemmas 9 and 10). This is as
opposed to randomly sampled codes where, e.g., a 2% fraction (which is large for small m)
of the coordinates are expected to be 0 for all the codewords, and therefore not differentiate
between any pair of codewords.

Scheduling the feedback rounds. Even with an exact formula for d(m, k) in hand, it still
remains to schedule the feedback round correctly in order to maximize the overall noise
resilience of the obtained protocol. The fact that our constructed code is tight simultaneously
for all values of k is of great help for this part, as the actual value of k is determined by the
erasures inserted by the channel and not in our control. This means that in order to schedule
the feedback rounds optimally, one needs to go over all possible values of k (across all rounds)
that may happen over the channel and maximize the corresponding error resilience. This
requires a careful analysis of the obtained formula for d(m, k).

Adaptive feedback rounds. We finish this section by briefly discussing the extension of our
result to adaptive feedback rounds, as hinted in Section 1.3. Recall our reduction above from
r to r — 1 feedback rounds, and note that this reduction is not perfect in the following sense:
the erasures inserted by the adversary in Alice’s first message in the r-round protocol dictate
the set I'y of candidates and the budget of the (r — 1)-round protocol. Observe that the
(r — 1)-round protocol with maximal noise resilience for transmitting a message depends on
the size of the set of candidates and on the erasure budget. Now, since our r-round protocol
is non-adaptive, meaning that the timing of all feedback rounds is fixed in advance and
cannot be recalculated given the erasures in the first round, our r-round protocol may reduce
to a sub-optimal (r — 1)-round protocol. Therefore, when scheduling the feedback rounds
for our r-round protocol, one needs to consider the values of k that are possible across all
rounds in order to get the optimal schedule.

On the other hand, if the feedback rounds can be scheduled adaptively, the reduction is
indeed perfect. In this case, one just needs to schedule the first feedback round beforehand
based on the possible values of k = |T'y| for this round alone, and then, upon seeing the Ny

22:9
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and T'; values, one can take the (r — 1)-feedback round protocol with the maximum error
resilience (when Alice’s input is from I'; and the number of erasures is Ny lower) and schedule
the remaining feedback rounds according to this protocol. Thus, our techniques also lead to
a tight recursive formula for the maximum error resilience in the case of adaptive feedback
rounds, but converting it to a “clean” closed form formula (if at all possible) is left open.

2.2 Result for the Corruption Channel — Theorem 4

Compared to the erasure channel, where Bob knows exactly the amount of noise inserted
and can safely eliminate many candidate inputs for Alice, the corruption channel is much
harder. Here, upon receiving a message from Alice, all Bob can compute is, given a candidate
input y for Alice, what is the number N(y) of corruptions the channel inserted assuming
Alice’s input was indeed y. Crucially, this value of N(y) may be very different for different y,
and unless it exceeds the maximum possible number of corruptions in the channel (which
can only happen when the protocol is quite far advanced), it can never have Bob eliminate y
from consideration entirely.

Consider now a protocol over the corruption channel with one round of feedback (and
therefore, two messages from Alice). Suppose that Alice’s input x comes from the set {0,1}".
As explained above, after receiving the first message from Alice, Bob knows N(y) for all
y € {0,1}". By subtracting N(y) from the maximum possible number of corruptions, Bob can
compute, for all y € {0,1}", a number dc(y) which is the leftover corruptions, or, equivalently,
the degree to which the second message of Alice can be corrupted, assuming her input is y.
As Alice receives feedback from Bob, she can also compute the values dc(y) for all y € {0,1}".
In the remainder of this sketch, we normalize dc(y) by dividing it by the length of Alice’s
second message. This will result in a value in [0, 1].

dc-codes. Using this feedback, Alice’s goal in her second message is to allow Bob to
uniquely identify her input. If C': {0,1}" — {0,1}" is the code used by Alice in her second
message, the only way Bob can uniquely decode Alice’s input is if for all y # 3’ € {0,1}",
the codewords C(y) and C(y’) are at least (relative) Hamming distance dc(y) + dc(y’) apart.
The reason is that if y is Alice’s input, then the adversary has fractional budget dc(y) that
it can use to corrupt C(y), and thus the codeword received by Bob can be any string of
(relative) Hamming distance at most dc(y) from C(y). Similarly, if 3’ is Alice’s input, then
the codeword received by Bob can be any string of Hamming distance at most dc(y’) from
C(y'). Note that the adversary cannot arrange for the received encodings to be the same if
and only if C(y) and C(y') are at least (relative) Hamming distance dc(y) +dc(y’) apart. We
call a code that satisfies this (relative) Hamming distance property a dc-code and mention
that the values dc(y) can equivalently be seen as the “distance contributed” by y in such a
code.

We note that unlike traditional error correcting codes that have only one distance
guarantee for all pairs of codewords (i.e., the minimum distance), for dc-codes, the distance
between a pair of codewords may be different depending on the “compatibility” of the
messages they encode. Specifically, we think of each codeword as having a different “radius’
and the code needs to “pack” all the induced balls of different radii. We point out that
dc-codes are an example of non-equally spaced codes defined in [11].

We also observe that the small code used in our protocol for erasures can be viewed as a

)

dc-code where dc(y) = 0 for all inputs y that Bob has ruled out (and therefore, do not need
any distance guarantees), and dc(y) = ¢ for all inputs y that he has not ruled out, where ¢ is
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the best possible constant (c is determined by the d(m, k) function). We mention that for
the erasure channel, our protocol also needed list-decoding guarantees that are not needed
here as we are only attempting to get a one feedback round protocol.

The discussion so far shows that the existence of a protocol with a given error resilience
amounts to determining whether or not it holds that for all functions dc(-) that can be
induced by the corruptions inserted in Alice’s first message, there exists a dc-code that Alice
can use to compute her second message. Curiously, we show in the next subsection that this
question is equivalent to our seemingly unrelated combinatorial conjecture (Conjecture 3)
about the existence of large cuts in graphs.

Towards multiple rounds of feedback. The above approach of designing dc-codes (that have

no rounds of feedback) to construct protocols with one round of feedback can be generalized.

One can similarly argue that, for any r > 0, dc-codes with r rounds of feedback can be
used to construct protocols with r 4+ 1 rounds of feedback. Analogously to the above, the

“extra” round is the first round, and dictates which dc-code is used in the rest of the protocol.

Moreover, questions about constructing dc-codes with r rounds of feedback can be translated
to questions about graphs. The r = 0 case is explained next, but similar ideas may be used
for general r, with appropriate changes in the definitions of the set P and @ (see below).

2.2.1 Conjecture 3 Implies a Tight Protocol

We first show why Conjecture 3 implies the existence of a tight protocol. In fact, we shall
show the existence of a protocol where Alice’s message in the first round is simply the
encoding of her input x using a randomly sampled code. Let m = 2™. A distance function is
a function dist : ([72”]) — R, where ([ZL]) is the set of all subsets of [m] of size 2. For a code
C : [m] — {0,1}", we denote by distc the distance function induced by C, i.e., distc(i,) is
the (relative) Hamming distance between C'(¢) and C(¢'). For a distance contribution function

dc, we denote by distyc the distance function induced by dc, i.e., distqc(%,4") = dc(i) + dc(i’).

For simplicity, throughout this overview we assume that dc(y) =1 — N(y) (recall that dc(y)
is actually the normalized leftover corruption count, but in this sketch we will ignore the
exact multiplicative and additive constants in this function).

Recasting as a geometric problem. We denote by P the set of all distance functions diste
that are induced by codes C': [m] — {0,1}". We denote by Q the set of all distance functions
distyc induced by dc functions that can be obtained by the corruptions inserted in Alice’s
first message (recall that dc depends on N, which is a function of the corruptions inserted in
Alice’s first message). In other words, P is the set of distance functions that can be realized
and @ is the set of distance functions required by our protocol. We wish to prove @ C P.

We view distance functions dist as (”;)-dirnensional vectors. We observe that both P and
@ are closed and convex and that the set P is “downwards-closed”, meaning that if dist € P
then any dist’ that is coordinate wise at most dist is also in P. This means that showing
@ C P is equivalent to showing that for all (”;)-dimensional non-negative hyperplanes z, it
holds that:

dist) > dist 2
gyt ion) 2 g (e i) .
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Recasting as a combinatorial problem. By scaling, we can assume that the entries of z sum
to 1 and view them as the weights on the edges of an m-vertex graph G, as in Conjecture 3.
As both P and @ are closed and convex, both the maximums are attained at one of their
vertices.

To reason about Equation (2), it will be useful to represent a code C : [m] — {0,1}* as
a sequence of L one-bit functions b : [m] — {0,1} (the first one-bit function corresponds to
the first coordinate of C(4), etc.). Observe that for the code b: [m] — {0,1} (i.e., L = 1), it
holds that dist, is a boolean function with disty(i,4) = 1 if and only if b(:) # b(i’).

The LHS of Equation (2). Since a general code C' is a sequence of one-bit functions, it
can be shown that the function distc is a convex combination of the functions dist, that
are induced by one-bit functions b. In particular, this means that the vertices of P are
distance functions induced by one-bit functions. Using the expression above for dist; for
one-bit function b : [m] — {0, 1}, the value of (z, distp) is the value of the cut in the graph G,
indicated by b:

(z,disty) = Z 2z 40 - disty(i,4) = Z Zi il (3)

(4,8"): b(@)#b(i")

Thus, the left hand side of Equation (2) is the maximum cut in G, as in Conjecture 3.

The RHS of Equation (2). We view the code used by Alice in her first message as a
sequence of one-bit functions. Since in our protocol this code is randomly sampled, each
of the 2™ one-bit functions is expected to appear equally often in Alice’s message”. As
the channel can corrupt each of these one-bit functions independently of all the others, we
get that a distance function dist can be induced by the corruptions inserted in Alice’s first
message (i.e., dist € @) if and only if it is the expectation (under the uniform distribution
over one-bit functions) of the distance functions that can be induced by corrupting one-bit
functions.

Now, if Alice is sending a one-bit function b : [m] — {0, 1}, there are only two possibilities
for Bob: either he receives a 0 or he receives a 1. Let dc, be the distance contribution
function dictated by Bob’s received bit. We next show that in the former case, where
Bob receives 0, the value of (z,distye,) is the value of the cut in G, indicated by b plus
twice the weight of all edges such that b(-) = 0 on both its endpoints. To see that, recall
that distyc, (i,4) = dcp(i) 4+ dep(i') and that we assume decy(y) = 1 — N(y). In our case,
dep(i) = 1 —0 = 1 if b(¢) = 0 (Alice’s bit was not corrupted) and dcy(é) = 0 if b(i) = 1
(Alice’s bit was corrupted). This implies that distyc, (i,4') = 0 if b(¢) = b(i’) = 1, and that
distye, (¢,4) = 1 if b(i) # b(i'), and that distyc, (i,4") = 2 if b(i) = b(¢’) = 0. Therefore,

max (z,distge,) = Z zi i - distge, (1,1') = Z 24+ Z 2.z (4)

diste@
(i,2") (2,2"): b(3)#b(i’) (2,2"): b(3)=b(i")=0

Similarly, it can be shown that in the latter case, where Bob gets 1, the value of (z, distgc, ) is
the value of the cut in G, indicated by b plus twice the weight of all edges such that b(-) =
on both its endpoints.

9 We mention that this is only in expectation and the length of Alice’s message need not depend
exponentially on m.
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Recall that the bit function b is a uniformly random bit-function. Taking an expectation
over one bit functions b, the value of the cut in GG, indicated by b is exactly the constant %
and the other terms on the right hand side of Equation (3) and Equation (4) are exactly as
on the right hand side of Conjecture 3, where the maximum becomes minimum because of
the constants involved. Equation (2) now directly follows from Conjecture 3.

2.2.2 A Tight Protocol Implies Conjecture 3

We now finish this sketch by arguing why a tight protocol implies Conjecture 3. For this,
we note that all the arguments in Section 2.2.1 were actually equivalences, except two, one
of which was explicitly stated and one was not. The explicit one was our assumption that
Alice’s first message is simply the encoding of her input using a randomly sampled code. The
second one was that Alice gets feedback from Bob at round %,
of rounds of the protocol. The constant 2—83 may seem arbitrary, but it is the constant one
gets when one tries to match the constants obtained in the analysis in Section 2.2.1 with the

constants in Conjecture 3.

where T is the total number

Both these assumptions are actually without loss of generality. We start by arguing this

for the second one, again ignoring the actual constants and only stating the high level idea.

Roughly speaking, the second assumption is without loss of generality as Conjecture 3 is
tight for cliques of size 3 and 5, and if the constant is anything other than =, Equation (2)

237
will fail to hold for z corresponding to one of these cliques.

It remains to show why the first assumption is without loss of generality. For this, our
approach is to take an arbitrary code C' : [m] — {0,1}" that Alice may use for her first
message, and in several steps, convert it to a code that looks more and more like a random
code, at the cost of a smaller m. In each step k, we convert C' to a code that is k-random,
in the sense that any set of k codewords of the new code looks like k codewords from a
randomly sampled code.

For k = 1, this means that we have to show that each codeword has an equal number of 0s
and 1s, and this can be easily achieved by concatenating all codewords with their negations
(which preserves the distance properties). We now show how to get a 2-random code from a
l-random code, noting that similar (but technically more involved) ideas allow us to get a
(k + 1)-random code from a k-random code, for any k& > 1. To show that a code is 2-random,
we need to show that it is 1-random and that the fractional distance between any pair of
codewords is (roughly) 3.

For this, let € > 0 be an error parameter and construct a complete graph with the m
codewords as the vertices, and color the edge between codewords ¢ and i’ as (1) red, if the
fractional distance between them is smaller than % — ¢, (2) blue, if the fractional distance
between them is between % — ¢ and % + €, (3) green, if the fractional distance between them
is larger than % + €. As m gets larger and larger, Ramsey theory tells us that there must
exist a large (going to infinity with m) monochromatic clique in this graph. This clique
cannot be red, as we show that a large number of pairwise close codewords can be used to
break the protocol. It also cannot be green, as that would violate known distance bounds
for error correcting codes. Thus, it must be blue, implying that restricting attention to this

clique gives us our desired 2-random code.
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3 Model and Preliminaries

3.1 Notation and Preliminaries

For z € R, let 7 be the vector (of appropriate dimension inferred from context) with all
its coordinates being z. Throughtout, all inequalities between vectors are coordinate-wise.
For k > 0, A* = {(zg,...,z;) € REFL | Zf:o x; =1and x; > 0 for all ¢ € [0, k]} denotes
the k-dimensional standard simplex. For 2 € R and k > 0, we write z£ as a shorthand for
falling factorial []¥=) (z — 7).1° For a set S and k > 0, let (?) be the collection of all subsets
of S of size k. For a function f: X — Y and subset X’ C X, f|x- denotes the restriction
of f onto X’. For z,y > 1, R(z,y) is the (two-color) Ramsey number for z,y, which is
well-known to be finite. For k& > 1 and two bit strings x,y € {0, 1}k, their Hamming distance

is A(z,y) = Zfﬂ 1z # yil.

3.2 Our Model: Round-Restricted Binary Feedback Channels

We now define (deterministic, binary) protocols with (non-adaptive) round-restricted feedback
for the message transfer task, where Alice has an input and Bob’s goal is to learn this input.
Such a protocol is defined by a tuple:

II= (nv T {Li}ie[rJrl]’ {fi}ie[r+1} ) OUt)7 (5)

where (1) {0,1}" is the set of all possible inputs for Alice; (2) r is the number of feedback
rounds. Equivalently, we can say that Alice speaks in r 4+ 1 rounds; (3) For all ¢ € [r + 1],
L; is the length of Alice’s message in the i-th round. Throughout, we use L = Z:;l L;; (4)
For all i € [r+ 1], f; : {0,1}" x {0,1, L}** x --- x {0,1, L}*"* — {0,1}"" is the message
function Alice uses in the i-th round; (5) out : {0,1, L}** x -+ x {0,1, L} — {0,1}" is
the function Bob uses to compute the output.

Execution of a protocol. Let II be a protocol as above. An adversary for II is defined by a
function Adv : {0,1}" — {0,1, L}** x -+~ x {0,1, L}*"*'. For i € [r + 1], we will use Adv,(-)
to denote the function that outputs the i-th coordinate of Adv(-). We next define an execution
of IT in the presence of an adversary Adv for II: At the beginning of the execution, Alice starts
with an input = € {0,1}". The execution consists of 7 + 1 rounds and before the i-th round,
for i € [r+1], Alice and Bob have the (same) transcript 7o; € {0,1, L} x---x {0,1, L}*-*,
In round i, Alice computes the message f;(x,7<;) € {0, 1, J_}Lj' and sends it to Bob bit by
bit, while Bob receives the string 7, = Adv;(x). As we assume a feedback channel, if i < r,
Alice also receives the string 7; and both the parties add 7; to 7<; and continue executing
the protocol.

If i = r+1, the execution of the protocol terminates and Bob outputs out(7<,+1). Observe
that this execution is completely determined by x, II, and Adv. We denote the output of II
on input z in the presence of adversary Adv by outr adv ().

Counting the noise. Let II be a protocol as above and Adv be an adversary for II. For
x € {0,1}", the amount of noise added by Adv in I on input z is the number of times Bobs’
received bit is different from the bit Alice sent. Formally, we have:

r+1
noiserr adv () = Z A(Adv;(z), fi(z, Adv<i(2))). (6)

10 See also Falling factorials (Wikipedia) for the notation.
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For 6 € [0,1], we say that an adversary Adv has budget 6 if we have

max noiserr ady(z) < 6L.
ze{0,1}"™

Types of Adversaries. Let II be a protocol as above and Adv be an adversary for II. We say
that Adv is a corruption adversary if it never outputs the symbol L, i.e., for all z € {0,1}"
and all i € [r + 1], we have Adv,(z) € {0,1}"". We say that Adv is an erasure adversary if
it only “erases” the symbols sent by Alice. More precisely, we say that Adv is an erasure
adversary if for all z € {0,1}", alli € [r + 1], and all j € [L;], if (Adv;(2)); # L, then we
have (Advi(x))j = (fi(:r7Adv<i(x)))j.
Resilience of a protocol. Let II be a protocol as above and 0 € [0,1]. We say that IT has
resilience 6 over the binary erasure channel if for all erasure adversaries with budget 6 and
all z € {0,1}", it holds that outys a4y (z) = . Resilience over the binary corruption channel
is defined analogously.

4 Optimal List-Decodable Small Codes

In this section, we construct the codes used by our protocol.

4.1 Definitions of List Decodability

Codes for erasures. We start by defining list decodability for erasures.

» Definition 6. Let m, k,L > 1 and d € [0,1]. We say that a code C : [m] — {0,1}" is
less-than-k-list decodable for erasures up to radius d if for all subsets T' € ([’ZL]), we have

nsc(T') > d, where:

nsc(l)=1—— > 1[Fbe{0,1} Vi e I': C;(i) = b].

j=1

S

To get the intuition behind the definition of ns, observe that ns¢(T') is the minimum fraction
e of erasures for which there exists 7 € {0, 1, J_}L such that for all 7 € T', it is possible to erase
e - L symbols from C(i) and get 7. Observe that this is equal to the fraction of coordinates
where the encodings {C(i)},.p are not all the same (ns = not same).

For m,k > 1, we define derase(m, k) to be the supremum of all values d € [0, 1] for which
there exists L > 1 and a code C : [m] — {0,1}” that is less-than-k-list decodable for erasures
up to radius d.

Codes for corruptions. Next, we define list decodability for corruptions:

» Definition 7. Let m,k,L > 1 and d € [0,1]. We say that a code C : [m] — {0,1}" is
less-than-k-list decodable for corruptions up to radius d if for all T € {0, l}L, we have

{i € [m]: A(C(i), &) < dL}| < k.
Analogous t0 derase, for m, k > 1, we define deorr(m, k) to be the supremum of all values

d € [0,1] for which there exists L > 1 and a code C : [m] — {0,1}" that is less-than-k-list
decodable for corruptions up to radius d.
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4.2 Lemmas about dg.e and deor

In this section, we show the results we need about derase and deorr. First, we define a helper
function d(-, -):
m/2 m/2
(") + ()
m
(%)
We now show some useful properties of the function d defined in Equation (7).

> Claim 8. The following hold:
1. For all m > k > 1, it holds that

k—1
d(m, k) =1 UM/ =D —
(2[m/2] = 1)—
2. For all my > my > k > 1, it holds that d(ms, k) < d(mg, k), and moreover,
. 1
m&)nood(m, k)=1- TESE

It follows that d(m, k) > 1 — 2,9%1 forallm >k > 1.
3. For all m > ko > ky > 1, it holds that d(m, k2) > d(m, k1).

d(m,k) =1— (7)

4.2.1 Lemmas about dg e

We now show that the functions derase and d are the exact same. Owing to this lemma, we
omit writing erase in the subscript in the rest of this text.

» Lemma 9. For all m,k > 1, we have:
derase(m, k) = d(m, k).

» Lemma 10. For all € > 0, there exists a constant K such that for all K' > K and for all
m > 1, there exists a code C : [m] — {0, 1} 5™ such that for all k € [m], the code C is
less-than-k-list decodable up to radius d(m, k) — €.

4.2.2 Lemmas about d,
Using the results of Section 4.2.1, we show the following lemma:
» Lemma 11. For all m,k > 2, we have:

(rrray)

1
dcorr(ma 2) = 5 - ok

d(m,2 .
(2 ) and mlgnoo deorr(m, k) =

5 Protocols Against Erasures
In this section, we show one direction of Theorem 1, as formalized below. Later, in Section 6,
we prove the other direction.

» Theorem 12. For all e > 0 and r,n € N, there exists a constant-rate (polynomial in €)
protocol for message transfer with v rounds of feedback, input length n, and the following
resilience over the binary erasure channel:

%—e, ifr=1
1-— €, z'fr>1'

7 _
12(r+1)
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We prove Theorem 12 in the rest of this section. Throughout, we fix ¢ > 0 and r,n € N.

We assume r < %. This is without loss of generality as a protocol for large r follows from a
protocol for smaller 7.

5.1 Our Protocol

Let K be the constant from Lemma 10 for ¢. For all K’ > K and all m > 1, let Cy, k7 :

[m] — {0, 1}K/ 16" 1o as promised by Lemma 10. We will omit K’ when it is clear from
context. For a set T of size m, we will also view C, as a code Cp : T' — {0,117 ™ Our
protocol is given in Algorithm 1, where the lengths of the rounds are given as follows:

1K ifi=r=1
Li{?’ n, ifi=r ' ®)

otherwise

Algorithm 1 Message transfer protocol over the erasure channel with > 1 feedback rounds.

Input: Alice has input z € Ty = {0,1}".
Output: Bob outputs y € {0,1}".
1: fori=1,....,7r+1do
2: Alice sends Cr,_, (z) € {0,1}" bit by bit.
3 Bob receives 7; € {0,1, L}1i and sends 7; via the noiseless feedback channel.
4: Bob computes

I, = {{l?l el | V] c [Lz} 1T € {Cpiil’j(it/),J_}}.

5: If + < r, Alice receives 7; as feedback and also computes I'; as above.
6: end for
7: Bob outputs the lexicographically first element in I',.; 1, aborting if T,y 1 = (.

5.2 Analysis

We now analyze Algorithm 1 and finish proving Theorem 12. That the protocol is constant

rate is clear from Algorithm 1. It remains to show that it has the claimed noise resilience.

For this, we fix an input = for Alice and an erasure adversary Adv for the protocol with
desired budget as in Theorem 12. Observe that fixing « and Adv fixes the value of all the
variables in the execution of Algorithm 1. For the analysis, we first show that:

» Lemma 13. For alli € [0,r + 1], we have z € T,.

» Lemma 14. For allm > k' > k > 2 such that (K', k) # (3,2), it holds that
d(m, k") +d(k' k) > 1 +d(m, k).

At a high level, Lemma 14 will be applied as follows: Consider an adversary that shrinks
the set T' from size m to size k' in a given round and from size k' to size k in the next round.
Lemma 14 shows that, if the two rounds are of equal length (recall from Equation (8) that
the round lengths are always the same except when ¢ = r = 1), then it is always better for
the adversary to erase one of the rounds completely and shrink from size m to size k directly
in the other round.

We now divide the proof into two cases based on whether or not r = 1.
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5.2.1 Proof of Theorem 12 When r = 1

Let k; = |Ty| for i € [0,2]. We prove the theorem by showing that ks < 1. Together
with Lemma 13 and Algorithm 1, this shows the correctness of Algorithm 1.

Observe that at the beginning of the i-th round, Alice and Bob agree on I';_1, the subset
of all remaining possibilities for z from the perspective of Bob, that are still consistent
with the partial transcript 7y,...,7;—1 so far. In order to keep Bob confused among I';,
the adversary has to erase at least a d(k;_1,k;) — € fraction of Alice’s i-th message, due
to Lemma 10. As this holds for all rounds, the overall fraction of erasures is lower bounded
by

4 3 4d (ko k1) + 3d(k1, k
;(d(kmkl)—€)+§(d(k1,k2)—e): (Ko 1)7 (k1 2)_6.

Now suppose ko > 2. Tt is sufficient to show 4d(ko, k1) + 3d(k1, k2) > 5 for a contradiction.
Without loss of generality, we assume ko = 2 since d(k1, k2) only decrease as ks becomes
smaller by Item 3 of Claim 8. If k1 = 3, we have

3 2
4d(ko, k1) + 3d(ky, ky) = 4d(ko,3) +3d(3,2) 2 4- T +3- 5 =5

by Item 2 of Claim 8. Otherwise, by Lemma 14, we also get

4d(ko, k1) + 3d(k1, ko) = 4(d(ko, k1) + d(k1,2)) — d(k1,2)
> 4(1 +d(ko,2)) —d(k1,2)

> 3+ 4d(ko, 2) (as d(-,-) is always upper bounded by 1)
1

>3+4- 3 (by Item 2 of Claim 8)

= 5.

5.2.2 Proof of Theorem 12 When r > 1

Let k; = |I';| for ¢ € [0, + 1]. Similarly to the proof in Section 5.2.1, we show that k,1; < 1.
This ensures Bob outputs the correct y = = because of Lemma 13 and Algorithm 1. Using
a similar argument to Section 5.2.1, we have that the overall fraction of erasures is lower
bounded by

1 r+1
o 1 . Zd(ki—la kl) — €.
i=1

Now for the purpose of contradiction, suppose that k.11 > 2. It is sufficient to show

1 X 7
. d(k;_ ,ki >1— —F .
r+1 ; (hiz1, ki) 12(r +1)

In the following, we again assume without loss of generality that k.1 = 2 since d(k, kr41)
decreases as k41 becomes smaller by Item 3 of Claim 8. Let j = min{t € [r +1] | k; < 3}.
By repeatedly applying Lemma 14, we have
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1
-y d(ki—1, ks
1 ;;; (ki—1,ki)

1 r4+1
> . . )
Z T <1+d(k‘0,k‘2)+zd(kz—lakz)>

=3

r+1

j_1+dk07 Zd i— 17
i=j+1

v

r+1.

Since kg > -+ - > k,41 = 2 by definition of I';, either k; = 2 or k; = 3.

In the former case where k; = 2, we also have kj; 1 = --- = k41 = 2 and thus
r+1
d(ki—1,k
r+1 Z !
1 r+1
> . —14+d(k d(ki—1,k
T r+1 J * 0,k Z 1
i=j+1
1
= -(j —1+d(ko,2 1—37)-d(2,2
= T d(h,2) + (1) d(2,2)
1 1
> s 1 . .
| (] 1+2+7’+1 j) (by Item 2 of Claim 8)
o1
N 2(r +1)
S P
- 12(r+1)

In the latter case where k; = 3, let j/ = min{t € [r + 1] | k; = 2}. Then we have

r+1

1
T+1-Z;«m_hm>
1 r+1
> 5= 1+ d(ko, k; d(ki_1, ki
> | +'(m]%ig;1( 1. ki)
1
= (=1 d(ko,3) + (= 1= ) d(3,3) + d(3,2) + (r+1— ) - d(2.2))
> 1 ‘—1+§+‘/717'+2+r+1f" (by Item 2 of Claim 8)
] J 1 J J 3 J Yy
T
N 12(r+1)°

This concludes the proof.
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6 Impossibility Result for Erasures

In this section, we show the other direction of Theorem 1, as formalized below.

» Theorem 15. For all r € N, there exists an n € N such that the resilience of any protocol
for message transfer with r rounds of feedback and input length n over the binary erasure
channel is at most:

{?, ifr=1
7 : ‘
1-— m7 Zf r>1
We prove Theorem 15 in the rest of this section. Throughout, we work with a fixed r € N

and define n to be large enough for asymptotic inequalities to hold. We now divide the proof
into two cases based on whether or not r = 1.

6.1 Proof of Theorem 15 When »r =1

Fix a protocol IT with input length n and one round of feedback. Recall Equation (5) and
let Ly, Ly be the lengths of Alice’s messages sent in the two rounds, and f; : {0,1}" —
{0,135, f2: {0,1}" x {0,1, L}** — {0,1}"* be the two message functions Alice uses in the
two rounds.

First suppose that L{ > %(Ll + Ls). By Lemma 9, there exists a subset I' = {z1, 22} €
({0,21}") such that nsy, (I') < d(2",2). This implies the adversary is able to erase a d(27,2)
fraction of Alice’s first message so that Bob’s view when Alice’s input is x is identical to
Bob’s view when Alice’s input is xo, and therefore Bob is forced to send the same feedback
71 € {0,1, J_}Ll in both cases. Now the adversary simply erases Alice’s second message
entirely implying that Bob can never output the correct answer. By Item 2 of Claim 8, the
overall fraction of erasures is upper bounded as

Ly Ly _4-d2"2)+3  now

5
2" 2) . 1- —.
d@%2) =+ L, S 7 7

Now consider the other case where L < %(Ll + Ls). Again by Lemma 9, there exists a
subset I' = {z1, 29,23} € ({0’31}") such that nsy, (I') < d(27,3). In this case, the adversary
erases a d(27,3) fraction of Alice’s first message so that Bob’s view is the same when Alice’s
input is any of x1, 22, x3. Bob must send the same feedback 71 € {0, 1}L1 in all three cases.
Note that fa(-,71) can also be viewed as a valid code and thus Lemma 9 still applies. In
particular, it is always possible to erase a d(3,2) = % fraction of Alice’s second message so
that for at least two of x1, 22, x3, Bob’s view remains the same at the end of the protocol.
This concludes the proof as the overall fraction of erasures is at most
L 2 Ly 4-d(2",3)+3-2 Lo 5

27L . . .
d( ,3> L1+L2+3 Ly + Ly — 7 7

6.2 Proof of Theorem 15 When r» > 1

Fix a protocol IT with input length n and r rounds of feedback. Recall Equation (5) and for
t € [r+ 1], let L; be the length of Alice’s message sent in the ¢-th round. Let L = Z::ll L;.

We prove the theorem using an approach similar to Section 6.2, i.e., the adversary is
always able to erase Alice’s messages in such a way that Bob has the same view at the
end of the protocol for at least two different inputs. In particular, the adversary erases
the entire messages of all rounds except for i = arg maxyer41) L, the longest round, and
J = argmaxyc(, ;1)\ (s} Lt, the second longest round. Then we have
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L
L; > 9
iz ©)
L—-L;
L2~ (10)

First consider the case where i < j. Since the first ¢ — 1 rounds are completely erased,
Bob obviously has the same view for all possible inputs at the beginning of the i-th round.
By Lemma 9, the adversary can erase a d(2", 3) fraction of Alice’s i-th message so that Bob’s
view is the same when Alice’s input is any of some subset I' = {xy, 15,23} C {0,1}". This
remains true at the beginning of the j-th round as all intermediate rounds are completely
erased. Now again by Lemma 9, the adversary is able to erase a d(3,2) = % fraction of Alice’s
j-th message so that Bob still has the same view at the end of the j-th round, for at least
two of x1, o, x3. As all remaining rounds are also completely erased, Bob can never output
the correct answer at the end of the protocol. By Item 2 of Claim 8, the overall fraction of

erasures is upper bounded as

d(2“,3)~%+§-%+1-7L_L£_LJ’
L, 1 L,
=1-(1-d2"3)- -5 7
<1- (1_d(2"73))‘%—%'L;Li (by Equation (10))
1 1\ L;
—1—37”—<1—d(2”,3)—3r> =
1 1 1
§1—3T—<1—d(2",3)—3T>.TJrl

(as 1 —d(2",3) === 1 > 5 for r > 2, and by Equation (9))

n—oo 7

C12(r+ 1)

Now suppose that 7 > j. In this case, a similar argument shows the adversary must

be able to confuse Bob by erasing a d(2",3) fraction of Alice’s j-th message as well as a

d(3,2) = % fraction of Alice’s i-th message (in addition to completely erasing all other rounds
n—oo_ 3

of messages). Observe that L; > L; by definition and that d(2",3) = 3 > 2. So the

overall fraction of erasures is at most
L, 2 L, L—-L;,—L; L, 2 L: L—-L;,—0L;
on gy. i 2 Li T H T o qon gy Ti 2 G BT LT A
d(2",3) L+3 L+ 7 <d(2",3) L+3 + 17 )

which has the desired upper bound as already shown above.
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