
Optimal Multi-pass Lower Bounds for MST in Dynamic Streams∗

Sepehr Assadi
University of Waterloo

Waterloo, Canada
Rutgers University
Piscataway, USA

sepehr@assadi.info

Gillat Kol
Princeton University

Princeton, USA
gkol@princeton.edu

Zhijun Zhang
Princeton University

Princeton, USA
zhijunz@princeton.edu

ABSTRACT

The seminal work of Ahn, Guha, and McGregor in 2012 introduced

the graph sketching technique and used it to present the �rst stream-

ing algorithms for various graph problems over dynamic streams

with both insertions and deletions of edges. This includes algo-

rithms for cut sparsi�cation, spanners, matchings, and minimum

spanning trees (MSTs). These results have since been improved or

generalized in various directions, leading to a vastly rich host of

e�cient algorithms for processing dynamic graph streams.

A curious omission from the list of improvements has been

the MST problem. The best algorithm for this problem remains

the original AGM algorithm that for every integer ? ≥ 1, uses

=1+$ (1/?) space in ? passes on =-vertex graphs, and thus achieves

the desired semi-streaming space of $̃ (=) at a relatively high cost

of$ (log=
log log=

) passes. On the other hand, no lower bound beyond a

folklore one-pass lower bound is known for this problem.

We provide a simple explanation for this lack of improvements:

The AGM algorithm for MSTs is optimal for the entire range of its

number of passes! We prove that even for the simplest decision ver-

sion of the problem — deciding whether the weight of MSTs is at

least a given threshold or not — any ?-pass dynamic streaming al-

gorithm requires =1+Ω (1/?) space. This implies that semi-streaming

algorithms do need Ω(log=
log log=

) passes.
Our result relies on proving new multi-round communication

complexity lower bounds for a variant of the universal relation prob-

lem that has been instrumental in proving prior lower bounds for

single-pass dynamic streaming algorithms. The proof also involves

proving new composition theorems in communication complex-

ity, including majority lemmas and multi-party XOR lemmas, via

information complexity approaches.

CCS CONCEPTS

• Theory of computation → Streaming, sublinear and near

linear time algorithms.

∗Sepehr Assadi is supported in part by an Alfred P. Sloan Fellowship, a University of
Waterloo startup grant, an NSF CAREER grant CCF-2047061, and a gift from Google
Research. Gillat Kol is supported by a National Science Foundation CAREER award
CCF-1750443 and by a BSF grant No. 2018325.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649755

KEYWORDS

Streaming algorithm, Minimum spanning trees, Communication

complexity

ACM Reference Format:

Sepehr Assadi, Gillat Kol, and Zhijun Zhang. 2024. Optimal Multi-pass

Lower Bounds for MST in Dynamic Streams. In Proceedings of the 56th

Annual ACM Symposium on Theory of Computing (STOC ’24), June 24–28,

2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3618260.3649755

1 INTRODUCTION

In the dynamic graph streaming model, we have a (possibly

edge-weighted) graph � = (+ , �) with vertices + := {1, 2, . . . , =},
whose edges and their weights are being de�ned by a sequence

of insertions and deletions in a stream f := (f1, f2, . . . , f#); here,
is the length of the stream which is typically assumed to be

poly(=). Each entry f8 is either of the form (D8 , E8 ,F8 , +) for D8 , E8 ∈
+ and F8 ∈ N and is interpreted as the edge (D8 , E8) with weight

F (D8 , E8) = F8 being inserted to �, or (D8 , E8 ,F8 ,−) which means

the edge (D8 , E8) with the given weightF8 is being deleted. We are

guaranteed that the stream does not delete an edge which is not

inserted, does not insert an edge more than once before deleting

it in the middle, and that the weight of a deleted edge matches its

weight at the time of insertion1. The goal is to make one or a few

sequential passes over the stream f , use a limited memory—ideally,

$̃ (=) := $ (= · polylog(=)) bits, referred as the semi-streaming

space—and compute an answer to the given problem on � at the

end of the last pass.

Dynamic streams (not necessarily for graphs) have been studied

extensively in the streaming literature since the introduction of

the model in [6], e.g., for statistical estimation problems [16] or

geometric problems [23]. However, despite the signi�cant atten-

tion graph streams have received since their introduction in [21],

dynamic graph streams were not studied for quite some time due

to lack of any techniques for addressing problems in this domain.

This state-of-a�airs was entirely changed by a seminal work of

Ahn, Guha, and McGregor (henceforth, AGM) [2] who introduced

the graph sketching technique and used it to devise dynamic graph

streaming algorithms for several fundamental problems, including

connectivity, minimum spanning trees, cut sparsi�ers, and match-

ings. This immediately led to a �urry of results on dynamic graph

streaming algorithms, all using the graph sketching technique2,

1In particular, no “partial updates” to the edge weights are allowed and the stream
needs to delete the edge “fully” �rst (and provide its weight) and then re-inserts it
possibly with another weight; see [17] for more details on this.
2The results in [5, 32] show that this is not a coincidence: any dynamic graph streaming
algorithms that can handle triply-exponential long streams and doubly-exponential
edge-multiplicities (in the middle of the stream), can be turned into a graph sketch.

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.

835

https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0009-0006-8914-5995
https://orcid.org/0009-0007-4725-6694
https://orcid.org/0000-0002-9674-1246
https://doi.org/10.1145/3618260.3649755
https://doi.org/10.1145/3618260.3649755
https://doi.org/10.1145/3618260.3649755
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649755&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

that either improved upon [2] or extended its results to various

other problems; see, e.g., [1, 3, 4, 9, 13, 15, 18, 19, 22, 24, 25, 29, 33]

and references therein.

One of the very few problems that saw zero improvement since [2]

is the minimum spanning tree (MST) problem. [2] designed a dy-

namic streaming algorithm that for every integer ? ≥ 1, with high

probability, �nds an MST of the input graph using =1+$ (1/?) space
and ? passes. Speci�cally, this leads to an $ (log=

log log=
)-pass semi-

streaming algorithm. No better algorithms have been designed for

this problem yet, despite the fact that in insertion-only streams,

a simple single-pass semi-streaming algorithm has already been

known since [21].

We provide a simple explanation for this lack of improvements:

The AGM algorithm for MSTs is optimal for the entire

range of its number of passes!

Speci�cally, semi-streaming algorithms forMSTs requireΩ(log=
log log=

)
passes. Beside settling the complexity of the fundamental MST prob-

lem in the semi-streaming model, this also constitutes one of the

strongest separations between the power of insertion-only streams

and dynamic graph streams; see, e.g. [9, 20] that prove such sepa-

rations only between single-pass algorithms (for the approximate

matching problem).

1.1 Our Contributions

We now discuss our contributions in more detail. Our main result

establishes the optimality of the MST algorithm of [2].

Result 1. For any integer ? = > (log=
log log=

), any ?-pass dynamic

streaming algorithm on =-vertex graphs requires Ω̃(=1+
1

2?−1) space
to solve the minimum spanning tree problem with constant proba-

bility. The lower bound applies even if the edge weights and the

length of the stream are both at most$ (=2) and the algorithm only

needs to decide whether the weight of minimum spanning trees is

at least a given threshold.

Prior to our work, no lower bounds were known for the MST

problem in dynamic streams beside a single-pass lower bound of

Ω(=2) space3. Another immediate corollary of our result is a strong

limitation on the power of the graph sketching technique. While

graph sketching has been extremely successful for problems such

as cut- or spectral-sparsi�cation [3, 4, 29], it appears to be quite

weak for the MST problem, even when allowed “many” rounds of

adaptive sketching.

It is worthmentioning that our lower bound indeed only holds for

exactMSTs. For the relaxed version of the problem, wherein the goal

is to obtain a (1 + Y)-approximation instead, [2] already presents a

single-pass semi-streaming algorithm. On the other hand, we prove

our lower bound for exact MSTs for the algorithmically easiest

decision version of the problem: given a threshold at the beginning

of the stream, decide whether the weight of MSTs is at least as

large as this threshold or not. It is also worth mentioning that many

While these restrictions seem quite strong, almost all known graph streaming algo-
rithms can handle such inputs as well. However, in this work, we will not rely on this
characterization.
3To our knowledge, this lower bound appears to have been folklore and we do not
know a reference for it.

problems admit provable separations between their search versus

decision variants in the dynamic streaming model; see, e.g. [7]

for an example of a separation for �nding approximate matchings

versus estimating the size of the largest matchings via single-pass

algorithms (or in [8] for the streaming set cover problem).

Our techniques. Result 1 relies on proving a new multi-round

communication complexity lower bound for a non-standard compo-

sition of a variant of the Universal Relation (UR) problem. UR

has been instrumental in proving prior lower bounds for single-pass

dynamic streaming algorithms [28, 30, 35] (see also [36]). In this

problem, there is a universe* of< elements; Alice receives a set

� ⊆ * and Bob receives a proper subset � ⊂ �. The communication

is only from Alice to Bob. Prior work has shown that in order for

Bob to output any element from � \ �, Alice needs to communi-

cate Ω(log2<) bits to succeed with constant probability [28] or

Ω(log3<) bits for high probability [30].

We start by proving that any A -round protocol—wherein Alice

and Bob can communicate back and forth at most A times—for out-

putting the smallest element in � \ � (as opposed to outputting any

one) requires ΩA (<1/A) communication. We can then combine this

with standard direct-sum arguments in communication complexity

(see, e.g. [12]) to obtain that solving< independent copies of this

problem requires ΩA (<1+1/A) communication. We then show how

to reduce this to the problem of �nding MSTs in dynamic streams

and prove a lower bound for the latter problem as well. This lower

bound however does not extend to the decision problem (which is

a common occurrence for other “direct-sum UR-type” reductions,

e.g., in [35] and [36]).

As we will explain in Section 3, to be able to extend the lower

bound to the decision problem, the key ingredients used in our

proof are:

Direct sum with “hint”. At a high level, we will be dealing with

a direct sum of a carefully de�ned variant of pointer chasing

problems on trees. It di�ers from typical direct-sum argu-

ments in that the reduction to MST demands knowing the

sum of outputs of all copies, which correlates the copies. Our

direct-sum result is obtained by directly carrying this extra

bit of knowledge, named hint, throughout the proof.

Majority vs. XOR. It turns out themost straightforward approach,

which guesses the hint and conducts a typical direct-sum

argument without the hint, can never work as it involves

lower bounding majority computation of multiple copies

with super low advantage. Simple coin toss examples will

show that such a result is impossible. We work around this

by a connection between majority computation with high

advantage and XOR computation with low advantage. It en-

ables us to utilize direct-sum results for XOR computation

instead.

Multi-party XOR lemma. Since existing results are not strong

enough for proving the optimal pass lower bound, we devise

a multi-party XOR lemma, mimicking the 2-party version

of [37], that improves the dependence of communication in

the number of rounds, while leading to a worse advantage

decay. In particular, suppose each of : pairs of 2 parties are

given =/: instances of a boolean function 5 , and they want

836

Optimal Multi-pass Lower Bounds for MST in Dynamic Streams STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

to jointly solve the =-fold XOR of all = instances. We prove

the following result which may be of independent interest.

Result 2. If any A -round, 2-party protocol that solves 5 with

constant probability, requires � communication, then any A -round,

2:-party protocol that solves the =-fold XOR of 5 with probability
1
2 + (12)

Ω (:A) , requires Ω(=
:
· (�A −$ (A))) communication.

Independent work. A recent independent work [26], improving

upon [37], proves better XOR lemmas in the standard two-party

setting. Speci�cally, for A -round protocols, the factor of loss in com-

munication is reduced from exponential to linear in A . As discussed

in Sections 3 and 4, such an XOR lemma is su�cient for proving the

optimal pass lower bound directly in the standard two-party setting,

eliminating the need of working with the multi-party setting (i.e.,

Section 5). As a byproduct, it also slightly improves the lower order

factors in the derived space lower bound (i.e., dependency on ? and

log=).

The rest of this paper is organized as follows. Section 3 provides

a sketch of our proof in more detail. Then we prove a suboptimal

pass lower bound in Section 4 using the 2-party XOR lemma of [37].

Our multi-party XOR lemma is presented in Section 5 and used to

obtain the full version of our main result. Omitted proofs can be

found in the full version of this paper [10].

2 PRELIMINARIES

Notation. For an integer = ∈ N, [=] is used as a shorthand for

the set {1, . . . , =}. For a tuple - = (-1, . . . , -=), we write -≤8 =

(-1, . . . , -8). Similarly, we have -≥8 and -<8 , ->8 . We also use

-−8 = (-1, . . . , -8−1, -8+1, . . . , -=). The XOR operation is denoted

by ⊕.
Throughout this paper, sans-serif letters are reserved for random

variables (e.g. X) while normal letters are used for realizations of the

corresponding random variables (e.g. G,-). For random variables

X,Y, we denote the Shannon entropy of X by H(X), the mutual

information between X,Y by I(X ;Y), the KL-divergence between
X,Y by D(X | | Y), and the total variation distance between X,Y by

∥X − Y∥tvd.

Dynamic graph streaming. For a dynamic graph streaming prob-

lem, the input is a sequence of insertions and deletions of edges in

an underlying graph, initially empty. In every pass of an algorithm,

it processes the operations, one at a time, in the given order. At the

end of the algorithm, it answers some query about the constructed

graph resulting from all insertions and deletions. Only the space

requirement between operations is considered in this paper (i.e.,

unlimited memory is allowed while processing each operation).

We are interested in the problemMST= , which asks whether the

weight of minimum spanning trees of an =-vertex graph is at least

a given threshold.

Communication model. For the standard 2-party communication

model, we assume Alice sends the �rst message and the receiver of

the last message returns the output. LetCC(c) denote the communi-

cation complexity of a protocol c , and CC(8) (c) the communication

complexity of the 8-th round of c . We also use IC(c) to denote

the internal information cost of c . The distributional complexity of

5 , denoted by D
(A)
`,n (5), is de�ned as the in�mum communication

complexity of any A -round protocol solving 5 with probability n

over `.

Themulti-party communicationmodel we use in this paper is for-

mally de�ned as follows. There are 2: parties named Alice 1, . . . , :

and Bob 1, . . . , : . Each Alice has an input from X and each Bob has

an input fromY. There is a blackboard, initially empty, visible to all

parties. The parties proceed in the circular order of Alice 1, . . . , :

and Bob 1, . . . , : , starting with Alice 1. In one’s turn, it computes

a message given its input as well as the current blackboard, and

posts the message to the blackboard. At the end of the protocol,

the last party returns an output (and does not post a message to

the blackboard). The communication complexity is de�ned as the

length of the �nal blackboard. The number of rounds is de�ned

as the total number of times Alice : and Bob : post messages to

the blackboard. (So, e.g., a 1-round protocol in general consists of

Alice 1, . . . , : and Bob 1, . . . , : − 1 posting one message each, and

Bob : returning an output.) In a randomized protocol, each party is

allowed to use both public randomness, shared by all parties, and

private randomness, known only to itself. The goal is to compute

a function 6 over X: × Y: . We similarly de�ne the distributional

complexity of 6 in the 2:-party model and denote it by D
(A),:
`,n (6),

where ` is a distribution over X: × Y: . It can be veri�ed that the

multi-party model for : = 1 coincides with the standard 2-party

model. Moreover, D
(A),1
`,n (·) = D

(A)
`,n (·).

In this paper, we are interested in the :-fold XOR of a func-

tion 5 : X × Y → {0, 1}, de�ned as 5 ⊕: (G1, . . . , G: , ~1, . . . , ~:) =⊕
8∈[:] 5 (G8 , ~8). We also consider the :-fold majority, denoted

by 5 #: , which evaluates to 1 if 5 (G8 , ~8) = 1 for more than ⌊:/2⌋
indices 8 ∈ [:], and 0 otherwise.

3 TECHNICAL OVERVIEW

This section serves as an outline of our proof. As a starting point,

in Section 3.1, we �rst tackle the easier problem of proving a lower

bound for the task of �nding an MST solution, i.e., outputting

the edges of an MST. We then proceed to identify the primary

challenges in extending our technique to give a lower bound for the

algorithmically easier task of computing the weight of MSTs or even

for the task of deciding whether it exceeds a speci�ed threshold.

In Section 3.2, we discuss some of our initial attempts and their

inherent limitations. Finally, we present the ultimate solution in

Section 3.3.

3.1 The Search Version

Our hard instance. We start by outlining our lower bound for

the easier task of lower bounding the space complexity of steaming

algorithms that output the edges of an MST. To prove our lower

bound, we design hard instances inspired by that of [35, 36], that

were used to prove lower bounds for the Spanning Forest and

Connectivity problems. See Figure 1 for an illustration of our hard

instances. Our construction starts with a clique of size =/2. Edges
in the clique all have the minimum possible weight, say 0. Another

=/2 vertices are added, one at a time, as follows. For each non-clique

vertex E , it is randomly connected to some vertices in the clique,

with distinct, positive edge weights. Later in the stream, we remove

a proper subset of the edges incident on E . Both the inserted and

837

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

Figure 1: An illustration of hard instances for the search ver-

sion of MST. Bottom vertices are fully connected. Each top

vertex is connected to some bottom vertices via red edges (in-

serted and deleted) and blue edges (inserted but not deleted)

– to avoid clutter, only edges for the �rst vertex are drawn.

deleted edges follow some (non-uniform) hard distributions. The

concatenation of the clique edges (of weight 0), followed by the edge

insertions for all non-clique vertices, and then the edge deletions

for all non-clique vertices, constitutes the entire stream.

Observe that any MST of the constructed graph must have the

following structure: a spanning tree connecting the clique, plus,

for each non-clique vertex, the minimum weight edge that is not

deleted connecting this vertex to the clique. As a consequence, the

problem of �nding an MST essentially reduces to the direct sum

(i.e., solving multiple copies) of the following subproblem, which

we denote by UR⊂
min: �nd the minimum element in the di�erence

� \ � of two sets �, �, where � is promised to be a proper subset of

�.

The problem UR⊂
min can be viewed as an addition to the well-

studied family of Universal Relation problems [31]. The work of

[35] proves optimal lower bounds for Spanning Forest via one of

its variants, UR⊂ , in which it is su�cient to �nd any element

in the di�erence � \ �, as opposed to �nding the minimum ele-

ment. In particular, [35] use tight results from [30] for the one-way

communication complexity of UR⊂ . However, this bound is only

poly-logarithmic and therefore is too weak for our purposes. We

prove that UR⊂
min is hard even with multiple rounds of communi-

cation. More speci�cally, we show that it admits an A vs. ΩA (<1/A)
round-communication tradeo�, where< is the size of the universe.

Given the canonical reduction from communication to streaming,

this means any direct sum/product result for bounded-round two-

party communication (e.g., [14, 27]) su�ces for lower bounding the

search version of MST.

Augmented Tree Pointer Chasing. We prove the round vs. com-

munication tradeo� for UR⊂
min by reduction from an “augmented”

version of Pointer Chasing on trees4. The starting point is the

well-known Augmented Index problem [34], in which Alice holds

G ∈ {0, 1}= while Bob is required to output G8 given 8 ∈ [=] and
G<8 . It is an “augmented” version of Index in that Bob additionally

knows G<8 , i.e., everything to the left of the pointer 8 .

Note that Index can be viewed as Pointer Chasing on single-level

trees. To generalize it to multi-level trees, recall that in the standard

4We note that UR⊂
min is introduced here only for the purpose of illustration and

to provide a better context. Our proofs in Sections 4 and 5 directly deal with the
augmented version of Pointer Chasing with no reference to UR⊂

min . For completeness
and since the lower bound for this problem may be of independent interest, we include
its proof; see Corollary 4.7.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(a) A standard Tree Pointer Chasing instance.
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(b) The same instance with full knowledge of left subtrees.
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(c) The same instance with full knowledge of left subtrees and no

knowledge of right subtrees.

Figure 2: An illustration of ATPC instances. Solid, blue edges

are known to Alice and solid, red edges are known to Bob.

Thick edges are owned in standard Tree Pointer Chasing

while thin edges are known via augmentation. (For example,

in Figure 2c, there are two overlapping edges from node 6

to node 13. One is red and thick, meaning that Bob owns

this edge in standard Tree Pointer Chasing, and the other

is blue and thin, meaning that Alice knows this edge via

augmentation.) Dashed, light-colored edges are forgotten

during augmentation.

Tree Pointer Chasing problem, one party owns all pointers in odd

levels (that is, the �rst party gets as input an edge going out of

each node in an odd level) and the other party owns all pointers

in even levels. The parties’ goal is to output the unique leaf node

that can be reached using the parties’ pointers. See Figure 2a for an

example.

A natural attempt is to additionally give the owner of each

pointer full knowledge of all the left subtrees, or equivalently all

pointers owned by the other party in those subtrees. In other words,

if a party has, as part of its input, the pointer connecting vertex

E to its 8-th child, then the same party also gets all the pointers

in the other party’s input for the subtrees rooted at the �rst 8 − 1

children of E . See Figure 2b for an illustration. For example, in the

illustration, since Bob has the pointer connecting the root to its

second child, Bob also knows all Alice’s pointers in the entire left

subtree of the root.

Forgetting pointers. We wish to prove a lower bound for the

augmented Pointer Chasing problem on trees as described above.

838

Optimal Multi-pass Lower Bounds for MST in Dynamic Streams STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

However, we next show that there is a subtle issue. Supposewewant

to prove the lower bound using the, by now standard, embedding

arguments, showing that a protocol for instances with A levels

implies a protocol with one less message for instances with A − 1

levels. To do so, we sample an instance with A levels as follows.

We denote by (� 9 , � 9) the subinstance corresponding to the 9-th

subtree (of the root) of the A -level instance we are sampling. We

also denote by (�′, �′) the input instance with A − 1 levels that

we attempt to solve. Alice and Bob publicly sample an index 8

and do the embedding by setting (�8 , �8) = (�′, �′). �<8 is also

publicly sampled (note that this standard sampling respects our

augmentation). To eliminate the �rst round of communication, Alice

and Bob publicly sample Alice’s �rst message"1 (conditioned on

�<8). In order to continue the simulation, the standard embedding

argument would have the parties privately sample all remaining

parts, namely �>8 , �<8 , �>8 . Unfortunately, �>8 and �>8 may not

be privately sampled (roughly following their original distributions)

at the same time, due to possible high correlation.

To rectify the situation, we “eliminate” �>8 by de�ning the Aug-

mented Tree Pointer Chasing (ATPC) problem as follows: for each

pointer, the party that owns it, also (i) knows everything that the

other party knows in subtrees to its left; and (ii) knows nothing in

subtrees to its right. See Figure 2c for an illustration. For example,

in the illustration, Alice “forgets” the pointer from node 10 because

it is in a subtree to the right of the pointer from node 2.

We also emphasize that “everything that the other party knows”

may not be equivalent to “all pointers owned by the other party”,

exactly because the other party may forget some of its originally

owned pointers. To see this, consider the pointers from nodes 10 and

11 in the illustration. Before the augmentation, Alice knows both

of them and Bob knows neither. As we perform the augmentation

bottom-up, Bob knows the one from node 10 since it is in a subtree

to the left of the pointer from node 5. Another level up, Alice forgets

both of them due to the pointer from node 2. Note, however, that

Bob still keeps his knowledge of the pointer from node 10. As a

result, �nally at the top level, Bob has the combined knowledge of

both parties, including the pointer from node 10, but not the one

from node 11. In other words, Bob does not know the latter even

though it is also in a subtree to the left of the pointer from the root.

Moreover, Bob’s knowledge of the former is actually coming from

himself in lower levels, but not from Alice.

A formal de�nition of ATPC is given in Section 4. Intuitively,

the augmentation neither helps nor hurts the parties that attempt

to solve an ATPC instance, as both parties should always follow

the correct pointers. Indeed, we are able to prove an A vs. ΩA (=1/A)
round-communication tradeo� for trees with = leaf nodes, using

standard information-theoretic tools.

Reducing ATPC to UR⊂
min and the role of augmentation. Next, we

wish to show a lower bound for UR⊂
min by proving that UR⊂

min
is even harder than ATPC. The reduction is as follows. Given an

ATPC instance, Alice is constructing the larger set� (corresponding

to insertions for MST) and Bob is constructing the smaller set �

(corresponding to deletions for MST). The universe contains all

the leaf nodes of the ATPC instance, sequentially ordered from

left to right, and the goal is to have min(� \ �) being the leaf

node induced by the pointers in the ATPC problem. Imagine the

parties perform the construction of the sets � and � “bottom-up”

in the following sense. Suppose the current pointer 8 is known to

Alice (a similar argument applies to the case in which Bob knows

the current pointer). Also, assume that the parties have already

constructed �1, . . . , �F and �1, . . . , �F whereF is the arity of the

ATPC tree and (� 9 , � 9) is the UR⊂
min instance constructed for the

9-th subtree of the ATPC tree, and they want to combine all these

sets to obtain �, �.

Now, wemay wish for Bob to set � = �1∪· · ·∪�8 and for Alice to
set� = �1∪· · ·∪�8−1∪�8 , as this would imply�\� = �8 \�8 , while
the promise that � ⊆ � in the de�nition of UR⊂

min is satis�ed. Note

that Alice can indeed compute this set� thanks to the augmentation

that gives her �1, · · · , �8−1. In fact, this is the exact reason for the

augmentation. Unfortunately, though, Bob cannot compute � as he

does not know 8 . Nevertheless, it can be easily remedied by setting

� = �1 ∪ · · · ∪ �8−1 ∪�8 ∪�′ and � = �1 ∪ · · · ∪ �F , where �
′ is

the set of all leaf nodes in subtrees 8 + 1, . . . ,F .

Weights. Since the number of weights in our MST instances is

essentially the number of leaf nodes in the ATPC instances, our

MST construction only uses polynomially many integer weights.

We note that this is necessary due to the result of [2], as otherwise

there is a single pass streaming algorithm that �nds an MST in

=1+> (1) space. Speci�cally, an MST can be incrementally found

by considering all edges of weight 8 and applying the Spanning

Forest algorithm of [2] at the 8-th step. This can be implemented in a

single pass by maintaining, independent copies of the sketch used

for the Spanning Forest algorithm, resulting in an $̃ (=,)-space
algorithm.

Computing the MST weight with large edge weights. So far, we

are able to lower bound the search version of MST. We note that

the construction shown in Figure 1 can be readily adapted for

computing the weight of MSTs if exponential edge weights were

allowed5: edges incident on the 9-th non-clique vertex have weights

in the order of = 9 , so that the minimum weight edge that is not

deleted, for each non-clique vertex, can be uniquely recovered

from the MST weight alone. However, exponential edge weights

would lead to a polynomial overhead in space requirement, which is

una�ordable for streaming algorithms. So, we explore the decision

version of MST in the following, while keeping the edge weights

polynomial.

3.2 The Decision Version

Decisional UR⊂
min. We next proceed to outline our lower bound

for the algorithmically-easier decision version of the MST prob-

lem. Since there exist e�cient algorithms, even with a single pass,

for approximating the weight of MSTs (e.g. [2]), we should expect

hard instances for the decision version to have MST weights con-

centrated within a small range. So the following attempt seems

plausible. Let 4 9 be the minimum edge weight for the 9-th non-

clique vertex, and I 9 the parity of 4 9 . Also let) =

∑
9 4 9 −

∑
9 I 9 .

Then the weight of MSTs is always between) and) + : , where

: = =/2 is the number of non-clique vertices. In the above, we have

argued that �nding 4 9 is hard for a �xed 9 . With little additional

5This is not an issue for the search version of MST as even linear edge weights are
su�cient to ensure a unique MST, up to edges in the clique.

839

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

e�ort we can show that computing I 9 is also hard.6 We denote by

UR⊂
min,dec

the corresponding decisional universal relation problem,

where one needs to compute the parity of the minimum element in

� \ �. We remark that this attempt is in line with [36], in which a

decision version of Universal Relation, UR⊂
dec

, is utilized to obtain

optimal lower bounds for Connectivity.

A majority lemma? One may hope that our �nal result would

again follow from a direct-sum (or, more accurately, “majority

lemma”) type argument: hardness of some boolean function 5 im-

plies hardness of computing the majority of : copies of 5 7. This

is because given such a majority lemma, we can simply set the

threshold to be) + :/2. It is easy to see that the weight of MSTs

exceeds) + :/2 if and only if the majority of the : parity bits I 9 is

1.

Fixing the threshold at the price of correlating the UR⊂
min,dec

in-

stances. To our disappointment, this approach has major problems.

One notable issue is that) is “instance dependent”, and is not a

predetermined value, and therefore the threshold) + :/2 is also
instance dependent. This is indeed a problem as, in the reduction in

Figure 1, the parties would not know the threshold value required

for the streaming MST instance. In other words, we don’t even have

a well-de�ned input for the decision version of MST! To circumvent

this, we add one special edge of weight) ′
= � −) to the graph,

where� is a su�ciently large number to ensure) ′ is positive. This
way, we are always comparing the weight of the MSTs with a �xed

number � + :/2.
In the communication setting, this addition is equivalent to re-

vealing) to both parities (implemented as an extra part of input),

which correlates all : copies of UR⊂
min,dec

. Since a direct-sum style

argument typically deals with independent copies, we now need

to “get rid” of) . Note that) = poly(=) = poly(:). This renders it
impossible to brute force over all possible values of) due to the

communication constraint.

Another way of getting rid of) would be to make a random

guess at) and output randomly if the guess is wrong (with very

small communication overhead for verifying the guess). However,

this approach has the following major shortcoming: the random

guessing reduces the advantage (over 1/2) by a factor of) = poly(:)
but a majority lemma can never hold in such a low advantage regime!

Speci�cally, the following may not be true:

If computing 5 with success probability 3/4 requires

� communication, then computing the majority of :

copies of 5 with success probability 1/2 + 1/: requires

Ω̃(:�) communication.

What’s even worse, is that� communication is su�cient to achieve

success probability 1/2+Θ(1/
√
:). To see this, suppose 5 evaluates

to 0 on exactly half of the �rst : − 1 copies and 1 on the other

half, and then the majority is solely determined by the output of

the last copy. Now consider the protocol that simply computes the

value of the last copy and outputs it as the majority. It succeeds

whenever the single copy protocol succeeds and thus has constant

6Recall that the lower bound on UR⊂
min is derived via ATPC. Roughly speaking, we

may view the bottom level as a composition of two sublevels, one of which is binary.
7For simplicity, we may assume throughout this section that 5 is “balanced” in the
sense that it evaluates to 0 on exactly half of possible inputs and to 1 on the other half.

advantage (3/4 − 1/2 = 1/4 to be exact) in the above case, which

occurs with probability Θ(1/
√
:) due to properties of binomial

distributions, and is equivalent to a random guess in all other cases

as the majority is already determined by the �rst : −1 copies (recall

that we assume 5 to be balanced). So we cannot hope for a majority

lemma that works with advantage well belowΘ(1/
√
:). This dooms

our attempt as we are requiring even much lower advantage.

Majority Lemma with hint via XOR Lemma with hint. We work

around the above limitation by a di�erent approach. Instead of

directly getting rid of) and seeking a majority lemma with low

advantage (which turns out to be nonexistent), we convert majority

computation into XOR computation by a simple process (with)

revealed). Only after that, we again guess) and then utilize an XOR

lemma with low advantage which indeed exists. As will be seen

later, this alternative approach can be viewed as a majority lemma

with high advantage (close to 1/2).
To prove this latter majority lemma, we start from the beautiful

recent work [37] that provides a strong XOR lemma in which advan-

tage decreases exponentially in : . We then consider the following

process for computing XOR from majority. If the number of 1’s is at

most :/2 (so the majority is 0), return the parity of :/2 (assume that

: is even), and otherwise return the parity of :/2+1. Intuitively, the
probability of having exactly 8 1’s is slightly larger than having 8−1,

for 8 ≤ :/2. So this process should have certain advantage over 1/2.
Indeed, again by properties of binomial distributions, this advan-

tage can be shown to be Θ(1/
√
:), assuming that the computation

of majority is perfect. In general, we can prove that a protocol for

computing majority with success probability 1−n implies a protocol

for computing XOR with success probability 1/2 − n + Θ(1/
√
:).

Since the XOR lemma of [37] proves that a protocol for comput-

ing the XOR with success probability 1/2 − n + Θ(1/
√
:) (or even

1/2 + exp(−:)) is costly, it also implies that the computation of the

majority with success probability 1 − n is costly. Our entire proof

now works as follows.

(1) Prove a lower bound on UR⊂
min,dec

.

(2) Apply the XOR lemma of [37] to show it is also hard to

compute the XOR of : copies of UR⊂
min,dec

, with success

probability 1/2+ 1/poly(:). This hardness continues to hold
with) revealed, which we call a “hint” in our proof.

(3) Using the above process, we get a lower bound for com-

puting the majority of : copies of UR⊂
min,dec

, with success

probability 1 − 1/poly(:), and also with hint) .

(4) Finally, a streaming lower bound for the decision version of

MST is derived by our reduction (up to logarithmic factors

resulted from boosting the success probability).

All the above ideas are formalized in Section 4. At a high level, what

we really use, is roughly a majority lemma of the following form,

which has a very weak probability guarantee that is enough for us:

If computing 5 with success probability 3/4 requires

� communication, then computing the majority of :

copies of 5 with success probability 1 − 1/poly(:) re-
quires Ω̃(:�) communication.

We note, however, that we need such a lemma that also works when

) is revealed. As we claimed before, to prove a majority lemma that

works when) is revealed, we can guess) , but then need to prove

840

Optimal Multi-pass Lower Bounds for MST in Dynamic Streams STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

a majority lemma with a very small advantage. Likewise, to show

an XOR lemma that works when) is revealed, we can guess) and

prove an XOR lemma for very small advantages. Luckily, unlike

the case for majority, such an XOR lemma can be proved. Indeed,

the XOR lemma of [37] has a strong enough probability guarantee.

Unfortunately, all the above has not yet led to an optimal pass

lower bound. Speci�cally, the XOR lemma of [37] shows that com-

puting the XOR of : copies requires roughly :/A$ (A) times the com-

munication for computing a single copy, where A is the number of

communication rounds. This loss of an A$ (A) factor is problematic as

the �nal lower bound that can be obtained is roughly =1+1/A /A$ (A) ,
which only works for A up to

√
log=/log log=. For comparison, [2]

presents a semi-streaming algorithm of $ (log=/log log=) passes.
So, there is still a gap between the lower and the upper bounds. Fur-

thermore, the loss in communication turns out to be the sole barrier

for closing this gap, in the sense that we can prove a tight lower

bound if the A$ (A) factor could be reduced to poly(A). We address

this challenge in the rest of this section, by proving a multi-party

XOR lemma (rather than a two-party one) with a better dependence

on the number of rounds.

3.3 Multi-Party XOR Lemma

The XOR lemma we need. As indicated above, an ideal XOR

lemma (in the standard two-party setting) that is su�cient for our

purpose is of the following form: computing the XOR of : copies

requires :/poly(A) times the communication for computing a sin-

gle copy, to achieve 1/poly(:) advantage. Note that such an XOR

lemma does not necessarily improve upon [37] as it only requires

a polynomial advantage decay. Nevertheless, to the best of our

knowledge, the existence of such an XOR lemma is still unknown8.

We prove such a lemma in the multi-party setting. We note that

we opt not to restrict ourselves in the two-party setting as our

ultimate goal is to prove streaming lower bounds and multi-party

settings are usually easier to work with. Nevertheless, our multi-

party XOR lemma may be of independent interest as well since it

works entirely in the communication setting, with no reference to

streaming.

Separating ampli�cation of communication and of advantage. To

get our multi-party XOR lemma, we decompose it into two inde-

pendent parts: ampli�cation of communication and ampli�cation of

advantage. More speci�cally, up to poly(A) factors, ampli�cation of

communication means:

If computing 5 with success probability 1/2+X requires

� communication, then computing the XOR of :1 copies

of 5 with success probability 1/2+X+n requires Ω̃n (:1�)
communication,

and ampli�cation of advantage means:

If computing 5 with success probability 3/4 requires �
communication, then computing the XOR of :2 copies of

5 with success probability 1/2 + exp(−Ω(:2)) requires
Ω̃(�) communication.

8Asmentioned in Section 1, the existence of such anXOR lemma is recently proved in an
independent work [26]. Indeed, their result su�ers only a factor of A in communication
while maintaining an exponential decay in advantage.

Intuitively, this decomposition is possible because the XOR of

many XOR computations is equivalent to a single XOR compu-

tation. Furthermore, our desired XOR lemma, up to logarithmic fac-

tors, follows from combining ampli�cation of communication with

:1 = Θ(:/log:) and ampli�cation of advantage with :2 = Θ(log:).

Ampli�cation of communication. As to ampli�cation of commu-

nication, it can be accomplished using known (round-preserving)

compression schemes (e.g., [14, 27]) in the standard two-party set-

ting. However, we do emphasize that known compression schemes

all seem to have a linear (or even polynomial) dependence on 1/n
in the communication if we want an n-simulation. This essentially

means ampli�cation of communication has to be performed before

ampli�cation of advantage. Otherwise, communication would suf-

fer a polynomial blowup in order to preserve the already ampli�ed

advantage.

Ampli�cation of advantage. For ampli�cation of advantage, in-

spiration is drawn from the streaming XOR lemma by [11]. Their

result shows that computing the XOR of : copies in the stream-

ing setting with the same space constraint as for a single copy,

can only achieve advantage exponentially small in : . Moreover,

streaming algorithms are viewed as multi-party communication

protocols in their proof. This enables us to adapt their techniques

to prove a multi-party communication version: computing the XOR

of : copies with (2: parties and) the same total communication as

for a single copy (with two parties), can only achieve advantage

exponentially small in : . Combined with ampli�cation of commu-

nication, it �nally yields a multi-party XOR lemma with the desired

parameters.

We also remark that the streaming XOR lemma of [11] applies

to streams in which : copies arrive sequentially, i.e., one complete

stream followed by another. For our MST construction, this means

insertions of the �rst non-clique vertex is followed by deletions of

the same vertex, and then insertions and deletions of the second

non-clique vertex and so on. In contrast, our version for multi-party

communication has an “interleaved” input order in the sense that

part of the �rst copy (insertions for the �rst non-clique vertex) is

followed by part of the second copy (insertions for the second non-

clique vertex) and so on for all other copies, and the remaining part

of the �rst copy (deletions for the �rst non-clique vertex) only comes

after that. Put it another way, all the Alices communicate before all

the Bobs. Consequently, the streams resulted from our proof have

the simplest form: all insertions arrive before all deletions.

4 A LOWER BOUND IN FEW PASSES

As awarmup, we �rst prove the followingweaker version of Result 1

for only few passes. It already contains many of the critical ideas

for fully proving Result 1, while also identifying the key barrier in

getting a proof for even more passes.

Theorem 4.1 (Weaker version of Result 1). For integer ? =

> (
√

log=
log log=

), any ?-pass dynamic streaming algorithm for solving

MST= with probability 2/3 requires Ω(=
1+ 1

2?−1

?$ (?) log=
) space.

We remark that the upper bound on edge weights in Result 1 will

be seen in the proof of Claim 4.5.

841

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

4.1 Augmented Tree Pointer Chasing

The proof of Theorem 4.1 is via a communication problem named

Augmented Tree Pointer Chasing.

De�nition 4.2. For 3,F ≥ 1, the two-party problem ATPC3,F is

de�ned recursively as follows.

(1) For 3 = 1, Alice is given as input �(1) ∈ {0, 1}F and Bob is

given as input � (1)
= (8 (1) , �(1)

<8 (1)
), where 8 (1) ∈ [F]. They

are required to output �
(1)
8 (1)

.

(2) For 3 > 1, Alice is given as input �(3)
= 1

(3−1)
≤F and Bob

is given as input � (3)
= (8 (3) , 0 (3−1)≤8 (3) , 1

(3−1)
<8 (3)

), where 8 (3) ∈
[F] and (0 (3−1)9 , 1

(3−1)
9) for 9 ∈ [F] is an ATPC3−1,F

instance9. They are required to output the answer of the

ATPC3−1,F instance (0 (3−1)
8 (3)

, 1
(3−1)
8 (3)

).

For : ≥ 1, ATPC⊕:
3,F

denotes the :-fold XOR version of ATPC3,F ,

and similarly ATPC#:
3,F

denotes the :-fold majority version of

ATPC3,F .

EachATPC3,F instance can be naturally visualized on a depth-3 ,

F-ary tree with 8’s being pointers of corresponding levels. Suppose

the leaf nodes are numbered from 1 toF3 . Starting from the root

and following the pointers will lead to a unique leaf node C ∈ [F3],
which is called the target of this instance. For either of the :-fold

versions of ATPC3,F , both parties may additionally be given the

hint) =

∑
9∈[:] C 9 as part of their input, where C 9 is the target of

the 9-th ATPC3,F instance. The resulting problems are denoted by

Hint-ATPC⊕:
3,F

and Hint-ATPC#:
3,F

, respectively.

At a high level, in an instance of ATPC3,F , Alice owns all point-

ers at even levels while Bob owns all pointers at odd levels. It only

di�ers from the stardard Tree Pointer Chasing problem by perform-

ing the following modi�cation to each internal node: the owner

of a pointer is additionally given the other party’s knowledge of

subtrees to the left of the pointer, while losing any knowledge of

subtrees to the right of the pointer. The modi�cation is performed

bottom-up. In other words, the e�ect of ancestors supersedes that

of descendants. Intuitively, the extra information about subtrees to

the left cannot help while the lost information about subtrees to the

right cannot hurt, as the owner of the current node should always

follow the pointer. Also note that ATPC1,F is exactly the same as

the well-studied Augmented Index problem. For 3 > 1, ATPC3,F

can be naturally viewed as its multi-round generalization.

The hard input distributions and corresponding lower bounds

are as follows.

Distribution 1. For 3,F ≥ 1, the hard input distribution D3,F is

de�ned recursively as follows.

(1) For 3 = 1, Alice is given as input �(1) and Bob is given as

input � (1)
= (8 (1) , �(1)

<8 (1)
), where 8 (1) is sampled from [F]

uniformly at random and �(1) is independently sampled

from {0, 1}F uniformly at random.

(2) For 3 > 1, Alice is given as input �(3)
= 1

(3−1)
≤F and Bob

is given as input � (3)
= (8 (3) , 0 (3−1)≤8 (3) , 1

(3−1)
<8 (3)

), where 8 (3) is

9For 9 > 8 (3) , 0 (3−1)
9 is imaginary and given to neither party.

sampled from [F] uniformly at random and (0 (3−1)9 , 1
(3−1)
9)

for 9 ∈ [F] is independently sampled from D3−1,F .

Lemma 4.3. For 3,F ≥ 1, and n ∈ [0, 1/2], it holds that

D
(3)
D3,F ,

1
2+n

(ATPC3,F) ≥
n2F

3
.

Distribution 2. For :,3,F ≥ 1, the hard input distribution D:
3,F

is de�ned as follows. Alice is given as input � = 0
(3)
≤: and Bob is

given as input � = 1
(3)
≤: , where (0 (3)9 , 1

(3)
9) for 9 ∈ [:] is indepen-

dently sampled from D3,F .

Lemma 4.4. For F ≥ 1, 3 = > (logF/log logF), : = l (3 logF),
it holds that

D
(3)
D:

3,F
, 23
(Hint-ATPC#:

3,F
) = Ω

(
:F

3$ (3) log:

)
.

We �rst prove Theorem 4.1 in Section 4.2, assuming the lower

bounds for Augmented Tree Pointer Chasing. Proofs of the above

lower bounds are shown in Sections 4.3 and 4.4, respectively.

4.2 Proof of Theorem 4.1

In this section, we present a proof of Theorem 4.1 via the following

claim.

Claim 4.5. For :, ?,F, (≥ 1, and n ∈ [0, 1], if there exists a ?-

pass, (-space dynamic streaming algorithm solving MST:+F2?−1+1
with probability n , then there also exists a (2? − 1)-round, (2? − 1)(-
communication protocol solving Hint-ATPC#:

2?−1,F with probability

n over D:
2?−1,F .

Before proving Claim 4.5, we show that it indeed implies Theo-

rem 4.1.

Proof of Theorem 4.1. Fix a ?-pass dynamic streaming algo-

rithm for solvingMST= with probability 2/3 that has space (. Let
: = (= − 1)/2, 3 = 2? − 1, F = (= − : − 1)1/3 , and � = 3(. Ap-

plying the reduction of Claim 4.5, we get a 3-round protocol for

solving Hint-ATPC#:
3,F

with probability 2/3 over D:
3,F

that has

communication � . On the other hand, Lemma 4.4 implies

� = Ω

(
:F

3$ (3) log:

)
,

or equivalently,

(= Ω

(
=
1+ 1

2?−1

?$ (?) log=

)
,

as claimed. □

We remark that the assumption ? = > (
√
log=/log log=) of Theo-

rem 4.1 is nessesary in the above proof for satisfying the condition

3 = > (logF/log logF) of Lemma 4.4. Moreover, a closer look at

the proofs in Sections 4.3 and 4.4 will reveal that this constraint

comes solely from the A$ (A) -fold decrease in communication when

using the XOR lemma of [37]. If the loss factor were reduced to

poly(A) (meaning a better XOR lemma), the constraint would then

be relaxed to 3 = F> (1) . In turn, this would be su�cient for prov-

ing a lower bound for up to ? = > (log=/log log=) passes (and thus

the full verion of our main result). Nevertheless, as will be seen

842

Optimal Multi-pass Lower Bounds for MST in Dynamic Streams STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

in Section 5, we actually take a two-step approach in the absence

of such an ideal XOR lemma. At a high level, we will perform the

ampli�cation of communication and error probability separately.

The rest of this section constitutes a proof of Claim 4.5. Let

3 = 2? − 1, � = 3(, and = = : +F3 + 1. Fix a dynamic streaming

algorithm c as described in the claim. In the following, we construct

a protocol g for solvingHint-ATPC#:
3,F

with the desired properties.

On input ((� = 0
(3)
≤: ,)), (� = 1

(3)
≤: ,))), g simulates c on the fol-

lowing dynamic stream, where sender and receiver are de�ned

in Algorithm 1 and Algorithm 2, respectively (? = 0 represents

Alice and ? = 1 represents Bob); see Figure 3 for an illustration of

the functions and Figure 4 for an illustration of the reduction. The

threshold given to c is to be determined.

(1) Insert an edge (1, =) with weight 2:F3 − 2) + 1.

(2) For D < E ∈ [F3], insert an edge (: +D, : + E) with weight 1.

(3) For 9 ∈ [:] and C ∈ sender(3,F, 0
(3)
9 , 0), insert an edge

(9, : + ⌈C/2⌉) with weight C + 1.

(4) For 9 ∈ [:] and C ∈ receiver(3,F,1
(3)
9 , 1), delete the edge

(9, : + ⌈C/2⌉) with weight C + 1.

Algorithm 1. The function sender(3,F,�(3) , ?).
• 3 = 1: We have �(1) ∈ {0, 1}F .
– ? = 0: Return

{
2 9 −�

(1)
9 | 9 ∈ [F]

}
.

– ? = 1: Return

[2F] \
{
2 9 −�

(1)
9 | 9 ∈ [F]

}
.

• 3 > 1: We have �(3)
= 1

(3−1)
≤F , where 1

(3−1)
9 for 9 ∈ [F] is

a valid input to Bob for ATPC3−1,F . Return
⋃

9∈[F]

{
2(9 − 1) ·F3−1 + C | C ∈ receiver(3 − 1,F, 1

(3−1)
9 , ?)

}
.

Algorithm 2. The function receiver(3,F, � (3) , ?).
• 3 = 1: We have � (1)

= (8 (1) , �(1)
<8 (1)

), where 8 (1) ∈ [F] and
�
(1)
9 ∈ {0, 1} for 9 ∈ [8 (1) − 1].

– ? = 0: Return

[2F] \
{
2 9 −�

(1)
9 | 9 ∈ [8 (1) − 1]

}
.

– ? = 1: Return
{
2 9 −�

(1)
9 | 9 ∈ [8 (1) − 1]

}
.

• 3 > 1: We have � (3)
= (8 (3) , 0 (3−1)≤8 (3) , 1

(3−1)
<8 (3)

), where 8 (3) ∈
[F], (0 (3−1)9 , 1

(3−1)
9) for 9 ∈ [8 (3−1)−1] is a valid instance of

ATPC3−1,F , 0
(3−1)
8 (3)

is a valid input to Alice for ATPC3−1,F .
If ? = 0, return

⋃

9∈[8 (3)−1]

{
2(9 − 1) ·F3−1 + C | C ∈ receiver(3 − 1,F, 1

(3−1)
9 , 1)

}

∪
{
2(8 (3) − 1) ·F3−1 + C | C ∈ sender(3 − 1,F, 0

(3−1)
8 (3)

, 0)
}

∪ [28 (3) ·F3−1 + 1, 2F3],

{2, 6, 7, 9, 11, 13, 14, 15, 16} , {2, 6, 7, 14}

{2, 6, 7} , {2} {1, 3, 5, 6, 7, 8} , {6}

{2, 3} , {2} {2, 3} , ∅ {1, 3} , ∅ {2, 4} , {2}

Figure 3: An illustration of functions sender and receiver,

for 3 = 3 and F = 2. Blue edges are the pointers owned by

Alice (not via augmentation) while red edges are the pointers

owned by Bob (not via augmentation). Un�lled leaf nodes

have value 0while �lled leaf nodes have value 1. Each internal

node is labeled by the set of insertions (for Alice), followed by

the set of deletions (for Bob), with respect to the subinstance

represented by its subtree, where the owner of the pointer

computes receiver and the other party computes sender.

Figure 4: An illustration of the reduction fromHint-ATPC#:
3,F

to MST= , for : = 4, F3
= 5, and = = 10. Bottom vertices

(encircled in gray) represent the elements of [F3], which are

fully connected as a clique, while each of the top vertices

represents an ATPC3,F instance. Red edges correspond to

the deletions while each of the blue edges is inserted but not

deleted – to avoid clutter, only the edges for 9 = 1 are drawn.

The green edge is (1, =).

and if ? = 1, return
⋃

9∈[8 (3)−1]

{
2(9 − 1) ·F3−1 + C | C ∈ receiver(3 − 1,F, 1

(3−1)
9 , 0)

}

∪
{
2(8 (3) − 1) ·F3−1 + C | C ∈ sender(3 − 1,F, 0

(3−1)
8 (3)

, 1)
}
.

At a high level, Alice and Bob jointly encode the target of each

ATPC3,F instance as the minimum weight edge incident on a

unique vertex. To do this, the sender of a message (who does not

own the current pointer) has no choice but to collect and merge

its insertions/deletions from all subtrees (o�set properly to make

them disjoint). On the other hand, the receiver owns the current

pointer and thus has full knowledge of the subtrees to the left of

the pointer, enabling perfect simulation of both parties in all these

subtrees. Suppose the receiver performs opposite operations on

exactly the same subset of elements as the sender, meaning e�ec-

tively no edge is inserted/deleted, in each of these subtrees. As a

result, the output of the larger instance always corresponds to the

output of the smaller instance determined by the current pointer.

Besides, to ensure a proper inclusion, Alice as the receiver will in-

sert everything to the right of the pointer while Bob as the receiver

will delete nothing to the right of the pointer, as can be seen in the

second case of Algorithm 2.

843

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

It can be veri�ed that Alice is able to compute all insertions on

her own and Bob is able to compute all deletions on his own. So

the ?-pass dynamic streaming algorithm c can be simulated by the

protocol g , using 3 rounds and � communication, in the canonical

way of exchanging memory states. Now, it remains to formally

show the correctness of the reduction. This is done with the help

of the following technical claim.

Claim 4.6. For any ATPC3,F instance (�(3) , � (3)), it holds that

sender(3,F,�(3) , 0) ⊋ receiver(3,F, � (3) , 1),
and

receiver(3,F, � (3) , 0) ⊋ sender(3,F,�(3) , 1) .
Furthermore, it also holds that

min(sender(3,F,�(3) , 0) \ receiver(3,F, � (3) , 1)) = 2C − I,

and

min(receiver(3,F, � (3) , 0) \ sender(3,F,�(3) , 1)) = 2C − I,

where C is the target of the instance, and I the output.

Assume the above claim for now. Applying it to (0 (3)9 , 1
(3)
9) for

9 ∈ [:], we know that the constructed dynamic stream is well-

de�ned and any minimum spanning tree of the constructed graph

must consist of the following edges.

(1) The edge (1, =) with weight 2:F3 − 2) + 1.

(2) F3 − 1 edges connecting [: + 1, : +F3], each with weight 1.

(3) The edge (9, : + C 9) with weight 2C 9 − I 9 + 1, where C 9 is

the target of (0 (3)9 , 1
(3)
9) and I 9 is the output of the same

instance, for 9 ∈ [:].
Therefore, the weight of minimum spanning trees is

2:F3−2) +1+F3−1+
∑

9∈[:]
(2C 9 −I 9 +1) = 2:F3 +F3 +:−

∑

9∈[:]
I 9 .

In other words, g will output 1 (i.e., more than ⌊:/2⌋ out of the :
instances of ATPC3,F output 1) if and only if c outputs 0 given

threshold 2:F3 + F3 + : − ⌊:/2⌋ (i.e., the weight of minimum

spanning trees is less than the given threshold). So the success

probability remains the same.

It concludes this section as the proof of Claim 4.6 can be found in

the full version of this paper [10]. We remark that Claim 4.6 can also

be viewed as a reduction from ATPC3,F to UR⊂
min,dec

over a uni-

verse of size< = 2F3 , where Alice computes sender(3,F,�(3) , 0)
and Bob computes receiver(3,F, � (3) , 1). The corollary below fol-

lows immediately from the lower bound for ATPC3,F (Lemma 4.3).

Corollary 4.7. For <, A ≥ 1, and n ∈ [0, 1/2], any A -round

(randomized) protocol that solves UR⊂
min,dec

with probability 1/2 + n

over a universe of size<, requires Ω(n2<1/A /A) communication.

4.3 Lower Bound for ATPC3,F

Wederive Lemma 4.3 by round elimination in this section. Claims 4.8

and 4.9 take care of the base case and each round elimination step,

respectively.

Claim 4.8 (Base case). For F ≥ 1, any one-way protocol c for

solvingATPC1,F succeeds with probability at most 1/2+
√
CC(c)/F

over D1,F .

Claim 4.9 (Round elimination). For 3,F ≥ 1, and n ∈ [0, 1],
if there exists a (3 + 1)-round protocol c solving ATPC3+1,F with

probability n over D3+1,F , then there also exists a 3-round protocol

g solving ATPC3,F with probability n −
√
CC(1) (c)/F over D3,F

and communication CC(g) = CC
(>1) (c).

The proof of Lemma 4.3 can be found in the full version of this

paper [10].

4.4 Lower Bound for Hint-ATPC#:
3,F

We generalize the lower bound for ATPC3,F to its :-fold verisons

in this section. The hardness ofHint-ATPC#:
3,F

will be proved by a

series of reductions from ATPC⊕:
3,F

. Indeed, Claim 4.10 deals with

the hint, namely the sum of targets, while Claim 4.11 relates the

XOR and the majority versions of the problem. The hardness of

ATPC⊕:
3,F

will in turn be derived from the hardness of ATPC3,F

using the XOR lemma of [37] (Lemma 4.12).

Claim 4.10. For :, 3,F ≥ 1, and n ∈ [0, 1/2], it holds that

D
(3)
D:

3,F
, 12+

n

:F3

(ATPC⊕:
3,F

) ≤ D
(3)
D:

3,F
, 12+n

(Hint-ATPC⊕:
3,F

)+:3 logF.

Claim 4.11. For :, 3,F ≥ 1, and n ∈ [0, 1/2], it holds that

D
(3)
D:

3,F
, 12 −n+Θ(1√

:
) (Hint-ATPC

⊕:
3,F

) ≤ D
(3)
D:

3,F
,1−n (Hint-ATPC

#:
3,F

) .

We remark that the reductions in proving Claims 4.10 and 4.11

actually have little to do with the base problem ATPC3,F itself. In

fact, almost identical reductions will also be used in Section 5 for

proving the full version of our main result.

The proof of Lemma 4.4 uses the following XOR lemma of [37]10,

and can be found in the full verion of this paper [10].

Lemma 4.12 ([37]). For :, A ≥ 1, Boolean function 5 , and input

distance `, it holds that

D
(A)
`: , 12+

1

2:

(5 ⊕:) ≥ : ·
(

1

A$ (A) · D(A)
`, 23

(5) − 1

)
.

5 A LOWER BOUND IN OPTIMAL NUMBER OF
PASSES

In this section, we extend Theorem 4.1 to more passes as shown

in Theorem 5.1, fully proving Result 1. Also, Result 2, formalized

in Theorem 5.2, will be a direct consequence of Lemmas 5.3 and 5.4.

Theorem 5.1 (Formal version of Result 1). For integer ? =

> (log=
log log=

), any ?-pass dynamic streaming algorithm for solving

MST= with probability 2/3 requires Ω(=
1+ 1

2?−1

?5 log3 =
) space.

Theorem 5.2 (Formal version of Result 2). There exists n0 > 0

such that for =, A ≥ 1, : ∈ [1, =], n ∈ (0, n0), Boolean function 5 , and

10Technically, the main result (Theorem 1) of [37] is an XOR lemma for randomized
communication complexity, while a distributional version is required in our proof.
Nevertheless, [37] proves the main result via another one (Theorem 2) with asymmetirc
communication, which directly works in the distributional model. The distributional
version we need is a natural byproduct of the simple argument from Theorem 2 to
Theorem 1; see Section 4 in the full version of [37] for more details.

844

Optimal Multi-pass Lower Bounds for MST in Dynamic Streams STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

input distribution `, it holds that

D
(A),:
`=, 12+min(n1,n2)

(5 ⊕=) = Ω

(
=

:
·
(
n

A
· D(A)

`, 12+n
(5) −$ (A)

))
,

where n1 = (An)Ω (:/A) and n2 = nΩ (n:/A) .

As mentioned in Section 4, we take a two-step approach by

amplifying �rst communication and then error probability. The

�rst step uses the following XOR-direct-sum result11, tight up to a

factor of A , for bounded-round communication complexity, which

is implicitly implied by [27].

Lemma 5.3 (Bounded-round XOR direct sum). For :, A ≥ 1,

n ∈ [0, 1], X ∈ (0, n), Boolean function 5 , and input distribution `, it

holds that

D
(A)
`: ,n

(5 ⊕:) = Ω

(
: ·

(
X

A
· D(A)

`,n−X (5) −$ (A)
))

.

For the second step, we prove an XOR-lemma-type result for the

multi-party model.

Lemma 5.4 (Multi-party XOR lemma). There exists n0 > 0

such that for :, A ≥ 1, n ∈ (0, n0), Boolean function 5 , and input

distribution `, it holds that

D
(A),:
`: , 12+min(n1,n2)

(5 ⊕:) ≥ D
(A)
`, 12+n

(5),

where n1 = (An)Ω (:/A) and n2 = nΩ (n:/A) .

We remark that Lemma 5.4 is a weaker XOR lemma than the one

of [37] in the sense that the decrease in advantage is worse and it

only applies to the multi-party model. It nevertheless meets our

needs as we will eventually work in the streaming model. On the

positive side, Lemma 5.4 no longer su�ers a factor of A$ (A) in com-

munication, which is the only barrier towards > (log=/log log=)
passes as identi�ed in Section 4.

We now show that Lemmas 5.3 and 5.4 indeed imply Theorem 5.1.

This is done via multi-party variants of the problems in Section 4.

De�nition 5.5. For :1, :2, 3,F ≥ 1, ATPC
⊕(:1,:2)
3,F

denotes the

:1:2-fold XOR version of ATPC3,F in the 2:2-party model, where

each pair of Alice 8 and Bob 8 is given as input :1 instances of

ATPC3,F , where 8 ∈ [:2]. Similarly, ATPC
#(:1,:2)
3,F

denotes the

:1:2-fold majority version of ATPC3,F in the 2:2-party model.

When the hint, i.e., the total sum of targets of all:1:2 instances, is

given to each of the 2:2 parties as part of its input, the resulting prob-

lems are denoted by Hint-ATPC
⊕(:1,:2)
3,F

and Hint-ATPC
#(:1,:2)
3,F

.

Multi-party analogues of Claims 4.5, 4.10 and 4.11 are given

below. The proofs are almost identical and omitted here, as the

same reductions still apply.

Claim 5.6. For :1, :2, ?,F, (≥ 1, and n ∈ [0, 1], if there exists a ?-
pass, (-space dynamic streaming algorithm solvingMST:1:2+F2?−1+1
with probability n , then there also exists a (2?−1)-round, (2?−1):2(-
communication protocol solving Hint-ATPC

#(:1,:2)
2?−1,F with probability

n over D:1:2
2?−1,F .

11A similar direct-sum result also holds for 5 : . It is however subsumed by the direct-
product result of [27].

Claim 5.7. For :1, :2, 3,F ≥ 1, and n ∈ [0, 1/2], it holds that

D
(3),:2
D:1:2

3,F
, 12+

n

:1:2F
3

(ATPC⊕(:1,:2)
3,F

)

≤ D
(3),:2
D:1:2

3,F
, 12+n

(Hint-ATPC⊕(:1,:2)
3,F

) + :1:23 logF.

Claim 5.8. For :1, :2, 3,F ≥ 1, and n ∈ [0, 1/2], it holds that

D
(3),:2
D:1:2

3,F
, 12 −n+Θ(1√

:1:2
)
(Hint-ATPC⊕(:1,:2)

3,F
)

≤ D
(3),:2
D:1:2

3,F
,1−n

(Hint-ATPC#(:1,:2)
3,F

).

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Fix a ?-pass dynamic streaming algo-

rithm for solvingMST= with probability 2/3 that has space (. Let
: = (= − 1)/2, :2 = 23 log= and :1 = :/:2 for some su�ciently

large constant 2 > 0. Also let 3 = 2? − 1, F = (= − : − 1)1/3 , and
� = :23(. Applying the reduction of Claim 5.6, we get a 3-round

protocol for solving Hint-ATPC
#(:1,:2)
3,F

with probability 2/3 over
D:

3,F
that has communication � . The success probability can be

boosted to 1 − 1/poly(=) by $ (log=) parallel repetitions.
On the other hand, Lemma 4.3, together with Theorem 5.2 for

some su�ciently small constant n > 0, implies that

D
(3),:2
D:

3,F
, 12+

1
poly(=)

(ATPC⊕(:1,:2)
3,F

) = Ω

(
:1F

32

)
.

Applying Claims 5.7 and 5.8 in sequence, we further get

D
(3),:2
D:

3,F
,1− 1

poly(=)
(Hint-ATPC

#(:1,:2)
3,F

) = Ω

(
:1F

32

)
.

Combining the above arguments, we �nally have

� log= = Ω

(
:1F

32

)
.

The theorem follows by rearranging the terms. □

We remark that the above proof uses the n2 case in Lemma 5.4

with n = Θ(1). It is also possible to prove Theorem 5.1 using the

n1 case with n = Θ(1/A). However, this results in slightly worse

dependence on ? for the derived space lower bound on streaming

algorithms. Both cases of Lemma 5.4 are provided just in case the

result may be of independent interest to some readers.

REFERENCES
[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha, AndrewMcGregor, and Anthony

Wirth. 2021. Correlation Clustering in Data Streams. Algorithmica 83, 7 (2021),
1980–2017. https://doi.org/10.1007/S00453-021-00816-9

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing graph
structure via linear measurements. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, Janu-
ary 17-19, 2012, Yuval Rabani (Ed.). SIAM, 459–467. https://doi.org/10.1137/1.
9781611973099.40

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches:
sparsi�cation, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scotts-
dale, AZ, USA, May 20-24, 2012, Michael Benedikt, Markus Krötzsch, and Maurizio
Lenzerini (Eds.). ACM, 5–14. https://doi.org/10.1145/2213556.2213560

[4] Kook Jin Ahn, Sudipto Guha, and AndrewMcGregor. 2013. Spectral Sparsi�cation
in Dynamic Graph Streams. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 16th International Workshop, APPROX
2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August
21-23, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8096), Prasad

845

https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/2213556.2213560

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sepehr Assadi, Gillat Kol, and Zhijun Zhang

Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and José D. P. Rolim (Eds.).
Springer, 1–10. https://doi.org/10.1007/978-3-642-40328-6_1

[5] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodru�. 2016. New Characterizations
in Turnstile Streams with Applications. In 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan (LIPIcs, Vol. 50),
Ran Raz (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:22.
https://doi.org/10.4230/LIPICS.CCC.2016.20

[6] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of
Approximating the FrequencyMoments. J. Comput. Syst. Sci. 58, 1 (1999), 137–147.
https://doi.org/10.1006/JCSS.1997.1545

[7] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On Estimating Maximum
Matching Size in Graph Streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, Philip N. Klein (Ed.). SIAM, 1723–1742. https:
//doi.org/10.1137/1.9781611974782.113

[8] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2021. Tight Bounds for Single-Pass
Streaming Complexity of the Set Cover Problem. SIAM J. Comput. 50, 3 (2021),
STOC16–341–STOC16–376. https://doi.org/10.1137/16M1095482

[9] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-
mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-
tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, Robert
Krauthgamer (Ed.). SIAM, 1345–1364. https://doi.org/10.1137/1.9781611974331.
CH93

[10] Sepehr Assadi, Gillat Kol, and Zhijun Zhang. 2023. Optimal Multi-Pass Lower
Bounds for MST in Dynamic Streams. CoRR abs/2312.04674 (2023). https:
//doi.org/10.48550/ARXIV.2312.04674 arXiv:2312.04674

[11] Sepehr Assadi and Vishvajeet N. 2021. Graph streaming lower bounds for pa-
rameter estimation and property testing via a streaming XOR lemma. In STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, Samir Khuller and Virginia Vassilevska Williams (Eds.).
ACM, 612–625. https://doi.org/10.1145/3406325.3451110

[12] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. 2013. How to Compress
Interactive Communication. SIAM J. Comput. 42, 3 (2013), 1327–1363. https:
//doi.org/10.1137/100811969

[13] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-
pos E. Tsourakakis. 2015. Space- and Time-E�cient Algorithm for Maintaining
Dense Subgraphs on One-Pass Dynamic Streams. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, Rocco A. Servedio and Ronitt Rubinfeld (Eds.). ACM,
173–182. https://doi.org/10.1145/2746539.2746592

[14] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayo�. 2013. Di-
rect Product via Round-Preserving Compression. In Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 7965), Fedor V.
Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg (Eds.). Springer,
232–243. https://doi.org/10.1007/978-3-642-39206-1_20

[15] Marc Bury and Chris Schwiegelshohn. 2015. Sublinear Estimation of Weighted
Matchings in Dynamic Data Streams. In Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings (Lecture
Notes in Computer Science, Vol. 9294), Nikhil Bansal and Irene Finocchi (Eds.).
Springer, 263–274. https://doi.org/10.1007/978-3-662-48350-3_23

[16] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent
items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15. https://doi.org/10.
1016/S0304-3975(03)00400-6

[17] Yu Chen, Sanjeev Khanna, and Huan Li. 2022. On Weighted Graph Sparsi�cation
by Linear Sketching. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022. IEEE, 474–485.
https://doi.org/10.1109/FOCS54457.2022.00052

[18] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Ha-
jiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova.
2016. Kernelization via Sampling with Applications to Finding Matchings and
Related Problems in Dynamic Graph Streams. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, Robert Krauthgamer (Ed.). SIAM, 1326–1344.
https://doi.org/10.1137/1.9781611974331.CH92

[19] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and
Morteza Monemizadeh. 2015. Parameterized Streaming: Maximal Matching and
Vertex Cover. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, Piotr
Indyk (Ed.). SIAM, 1234–1251. https://doi.org/10.1137/1.9781611973730.82

[20] Jacques Dark and Christian Konrad. 2020. Optimal Lower Bounds for Matching
and Vertex Cover in Dynamic Graph Streams. In 35th Computational Complexity

Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference)
(LIPIcs, Vol. 169), Shubhangi Saraf (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 30:1–30:14. https://doi.org/10.4230/LIPICS.CCC.2020.30

[21] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2005. On graph problems in a semi-streaming model. Theor. Comput. Sci.
348, 2-3 (2005), 207–216. https://doi.org/10.1016/J.TCS.2005.09.013

[22] Arnold Filtser, Michael Kapralov, and Navid Nouri. 2021. Graph Spanners by
Sketching in Dynamic Streams and the Simultaneous Communication Model. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, Dániel Marx (Ed.). SIAM, 1894–1913.

[23] Gereon Frahling, Piotr Indyk, and Christian Sohler. 2008. Sampling in Dynamic
Data Streams and Applications. Int. J. Comput. Geom. Appl. 18, 1/2 (2008), 3–28.
https://doi.org/10.1142/S0218195908002520

[24] Sudipto Guha, Andrew McGregor, and David Tench. 2015. Vertex and Hyper-
edge Connectivity in Dynamic Graph Streams. In Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, Tova Milo and Diego Calvanese (Eds.). ACM,
241–247. https://doi.org/10.1145/2745754.2745763

[25] Zengfeng Huang and Pan Peng. 2019. Dynamic Graph Stream Algorithms in o(n)
Space. Algorithmica 81, 5 (2019), 1965–1987. https://doi.org/10.1007/S00453-018-
0520-8

[26] Siddharth Iyer and Anup Rao. 2023. XOR Lemmas for Communication via
Marginal Information. CoRR abs/2312.03076 (2023). https://doi.org/10.48550/
ARXIV.2312.03076 arXiv:2312.03076

[27] Rahul Jain, Attila Pereszlényi, and Penghui Yao. 2016. A Direct Product Theo-
rem for Two-Party Bounded-Round Public-Coin Communication Complexity.
Algorithmica 76, 3 (2016), 720–748. https://doi.org/10.1007/S00453-015-0100-0

[28] Hossein Jowhari, Mert Saglam, and Gábor Tardos. 2011. Tight bounds for Lp
samplers, �nding duplicates in streams, and related problems. In Proceedings of
the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, June 12-16, 2011, Athens, Greece, Maurizio Lenzerini and
Thomas Schwentick (Eds.). ACM, 49–58. https://doi.org/10.1145/1989284.1989289

[29] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron
Sidford. 2017. Single Pass Spectral Sparsi�cation in Dynamic Streams. SIAM J.
Comput. 46, 1 (2017), 456–477. https://doi.org/10.1137/141002281

[30] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P.
Woodru�, and Mobin Yahyazadeh. 2017. Optimal Lower Bounds for Univer-
sal Relation, and for Samplers and Finding Duplicates in Streams. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, Chris Umans (Ed.). IEEE Computer Society, 475–486.
https://doi.org/10.1109/FOCS.2017.50

[31] Mauricio Karchmer, Ran Raz, and AviWigderson. 1995. Super-Logarithmic Depth
Lower Bounds Via the Direct Sum in Communication Complexity. Comput.
Complex. 5, 3/4 (1995), 191–204. https://doi.org/10.1007/BF01206317

[32] Yi Li, Huy L. Nguyen, and David P. Woodru�. 2014. Turnstile streaming algo-
rithms might as well be linear sketches. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, David B. Shmoys (Ed.).
ACM, 174–183. https://doi.org/10.1145/2591796.2591812

[33] AndrewMcGregor, David Tench, Sofya Vorotnikova, andHoa T. Vu. 2015. Densest
Subgraph in Dynamic Graph Streams. In Mathematical Foundations of Computer
Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August
24-28, 2015, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9235),
Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella (Eds.). Springer,
472–482. https://doi.org/10.1007/978-3-662-48054-0_39

[34] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. 1998. On
Data Structures and Asymmetric Communication Complexity. J. Comput. Syst.
Sci. 57, 1 (1998), 37–49. https://doi.org/10.1006/JCSS.1998.1577

[35] Jelani Nelson and Huacheng Yu. 2019. Optimal Lower Bounds for Distributed
and Streaming Spanning Forest Computation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, Timothy M. Chan (Ed.). SIAM, 1844–1860.
https://doi.org/10.1137/1.9781611975482.111

[36] Huacheng Yu. 2021. Tight Distributed Sketching Lower Bound for Connectivity.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, Dániel Marx (Ed.). SIAM, 1856–
1873. https://doi.org/10.1137/1.9781611976465.111

[37] Huacheng Yu. 2022. Strong XOR Lemma for Communication with Bounded
Rounds : (extended abstract). In 63rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022.
IEEE, 1186–1192. https://doi.org/10.1109/FOCS54457.2022.00114

Received 13-NOV-2023; accepted 2024-02-11

846

https://doi.org/10.1007/978-3-642-40328-6_1
https://doi.org/10.4230/LIPICS.CCC.2016.20
https://doi.org/10.1006/JCSS.1997.1545
https://doi.org/10.1137/1.9781611974782.113
https://doi.org/10.1137/1.9781611974782.113
https://doi.org/10.1137/16M1095482
https://doi.org/10.1137/1.9781611974331.CH93
https://doi.org/10.1137/1.9781611974331.CH93
https://doi.org/10.48550/ARXIV.2312.04674
https://doi.org/10.48550/ARXIV.2312.04674
https://arxiv.org/abs/2312.04674
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1137/100811969
https://doi.org/10.1137/100811969
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1007/978-3-642-39206-1_20
https://doi.org/10.1007/978-3-662-48350-3_23
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1109/FOCS54457.2022.00052
https://doi.org/10.1137/1.9781611974331.CH92
https://doi.org/10.1137/1.9781611973730.82
https://doi.org/10.4230/LIPICS.CCC.2020.30
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1142/S0218195908002520
https://doi.org/10.1145/2745754.2745763
https://doi.org/10.1007/S00453-018-0520-8
https://doi.org/10.1007/S00453-018-0520-8
https://doi.org/10.48550/ARXIV.2312.03076
https://doi.org/10.48550/ARXIV.2312.03076
https://arxiv.org/abs/2312.03076
https://doi.org/10.1007/S00453-015-0100-0
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1137/141002281
https://doi.org/10.1109/FOCS.2017.50
https://doi.org/10.1007/BF01206317
https://doi.org/10.1145/2591796.2591812
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1006/JCSS.1998.1577
https://doi.org/10.1137/1.9781611975482.111
https://doi.org/10.1137/1.9781611976465.111
https://doi.org/10.1109/FOCS54457.2022.00114

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Technical Overview
	3.1 The Search Version
	3.2 The Decision Version
	3.3 Multi-Party XOR Lemma

	4 A Lower Bound in Few Passes
	4.1 Augmented Tree Pointer Chasing
	4.2 Proof of thm:lb-few
	4.3 Lower Bound for ATPCd,w
	4.4 Lower Bound for Hint-ATPC# kd,w

	5 A Lower Bound in Optimal Number of Passes
	References

