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ABSTRACT KEYWORDS

The seminal work of Ahn, Guha, and McGregor in 2012 introduced
the graph sketching technique and used it to present the first stream-
ing algorithms for various graph problems over dynamic streams
with both insertions and deletions of edges. This includes algo-
rithms for cut sparsification, spanners, matchings, and minimum
spanning trees (MSTs). These results have since been improved or
generalized in various directions, leading to a vastly rich host of
efficient algorithms for processing dynamic graph streams.

A curious omission from the list of improvements has been
the MST problem. The best algorithm for this problem remains
the original AGM algorithm that for every integer p > 1, uses
n1*O/P) space in p passes on n-vertex graphs, and thus achieves
the desired semi-streaming space of O(n) at a relatively high cost
of O(lolgol%) passes. On the other hand, no lower bound beyond a
folklore one-pass lower bound is known for this problem.

We provide a simple explanation for this lack of improvements:
The AGM algorithm for MSTs is optimal for the entire range of its
number of passes! We prove that even for the simplest decision ver-
sion of the problem — deciding whether the weight of MSTs is at
least a given threshold or not — any p-pass dynamic streaming al-
gorithm requires nltQ/p) space. This implies that semi-streaming

algorithms do need Q(k)lgol%) passes.

Our result relies on proving new multi-round communication
complexity lower bounds for a variant of the universal relation prob-
lem that has been instrumental in proving prior lower bounds for
single-pass dynamic streaming algorithms. The proof also involves
proving new composition theorems in communication complex-
ity, including majority lemmas and multi-party XOR lemmas, via
information complexity approaches.
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1 INTRODUCTION

In the dynamic graph streaming model, we have a (possibly
edge-weighted) graph G = (V, E) with vertices V := {1,2,...,n},
whose edges and their weights are being defined by a sequence
of insertions and deletions in a stream o := (01, 02, ..., 0N ); here,
N is the length of the stream which is typically assumed to be
poly(n). Each entry oj is either of the form (u;, v;, w;, +) for u;, v; €
V and w; € N and is interpreted as the edge (u;,v;) with weight
w(u;,v;) = w; being inserted to E, or (u;,v;, wj, —) which means
the edge (u;, v;) with the given weight w; is being deleted. We are
guaranteed that the stream does not delete an edge which is not
inserted, does not insert an edge more than once before deleting
it in the middle, and that the weight of a deleted edge matches its
weight at the time of insertion'. The goal is to make one or a few
sequential passes over the stream o, use a limited memory—ideally,
O(n) = O(n - polylog(n)) bits, referred as the semi-streaming
space—and compute an answer to the given problem on G at the
end of the last pass.

Dynamic streams (not necessarily for graphs) have been studied
extensively in the streaming literature since the introduction of
the model in [6], e.g., for statistical estimation problems [16] or
geometric problems [23]. However, despite the significant atten-
tion graph streams have received since their introduction in [21],
dynamic graph streams were not studied for quite some time due
to lack of any techniques for addressing problems in this domain.

This state-of-affairs was entirely changed by a seminal work of
Ahn, Guha, and McGregor (henceforth, AGM) [2] who introduced
the graph sketching technique and used it to devise dynamic graph
streaming algorithms for several fundamental problems, including
connectivity, minimum spanning trees, cut sparsifiers, and match-
ings. This immediately led to a flurry of results on dynamic graph
streaming algorithms, all using the graph sketching technique?,

n particular, no “partial updates” to the edge weights are allowed and the stream
needs to delete the edge “fully” first (and provide its weight) and then re-inserts it
possibly with another weight; see [17] for more details on this.

The results in [5, 32] show that this is not a coincidence: any dynamic graph streaming
algorithms that can handle triply-exponential long streams and doubly-exponential
edge-multiplicities (in the middle of the stream), can be turned into a graph sketch.
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that either improved upon [2] or extended its results to various
other problems; see, e.g., [1, 3, 4, 9, 13, 15, 18, 19, 22, 24, 25, 29, 33]
and references therein.

One of the very few problems that saw zero improvement since [2]
is the minimum spanning tree (MST) problem. [2] designed a dy-
namic streaming algorithm that for every integer p > 1, with high

probability, finds an MST of the input graph using n1*0(1/p) space
lo

log {gog n
streaming algorithm. No better algorithms have been designed for
this problem yet, despite the fact that in insertion-only streams,
a simple single-pass semi-streaming algorithm has already been
known since [21].

We provide a simple explanation for this lack of improvements:

The AGM algorithm for MSTs is optimal for the entire
range of its number of passes!

and p passes. Specifically, this leads to an O( )-pass semi-

logn )
loglogn
passes. Beside settling the complexity of the fundamental MST prob-
lem in the semi-streaming model, this also constitutes one of the
strongest separations between the power of insertion-only streams
and dynamic graph streams; see, e.g. [9, 20] that prove such sepa-
rations only between single-pass algorithms (for the approximate
matching problem).

Specifically, semi-streaming algorithms for MSTs require Q(

1.1 Our Contributions

We now discuss our contributions in more detail. Our main result
establishes the optimality of the MST algorithm of [2].

Result 1. For any integer p = 0(101;%), any p-pass dynamic

streaming algorithm on n-vertex graphs requires Q(n”ﬁ) space
to solve the minimum spanning tree problem with constant proba-
bility. The lower bound applies even if the edge weights and the
length of the stream are both at most O(n?) and the algorithm only
needs to decide whether the weight of minimum spanning trees is
at least a given threshold.

Prior to our work, no lower bounds were known for the MST
problem in dynamic streams beside a single-pass lower bound of
Q(n?) space®. Another immediate corollary of our result is a strong
limitation on the power of the graph sketching technique. While
graph sketching has been extremely successful for problems such
as cut- or spectral-sparsification [3, 4, 29], it appears to be quite
weak for the MST problem, even when allowed “many” rounds of
adaptive sketching.

It is worth mentioning that our lower bound indeed only holds for
exact MSTs. For the relaxed version of the problem, wherein the goal
is to obtain a (1 + ¢)-approximation instead, [2] already presents a
single-pass semi-streaming algorithm. On the other hand, we prove
our lower bound for exact MSTs for the algorithmically easiest
decision version of the problem: given a threshold at the beginning
of the stream, decide whether the weight of MSTs is at least as
large as this threshold or not. It is also worth mentioning that many

While these restrictions seem quite strong, almost all known graph streaming algo-
rithms can handle such inputs as well. However, in this work, we will not rely on this
characterization.

3To our knowledge, this lower bound appears to have been folklore and we do not
know a reference for it.
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problems admit provable separations between their search versus
decision variants in the dynamic streaming model; see, e.g. [7]
for an example of a separation for finding approximate matchings
versus estimating the size of the largest matchings via single-pass
algorithms (or in [8] for the streaming set cover problem).

Our techniques. Result 1 relies on proving a new multi-round
communication complexity lower bound for a non-standard compo-
sition of a variant of the Universal Relation (UR) problem. UR
has been instrumental in proving prior lower bounds for single-pass
dynamic streaming algorithms [28, 30, 35] (see also [36]). In this
problem, there is a universe U of m elements; Alice receives a set
A C U and Bob receives a proper subset B C A. The communication
is only from Alice to Bob. Prior work has shown that in order for
Bob to output any element from A \ B, Alice needs to communi-
cate Q(log2 m) bits to succeed with constant probability [28] or
Q(log® m) bits for high probability [30].

We start by proving that any r-round protocol—wherein Alice
and Bob can communicate back and forth at most r times—for out-
putting the smallest element in A \ B (as opposed to outputting any
one) requires Qr(ml/ ") communication. We can then combine this
with standard direct-sum arguments in communication complexity
(see, e.g. [12]) to obtain that solving m independent copies of this
problem requires Q,(m!*/7) communication. We then show how
to reduce this to the problem of finding MSTs in dynamic streams
and prove a lower bound for the latter problem as well. This lower
bound however does not extend to the decision problem (which is
a common occurrence for other “direct-sum UR-type” reductions,
e.g., in [35] and [36]).

As we will explain in Section 3, to be able to extend the lower
bound to the decision problem, the key ingredients used in our
proof are:

Direct sum with “hint”. At a high level, we will be dealing with
a direct sum of a carefully defined variant of pointer chasing
problems on trees. It differs from typical direct-sum argu-
ments in that the reduction to MST demands knowing the
sum of outputs of all copies, which correlates the copies. Our
direct-sum result is obtained by directly carrying this extra
bit of knowledge, named hint, throughout the proof.

Majority vs. XOR. It turns out the most straightforward approach,
which guesses the hint and conducts a typical direct-sum
argument without the hint, can never work as it involves
lower bounding majority computation of multiple copies
with super low advantage. Simple coin toss examples will
show that such a result is impossible. We work around this
by a connection between majority computation with high
advantage and XOR computation with low advantage. It en-
ables us to utilize direct-sum results for XOR computation
instead.

Multi-party XOR lemma. Since existing results are not strong
enough for proving the optimal pass lower bound, we devise
a multi-party XOR lemma, mimicking the 2-party version
of [37], that improves the dependence of communication in
the number of rounds, while leading to a worse advantage
decay. In particular, suppose each of k pairs of 2 parties are
given n/k instances of a boolean function f, and they want
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to jointly solve the n-fold XOR of all n instances. We prove
the following result which may be of independent interest.

Result 2. If any r-round, 2-party protocol that solves f with
constant probability, requires C communication, then any r-round,
2k-party protocol that solves the n-fold XOR of f with probability

% + (%)Q(é>, requires Q(% . (g — O(r))) communication.

Independent work. A recent independent work [26], improving
upon [37], proves better XOR lemmas in the standard two-party
setting. Specifically, for r-round protocols, the factor of loss in com-
munication is reduced from exponential to linear in r. As discussed
in Sections 3 and 4, such an XOR lemma is sufficient for proving the
optimal pass lower bound directly in the standard two-party setting,
eliminating the need of working with the multi-party setting (i.e.,
Section 5). As a byproduct, it also slightly improves the lower order
factors in the derived space lower bound (i.e., dependency on p and
log n).

The rest of this paper is organized as follows. Section 3 provides
a sketch of our proof in more detail. Then we prove a suboptimal
pass lower bound in Section 4 using the 2-party XOR lemma of [37].
Our multi-party XOR lemma is presented in Section 5 and used to
obtain the full version of our main result. Omitted proofs can be
found in the full version of this paper [10].

2 PRELIMINARIES

Notation. For an integer n € N, [n] is used as a shorthand for
the set {1,...,n}. For a tuple X = (Xj,...,Xp,), we write X<; =

(X1,...,Xj). Similarly, we have X>; and X<, X>;. We also use
X_i=(X1,...,Xi-1,Xi+1, - - - » Xn). The XOR operation is denoted
by &.

Throughout this paper, sans-serif letters are reserved for random
variables (e.g. X) while normal letters are used for realizations of the
corresponding random variables (e.g. x, X). For random variables
X, Y, we denote the Shannon entropy of X by H(X), the mutual
information between X,Y by I(X;Y), the KL-divergence between
X, Y by D(X || Y), and the total variation distance between X,Y by
1X = Ylltva-

Dynamic graph streaming. For a dynamic graph streaming prob-
lem, the input is a sequence of insertions and deletions of edges in
an underlying graph, initially empty. In every pass of an algorithm,
it processes the operations, one at a time, in the given order. At the
end of the algorithm, it answers some query about the constructed
graph resulting from all insertions and deletions. Only the space
requirement between operations is considered in this paper (i.e.,
unlimited memory is allowed while processing each operation).
We are interested in the problem MST,, which asks whether the
weight of minimum spanning trees of an n-vertex graph is at least
a given threshold.

Communication model. For the standard 2-party communication
model, we assume Alice sends the first message and the receiver of
the last message returns the output. Let CC(r) denote the communi-
cation complexity of a protocol 7, and cC (1) the communication
complexity of the i-th round of 7. We also use IC(x) to denote
the internal information cost of x. The distributional complexity of

f, denoted by D,([e) (f), is defined as the infimum communication
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complexity of any r-round protocol solving f with probability e
over .

The multi-party communication model we use in this paper is for-
mally defined as follows. There are 2k parties named Alice 1,. ..,k
and Bob 1, ..., k. Each Alice has an input from X and each Bob has
an input from Y. There is a blackboard, initially empty, visible to all
parties. The parties proceed in the circular order of Alice 1,.. .,k
and Bob 1,..., k, starting with Alice 1. In one’s turn, it computes
a message given its input as well as the current blackboard, and
posts the message to the blackboard. At the end of the protocol,
the last party returns an output (and does not post a message to
the blackboard). The communication complexity is defined as the
length of the final blackboard. The number of rounds is defined
as the total number of times Alice k and Bob k post messages to
the blackboard. (So, e.g., a 1-round protocol in general consists of
Alice 1,...,k and Bob 1,. ..,k — 1 posting one message each, and
Bob k returning an output.) In a randomized protocol, each party is
allowed to use both public randomness, shared by all parties, and
private randomness, known only to itself. The goal is to compute
a function g over X kx Yk we similarly define the distributional

complexity of g in the 2k-party model and denote it by D,([e)’k (9),
where y is a distribution over X k x Yk 1t can be verified that the
multi-party model for k = 1 coincides with the standard 2-party
model. Moreover, Dl(,re)l() = Df:e ().

In this paper, we are interested in the k-fold XOR of a func-
tion f : X x Y — {0, 1}, defined as f®k(x1, s X YT s Yg) =
@ie[k] f(xi,yi). We also consider the k-fold majority, denoted

by f#k, which evaluates to 1 if f(x;,y;) = 1 for more than | k/2]
indices i € [k], and 0 otherwise.

3 TECHNICAL OVERVIEW

This section serves as an outline of our proof. As a starting point,
in Section 3.1, we first tackle the easier problem of proving a lower
bound for the task of finding an MST solution, i.e., outputting
the edges of an MST. We then proceed to identify the primary
challenges in extending our technique to give a lower bound for the
algorithmically easier task of computing the weight of MSTs or even
for the task of deciding whether it exceeds a specified threshold.
In Section 3.2, we discuss some of our initial attempts and their
inherent limitations. Finally, we present the ultimate solution in
Section 3.3.

3.1 The Search Version

Our hard instance. We start by outlining our lower bound for
the easier task of lower bounding the space complexity of steaming
algorithms that output the edges of an MST. To prove our lower
bound, we design hard instances inspired by that of [35, 36], that
were used to prove lower bounds for the Spanning Forest and
Connectivity problems. See Figure 1 for an illustration of our hard
instances. Our construction starts with a clique of size n/2. Edges
in the clique all have the minimum possible weight, say 0. Another
n/2 vertices are added, one at a time, as follows. For each non-clique
vertex v, it is randomly connected to some vertices in the clique,
with distinct, positive edge weights. Later in the stream, we remove
a proper subset of the edges incident on v. Both the inserted and
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Figure 1: An illustration of hard instances for the search ver-
sion of MST. Bottom vertices are fully connected. Each top
vertex is connected to some bottom vertices via red edges (in-
serted and deleted) and blue edges (inserted but not deleted)
— to avoid clutter, only edges for the first vertex are drawn.

deleted edges follow some (non-uniform) hard distributions. The
concatenation of the clique edges (of weight 0), followed by the edge
insertions for all non-clique vertices, and then the edge deletions
for all non-clique vertices, constitutes the entire stream.

Observe that any MST of the constructed graph must have the
following structure: a spanning tree connecting the clique, plus,
for each non-clique vertex, the minimum weight edge that is not
deleted connecting this vertex to the clique. As a consequence, the
problem of finding an MST essentially reduces to the direct sum
(i.e., solving multiple copies) of the following subproblem, which
we denote by URIiin: find the minimum element in the difference
A\ B of two sets A, B, where B is promised to be a proper subset of
A.

The problem URIiin can be viewed as an addition to the well-
studied family of Universal Relation problems [31]. The work of
[35] proves optimal lower bounds for Spanning Forest via one of
its variants, URS, in which it is sufficient to find any element
in the difference A \ B, as opposed to finding the minimum ele-
ment. In particular, [35] use tight results from [30] for the one-way
communication complexity of UR“. However, this bound is only
poly-logarithmic and therefore is too weak for our purposes. We
prove that UR]iin is hard even with multiple rounds of communi-

cation. More specifically, we show that it admits an r vs. Q,(m!/")
round-communication tradeoff, where m is the size of the universe.
Given the canonical reduction from communication to streaming,
this means any direct sum/product result for bounded-round two-
party communication (e.g., [14, 27]) suffices for lower bounding the
search version of MST.

Augmented Tree Pointer Chasing. We prove the round vs. com-
munication tradeoft for Uerlin by reduction from an “augmented”
version of Pointer Chasing on trees®. The starting point is the
well-known Augmented Index problem [34], in which Alice holds
x € {0,1}" while Bob is required to output x; given i € [n] and
X<j. It is an “augmented” version of Index in that Bob additionally
knows x«;, i.e., everything to the left of the pointer i.

Note that Index can be viewed as Pointer Chasing on single-level
trees. To generalize it to multi-level trees, recall that in the standard

4We note that UR;in is introduced here only for the purpose of illustration and
to provide a better context. Our proofs in Sections 4 and 5 directly deal with the
augmented version of Pointer Chasing with no reference to UR;in. For completeness
and since the lower bound for this problem may be of independent interest, we include
its proof; see Corollary 4.7.
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(a) A standard Tree Pointer Chasing instance.
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(b) The same instance with full knowledge of left subtrees.
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(c) The same instance with full knowledge of left subtrees and no
knowledge of right subtrees.

A

Figure 2: An illustration of ATPC instances. Solid, blue edges
are known to Alice and solid, red edges are known to Bob.
Thick edges are owned in standard Tree Pointer Chasing
while thin edges are known via augmentation. (For example,
in Figure 2c, there are two overlapping edges from node 6
to node 13. One is red and thick, meaning that Bob owns
this edge in standard Tree Pointer Chasing, and the other
is blue and thin, meaning that Alice knows this edge via
augmentation.) Dashed, light-colored edges are forgotten
during augmentation.

Tree Pointer Chasing problem, one party owns all pointers in odd
levels (that is, the first party gets as input an edge going out of
each node in an odd level) and the other party owns all pointers
in even levels. The parties’ goal is to output the unique leaf node
that can be reached using the parties’ pointers. See Figure 2a for an
example.

A natural attempt is to additionally give the owner of each
pointer full knowledge of all the left subtrees, or equivalently all
pointers owned by the other party in those subtrees. In other words,
if a party has, as part of its input, the pointer connecting vertex
v to its i-th child, then the same party also gets all the pointers
in the other party’s input for the subtrees rooted at the first i — 1
children of v. See Figure 2b for an illustration. For example, in the
illustration, since Bob has the pointer connecting the root to its
second child, Bob also knows all Alice’s pointers in the entire left
subtree of the root.

Forgetting pointers. We wish to prove a lower bound for the
augmented Pointer Chasing problem on trees as described above.
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However, we next show that there is a subtle issue. Suppose we want
to prove the lower bound using the, by now standard, embedding
arguments, showing that a protocol for instances with r levels
implies a protocol with one less message for instances with r — 1
levels. To do so, we sample an instance with r levels as follows.
We denote by (A;, Bj) the subinstance corresponding to the j-th
subtree (of the root) of the r-level instance we are sampling. We
also denote by (A’, B’) the input instance with r — 1 levels that
we attempt to solve. Alice and Bob publicly sample an index i
and do the embedding by setting (A;, B;) = (A’,B’). A; is also
publicly sampled (note that this standard sampling respects our
augmentation). To eliminate the first round of communication, Alice
and Bob publicly sample Alice’s first message M; (conditioned on
A<;). In order to continue the simulation, the standard embedding
argument would have the parties privately sample all remaining
parts, namely A, B<j, B>;. Unfortunately, As; and Bs; may not
be privately sampled (roughly following their original distributions)
at the same time, due to possible high correlation.

To rectify the situation, we “eliminate” Bs; by defining the Aug-
mented Tree Pointer Chasing (ATPC) problem as follows: for each
pointer, the party that owns it, also (i) knows everything that the
other party knows in subtrees to its left; and (ii) knows nothing in
subtrees to its right. See Figure 2c for an illustration. For example,
in the illustration, Alice “forgets” the pointer from node 10 because
it is in a subtree to the right of the pointer from node 2.

We also emphasize that “everything that the other party knows”
may not be equivalent to “all pointers owned by the other party”,
exactly because the other party may forget some of its originally
owned pointers. To see this, consider the pointers from nodes 10 and
11 in the illustration. Before the augmentation, Alice knows both
of them and Bob knows neither. As we perform the augmentation
bottom-up, Bob knows the one from node 10 since it is in a subtree
to the left of the pointer from node 5. Another level up, Alice forgets
both of them due to the pointer from node 2. Note, however, that
Bob still keeps his knowledge of the pointer from node 10. As a
result, finally at the top level, Bob has the combined knowledge of
both parties, including the pointer from node 10, but not the one
from node 11. In other words, Bob does not know the latter even
though it is also in a subtree to the left of the pointer from the root.
Moreover, Bob’s knowledge of the former is actually coming from
himself in lower levels, but not from Alice.

A formal definition of ATPC is given in Section 4. Intuitively,
the augmentation neither helps nor hurts the parties that attempt
to solve an ATPC instance, as both parties should always follow
the correct pointers. Indeed, we are able to prove an r vs. Q,(n!/")
round-communication tradeoff for trees with n leaf nodes, using
standard information-theoretic tools.

Reducing ATPC to URS,, and the role of augmentation. Next, we
wish to show a lower bound for URC. by proving that URC.
is even harder than ATPC. The reduction is as follows. Given an
ATPC instance, Alice is constructing the larger set A (corresponding
to insertions for MST) and Bob is constructing the smaller set B
(corresponding to deletions for MST). The universe contains all
the leaf nodes of the ATPC instance, sequentially ordered from
left to right, and the goal is to have min(A \ B) being the leaf
node induced by the pointers in the ATPC problem. Imagine the
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parties perform the construction of the sets A and B “bottom-up”
in the following sense. Suppose the current pointer i is known to
Alice (a similar argument applies to the case in which Bob knows
the current pointer). Also, assume that the parties have already
constructed Ay, ..., Ay and By, . .., B,, where w is the arity of the
ATPC tree and (A}, Bj) is the Uerlin instance constructed for the
Jj-th subtree of the ATPC tree, and they want to combine all these
sets to obtain A, B.

Now, we may wish for Bob to set B = Bj U- - -UB; and for Alice to
set A = B1U- - -UB;_1UA;, as this would imply A\ B = A; \ B;, while
the promise that B C A in the definition of URIf1in is satisfied. Note
that Alice can indeed compute this set A thanks to the augmentation
that gives her By, - - -, Bj—1. In fact, this is the exact reason for the
augmentation. Unfortunately, though, Bob cannot compute B as he
does not know i. Nevertheless, it can be easily remedied by setting
A=BjU---UBj_1{UA;UA’and B=B; U---U B,,, where A’ is
the set of all leaf nodes in subtreesi + 1, ..., w.

Weights. Since the number of weights in our MST instances is
essentially the number of leaf nodes in the ATPC instances, our
MST construction only uses polynomially many integer weights.
We note that this is necessary due to the result of [2], as otherwise
there is a single pass streaming algorithm that finds an MST in
nlto() space. Specifically, an MST can be incrementally found
by considering all edges of weight i and applying the Spanning
Forest algorithm of [2] at the i-th step. This can be implemented in a
single pass by maintaining W independent copies of the sketch used
for the Spanning Forest algorithm, resulting in an O(nW)-space
algorithm.

Computing the MST weight with large edge weights. So far, we
are able to lower bound the search version of MST. We note that
the construction shown in Figure 1 can be readily adapted for
computing the weight of MSTs if exponential edge weights were
allowed?: edges incident on the j-th non-clique vertex have weights
in the order of n/, so that the minimum weight edge that is not
deleted, for each non-clique vertex, can be uniquely recovered
from the MST weight alone. However, exponential edge weights
would lead to a polynomial overhead in space requirement, which is
unaffordable for streaming algorithms. So, we explore the decision
version of MST in the following, while keeping the edge weights
polynomial.

3.2 The Decision Version

Decisional URS, . . We next proceed to outline our lower bound
for the algorithmically-easier decision version of the MST prob-
lem. Since there exist efficient algorithms, even with a single pass,
for approximating the weight of MSTs (e.g. [2]), we should expect
hard instances for the decision version to have MST weights con-
centrated within a small range. So the following attempt seems
plausible. Let e; be the minimum edge weight for the j-th non-
clique vertex, and z; the parity of ;. Alsolet T = 3 e; — X z;.
Then the weight of MSTs is always between T and T + k, where
k = n/2 is the number of non-clique vertices. In the above, we have
argued that finding e; is hard for a fixed j. With little additional

5This is not an issue for the search version of MST as even linear edge weights are
sufficient to ensure a unique MST, up to edges in the clique.
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effort we can show that computing z; is also hard.® We denote by
URE. the corresponding decisional universal relation problem,
min,dec

where one needs to compute the parity of the minimum element in
A\ B. We remark that this attempt is in line with [36], in which a
decision version of Universal Relation, URgeC, is utilized to obtain

optimal lower bounds for Connectivity.

A majority lemma? One may hope that our final result would
again follow from a direct-sum (or, more accurately, “majority
lemma’) type argument: hardness of some boolean function f im-
plies hardness of computing the majority of k copies of f”. This
is because given such a majority lemma, we can simply set the
threshold to be T + k/2. It is easy to see that the weight of MSTs
exceeds T + k/2 if and only if the majority of the k parity bits z; is
1.

Fixing the threshold at the price of correlating the UR;in,dec in-
stances. To our disappointment, this approach has major problems.
One notable issue is that T is “instance dependent”, and is not a
predetermined value, and therefore the threshold T + k/2 is also
instance dependent. This is indeed a problem as, in the reduction in
Figure 1, the parties would not know the threshold value required
for the streaming MST instance. In other words, we don’t even have
a well-defined input for the decision version of MST! To circumvent
this, we add one special edge of weight T’ = C — T to the graph,
where C is a sufficiently large number to ensure T” is positive. This
way, we are always comparing the weight of the MSTs with a fixed
number C + k/2.

In the communication setting, this addition is equivalent to re-
vealing T to both parities (implemented as an extra part of input),
which correlates all k copies of UR;m, dec Since a direct-sum style
argument typically deals with independent copies, we now need
to “get rid” of T. Note that T = poly(n) = poly(k). This renders it
impossible to brute force over all possible values of T due to the
communication constraint.

Another way of getting rid of T would be to make a random
guess at T and output randomly if the guess is wrong (with very
small communication overhead for verifying the guess). However,
this approach has the following major shortcoming: the random
guessing reduces the advantage (over 1/2) by a factor of T = poly (k)
but a majority lemma can never hold in such a low advantage regime!
Specifically, the following may not be true:

If computing f with success probability 3/4 requires
C communication, then computing the majority of k
copies of f with success probability 1/2 + 1/k requires
Q(kC) communication.

What’s even worse, is that C communication is sufficient to achieve
success probability 1/2+ ©(1/vVk). To see this, suppose f evaluates
to 0 on exactly half of the first k — 1 copies and 1 on the other
half, and then the majority is solely determined by the output of
the last copy. Now consider the protocol that simply computes the
value of the last copy and outputs it as the majority. It succeeds
whenever the single copy protocol succeeds and thus has constant

ORecall that the lower bound on UR_, is derived via ATPC. Roughly speaking, we
may view the bottom level as a composition of two sublevels, one of which is binary.
"For simplicity, we may assume throughout this section that f is “balanced” in the
sense that it evaluates to 0 on exactly half of possible inputs and to 1 on the other half.
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advantage (3/4 — 1/2 = 1/4 to be exact) in the above case, which
occurs with probability ©(1/ Vk) due to properties of binomial
distributions, and is equivalent to a random guess in all other cases
as the majority is already determined by the first k — 1 copies (recall
that we assume f to be balanced). So we cannot hope for a majority
lemma that works with advantage well below ©(1/ Vk). This dooms
our attempt as we are requiring even much lower advantage.

Majority Lemma with hint via XOR Lemma with hint. We work
around the above limitation by a different approach. Instead of
directly getting rid of T and seeking a majority lemma with low
advantage (which turns out to be nonexistent), we convert majority
computation into XOR computation by a simple process (with T
revealed). Only after that, we again guess T and then utilize an XOR
lemma with low advantage which indeed exists. As will be seen
later, this alternative approach can be viewed as a majority lemma
with high advantage (close to 1/2).

To prove this latter majority lemma, we start from the beautiful
recent work [37] that provides a strong XOR lemma in which advan-
tage decreases exponentially in k. We then consider the following
process for computing XOR from majority. If the number of 1’s is at
most k/2 (so the majority is 0), return the parity of k/2 (assume that
k is even), and otherwise return the parity of k/2+ 1. Intuitively, the
probability of having exactly i 1’s is slightly larger than having i — 1,
for i < k/2. So this process should have certain advantage over 1/2.
Indeed, again by properties of binomial distributions, this advan-
tage can be shown to be ©(1/Vk), assuming that the computation
of majority is perfect. In general, we can prove that a protocol for
computing majority with success probability 1—e implies a protocol
for computing XOR with success probability 1/2 — € + ©(1/Vk).
Since the XOR lemma of [37] proves that a protocol for comput-
ing the XOR with success probability 1/2 — € + ©(1/ \/E) (or even
1/2 + exp(—k)) is costly, it also implies that the computation of the
majority with success probability 1 — € is costly. Our entire proof
now works as follows.

(1) Prove a lower bound on UR;in’ dect

(2) Apply the XOR lemma of [37] to show it is also hard to

compute the XOR of k copies of Uerlin Jecs With success
probability 1/2 + 1/poly(k). This hardness continues to hold
with T revealed, which we call a “hint” in our proof.

(3) Using the above process, we get a lower bound for com-

puting the majority of k copies of UR;in’ dec> With success
probability 1 — 1/poly(k), and also with hint T.

(4) Finally, a streaming lower bound for the decision version of

MST is derived by our reduction (up to logarithmic factors
resulted from boosting the success probability).

All the above ideas are formalized in Section 4. At a high level, what
we really use, is roughly a majority lemma of the following form,
which has a very weak probability guarantee that is enough for us:
If computing f with success probability 3/4 requires
C communication, then computing the majority of k
copies of f with success probability 1 — 1/poly(k) re-
quires Q(kC) communication.
We note, however, that we need such a lemma that also works when
T is revealed. As we claimed before, to prove a majority lemma that
works when T is revealed, we can guess T, but then need to prove
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a majority lemma with a very small advantage. Likewise, to show
an XOR lemma that works when T is revealed, we can guess T and
prove an XOR lemma for very small advantages. Luckily, unlike
the case for majority, such an XOR lemma can be proved. Indeed,
the XOR lemma of [37] has a strong enough probability guarantee.

Unfortunately, all the above has not yet led to an optimal pass
lower bound. Specifically, the XOR lemma of [37] shows that com-
puting the XOR of k copies requires roughly k/ rO(r) times the com-
munication for computing a single copy, where r is the number of
communication rounds. This loss of an rO(") factor is problematic as
the final lower bound that can be obtained is roughly n'*1/7 /rO(r),
which only works for r up to y/log n/loglog n. For comparison, [2]
presents a semi-streaming algorithm of O(log n/loglogn) passes.
So, there is still a gap between the lower and the upper bounds. Fur-
thermore, the loss in communication turns out to be the sole barrier
for closing this gap, in the sense that we can prove a tight lower
bound if the rO") factor could be reduced to poly(r). We address
this challenge in the rest of this section, by proving a multi-party
XOR lemma (rather than a two-party one) with a better dependence
on the number of rounds.

3.3 Multi-Party XOR Lemma

The XOR lemma we need. As indicated above, an ideal XOR
lemma (in the standard two-party setting) that is sufficient for our
purpose is of the following form: computing the XOR of k copies
requires k/poly(r) times the communication for computing a sin-
gle copy, to achieve 1/poly(k) advantage. Note that such an XOR
lemma does not necessarily improve upon [37] as it only requires
a polynomial advantage decay. Nevertheless, to the best of our
knowledge, the existence of such an XOR lemma is still unknown?®.

We prove such a lemma in the multi-party setting. We note that
we opt not to restrict ourselves in the two-party setting as our
ultimate goal is to prove streaming lower bounds and multi-party
settings are usually easier to work with. Nevertheless, our multi-
party XOR lemma may be of independent interest as well since it
works entirely in the communication setting, with no reference to
streaming.

Separating amplification of communication and of advantage. To
get our multi-party XOR lemma, we decompose it into two inde-
pendent parts: amplification of communication and amplification of
advantage. More specifically, up to poly(r) factors, amplification of
communication means:

If computing f with success probability 1/2+ 8 requires
C communication, then computing the XOR of k1 copies
of f with success probability 1/2+5+¢ requires Qe (k1 C)
communication,

and amplification of advantage means:

If computing f with success probability 3/4 requires C
communication, then computing the XOR of ka copies of
f with success probability 1/2 + exp(—Q(kz2)) requires
Q(C) communication.

8 As mentioned in Section 1, the existence of such an XOR lemma is recently proved in an
independent work [26]. Indeed, their result suffers only a factor of 7 in communication
while maintaining an exponential decay in advantage.
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Intuitively, this decomposition is possible because the XOR of
many XOR computations is equivalent to a single XOR compu-
tation. Furthermore, our desired XOR lemma, up to logarithmic fac-
tors, follows from combining amplification of communication with

k1 = ©(k/log k) and amplification of advantage with k; = ©(log k).

Amplification of communication. As to amplification of commu-
nication, it can be accomplished using known (round-preserving)
compression schemes (e.g., [14, 27]) in the standard two-party set-
ting. However, we do emphasize that known compression schemes
all seem to have a linear (or even polynomial) dependence on 1/¢
in the communication if we want an e-simulation. This essentially
means amplification of communication has to be performed before
amplification of advantage. Otherwise, communication would suf-
fer a polynomial blowup in order to preserve the already amplified
advantage.

Amplification of advantage. For amplification of advantage, in-
spiration is drawn from the streaming XOR lemma by [11]. Their
result shows that computing the XOR of k copies in the stream-
ing setting with the same space constraint as for a single copy,
can only achieve advantage exponentially small in k. Moreover,
streaming algorithms are viewed as multi-party communication
protocols in their proof. This enables us to adapt their techniques
to prove a multi-party communication version: computing the XOR
of k copies with (2k parties and) the same total communication as
for a single copy (with two parties), can only achieve advantage
exponentially small in k. Combined with amplification of commu-
nication, it finally yields a multi-party XOR lemma with the desired
parameters.

We also remark that the streaming XOR lemma of [11] applies
to streams in which k copies arrive sequentially, i.e., one complete
stream followed by another. For our MST construction, this means
insertions of the first non-clique vertex is followed by deletions of
the same vertex, and then insertions and deletions of the second
non-clique vertex and so on. In contrast, our version for multi-party
communication has an “interleaved” input order in the sense that
part of the first copy (insertions for the first non-clique vertex) is
followed by part of the second copy (insertions for the second non-
clique vertex) and so on for all other copies, and the remaining part
of the first copy (deletions for the first non-clique vertex) only comes
after that. Put it another way, all the Alices communicate before all
the Bobs. Consequently, the streams resulted from our proof have
the simplest form: all insertions arrive before all deletions.

4 A LOWER BOUND IN FEW PASSES

As a warmup, we first prove the following weaker version of Result 1
for only few passes. It already contains many of the critical ideas
for fully proving Result 1, while also identifying the key barrier in
getting a proof for even more passes.

THEOREM 4.1 (WEAKER VERSION OF RESULT 1). For integer p =

logn
loglogn

of

), any p-pass dynamic streaming algorithm for solving
T
MST,, with probability 2/3 requires Q(Pg(;—zo;n) space.

We remark that the upper bound on edge weights in Result 1 will
be seen in the proof of Claim 4.5.
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4.1 Augmented Tree Pointer Chasing

The proof of Theorem 4.1 is via a communication problem named
Augmented Tree Pointer Chasing.

Definition 4.2. For d,w > 1, the two-party problem ATPC, ,, is
defined recursively as follows.

(1) For d = 1, Alice is given as input AM € {0,1}" and Bob is

given as input B = (i(l)’ASi)(u)’ where i(D) € [w]. They

(1)
i)
(2) For d > 1, Alice is given as input A(4) = b(dv;l) and Bob
(d-1) b(d 1)

<i(d) > " <j(d)
[w] and (a](.d l),b](.d 1)) for j € [w] is an ATPCy_y ,,
instance’. They are required to output the answer of the

d-1 d-1
ATPC,_, ,, instance (a((d) ) b((d) ))

Fork > 1, ATPC?;’fW denotes the k-fold XOR version of ATPC ,,,

and similarly ATPCZkW denotes the k-fold majority version of
ATPCy . ’

Each ATPC, ,, instance can be naturally visualized on a depth-d,
w-ary tree with i’s being pointers of corresponding levels. Suppose
the leaf nodes are numbered from 1 to w¥. Starting from the root
and following the pointers will lead to a unique leaf node t € [w¥],
which is called the target of this instance. For either of the k-fold
versions of ATPCy ,,, both parties may additionally be given the
hint T = 3 ;e (k] tj as part of their input, where ¢; is the target of
the j-th ATPCd w instance. The resulting problems are denoted by
Hint-ATPCS" and Hint-ATPC

are required to output A

is given as input B(@) = (l(d) a ), where i(4) €

, respectively.

At a high level, in an instance of ATPC, ,,, Alice owns all point-
ers at even levels while Bob owns all pointers at odd levels. It only
differs from the stardard Tree Pointer Chasing problem by perform-
ing the following modification to each internal node: the owner
of a pointer is additionally given the other party’s knowledge of
subtrees to the left of the pointer, while losing any knowledge of
subtrees to the right of the pointer. The modification is performed
bottom-up. In other words, the effect of ancestors supersedes that
of descendants. Intuitively, the extra information about subtrees to
the left cannot help while the lost information about subtrees to the
right cannot hurt, as the owner of the current node should always
follow the pointer. Also note that ATPCj ,, is exactly the same as
the well-studied Augmented Index problem. For d > 1, ATPC ,,
can be naturally viewed as its multi-round generalization.

The hard input distributions and corresponding lower bounds
are as follows.

Distribution 1. For d, w > 1, the hard input distribution Dy ,, is

defined recursively as follows.

(1) For d = 1, Alice is given as input A(!) and Bob is given as
input B = (i(l),ASi)(l)), where i) is sampled from [w]
uniformly at random and A is independently sampled
from {0, 1}" uniformly at random.

(2) For d > 1, Alice is given as input A(4) = b(d Y and Bob

is given as input B(4) = (i(4), a(d(dl)), bid(dl))) where i(9) is

1)

9For j > i@, aﬁ.d7 is imaginary and given to neither party.
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sampled from [w] uniformly at random and (aﬁd ) b(d ) )

for j € [w] is independently sampled from Dy_ ,,,.
LEMMA 4.3. Ford,w > 1, and € € [0,1/2], it holds that

2
(d) w
D ATPC, > —.
Do 2 ( d, w) d

Distribution 2. For k,d, w > 1, the hard input distribution .‘Dk

is defined as follows. Alice is given as input A = a( ) and Bob is

(sk)’ where (aﬁ.d), bj(.d)) for j € [k] is indepen-

dently sampled from Dy ,,,.

given as input B=b

LEMMA 4.4. Forw > 1,d = o(logw/loglogw), k = w(dlogw),
it holds that

(d) — k oy _ kw
Py 3 (HInt-ATPC,,) = 9\ o0z logk) |

We first prove Theorem 4.1 in Section 4.2, assuming the lower
bounds for Augmented Tree Pointer Chasing. Proofs of the above
lower bounds are shown in Sections 4.3 and 4.4, respectively.

4.2 Proof of Theorem 4.1

In this section, we present a proof of Theorem 4.1 via the following
claim.

Cramm 4.5. Fork,p,w,S > 1, and € € [0,1], if there exists a p-
pass, S-space dynamic streaming algorithm solving MST;_,.,2p-141
with probability e, then there also exists a (2p — 1)-round, (2p — 1)S-

communication protocol solving Hint-ATPCZ'p 1, With probability

€ overZ)zp Lw

Before proving Claim 4.5, we show that it indeed implies Theo-
rem 4.1.

ProoF oF THEOREM 4.1. Fix a p-pass dynamic streaming algo-
rithm for solving MST,, with probability 2/3 that has space S. Let
k=(n-1)/2d=2p-1,w=(n-k—-1)"4 and C = dS. Ap-
plying the reduction of Claim 4.5, we get a d-round protocol for

solving Hlnt-ATPC#k with probability 2/3 over Dk that has
communication C. On the other hand, Lemma 4.4 1mp11es
kw
C=Q(——].
( dO(d) Jog k )
or equivalently,
1+Tl—1
S=Q ((;l()—) s
pPP) logn

as claimed. O

We remark that the assumption p = o(+/log n/loglog n) of Theo-

rem 4.1 is nessesary in the above proof for satisfying the condition
d = o(logw/loglog w) of Lemma 4.4. Moreover, a closer look at
the proofs in Sections 4.3 and 4.4 will reveal that this constraint
comes solely from the rO(r)_fold decrease in communication when
using the XOR lemma of [37]. If the loss factor were reduced to
poly(r) (meaning a better XOR lemma), the constraint would then
be relaxed to d = w®(!) In turn, this would be sufficient for prov-
ing a lower bound for up to p = o(log n/loglog n) passes (and thus
the full verion of our main result). Nevertheless, as will be seen
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in Section 5, we actually take a two-step approach in the absence
of such an ideal XOR lemma. At a high level, we will perform the
amplification of communication and error probability separately.
The rest of this section constitutes a proof of Claim 4.5. Let
d=2p-1,C=dS,andn =k + w? + 1. Fix a dynamic streaming
algorithm 7 as described in the claim. In the following, we construct
a protocol 7 for solving Hint-ATPCZ{‘W with the desired properties.

On input ((A = a(<dk), T), (B = b(<dk), T)), r simulates 7 on the fol-
lowing dynamic stream, where sender and receiver are defined
in Algorithm 1 and Algorithm 2, respectively (p = 0 represents
Alice and p = 1 represents Bob); see Figure 3 for an illustration of
the functions and Figure 4 for an illustration of the reduction. The

threshold given to 7 is to be determined.
(1) Insert an edge (1, n) with weight 2kwd — 2T + 1.
(2) Foru < v € [w?], insert an edge (k +u, k +v) with weight 1.
(3) For j € [k] and t € sender(d,w, a;d), 0), insert an edge
(J, k + [t/2]) with weight ¢ + 1.
(4) For j € [k] and t € receiver(d, w, b;d), 1), delete the edge
(J, k + [t/2]) with weight ¢ + 1.

Algorithm 1. The function sender(d, w,A(d),p).
e d=1: We have A(D € {0,1}".

— p = 0: Return
N C I
{2] AJ. |]€[w]}.
- p = 1: Return

().
[2w]\ {2 -4 | j e [wi}.
e d > 1: We have A4) = b(gd‘;l),where b](.d_l) for j € [w] is
a valid input to Bob for ATPC;_; ,,. Return
U {2(]’ —1)-wi 14+t |tereceiver(d-1,w, b](.d_l),p)} )
jelwl
Algorithm 2. The function receiver(d, w, B<d),p).
e d = 1: We have B(D) = (i(l),A(l_) ), where i e [w] and
<i(M
A € (0,1} for j e [i) -1].

— p = 0: Return
(2wl \ {2 - 4" | j e 10 - 1)}
— p = 1: Return

{zj'—A;l) |je[iV- 1]}.

e d > 1: We have B(4) = (i(d),a(;(_dl)),bg(_dl))), where i(4) ¢
[w], (a;dfl), b;dﬁl)) for j € [i*9~1 —1] isa valid instance of
ATPC;_q affi:l) is a valid input to Alice for ATPCy_j ,,.
If p = 0, return

U {2(]‘ -1)- wi 4t | t € receiver(d — 1, w, bj(.d_l), l)}

jelith-1]

U {z(i(d) —1)-w? 41|t e sender(d—1,w, a?ff,)‘”,o)}

U [2i D widt 41 2wl
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Figure 3: An illustration of functions sender and receiver,
for d = 3 and w = 2. Blue edges are the pointers owned by
Alice (not via augmentation) while red edges are the pointers
owned by Bob (not via augmentation). Unfilled leaf nodes
have value 0 while filled leaf nodes have value 1. Each internal
node is labeled by the set of insertions (for Alice), followed by
the set of deletions (for Bob), with respect to the subinstance
represented by its subtree, where the owner of the pointer
computes receiver and the other party computes sender.

-7
T 7,
‘.
-

Gi

Figure 4: An illustration of the reduction from Hint—ATPCZkW

to MST,,, for k = 4, wd = 5, and n = 10. Bottom vertices
(encircled in gray) represent the elements of [w4], which are
fully connected as a clique, while each of the top vertices
represents an ATPC, ,, instance. Red edges correspond to
the deletions while each of the blue edges is inserted but not
deleted - to avoid clutter, only the edges for j = 1 are drawn.
The green edge is (1, n).

and if p = 1, return

U {Z(j -1)- wdliy | t € receiver(d — 1, w, bﬁ.d‘”,o)}
jelit-1]

v {2(1'("’) -1)- wi 4t | t € sender(d — 1,w, af(‘i)_l), 1)} .

At a high level, Alice and Bob jointly encode the target of each
ATPC, ,, instance as the minimum weight edge incident on a
unique vertex. To do this, the sender of a message (who does not
own the current pointer) has no choice but to collect and merge
its insertions/deletions from all subtrees (offset properly to make
them disjoint). On the other hand, the receiver owns the current
pointer and thus has full knowledge of the subtrees to the left of
the pointer, enabling perfect simulation of both parties in all these
subtrees. Suppose the receiver performs opposite operations on
exactly the same subset of elements as the sender, meaning effec-
tively no edge is inserted/deleted, in each of these subtrees. As a
result, the output of the larger instance always corresponds to the
output of the smaller instance determined by the current pointer.
Besides, to ensure a proper inclusion, Alice as the receiver will in-
sert everything to the right of the pointer while Bob as the receiver
will delete nothing to the right of the pointer, as can be seen in the
second case of Algorithm 2.
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It can be verified that Alice is able to compute all insertions on
her own and Bob is able to compute all deletions on his own. So
the p-pass dynamic streaming algorithm 7 can be simulated by the
protocol 7, using d rounds and C communication, in the canonical
way of exchanging memory states. Now, it remains to formally
show the correctness of the reduction. This is done with the help
of the following technical claim.

Cram 4.6. For any ATPCy ,, instance (AD B) it holds that
sender(d, w,A(d),O) 2 receiver(d, w,B(d), 1),
and
receiver(d, w,B(d),O) 2 sender(d, w,A(d), 1).
Furthermore, it also holds that
min(sender(d, w, A, 0) \ receiver(d, w, B, 1)) =2t -z,
and
min(receiver(d, w,B(d),O) \ sender(d, w,A(d), 1)) =2t —z,

where t is the target of the instance, and z the output.

Assume the above claim for now. Applying it to (aﬁd), b;d)) for
j € [k], we know that the constructed dynamic stream is well-
defined and any minimum spanning tree of the constructed graph
must consist of the following edges.
(1) The edge (1, n) with weight 2kwd — 2T + 1.
(2 wi-1 edges connecting [k + 1,k + wd], each with weight 1.
(3) The edge (j, k + tj) with weight 2¢; — z; + 1, where t; is
the target of (aj(.d), b](.d)) and z; is the output of the same
instance, for j € [k].

Therefore, the weight of minimum spanning trees is

2kw? —2T+1+wé -1+ Z (2tj-zj+1) = 2kw +wl+k - Z zZj.
Jjelk] Jjelk]

In other words, 7 will output 1 (i.e., more than |k/2] out of the k
instances of ATPC, ,, output 1) if and only if 7 outputs 0 given
threshold 2kw? + w? + k — |k/2] (ie., the weight of minimum
spanning trees is less than the given threshold). So the success
probability remains the same.

It concludes this section as the proof of Claim 4.6 can be found in
the full version of this paper [10]. We remark that Claim 4.6 can also

be viewed as a reduction from ATPC ,, to URS over a uni-

min,dec
verse of size m = 2w9 , where Alice computes sender(d, w,A(d), 0)
and Bob computes receiver(d, w, B(d), 1). The corollary below fol-
lows immediately from the lower bound for ATPC, ,, (Lemma 4.3).

COROLLARY 4.7. For m,r > 1, and ¢ € [0,1/2], any r-round
(randomized) protocol that solves UR;I.” dec With probability 1/2 + €

over a universe of size m, requires Q(ezml/r/r) communication.

4.3 Lower Bound for ATPC,,,

We derive Lemma 4.3 by round elimination in this section. Claims 4.8
and 4.9 take care of the base case and each round elimination step,
respectively.

CLAIM 4.8 (BASE CASE). Forw > 1, any one-way protocol & for

solving ATPC;, succeeds with probability at most 1/2++/CC(x) /w
over D .
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CramM 4.9 (ROUND ELIMINATION). Ford,w > 1, and e € [0,1],
if there exists a (d + 1)-round protocol 7 solving ATPCg,, ,, with
probability € over Dy, ,,, then there also exists a d-round protocol

t solving ATPCy ,, with probability € — \JecW () /w over Dy w

and communication CC(r) = CC>D ().

The proof of Lemma 4.3 can be found in the full version of this
paper [10].

4.4 Lower Bound for Hint—ATPCZkW

We generalize the lower bound for ATPC, ,, to its k-fold verisons
in this section. The hardness of Hint-ATPC#k will be proved by a

series of reductions from ATPCGBI“M Indeed, Clalm 4.10 deals with
the hint, namely the sum of targets, while Claim 4.11 relates the
XOR and the majority versions of the problem. The hardness of
ATPCek will in turn be derived from the hardness of ATPC ,,
using the XOR lemma of [37] (Lemma 4.12).

CrLAM 4.10. Fork,d,w > 1, and € € [0,1/2], it holds that

D) | . (aTPCEk) < D("” . (Hint-ATPCSX )+kd log w.

d,w 7 kwd w2

Cram 4.11. Fork,d,w > 1, and € € [0,1/2], it holds that

o int-ATPCZ ) < D) o
DD’;W; +@(ﬁ)(H‘"‘ ATPC]) < DDS,W’ _(Hint-ATPC}f ).

We remark that the reductions in proving Claims 4.10 and 4.11
actually have little to do with the base problem ATPC, ,, itself. In
fact, almost identical reductions will also be used in Section 5 for
proving the full version of our main result.

The proof of Lemma 4.4 uses the following XOR lemma of [37]'°
and can be found in the full verion of this paper [10].

LEMMA 4.12 ([37]). For k,r > 1, Boolean function f, and input
distance p1, it holds that

D(r)

1k, 1

LU 2k g DO -

5 A LOWER BOUND IN OPTIMAL NUMBER OF
PASSES

In this section, we extend Theorem 4.1 to more passes as shown
in Theorem 5.1, fully proving Result 1. Also, Result 2, formalized
in Theorem 5.2, will be a direct consequence of Lemmas 5.3 and 5.4.

THEOREM 5.1 (FORMAL VERSION OF RESULT 1). For integer p =
(lolg lgogn) any p-pass dynamic streaming algorithm for solving

MST,, with probability 2/3 requires Q( n’ ) space.

THEOREM 5.2 (FORMAL VERSION OF RESULT 2). There exists g > 0
such that forn,r > 1, k € [1,n], € € (0, &), Boolean function f, and

OTechnically, the main result (Theorem 1) of [37] is an XOR lemma for randomized
communication complexity, while a distributional version is required in our proof.
Nevertheless, [37] proves the main result via another one (Theorem 2) with asymmetirc
communication, which directly works in the distributional model. The distributional
version we need is a natural byproduct of the simple argument from Theorem 2 to
Theorem 1; see Section 4 in the full version of [37] for more details.
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input distribution y, it holds that
n (e
ge=e((F oy -om))

where €1 = (re)2k/T) and e, = eQ(ek/T).

(r).k
ﬂ":%*‘min(flﬁz)

As mentioned in Section 4, we take a two-step approach by
amplifying first communication and then error probability. The
first step uses the following XOR-direct-sum result!!, tight up to a
factor of r, for bounded-round communication complexity, which
is implicitly implied by [27].

LEMMA 5.3 (BOUNDED-ROUND XOR DIRECT sum). Fork,r > 1,
€ [0,1], 8 € (0,€), Boolean function f, and input distribution p, it
holds that

r é r
Df,kL(f@k):Q( ( D (- o<r>)).

For the second step, we prove an XOR-lemma-type result for the
multi-party model.

LEMMA 5.4 (MULTI-PARTY XOR LEMMA). There exists ¢g > 0
such that for k,r > 1, € € (0, &), Boolean function f, and input

distribution p, it holds that

(r).k ok (r)
P GOERMNO!

where 1 = (re)2k/T) and e, = Q(ek/T)

>+min(ep,€;)

We remark that Lemma 5.4 is a weaker XOR lemma than the one
of [37] in the sense that the decrease in advantage is worse and it
only applies to the multi-party model. It nevertheless meets our
needs as we will eventually work in the streaming model. On the
positive side, Lemma 5.4 no longer suffers a factor of r°(") in com-
munication, which is the only barrier towards o(log n/loglog n)
passes as identified in Section 4.

We now show that Lemmas 5.3 and 5.4 indeed imply Theorem 5.1.
This is done via multi-party variants of the problems in Section 4.

Definition 5.5. For ki, kz,d,w > 1, ATPCEB(V{}CI’kZ) denotes the
k1k;-fold XOR version of ATPC ,, in the 2k;-party model, where

each pair of Alice i and Bob i is given as input k; instances of
ATPC, ,,, where i € [kz]. Similarly, ATPC#(kl’kZ) denotes the
k1ks-fold majority version of ATPC, ,, in the 2k2 -party model.
When the hint, i.e., the total sum of targets of all k1 k, instances, is
given to each of the 2k; parties as part of its input, the resulting prob-
lems are denoted by Hint-ATPC (kl’kZ) and Hint ATPC#(kl’kZ)

Multi-party analogues of Claims 4.5, 4.10 and 4.11 are given
below. The proofs are almost identical and omitted here, as the
same reductions still apply.

CLAM 5.6. Forky, k, p,w,S > 1, ande € [0, 1], if there exists a p-
pass, S-space dynamic streaming algorithm solving MST. 1., y 2p-141
with probability e, then there also exists a (2p—1)-round, (2p—1)k2S-

communication protocol solving Hint ATPC#(kl’kjv) with probability

klkz
€ over Z)Zp L

1A similar direct-sum result also holds for f" k1t is however subsumed by the direct-
product result of [27].

845

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Cramm 5.7. Forki, ko, d,w > 1, and € € [0,1/2], it holds that

(d)kz ® (k1,k2)
plike 1, e (ATPCd,w )
dw 2 k]kzwd
< Dg,{;’f; . (Hint-ATPCS %)) 1k kyd log w.
dw 2 ’

Cramm 5.8. Forkiy, ko, d,w > 1, and e € [0,1/2], it holds that

(d) k2 . ® (k1,kz)
Ds}jz,l—H@( . )(Hmt—ATPCd’W )

(d), k . #(k1.kz)
DDslkz, (Hlnt-ATPCd’w1 2.

We are now ready to prove Theorem 5.1.

Proor or THEOREM 5.1. Fix a p-pass dynamic streaming algo-
rithm for solving MST,, with probability 2/3 that has space S. Let
k= (n-1)/2, ks = cdlogn and k; = k/ky for some sufficiently
large constant ¢ > 0. Alsoletd =2p -1, w=(n—k — l)l/d, and
C = k2dS. Applying the reduction of Claim 5.6, we get a d-round

protocol for solving Hint- ATPC#(k1 kz)

Dk
boosted to 1 — 1/poly(n) by O(log n) parallel repetitions.

On the other hand, Lemma 4.3, together with Theorem 5.2 for
some sufficiently small constant € > 0, implies that

’ﬂ_W)

with probability 2/3 over

that has communication C. The success probability can be

(d) k2

k 1 1
Dd w2t poly(n)

d2
Applying Claims 5.7 and 5.8 in sequence, we further get
NG k1w ) _

(aTPCS 1)) = o (

Dk 42

dw’

. #(kq,k;
. (Hint-ATPC dfwl Dy= 0 (
~ poly(n)

Combining the above arguments, we finally have

k1W
ClOgYI:Q ? .

The theorem follows by rearranging the terms. O

We remark that the above proof uses the € case in Lemma 5.4
with € = ©(1). It is also possible to prove Theorem 5.1 using the
€1 case with € = ©(1/r). However, this results in slightly worse
dependence on p for the derived space lower bound on streaming
algorithms. Both cases of Lemma 5.4 are provided just in case the
result may be of independent interest to some readers.
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