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Abstract

This work proposes a class of di↵erentially
private mechanisms for linear queries, in par-
ticular range queries, that leverages corre-
lated input perturbation to simultaneously
achieve unbiasedness, consistency, statisti-
cal transparency, and control over utility re-
quirements in terms of accuracy targets ex-
pressed either in certain query margins or as
implied by the hierarchical database struc-
ture. The proposed Cascade Sampling al-
gorithm instantiates the mechanism exactly
and e�ciently. Our theoretical and empir-
ical analysis demonstrates that we achieve
near-optimal utility, e↵ectively compete with
other methods, and retain all the favorable
statistical properties discussed earlier.

1 Introduction

In this paper we construct a class of di↵erentially pri-
vate mechanisms for linear queries, including range
queries, representable as a multiplicative operation
of a pre-specified workload matrix and a confidential
database. Our work is strongly motivated by the ap-
plication of di↵erential privacy to the 2020 U.S. De-
cennial Census, providing redistricting (P.L. 94-171)
as well as Demographic and Housing Characteristic
(DHC) files in the forms of multi-resolutional tabu-
lar data [3]. Population tabulations across geographic
resolutions follow a hierarchical system termed the
“spine” [8], which orders from top to bottom geo-
graphic entities (states, counties, tracts, block groups,
and blocks), with higher-level geographies partitioned
by the lower-level ones. As the only high-profile de-
ployment of di↵erential privacy in the public domain,
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the particular demands from the Census and similar
o�cial data products reveal a number of crucial con-
siderations on privacy mechanisms that are possibly
shared in a broader set of practical application sce-
narios. We discuss these considerations, highlighting
consistency and utility control as the most prominent.

Consistency (internal): The sanitized output may
plausibly be viewed as having been queried directly
from an input database without modification. In par-
ticular, the data output for a geographical range (e.g.
a state) should be precisely the sum of data values
from its constituent sub-ranges (e.g. all the counties
in a state). This is an example of a broader family of
logical consistency that ensures stability and absence
of conflicts in the data output.

Fine-grained utility control: The mechanism ac-
commodates custom, externally specified utility re-
quirements expressed as accuracy targets in query
margins or implied by the hierarchical database struc-
ture. For example, Census tabulations at lower and
intermediate geographies, as does certain “o↵-spine”
geographies (e.g. voting districts), must meet accu-
racy targets according to the relevant operational stan-
dards [40]. Moreover, population counts across larger
geographical regions at a lower resolution may not be
permitted to have a greater error margin compared
to smaller geographical regions at a higher resolution.
For example, the mean error and mean absolute er-
rors of total population counts in the Census DHC
files remain consistent at the state, county, tract, and
block group levels [41]. With the exception of a num-
ber of very recent work [43, 45], fine-grained utility
control has been scarcely discussed in the DP litera-
ture, as the focus has been predominantly placed on
the assessment of overall utility (such as average or
worst-case). The Census application raised this issue
in an interesting angle – that the algorithm designer
is given both custom specified, fine-grained utility tar-
gets as well as privacy budget target, and must work
backward to meet both objectives.

Furthermore, unbiasedness and statistical trans-
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parency influence both the quality and usability of
the data product [18, 20]. With unbiasedness, the
sanitized output exhibits no bias with respect to the
ground truth; With statistical transparency, the
probabilistic description of the sanitized output is an-
alytically tractable (ideally in a closed-form) to enable
reliable downstream statistical inferences. Last, it is
always desirable to have e�cient implementation –
the algorithm is exact and simple to implement, with
no need for approximate simulation (e.g. Markov chain
Monte Carlo) nor optimization-based post-processing.
We will review the Census Bureau’s TopDown algo-
rithm [3] as well as other DP mechanisms with respect
to these considerations later.

This paper considers input perturbation – adding
Gaussian noises at each input data items and answer-
ing queries with the perturbed data. Classic input
perturbation mechanisms naturally support unbiased-
ness, logical consistency, and statistical transparency,
and are practical to implement. However, they do not
support fine utility control and typically result in poor
data utility, an issue that worsens when the query
range contains a large number of data elements [6].
For this reason, input perturbation methods have been
largely under-utilized in practice.

In this work we consider input perturbation with cor-
related Gaussian noise, which reduces error magnitude
and o↵ers fine control over utility while harnessing
its many strengths. The proposed mechanism care-
fully couples the item-wise noises to allow queries at
di↵erent hierarchical levels to conform to a uniform
accuracy standard while achieving near-optimal over-
all utility objectives, both theoretically and empiri-
cally. We show for 1D range queries, the proposed
mechanism achieves optimal mean square error and
near-optimal worst-case and expected worst-case er-
rors when compared to prevailing (✏, �)-DP mecha-
nisms. The special error correlation structure sup-
ports a linear time e�cient implementation called the
Cascade Sampling algorithm. Importantly, the fine
control over data utility at di↵erent levels of geogra-
phy is inherent to the design of the proposed mecha-
nism, rather than reliant on optimization-based post-
processing which may destroy transparency and render
unpredictable accuracy. Our proposal generalizes to
other hierarchical and multidimensional linear query
settings.

2 Problem Formulation

Given a confidential data vector x of dimension n, and
a workload matrixW of dimension p⇥n, we would like
to report a (possibly) noisy version of the query answer
Wx while preserving the privacy of individual data

elements in x. W is an incidence matrix with rows
corresponding to queries and columns corresponding
to data elements. Specifically, we consider an (", �)-
di↵erentially private mechanism W",� which satisfies
for any two neighboring databases x,x0, ||x�x0||1  1,
and any set D of output values

P [W",�(x) 2 D]  e
" · P [W",�(x

0) 2 D] + �.

The linear query framework models many scenarios
in practice. Three are particularly relevant to this
work. Predicate counting queries report the number
of database rows that satisfy the given predicate q,
which are encoded into the rows of the workload ma-
trix W . Range queries report the sum of elements (or
coordinates; xi) that fall inside a given range, such
as a time interval [`, r] (e.g. streaming data) or a
two-dimensional geographic area, with the structure
of the range reflected in W . Contingency tables are
multidimensional histograms of entities satisfying cer-
tain composite attributes in a database. They can be
regarded as a special type of high-dimensional range
query, and are used extensively by statistical agencies
for data processing and dissemination.

2.1 Definitions

Definition 2.1. A mechanism W",� is unbiased if
E(W",�(x)) = Wx, where the expectation is taken
over the randomness of W",�.

That is, unbiasedness forbids a privacy mechanism
from injecting systematic drift into the data output.

Definition 2.2 ([20], Def. 3). A privacy mechanism
W is statistically transparent if the conditional distri-
bution of its output given the input, p⇠(W = w | x =
x), is analytically available up to p and ⇠, where ⇠ is
the parameter for p (both tuning and auxiliary).

Statistical transparency is not frequently discussed in
the literature of private mechanism design, but it is
crucial if the sanitized output is subject to further data
analysis as it provides the basis for valid statistical
uncertainty quantification [20].

Definition 2.3. A mechanism W",� operating on the
data vector x is internally consistent if with probabil-
ity one (over the randomness of W",�) there exists a
vector x0 such that W",�(x) = Wx0.

First defined for contingency tables and generalizable
to any query, consistency requires the sanitized query
to be a legitimate output of the intended query ap-
plied to a potential input database [4, 26, 6]. It is
particularly important if the sanitized output enters
directly into downstream decisions and is expected
to be free of internal logical conflicts. In the liter-
ature, external consistency has also been discussed.
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For example, state-level populations must be exactly
reported per their constitutional purpose for reappor-
tionment – an “invariant” requirement enforced exter-
nally; see [19, 9]. This is not discussed in this paper.

Remark 2.4. For linear queries, consistency requires
the sanitized output to be in the column space of
W . Any logical relationship embodied in W (e.g.
one range being the union of two disjoint ranges) is
mirrored in W",�. Additive mechanisms of the form
Wx+ e may not automatically obey consistency, un-
less e is guaranteed to be in the column space of W .
The same is true for exponential mechanisms unless
the range is intentionally restricted [39].

3 Correlated input perturbation
mechanism

This section presents the design of the correlation ma-
trix, an e�cient algorithm to sample from this distri-
bution, and the resulting privacy and utility guaran-
tees. Proof of our results are postponed to Appendix B
and extensions to general binary tree and 2-D data are
discussed in Appendix D.

3.1 Correlation matrix

To simplify matters, we consider n data points on a
one-dimensional line and assume that n is a power of
2, denoted as n = 2k. Extensions will be discussed
in Section D. Each data point will be represented by
its binary form, utilizing k bits, as leaves of a perfect
binary tree with height k. Nodes in the tree receive la-
bels based on their positions in a level-order traversal.
For example, the root node is labelled as ?, the nodes
at depth 1 will have labels “0” and “1”, and so on.

Our objective is to allocate Gaussian random noises,
denoted as {XI}I2{0,1}k , to every data point (i.e. leaf
node). The noise imposed on each internal node is the
sum of the noises of its two children. With our la-
beling convention, this relationship can be succinctly
represented as X? = X?0 + X?1, where ? stands for
any binary sequence (including the empty one) with a
length less than k. If all the noises on the leaf nodes
are independently and identically distributed (i.i.d.),
we anticipate that the noise introduced at the root will
have a Gaussian variance of ⇥(n). However, by care-
fully coupling the Gaussian variables on the leaf nodes,
we can establish uniform variance across all nodes in
the binary tree. The structure of our correlation ma-
trix is recursively defined below:

Definition 3.1. Ji is the all-one matrix of size 2i⇥2i.

Ci is a square matrix of size 2i ⇥ 2i:

C1 :=

✓
1 � 1

2
� 1

2 1

◆
, Ci+1 :=

✓
Ci � Ji

22i+1

� Ji
22i+1 Ci

◆
.

(1)

Definition 3.2. For n = 2k data points identified by
binary representation, our correlated noise mechanism
is defined as Noise = �Z. Here, Z ⇠ N(0,Ck), and
� depends on a later-specified privacy budget. This
mechanism applies to any private data vector x, re-
sulting in the output x+ Noise.

The structure outlined in Definition 3.2 has a clear
recursive pattern. One can split the 2k data points into
a left subtree, where labels begin with 0, and a right
subtree, where labels begin with 1. The collection of
points within each group mirrors a perfect binary tree
of depth k � 1 with a covariance matrix of �2Ck�1.
Points belonging to di↵erent groupings have a slightly
negative correlation of �2�2k+1. Similarly, points in
the left subtree can be further divided based on those
starting with 00 and those beginning with 01. Each
of these smaller sub-groupings exhibits a covariance
of Ck�2, and any pair of points from these groups
share a correlation of �2�2k+3. This process can be
recursively applied until each group is reduced to a
single data point.

The next result shows that the variance of each inter-
nal node is the same as that of every leaf node.

Theorem 3.3. Consider n = 2k data points identi-
fied by their binary representation as described earlier.
Assuming the noise mechanism is defined as per Def-
inition 3.2, every node in the binary tree, including
both leaf and internal nodes, has a marginal distribu-
tion of N(0,�2). This implies that each node shares an
identical variance.

3.2 Cascade Sampling algorithm

This section introduces an e�cient algorithm of run-
ning time O(n), where n = 2k represents the total
number of data points, for generating samples from
our defined noise mechanism, specifically N(0,�2

Ck)
as defined in Formula (1). This method significantly
improves standard Gaussian generation methods in
scalability, as supported by theoretical and numerical
evidence.

Assuming � = 1 without loss of generality, the stan-
dard method for sampling an n-dimensional Gaussian
N(µ,⌃) involves Cholesky decomposition of the covari-
ance matrix ⌃ = LL

>, followed by transforming a
standard Gaussian vector (x ⇠ N(0, In)) using Lx+µ.
This process has a high computational cost, primarily
due to the O(n3) expense of the Cholesky decompo-
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Figure 1: Left: Illustration of noise allocation to
sibling nodes and their parent within a binary tree.
Here X? denotes the noise applied to a node labeled
?, and Y? is another standard Gaussian independent
of X?. The noise values for the children nodes are
X?0 := X?/2 +

p
3Y?/2 and X?1 := X?/2 �

p
3Y?/2.

Right: Noise allocation on the top two levels of a bi-
nary tree.

sition, with additional costs for sampling (O(n)) and
transformation (O(n2)).

Luckily, the recursive formula for covariance shown in
(1) enables us to produce the required noise in ⇥(n)
time. We call our method the Cascade Sampling algo-
rithm (Algorithm 1) – it begins by sampling the noise
at the highest level and propagates to the bottom most
leaves, ensuring that the relationship X? = X?0 +X?1

as well as the covariance matrix in (1) are both pre-
served. A simple yet crucial observation is the follow-
ing: Given i.i.d. random variables X,Y ⇠ N(0, 1),
define

X0 =
1

2
X +

p
3

2
Y, X1 =

1

2
X �

p
3

2
Y. (2)

Then X0, X1 are also N(0, 1), sum up to X, and have
correlation �0.5; Figure 1 is a visualization. Initially, a
standard normal is sampled for the root’s noise, then
the noise for its direct descendants (depth 1 nodes)
is determined using equation (2). This process is
repeated, applying equation (2) for each subsequent
level, to assign noise to all nodes. The complete pro-
cess is outlined in Algorithm 1.

If one unit of cost is attributed to the sampling of a
univariate normal variable and to each arithmetic op-
eration (including addition or multiplication), it be-
comes clear that the cost of Algorithm 1 is linear in
the total number of data points, dramatically improv-
ing the O(n3) cost of the standard sampling algorithm
using Cholesky decomposition.

Proposition 3.4. Executing Algorithm 1 for a given
input depth k incurs a cost of ⇥(n), where n = 2k is
the total count of data points (leaf nodes).

Our next result shows that the leaves have the covari-

Algorithm 1: Cascade Sampling Algorithm

Input: Depth of the binary tree k, variance �
2

determined by the privacy budget.
Output: Noise values {XI} for all nodes

I 2 [0ik{0, 1}i in a binary tree.
for each node ? 2 {0, 1}i at depth 0  i  k � 1 do

if ? = ? then
Assign X? ⇠ N(0,�2)

end
Sample Y? ⇠ N(0,�2) independently;
Define the noise values for the children of ?:;

X?0 := 1
2X? +

p
3
2 Y?, X?1 := 1

2X? �
p
3
2 Y?;

end

ance structure described in Definition 3.2.

Proposition 3.5. For any given positive integer k,
the covariance matrix of the leaf noises produced by
Algorithm 1 is equal to �

2Ck, where Ck is defined in
Definition 3.1.

Finally, combining Proposition 3.5 and Theorem 3.3
immediately shows that the noises on every node gen-
erated by Algorithm 1 have the same distribution
N(0,�2). More importantly, our correlation matrixCk

has many more interesting properties that are central
to privacy and utility analysis.

Remark 3.6. A special case of 1D range query consid-
ered substantially in the literature is continual count-
ing in streaming data [6, 17, 11]. The ranges are of
the form [1, i] which reports the count (or sum) of val-
ues from index 1 to i. We could adapt the cascade
sampling algorithm to an incremental version to han-
dle the streaming data. Specifically, suppose we have
already received n = 2k elements, and the correlated
noises for the top n elements have been calculated. We
consider how to generate the noise for the n+ 1-th el-
ement. This will also grow the binary tree to extend
for a new root X

0, with the left child X0 as the cur-
rent root of the binary tree on the top n elements, and
the right child X1 to be the root of upcoming n ele-
ments. Di↵erent from the top down implementation
of cascade sampling algorithm, here we have already
constructed and sampled X0, and we need to sample
X1 with negative correlation with X0. This can be
done by sampling Y? ⇠ N(0,�2) independently and

set X1 := � 1
2X0 +

p
3
2 Y?, and X

0 := X0 + X1. More
on sampling from a conditional Gaussian distribution
can be found in [21]. Notice that we do not need to
generate the entire subtree of X1 but only need the
noises along the path from X1 to the n + 1-th ele-
ment. Thus the running time is O(log n) per element
at most and O(1) amortized. Details can be found in
Appendix D.1.
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Remark 3.7. The work by [44] considers finding the
covariance matrix through an optimization procedure
while constraining the variance of each workload query.
As the optimization could be expensive in practice,
they use approximation methods to find the desired
covariance structure. For the case of equal variance
on queries corresponding to nodes of a binary tree,
our covariance matrix construction is a feasible solu-
tion to the optimization problem (prioritizing for pri-
vacy budget) in [43]. Our work can be seen as comple-
mentary to theirs, as our motivation comes from Cen-
sus Bureaus application and identifying the recursive
structure within the covariance matrix, we are able to
provide a linear time sampling algorithm for this par-
ticular covariance matrix.

3.3 Privacy property

We now turn our focus to the privacy aspects of our
algorithm, with a special emphasis on identifying the
suitable level of noise. First, Theorem 3.8 is applicable
to Gaussian noise with any covariance matrix C. This
can be seen as an extension of the traditional Gaussian
mechanism (e.g. Appendix A of [15]) but for correlated
noises. Then, Theorem 3.9 is specifically tailored for
the covariance matrix outlined in Definition 3.1.

Theorem 3.8. Let X 2 Xn be any dataset, for neigh-
boring X and X

0 let M�(X) = X+Noise be the privacy
mechanism, where Noise ⇠ N(0,�2C) and C is an ar-
bitrary covariance matrix with dimension n ⇥ n. Fix
any " 2 (0, 1] and � 2 (0, 1/2], the mechanism M�(.)
is (", �)-DP for

�
2 � 2kdiag(C�1)k1 log(2/�)

"2

where kdiag(C�1)k1 denotes the largest magnitude of
the diagonal entries of C�1.

Theorem 3.8 is broad in scope yet challenging to ap-
ply. It requires the precision matrix (inverse of the
covariance matrix), which is hard to estimate unless
specifically designed. Fortunately, our proposed noise
model has a clearly defined inverse matrix, simplify-
ing analysis and making the theorem more practical.
Our dataset includes n = 2k points, using multivariate
Gaussian noise with a covariance of �2Ck, as detailed
in Definition 3.1. The key findings are presented in
the following theorem.

Theorem 3.9. Let X 2 Xn be any dataset and let
M�(X) = X+Noise be our privacy mechanism, where
Noise ⇠ N(0,�2Ck) with Ck defined in Definition 3.1.
Fix any " 2 (0, 1] and � 2 (0, 1/2], our mechanism
M�(.) is (", �)-DP for

�
2 �

✓
2

"2
+

2 log2(n)

3"2

◆
log

2

�
= ⇥

✓
log n log 2

�

"2

◆
.

Theorem 3.9 is immediate by applying Theorem 3.8
and Corollary B.3.

3.4 Utility Analysis

We now evaluate the utility of our correlated input
perturbation mechanism, M�(x) = x + N(0,�2Ck),
for a dataset x 2 Xn where n = 2k. Given a work-
load matrix W , our mechanism operates by applying
this matrix to the perturbed dataset, which we repre-
sent as W�(x) := WM�(x). This design satisfies all
the desired properties described in Section 1. First, as
an additive mechanism, W� enjoys unbiasedness as the
privacy noise e has zero mean as guaranteed by design.
Second, W� maintains consistency as M�(x) could be
viewed as a potential legitimate input. Furthermore,
the additive construction ofW�, coupled with the pub-
lic knowledge of the noise distribution as a correlated
Gaussian makes W� statistically transparent.

We outline various error metrics to quantify the dis-
crepancy between W�(x) and Wx. Since W�(x) �
Wx = W · Noise where Noise ⇠ N(0,�2Ck), we ob-
serve that the di↵erence is a random vector that does
not depend on the dataset x. Some reasonable error
metrics are as follows:

Definition 3.10 (Expected total squared error). The
expected total squared error is defined as

errW ,2(W�) := sup
x2Xn

E
⇥
kW� (x)�Wxk22

⇤

= Es⇠N(0,�2Ck)

⇥
kWsk22

⇤
.

Definition 3.11 (Worst-case expected error). The
worst-case expected error is defined as

err1W (W�) := sup
x2Xn

��E [|W� (x)�Wx|]
��
1

=
��Es⇠N(0,�2Ck)[|Ws|]

��
1.

where |v| applies to each component of v.

Definition 3.12 (Expected worst-case error). The ex-
pected worst-case error is defined as

errW ,1(W�) := sup
x2Xn

E [kW� (x)�Wxk1]

= Es⇠N(0,�2Ck)[kWsk1].

The di↵erence between err1W and errW ,1 arises solely
from the order in which E and the `1 norm are taken.
We have the following relationship between these er-
rors.

Proposition 3.13. For any given � > 0 and query
matrix W of size m⇥ n, we have:

q
errW ,2(W�)/m  err1W (W�)  errW ,1(W�). (3)
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The focus of our analysis is on two scenarios. The
first is thatW represents all consecutive range queries.
In this context, W is a binary matrix of dimensions
(
�n
2

�
+ n)⇥ n, with each row comprising a sequence of

consecutive ones. The second is when W represents
all ‘nodal’ queries, indicating that W is a matrix of
dimensions (2n� 1)⇥ n, designed to query the values
associated with every node in our binary tree. We also
recall the notations introduced in Section 3.1, where
{XI}I2{0,1}k represents the Gaussian noise vector with
a covariance matrix �

2Ck.

3.4.1 Continuous range queries

When W encompasses all continuous range queries,
the related noise W�(x)�Wx forms a vector of length�n
2

�
+ n. Each element in this vector represents a con-

secutive sum
PI+j

L=I XL. It is evident that each el-
ement is a univariate Gaussian with zero mean. The
essential technical lemma below demonstrates that the
maximum variance increases logarithmically with the
number of data points.

Lemma 3.14. Let {XI}I2{0,1}k ⇠ N(0,�2Ck) with
Ck defined in Definition 3.1. Then the maximum vari-
ance among all the consecutive sums satisfies:

max
I2{0,1}k,j2k�I

Var[
I+jX

L=I

XL]/�
2 = ⇥(k) = ⇥(log2(n)).

With Lemma 3.14, we are ready to state the utilities
of our privacy mechanism under di↵erent metrics.

Theorem 3.15. Fix � > 0 and let query matrix W
be all the continuous range queries, we have:

err1W (W�) = ⇥
⇣
�

p
log2(n)

⌘
,

errW ,2(W�) = O
�
�
2
n
2 log2(n)

�
,

errW ,1(W�) = O(� log2(n)).

Choosing � to accord to the privacy budget, the next
corollary gives our mechanism’s utility guarantee.

Corollary 3.16. Let X 2 Xn be any dataset and let
M�(X) = X +�N(0,CK) be our privacy mechanism,
where � is chosen such that the mechanism satisfies
(", �)-DP. Let W be all the continuous range queries,
we have:

err1W (W�) = ⇥
⇣
log(n)

p
log(2/�)"�1

⌘
,

errW ,2(W�) = O
�
n
2 log2(n) log(2/�)"�2

�
,

errW ,1(W�) = O

⇣
log1.5(n)

p
log(2/�)"�1

⌘
.

Theorem 3.15 di↵ers from the scenario where inde-
pendent Gaussian noise N(0,�2) is added to each leaf

node. In the latter case, the three errors, errW ,2, err1W ,

and errW ,1, are ⇥(n3
�
2), ⇥(

p
n�), and ⌦(

p
n�) re-

spectively. In contrast, our mechanism results in errors
of ⇥(n2 log(n)�2), O(

p
log(n)�), and O(log(n)�), in-

dicating lower error magnitudes for all evaluated met-
rics.

Comparison of bounds in Corollary 3.16: The
bounds attained by our mechanism for errW ,2(W�)
match previous work [26, 42] which can be viewed
as instantiations of the matrix mechanism [31]. To
our best knowledge, this is the first work that obtains
comparable bound to specialized output perturbation
mechanisms for range queries. We also show that em-
pirically we match the performance of these methods
in Section 5. Though these works do not explicitly
analyze for errW ,1(W�), [29] showed that the Binary
Tree mechanism [13, 6] with Gaussian noise obtains
the same O(log3/2 n) bound.

In terms of tightness, our bound for errW ,2(W�) is op-
timal among all (", �)-DP mechanisms. To see this,
note that the workload matrix for continual counting
(a lower triangular matrix of size n⇥ n with 1 for en-
tries on and below the diagonal and 0 elsewhere) forms
a subset of the workload matrix for continuous queries.
[27] (Thm. 4) show ⌦(log2 n) lower bound on error for
any (", �)-DP mechanism for the continual counting
which matches our upper bound (after scaling for the
number of queries). For errW ,1(W�), [17] (Thm. 3)
show ⌦(log2 n) lower bound on the squared-infinity er-
ror for any (", �)-DP mechanism, leading to an ⌦(log n)
lower bound for errW ,1(W�). Consequently, our up-
per bound for errW ,1(W�) in Corollary 3.16 is only o↵
by a factor of log0.5 n (due to Gaussian concentration)
compared to the known lower bound. An intriguing
open question is whether this gap can be narrowed
from either side.

4 A brief review of related literature

This section provides an abridged review of existing
DP mechanisms for linear queries, with a focus on how
they can be used for the Census application with its
considerations. Due to space constraints, we defer an
extended literature review to Appendix A.

As a quintessential output perturbation method, Gaus-
sian mechanisms add to the query output centered
Gaussian noise with variance tailored to its sensitiv-
ity [10, 14, 12, 23, 36], which for linear queries is the
largest norm of the columns of workload matrix W .
Gaussian mechanisms are unbiased and statistically
transparent, but are not flexible in utility control be-
cause the accuracy of the entire output query is dic-
tated by W . They are not consistent in general unless
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e is guaranteed to be in the column space of W , as
discussed in Remark 2.4.

The Census Bureau’s TopDown algorithm [3, 1] is a
massive endeavor to navigate through the complex
requirements discussed in Section 1. It consists of
two phases: 1) the “measurement” phase injects addi-
tive discrete Gaussian noise [5] to confidential queries,
similar to the Gaussian mechanisms; 2) the “estima-
tion” phase uses optimization-based post-processing
to achieve consistency (internal and external) and
complex utility control such as invariants/consistency,
external constraints, and marginal accuracy targets.
Post-processing does not damage privacy protection
– which is one of the greatest traits of DP. Unfortu-
nately, the post-processing phase of TopDown algo-
rithm destroyed both unbiasedness [7, 19] and statis-
tical transparency [20, 24] (noise distribution became
intractable and regression on data output revealed un-
wanted bias). Researchers tend to agree that a major
contributor to the bias is the nonnegativity constraint
that TopDown’s post-processing enforces; see e.g. [2].

In general consistency could be obtained by projection
into a designated subspace [31] or other optimization-
based transformations. Special care should be taken
to ensure unbiasedness (e.g. [4, 26]), which could be
lost if inequality constraints are present. Moreover, it
would be ideal that an analytical description is avail-
able, e.g. [26], to maintain statistical transparency.
In addition, though theoretically e�cient algorithms
are known, certain post-processing approaches are not
practical in real-world use cases of very large data sets,
e.g. projecting onto convex sets. For example, the
post-processing phase of TopDown algorithm is a sub-
stantially non-trivial e↵ort in terms of computational
costs; see section 7.6 of [3].

To improve utility, a lot of work has been developed to
carefully design how perturbations are added. Start-
ing from the work in [31], the broadly defined family
of matrix mechanism is a workload-dependent mecha-
nism. In general, one finds a privileged factorization,
W = RA, and infuses Gaussian noise to the interme-
diate result Ah, with h being the histogram vector.
Choice in the factorization allows for the attainment
of near optimal utility. While this can be done for any
general workload matrix, for the special case of one
dimensional range query, there has been a number of
excellent work such as Binary Tree [13, 6], Hierarchical
[26], Wavelet [42], EigenDesign [30], HDMM [34] and
explicit factorization [17] mechanisms that can be con-
sidered as carefully choosing the matrix factorization.
Consistency of each of these mechanisms can be indi-
vidually checked. We will review the details of these
algorithms in Appendix A. We also show empirical re-
sults in the next section.

We would like to remark that our mechanism can also
be written as a matrix factorizationM(x) = R(Ax+z)
with R =

p
Ck, A = R

�1
W .In addition to showing

asymptotically tight `2 error and near-optimal `1 er-
ror (upto

p
log n factor), our mechanism also ensures

that all queries share the same variances.

5 Experiments

E�ciency of Cascade Sampling. The computa-
tional costs in terms of clock time for both scales, orig-
inal and logarithmic are displayed in Figure 2(a). Cas-
cade Sampling demonstrates remarkable e�ciency, re-
quiring less than a second for up to n = 217 (131, 072).
Even for a over 33.5 million-dimensional Gaussian,
our algorithm completes the task in under 9 min-
utes. Right part of Figure 2(a) features a scatterplot
of log(Time) against log(Data Points), with a fitted
straight line that has a slope of 1.05, confirming our
assertion of linear cost. Additional details are provided
in Appendix E.1

Utility comparison with existing algorithms.
We evaluate the correlated input perturbation mech-
anism against the Gaussian (adding noise to x and
querying from the privatized data), Binary Tree [13, 6],
Hierarchical [26], Wavelet [42], HDMM [34] and ex-
plicit factorization [17]. We do not compare with an
output Gaussian mechanism (adding noise to Wx)
as this performs substantially worse due to high sen-
sitivity. Experiments comparing runtime are in Ap-
pendix E.4.

Experimental setup: We compare mechanisms on ran-
domly generated data, where each element of x 2 Zn

is sampled uniformly at random from 1 to 1000. We
consider the case where a person contributes a single
count to an element in x and hence for neighboring
x and x0, kx � x0k1 = 1. We consider n in range
{24, · · · , 215}, except for HDMM which we restrict to
210 due to computational overhead. We fix privacy
parameters " = 0.1 and � = 10�9 for all our experi-
ments and report errW ,2(W�) and errW ,1(W�) (Defi-
nition 3.10 and Definition 3.12) for di↵erent choices of
workload matrices W . The error values on graphs are
plotted with ±0.25 standard deviation across 10 in-
dependent runs for all experiments. Experiments for
node and random queries and additional implementa-
tion details are included in Appendix E.

Continuous range queries: A continuous range query is
specified by start and end index in {1, . . . , n} and the
answer is sum of all elements within this range. We
consider the workload matrix of all possible

�n
2

�
+ n

1Python code available at: https://github.com/
prathameshtd/DPRQ-correlated-noise

https://github.com/prathameshtd/DPRQ-correlated-noise
https://github.com/prathameshtd/DPRQ-correlated-noise
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(a) (b) (c) (d) (e)

Figure 2: (a): Comparison of Gaussian Generation Speeds (Left: original scale; Right:log-log scale). (b) & (c):
errW ,2(W�) and errW ,1(W�) for continuous queries in log-log scale. (d) & (e): Variance of queries for levels of
binary tree in log-log scale.

queries. As computing output of all these queries be-
comes computationally infeasible for very large n, we
randomly sample the queries to obtain a Monte Carlo
estimate of the errors, with details explained in Ap-
pendix E.5. We sample 5000 queries for each value of
n and report estimated errW ,2(W�) and errW ,1(W�)
in Figures 2(b) and 2(c).

Both errW ,2(W�) and errW ,1(W�) follow the same
trend. Four mechanisms, ours, Wavelet, HDMM and
Hierarchical, appear to be on the first tier (i.e., with
smallest error) for both `2 and `1. For small n, Gaus-
sian mechanism performs as well as these methods but
su↵ers variance scaling linearly in n for larger values.
Our mechanism, owing to its design, exhibits signifi-
cantly reduced error compared to the standard Gaus-
sian approach, its primary input perturbation com-
petitor. Our method achieves comparable error empir-
ically with the state of the art methods, yet it carries
additional nice statistical properties such as unbiased-
ness, consistency, and transparency.

Utility control: The ability to control noise variance
across di↵erent ‘levels’ of summation was one of the
motivations of our mechanism, which we demonstrate
here. We consider a binary tree over the dataset vec-
tor x, and the queries (which are nodes of the tree)
correspond to intervals summing up the leaves of the
sub-tree rooted at the node. We then consider the vari-
ance of noise across queries corresponding to di↵erent
levels (and the root would correspond to the highest
level summing up all the elements of x). We perform
this for n = 25 and n = 210 for 500 independent runs
and the results are shown in Figures 2(d) and 2(e).

As the additive correlated noise in our mechanism is
designed to have the same variance across levels, our
mechanism and the Binary Tree mechanism, which
adds i.i.d. Gaussian noises to each element of binary
tree to answer queries have the same variance across
all such queries. Comparatively, Gaussian mechanism
has variance linearly increasing across levels. Wavelet

has smaller consistent variance for smaller levels (cor-
responding to short ranges) but increases sharply for
long ranges, whereas the opposite e↵ect is observed
for explicit factorization and HDMM. Hierarchical has
the smallest variance in magnitude and also a typical
trend, variance is larger for smaller and larger levels
and less for intermediate, which helps illustrate the ef-
fect of post-processing and explains improved utility.

6 Discussion and Future Work

The proposed input perturbation mechanism lever-
ages error correlation structures which, once combined
with the query workload matrix, allows for fine-grained
control over error magnitude across queries at di↵er-
ent geographic levels, a feature that is highly desir-
able in applications such as the dissemination of con-
fidential o�cial statistical data products with com-
plex structures. Our proposal permits straightforward
generalizations to general (unbalanced) binary trees,
as well as higher-dimensional query types, in partic-
ular 2-D range queries and contingency tables that
recognize, for example, the geographic contiguity of
the data points. Both generalizations need to mod-
ify the noise allocation scheme in the cascade sam-
pling algorithm. Appendices D.2 and D.3 respectively
discuss how to instantiate these generalizations. We
believe this work leads to a generic framework of dif-
ferential privacy mechanism design. In particular, be-
yond equality of error variance at every hierarchical
level considered here, the Cascading Sampling Algo-
rithm lends itself to a straightforward generalization
where detailed variance control is required, i.e. when
di↵erent error variances are needed at di↵erent levels.
Furthermore, when the data or query workload struc-
ture is well understood, additional benefits can result
from catering privacy perturbations to respect these
known structures. These investigations are left to fu-
ture work.
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F. Özcan, G. Koutrika, and S. Madden, editors,
Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 2101–2104. ACM, 2016.

[26] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of di↵erentially private his-
tograms through consistency. Proceedings VLDB
Endowment, 3(1-2):1021–1032, Sept. 2010.

[27] M. Henzinger, J. Upadhyay, and S. Upadhyay. Al-
most tight error bounds on di↵erentially private
continual counting. In N. Bansal and V. Nagara-
jan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 5003–
5039. SIAM, 2023.

[28] J. Honaker. E�cient use of di↵erentially private
binary trees. Theory and Practice of Di↵eren-
tial Privacy (TPDP 2015), London, UK, 2:26–27,
2015.

[29] P. Jain, S. Raskhodnikova, S. Sivakumar, and
A. D. Smith. The price of di↵erential privacy un-
der continual observation. In A. Krause, E. Brun-
skill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, editors, International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,



Prathamesh Dharangutte, Jie Gao, Ruobin Gong, Guanyang Wang

Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pages 14654–
14678. PMLR, 2023.

[30] C. Li and G. Miklau. An adaptive mechanism for
accurate query answering under di↵erential pri-
vacy. Proc. VLDB Endow., 5(6):514–525, 2012.

[31] C. Li, G. Miklau, M. Hay, A. McGregor, and
V. Rastogi. The matrix mechanism: optimizing
linear counting queries under di↵erential privacy.
The VLDB journal, 24(6):757–781, 2015.

[32] N. Linial and A. Shraibman. Lower bounds in
communication complexity based on factorization
norms. Random Struct. Algorithms, 34(3):368–
394, May 2009.

[33] L. McKenna. Disclosure avoidance techniques
used for the 1970 through 2010 decennial censuses
of population and housing. Technical report, U.
S. Census Bureau, November 2018.

[34] R. McKenna, G. Miklau, M. Hay, and
A. Machanavajjhala. Optimizing error of high-
dimensional statistical queries under di↵erential
privacy. Journal of Privacy and Confidentiality,
13(1), Aug. 2023.

[35] S. Muthukrishnan and A. Nikolov. Optimal pri-
vate halfspace counting via discrepancy. In Pro-
ceedings of the forty-fourth annual ACM sympo-
sium on Theory of computing, pages 1285–1292,
2012.

[36] A. Nikolov, K. Talwar, and L. Zhang. The ge-
ometry of di↵erential privacy: the sparse and ap-
proximate cases. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing,
pages 351–360. ACM, 2013.

[37] A. Nikolov, K. Talwar, and L. Zhang. The geom-
etry of di↵erential privacy: The small database
and approximate cases. SIAM Journal on Com-
puting, 45(2):575–616, 2016.

[38] W. H. Qardaji, W. Yang, and N. Li. Understand-
ing hierarchical methods for di↵erentially private
histograms. Proc. VLDB Endow., 6(14):1954–
1965, 2013.

[39] J. Seeman, A. Slavkovic, and M. Reimherr. A for-
mal privacy framework for partially private data.
arXiv preprint arXiv:2204.01102, 2022.

[40] U.S. Census Bureau. Technical documenta-
tion – operational quality metrics, last updated
10.06.22. Technical report, U.S. Census Bureau,
2022.

[41] U.S. Census Bureau. 2020 census production dis-
closure avoidance system detailed summary met-
rics. Technical report, U.S. Census Bureau, 2023.

[42] X. Xiao, G. Wang, and J. Gehrke. Di↵erential pri-
vacy via wavelet transforms. IEEE Trans. Knowl.
Data Eng., 23(8):1200–1214, 2011.

[43] Y. Xiao, Z. Ding, Y. Wang, D. Zhang, and
D. Kifer. Optimizing fitness-for-use of di↵eren-
tially private linear queries. Proceedings VLDB
Endowment, 14(10):1730–1742, June 2021.

[44] Y. Xiao, Z. Ding, Y. Wang, D. Zhang, and
D. Kifer. Optimizing fitness-for-use of di↵eren-
tially private linear queries. Proc. VLDB Endow.,
14(10):1730–1742, 2021.

[45] Y. Xiao, G. He, D. Zhang, and D. Kifer. An op-
timal and scalable matrix mechanism for noisy
marginals under convex loss functions. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural In-
formation Processing Systems, volume 36, pages
20495–20539. Curran Associates, Inc., 2023.



Di↵erentially Private Range Queries with Correlated Input Perturbation

A An extended review of related literature

Linear query is a central topic that has been studied extensively in the di↵erential privacy literature. To supple-
ment the brief review provided in Section 4, we discuss in greater detail existing work on privacy mechanisms
for linear queries in relation to the properties of unbiasedness, consistency, statistical transparency, and flexible
utility control.

A simple mechanism is input perturbation in which data entry either perturbed (in a discrete setting) or infused
with an independent noise (often from a Laplace or Gaussian distribution) with suitable magnitude. The linear
query can be answered by simply reporting the query answer on the perturbed data. As Section 4 alludes to,
such mechanisms supports unbiasedness (if the element-wise perturbation has zero mean), logical consistency,
statistical transparency, and are often amenable to distributed implementation. However, it does not support
flexible utility specifications. In particular, when a query range contains a large number of data elements, the
query utility (or error) grows in the order of O(

p
n) where n is the the number of elements in the range. The

error blow-up for aggregated data substantially hinders the use of input perturbation in practice.

In contrast, mechanisms that use output perturbation consider adding noise to the query output. One classic
example is the Gaussian mechanism [10, 14, 12]. The variance of independent Gaussian noise added to each
query needs to be tailored to the query sensitivity, i.e., the maximum number of queries one element is involved,
or the largest norm of the columns of workload matrix W . Gaussian mechanisms satisfy unbiasedness and
statistical transparency, but does not support flexible utility control. The noise magnitude could be high when
the sensitivity of W is high. For consistency, if the perturbation noise e is in the column space of W , then
consistency holds – we can write the data output as Wx+ e = W (x+ e0) with We0 = e.

A notable class of Gaussian mechanisms provide improved utility to linear queries by leveraging their geometric
structure [23, 36]. Specifically, consider the workload matrix W as a linear map that maps the input data
histogram to a d-dimensional output vector, with d ⌧ n. [23] studied the image of the unit `1 ball under the
linear map W (which is a convex polytope K) and use an instantiation of the exponential mechanism (via a
randomly chosen point in K) for "-di↵erential privacy. In a later work, [36] considered the setting when the
number of queries d is much larger than n, and (", �)-di↵erential privacy in general. They use a Gaussian
mechanism where the parameters are guided by the minimum enclosing ellipsoid of a square submatrix of W .
These mechanisms have polylogarithmic approximation (in terms of error) to the lower bound for such queries,
which are derived by using hereditary discrepancy of W . As special cases of Gaussian mechanisms, these
mechanisms also fall in the category of output perturbation, and enjoy similar properties as does the classic
Gaussian mechanism in terms of bias, consistency, transparency, and utility control.

The generic family of matrix mechanism [31, 34], also called the factorization mechanism [37], is workload-
dependent (i.e. the workload matrix W plays a role in its design) and is situated between input and output
perturbation. The workload matrix W is factored into two matrices R and A, with R called the reconstruction
matrix and A the strategy matrix. Gaussian errors are added to the intermediate result Ah, where h is the
histogram vector. The final query result is taken as the multiplication of R and the noisy intermediate result.
This way the sensitivity can be controlled by the maximum column norm of A. Depending on the utility objective
(e.g., `1 or `2 of the final error), one can choose the factorizationW = RA and final query error is proportional to
the multiplication of the max row norm of R 2 and maximum `2 column norm of A. By choosing an appropriate
factorization W = RA (e.g., by using convex optimization [32] for final `1 error), one can get near optimal
utility [36, 16]. The matrix mechanism is unbiased, has statistical transparency and consistency if the noise
is in the column space of A. Utility control depends on the specific choice of the matrix factorization. For
e�cient implementation, [34] give an e�cient implementation of the matrix mechanism by considering di↵erent
representations of the workload matrix thereby reducing the space for the optimization problem.

A number of prior work considered range query problems and developed hierarchical methods, which can be
considered as special cases of the matrix mechanism [26, 6, 38, 42, 28]. We use [6] as an example to illustrate the
main idea. [6] considered a specific type of range query that is derived from continuous counting in a data stream.
Specifically, consider a set of binary data points xi 2 {0, 1} arriving sequentially, the goal is to report the count
at any time t, i.e., Xt =

Pt
i=1 xi, for all t, with di↵erential privacy guarantee for individual data points. They

2To optimize for the final `1 (or `2) error one would minimize the max `2 row norm (or Frobenius norm) of R and
maximum `2 column norm of A [31, 37].
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developed a mechanism that renders the error utility of bound O((1/") log3/2 t) for answering the t-th counting
query with "-di↵erential privacy. The main idea is to maintain a binary tree on the data stream x1, · · · , xt and
add an independent Laplace noise for each internal node in the binary tree. The final query output will be
derived by the summation of the (noisy) count of selected vertices in the binary tree. The mechanism can be
applied to a general 1D range query problem of reporting

Pj
k=i xk, for any 1D range [i, j], with i  j, with the

same error bound. A number of other work use similar ideas: [4] uses subsets of Fourier basis, [42] uses wavelet
transforms, and [35] considers general range queries with constant VC-dimension (e.g., half-space queries). [17]
focuses on analysis of constant factors in the error bound using matrix factorization for the continual counting
scenario and also provides concrete matrix choices for R and A. There are additional work that focuses on space
e�ciency of implementation in the streaming setting [11] or e�ciently solving for the matrix mechanism for a
wide variety of convex objective functions [45].

Subspace DP mechanisms [19, 9] impose external consistency on the data product without post-processing.
External consistency is expressed through a set of invariants, exact queries from the confidential database, and
may be understood as a special utility requirement of zero privacy noise. Subspace DP mechanisms allow utility
control over all invariant queries, unbiasedness, and statistical transparency, but do not generally guarantee
internal consistency.

We make a brief comment on the practicality of implementation. Among the mechanisms discussed here and in
Section 4, some are mainly of theoretical interest [22, 36, 35]. The matrix mechanism has a practical instantia-
tion [33], as does [26] and the subspace DP mechanisms of [19, 9]. In addition, the TopDown algorithm has been
extensively instantiated, though it is di�cult to independently replicate due to its formidable scale.

Finally, we remark that the local di↵erential privacy model (LDP) refers to the scenario when each individual
generates local noises and shares the perturbed value, without any need of a single trusted server. Although our
noises are applied locally for each data value and the perturbed value is shared publicly, however, the generation
of the local noises would require secured communication with either a trusted server (to run the cascade sampling
algorithm) or with other peers/individuals (to exchange random seeds that they both use to help to install the
negative correlation in their generated noises).

B Technical proofs

We first prove Theorem 3.3. Given that � merely functions as a multiplicative constant within our privacy
mechanism, our attention will now shift towards understanding some fundamental characteristics of Ck, as
listed below:

Proposition B.1. For a fixed positive integer k, the matrix Ck exhibits the following properties:

1. The diagonal entries of Ck are all 1.

2. Every o↵-diagonal element of Ck is negative.

3. Summing over every column j for any row i, we have
P

j Ck(i, j) = 2�k.

4. Ck is a positive semi-definite (PSD) matrix.

Proof of Proporition B.1. The initial two properties can be readily validated based on the matrix’s definition.
For the third property, it is evidently correct when k = 1. Assuming its correctness for k = l, when k = l + 1,
we can deduce from (1) that

X

j

Cl+1(i, j) =
X

j

Cl(i, j) + (�2�2l�1)⇥ 2l

= 2�l � 2�l�1 = 2�l�1 = 2�(l+1)
,

as desired. The final property can be directly applying the Gershgorin circle theorem based on the first three
properties.

Proof of Theorem 3.3. Assuming, without a loss of generality, that � = 1, we begin our proof by considering the
case where k = 1. This essentially requires us to demonstrate that X? := X0+X1 has a unit variance. We have:

Var[X?] = (1, 1) ·C1 · (1, 1)> = 1 + 1� 0.5� 0.5 = 1,
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as desired. Now, let’s assume the aforementioned result holds true for k = l. For k = l + 1, the formula (1),
combined with our inductive assumption, confirms that every node in both the left and right subtrees maintains
the same distribution N(0, 1). Consequently, our task narrows down to computing the variance for the root node
X?, which is given by:

Var[X?] = (1, 1, . . . , 1) ·Cl+1 · (1, 1, . . . , 1)>

=
X

i,j

Cl+1(i, j)

=
X

i

X

j

Cl+1(i, j)

=
X

i

2�(l+1) = 1 by the Property 3 in Proposition B.1.

This concludes our proof.

Proof of Proposition 3.5. Without loss of generality, we assume � = 1. We will prove by induction. When k = 1,
it su�ces to show the Var(X0) = Var(X1) = 1 and Cov(X0, X1) = �0.5. For the former, observe that

Var(X0) = Var

 
1

2
X? +

p
3

2
Y?

!

=

✓
1

2

◆2

Var(X?) +

 p
3

2

!2

Var(Y?) =
1

4
+

3

4
= 1.

Similarly Var(Y0) = 1. For the covariance, we have

Cov(X0, X1) = Cov

 
1

2
X? +

p
3

2
Y?,

1

2
X? �

p
3

2
Y?

!

=

✓
1

2

◆2

Var(X?)�
 p

3

2

!2

Var(Y?) =
1

4
� 3

4
= �0.5.

This concludes our proof for the k = 1 case. Assuming the result holds for k = l, we note that for k = l + 1,
the nodes in the left subtree (labelled X0?) and the nodes in the right subtree (labelled X1?) each constitute a
complete binary tree of depth l. Furthermore, the recursive nature of Algorithm 1 indicates that the following
three sets of random variables are identically distributed:

{X0?}?2S
0sl{0,1}s

d
= {X1?}?2S

0sl{0,1}s
d
= {X̃?}?2S

0sl{0,1}s . (4)

In this context, {X0?} and {X1?} represent the left and right subtrees generated by Algorithm 1 when k = l+1,
while {X̃?} denotes an independent execution of Algorithm 1 with k = l. Employing equation (4) and the
inductive hypothesis for k = l on the set {X̃?}?2S

0sl{0,1}s , we know that the covariance matrices restricted to

the left and right subtrees are both equivalent to Cl. Hence, the two 2l⇥2l diagonal blocks of Cl+1 are identical
to Cl.

To confirm that the entire covariance matrix is equal to Cl+1 as specified in (1), we must demonstrate that
any leaf in the left subtree is correlated with any leaf in the right subtree by �2�2l�1. Take any pair of indices
I, J 2 {0, 1}l, and denote Ĩ = (0, I1, . . . , Il�1) 2 {0, 1}l and J̃ = (1, J1, . . . , Jl�1) 2 {0, 1}l. Algorithm 1 informs
us that the noise at leaf X0I is expressed as:

X0I =
1

2
XĨ +

(�1)Ik
p
3

2
YĨ ,

and likewise for leaf X1J :

X1J =
1

2
XJ̃ +

(�1)Jk
p
3

2
YJ̃ .
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Consequently:

Cov(X0I , X1J) =

✓
1

2

◆2

Cov(XĨ , XJ̃), (5)

since YĨ is by construction independent of XJ̃ and YĨ , and YJ̃ are independent of XĨ . Given that XĨ and XJ̃ are
leaf nodes on opposing sides of a binary tree of depth l, their covariance is �2�2k+1 by the inductive hypothesis.
Inserting this into equation (5), we obtain:

Cov(X0I , X1J) = 2�2 ⇥�2�2k+1 = �2�2k�1
, (6)

which completes the proof.

Proof of Theorem 3.8. To prove (", �)-DP, we prove that with probability at least 1 � � the likelihood ratio
between M�(X) and M�(X 0) is upper bounded by exp(✏), where X and X

0 are any two datasets that di↵er
by at most one at only one entry. For now, we assume X = X

0 + ei, where ei 2 Xn takes value 1 at the i-th
coordinate, and 0 elsewhere. Let s 2 Rn be any real vector, the logarithm of the likelihood ratio between M�(X)
and M�(X 0) at point X + s equals

log

 
fM�(X)(X + s)

fM�(X0)(X + s)

!
= log

 
exp (� 1

2�2 s
>C�1

s)

exp (� 1
2�2 (s+ ei)>C

�1(s+ ei))

!

= � 1

2�2

⇣
s
>C�1

s� (s+ ei)
>C�1(s+ ei)

⌘

=
1

2�2
(C�1)(i, i) +

1

�2
s
>C�1

ei,

In our noise mechanism, s ⇠ N(0,�2C). Therefore the above log-likelihood ratio is a one-dimensional Gaussian
with mean

1

2�2
(C�1)(i, i),

and variance
1

�2
e
>
i C

�1CC�1
ei =

1

�2
C�1(i, i).

Let Y ⇠ N(0, 1) be a standard normal random variable, set w = C�1
K (i, i)/�2 for notational simplicity. It is then

clear that
p
wY + w/2 has the same distribution as log

⇣
fM�(X)(X+s)
fM�(X0)(X+s)

⌘
. Since

p
wY + w/2  ✏ is equivalent to

Y  ✏/
p
w �

p
w/2, it su�ces to find conditions on w such that P[|Y | � ✏/

p
w �

p
w/2]  �.

Applying the standard subgaussian tail bound on Y , we have

P[Y > x]  2 exp(�x
2
/2)

for every x > 0. Therefore it su�ces to find w such that ✏/
p
w �

p
w/2 > 0, and

✓
✏p
w

�
p
w

2

◆2

� log

✓
2

�

◆
.

Now we set 0 < w  ✏
2
/(2 log(2/�)), and check every w in this range satisfies the above two conditions. Firstly,

w  ✏
2
/(2 log(2/�))  ✏

2
/2 log(4)  2✏,

therefore ✏/
p
w �

p
w/2 > 0. Secondly,

✏
2

w
� 2 log

✓
2

�

◆
� log(2/�) + log(4) > log(2/�) + ✏.
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Therefore ✓
✏p
w

�
p
w

2

◆2

=
✏
2

w
� ✏+

✓p
w

2

◆2

� ✏
2

w
� ✏ � log(2/�),

as desired. This immediately translates to the noise bound

�
2 � 2(C�1)(i, i) log(2/�)

✏2
. (7)

The above calculation still goes through when X = X
0 � ei. Since the preceding argument must be valid for any

i, taking the maximum of i from Equation (7) shows our mechanism M�(.) is (", �)-DP for

�
2 � 2kdiag(C�1)k1 log(2/�)

✏2

Proof of Theorem 3.9. Based on Corollary B.3, it becomes evident that the norm kdiag(C�1
k )k1 equals 1+k/3 =

1 + log2(n)/3. Applying this into Theorem 3.8 leads to our result.

Lemma B.2. For any positive integer j, C�1
j satisfies C�1

1 :=
� 4/3 2/3
2/3 4/3

�
and

C�1
j =

0

@C�1
j�1 +

1
3Jj�1

2
3Jj�1

2
3Jj�1 C�1

j�1 +
1
3Jj�1,

1

A ,

where Jj�1 is the all one matrix of size 2j�1 ⇥ 2j�1.

Proof of Lemma B.2. We prove a slightly stronger result. We show for every k � 1, the followings all hold:

1. JkCk = CkJk = 2�k
Jk

2. JkJk = 2kJk

3. JkC
�1
k = 2kJk

4. We have

C�1
1 =

0

@4/3 2/3

2/3 4/3

1

A

and

C�1
k =

0

@C�1
k�1 +

1
3Jk�1

2
3Jk�1

2
3Jk�1 C�1

k�1 +
1
3Jk�1

1

A .

We prove this by induction. All the four claims can be directly checked when k = 1. Assuming they are all
satisfied when k  K, for k = K + 1, facts 1 and 2 can still be directly checked. To show fact 4, it su�ces to
show

0

@A B

C D

1

A :=

0

@ CK �2�2K�1
JK

�2�2K�1
JK CK

1

A

·

0

@C�1
K + 1

3JK ,
2
3JK

2
3JK , C�1

K + 1
3JK

1

A = I2K+1
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We directly check this by multiplying the two 2 ⇥ 2 block matrices on the left hand side. The diagonal blocks
are

A = D = I +
1

3
CKJK � 2

3
⇥ 2�2K�1

JKJK

= I +
2�K

3
JK � 2�K

3
JK = I

where the second to last equality follows from facts 1 and 2 of our induction hypothesis.

The o↵-diagonal blocks are:

B = D =
2

3
CKJK � 2�2K�1

JKC�1
K � 2�2K�1

3
JKJK

=
4⇥ 2�K�1

3
JK � 2�K�1

Jk � 2�K�1

3
Jk = 0

This concludes our induction for fact 4. Fact 3 is then immediate using fact 4 together with facts 1, 2 from the
induction hypothesis.

Corollary B.3 below can be derived directly from Lemma B.2 by induction.

Corollary B.3. For any positive integer k, the diagonal entries of C�1
j all equal to 1 + j/3.

Proof of Proposition 3.13. The first inequality directly follows from the fact that

kvk22 =
mX

i=1

v
2
i  mkvk21

for any m-dimensional vector v.

The second inequality directly follows from the fact that

kE[V ]k1  E[kV k1]

for any random vector V .

Proof of Lemma 3.14, upper bound. To prove the upper bound, our main idea is to argue that any fixed sum-
mation of the form

PI+k
L=I XL can be rewritten as a summation

PT
l=1 Yl, which satisfies the following properties:

• Each Yl has variance �
2

• Each pair of Yi, Yj has a non-positive correlation

• The term of summations T = O(K).

Assuming all the three properties hold, putting these altogether shows

Var[
I+kX

L=I

XL] = Var[
TX

l=1

Yl] 
TX

l=1

Var[Yl] = �
2
T  CK�

2
.

The way we construct
PT

l=1 Var[Yl] is by defining a “merge” operation. Given a continuous summation
PI+k

L=I XL,
we will merge the summations using the equation X? = X?0 + X?1 for any ? 2 {0, 1}k for 0  k  K � 1 as
much as possible. For example, summing over all leaves in the left subtree, i.e,

P0111...1
L=000...0 XL can be merged to

X0. We can merge these summations until no further merging can happen, then we have
PI+k

L=I XL =
PT

l=1 Yl,
where each Yl is the random variable associated with a (not-necessarily leaf) node in the original tree. It is
proven in Theorem 3.3 that each Yl has variance �

2, which confirms Property 1 above. The rest two properties
are justified by the two lemmas below.
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Lemma B.4. Let S1, S2 be two non-empty subsets of {0, 1}K and S1 \ S2 = ?. Let Z1 :=
P

i2S1
Xi and

Z2 =
P

j2S2
Xj, then Cov(Z1, Z2)  0. Therefore Cov(Yl, Yl0)  0 for any l 6= l

0.

Proof of Lemme B.4. We observe Cov(Z1, Z2) =
P

i2S1,j2S2
Cov(Xi, Xj). Since the covariance matrix �

2CK

in (3.1) has only positive entries on the diagonal, but the above summation does not include the diagonal, we
conclude Cov(Z1, Z2)  0.

Lemma B.5. Any continuous summation
PI+k

L=I XL can be merged as a summation
PT

l=1 Yl with T  2K � 2
when K � 2.

Proof of Lemma B.5. We first prove any continuous summation of the form
PT

L=000,...,0 XL can be merged into
at most K summations. The case where K = 1 is straightforward. Suppose K = m� 1 is proven, when K = m,
we pick T such that the summation

PT
L=000...0 XL has the largest number of summing terms after merging.

We may assume without loss of generality that L � 100, . . . , 0, as otherwise the summation only happens on
the left sub-tree which reduces to our inductive hypothesis. Now we can already split the first left-tree in the
summation, and write

PT
L=000...0 XL = X0 +

PT
L=100...0 XL. The second term has length at most m � 1 by

inductive hypothesis, as the summation happens at the leftmost node of the right subtree. Therefore the total
length is at most m, as claimed. Moreover, the symmetries of the complete binary tree shows any summation of
the form

P111,...,1
L=T 0 XL can also be merged into at most K summations.

Now we prove Lemma B.5. The K = 2 case is simple. We assume the claim holds when K  m � 1. When
K = m, we pick the consecutive summation which has the largest number of terms after merging. Again, we
may assume the summation includes both nodes on the left and right subtree, as otherwise it reduces to the
m � 1 case. Now we write

PI+k
L=I XL = W1 + W2, where W1 is the summation on the left part ending at the

rightmost node of the left subtree, and W2 on the right part starting at the leftmost node at the right subtree.
By our previous induction, both W1 and W2 can be merged into a summation of at most m�1 terms. Therefore
the whole summation has at most 2m� 2 terms.

These results together give us the upper bound. Now we turn to the lower bound, we will inductively construct
a sequence of continuous range summations for each K, and argue the variance scales as ⇥(K).

We first assume K is an odd number, then we consider the consecutive sum by picking the first MK := 2K�1 +
2K�3 + 2K�5 + ... + 1 entries. Intuitively, we are picking all the left subtree, and the left subtree of the right
subtree, and the left subtree of the right subtree of the right subtree, and so on.

Proof of Lemma 3.14, lower bound. For any odd number K, Let

VK := Var[
MKX

k=000...0

Xk],

where MK := 2K�1 + 2K�3 + 2K�5 + ... + 1. Then we claim VK � VK�2 � 2
3�

2. Given the claim, we have
VK/�

2 = ⌦(K) for odd K. Since the maximum variance is a non-decreasing function of K, we know

max
I2{0,1}K ,k2K�I

Var[
PI+k

L=I XL]

�2
= ⌦(K).

To show the claim, we first merge the summation of the these MK entries, and write

MKX

k=000...0

Xk =

(K+1)/2X

l=1

Yl,

where Y1 is the left subtree, Y2 is the next summation of 2K�3 entries, and so on. Next we define WK :=P(K+1)/2
l=2 Yl. By the recursive structure of our covariance matrix, WK has variance VK�2. Therefore
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Vn = Var

2

4
MKX

k=000,...,0

Xk

3

5 = Var[Y1 +WK ] = �
2 + VK�2 + 2Cov[Y1,WK ].

The covariance term can be calculated through (3.1), which is �2�2(K�1)�1
�
2|Y1||WK |. Therefore we can further

bound VK as

VK = Var

"
MKX

k=000...0

Xk

#
= Var[Y1 +WK ] = �

2 + VK�2 + 2Cov[Y1,WK ]

= �
2 + VK�2 � �

22�2(K�1)2K�1
MK�2

= �
2 + VK�2 � �

22�(K�1)(2K�3 + 2K�5 + . . .+ 1)

� �
2 + VK�2 � �

2 4

3
2�(K�1)2K�3 = VK�2 +

2

3
�
2
,

as desired. The last inequality is because

2K�3 + 2K�5 + . . .+ 1 = 2K�3(1 + 1/4 + . . .+ 2�(K�3))

 2K�3(1 + 1/4 + . . .+ 2�(K�3) + . . .)

=
4

3
2K�3

.

Proof of Theorem 3.15. Recall the classical fact that E[|X|] = �
p

2/⇡ for X ⇠ N(0,�2), we immediately have:

err1W (W�) =
��Es⇠N(0,�2CK)[|Ws|]

��
1

=

r
2

⇡
max

I2{0,1}K ,k2K�I

vuutVar[
I+kX

L=I

XL]

= ⇥(�
p
K)

= ⇥
⇣
�

p
log2(n)

⌘
,

which proves the first claim. The second claim follows immediately from the first claim and Proposition 3.13.

For the last claim, recall the Gaussian tail bound P(|X| > t)  2 exp(�t
2
/2�2) given X ⇠ N(0,�2). We can

bound the tail probability of the worst-case error as:

Ps⇠N(0,�2CK)[kWsk1 > t] = P[|
I+kX

L=I

XL| > t for some I 2 {0, 1}K , k]


X

I,k

P[|
I+kX

L=I

XL| > t]

 2
X

I,k

exp

 
�t

2

2Var(
PI+k

L=I XL)

!

 2
X

I,k

exp

 
�t

2

2maxVar(
PI+k

L=I XL)

!

 2

✓
n

2

◆
exp

✓
�t

2

2c�2K

◆

 n
2 exp

✓
�t

2

2c�2K

◆
.
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Here the first inequalty follows from the union bound, and the summation is over all the continuous range queries
(and therefore

�n
2

�
terms). The second inequality uses the Gaussian tail bound. The last few inequalities use

Lemma 3.14.

Now set tm = m
p
4 log(n)c�2K for every positive integer m, we know

Ps⇠N(0,�2CK)[kWsk1 > tm]  n
2 exp

✓
�t

2
m

2c�2K

◆

= n
2 exp

✓
�4m2 log(n)c�2

K

2c�2K

◆

= n
2 exp

�
�2m2 log(n)

�

=
1

n2m2�2
.

Therefore we can bound

errW ,1(W�) = Es⇠N(0,�2CK)[kWsk1]

=

Z 1

0
Ps⇠N(0,�2CK)[kWsk1 > t]dt

 t1 +
1X

m=1

Z tm+1

tm

Ps⇠N(0,�2CK)[kWsk1 > t]dt


p
4 log(n)c�2K +

p
4 log(n)c�2K

1X

m=1

Ps⇠N(0,�2CK)[kWsk1 > tm]

=
p
4 log(n)c�2K +

p
4 log(n)c�2K

1X

m=1

1

n2m2�2

= O(
p
4 log(n)c�2K) = O(� log(n)) as K = log2(n).

Proof of Corollary 3.16. Corollary 3.16 is immediate when plugging the value of � in Theorem 3.9 into Theorem
3.15.

C Extra results on nodal queries

C.1 Theoretical results

When W represents the queries for all the nodes in the binary tree. Our results are summarized below:

Theorem C.1. Fix � > 0 and let query matrix W be all the nodal queries, we have:

• err1W (W�) =
p
2/⇡�,

• errW ,2(W�) = (2n� 1)�2,

• errW ,1(W�) = O(�
p
log2(n)).

Proof of Theorem C.1. The first two properties are follows from direct calculation, and are therefore omitted
here.

The proof for the worst-case expected error is very similar to the calculation in Theorem 3.15. Recall that all
the leaf nodes are labelled by XI where I 2 {0, 1}K which has covariance matrix �

2CK . The internal nodes are
labelled by XJ where J 2 {0, 1}k for some k 2 {0, 1, . . . ,K � 1}. Therefore errW ,1(W�) = E[maxk,J |XJ |, J 2
{0, 1}k]. We can again use the standard Gaussian concentration:
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P[max
k,J

|XJ | > t] = P[|XJ | > t for some J 2 {0, 1}k]


X

J,k

P[|XJ | > t]

= (2n� 1) exp

✓
�t

2

2�2

◆
total 2n� 1 summation terms.

Now set tm = m
p
2�2 log(n), we know

P[max
k,J

|XJ | > tm]  (2n� 1)

nm2 .

Therefore

errW ,1(W�) =

Z 1

0
P[max

k,J
|XJ | > t]dt

=
p
2�2 log(n) +

p
2�2 log(n)

1X

m=1

(2n� 1)

nm2

= O(�
p
log(n)),

as announced.

Corollary C.2. Let X 2 Xn be any dataset and let M�(X) = X+�N(0,CK) be our privacy mechanism, where
� is chosen such that the mechanism satisfies (", �)-DP. Let W be all the continuous range queries, we have:

• err1W (W�) = ⇥
⇣p

log n log(2/�)"�1
⌘
,

• errW ,2(W�) = ⇥
�
n
2 log(n) log(2/�)"�2

�
,

• errW ,1(W�) = O

⇣
log(n)

p
log(2/�)"�1

⌘
.

D Generalizations

D.1 Cascade Sampling for Streaming data

Algorithm 2: Cascade Sampling Algorithm for Streaming Data

Input: Depth of the current binary tree k � 1, current root noise value X0, variance �
2 determined by the

privacy budget.
Output: Noise values {XI} for all nodes I 2 [0ik�1{1}⇥ {0, 1}i; new root noise X

0.
Sample Y? ⇠ N(0,�2) independently;

Set X1 := � 1
2X0 +

p
3
2 Y?, X

0 := X0 +X1;
for each node ? 2 {1}⇥ {0, 1}i at depth 1  i  k � 1 do

Sample Y? ⇠ N(0,�2) independently;
Define the noise values for the children of ?: ;

X?0 := 1
2X? +

p
3
2 Y?, X?1 := 1

2X? �
p
3
2 Y?;

end

D.2 General binary trees

Our noise mechanism is designed under the assumption that our data points can be viewed as leaves of a perfect
binary tree. Nevertheless, thank to the top-down nature of our cascade sampling algorithm (Algorithm 1), it
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can be readily adapted to work with a general binary tree. We will still use binary bits to represent data points.
They are still leaves of a binary tree of maximum depth k, but not necessarily have the same depth (i.e., same
length in the bit string). In our binary tree, the root node is still indexed by ?. For any non-leaf node identified
by the bit string ?, its children are indexed as ?0 and ?1 if it has two children, or solely as ?0 if it has only one
child.

Our adapted algorithm closely mirrors Algorithm 1, with the primary distinction being the evaluation of the
number of children at each step. Starting from the root, the process proceeds downward. Given the assigned
value to a node ?, the algorithm first determines the number of ?’s children. If ? has two children, it generates
correlated noises in the same way as Algorithm 1 (or as described in formula 2). If ? has only one child, the same
noise is assigned to ?0. If ? is itself a leaf, the algorithm simply moves on to the next node. Detailed description
is in Algorithm 3 below.

Algorithm 3: Noise Allocation Mechanism for a General Binary Tree

Input: Binary tree with maximum depth k, variance �
2 determined by the privacy budget.

Output: Noise values {XI} for all nodes I 2 [0lk{0, 1}l in a binary tree.
for each node ? 2 {0, 1}i at depth 0  i  k � 1 do

if ? = ? then
Assign X? ⇠ N(0,�2)
Sample Y? ⇠ N(0,�2) independently
Define the noise values for the children nodes of ?:
if ? has two children then

X?0 := 1
2X? +

p
3
2 Y?

end

X?1 := 1
2X? �

p
3
2 Y?

else if ? has one child then
X?0 = X?

end
end

end

Algorithm 3 continues to ensure that the marginal distributions for each node adhere to N(0,�2). Moreover, the
noise level for any given node is equivalent to the sum of the noise levels of its children, thereby maintaining
consistency. The theoretical analysis for this scenario closely parallels that of the perfect binary tree case
discussed in Section 3. Extending this approach to non-binary trees is also possible, though more complicated.
This further exploration will be reserved for our future studies.

D.3 Two-dimensional range queries and contingency tables

Remember that our approach, as outlined in Algorithm 1, is appropriate for data arranged in one-dimensional
arrays that have hierarchical structures. We are now expanding this method to apply to two-dimensional con-
tingency tables. An example of this is that each data point represents the population of a village, positioned in
two dimensions for longitude and latitude. The higher-level hierarchies might represent the populations of larger
entities like cities, provinces, or countries.

Putting it formally, we consider data points labeled as {XI,J}I2{0,1}k1 ,J2{0,1}k2 . It is convenient to think of

these data points as elements of a matrix with 2k1 rows and 2k2 columns. Each row and column corresponds to
the leaf nodes of a perfect binary tree of heights k1 and k2, respectively. Each pair of (internal) nodes (I1, J1)
from the two binary trees represents a submatrix. For instance, the pair (?,?) corresponds to the entire data
matrix. We aim to develop a noise mechanism where the summation of noises applied to each submatrix, as
described by (I1, J1)I12{0,1}i1 ,I22{0,1}i2 ,i1k1,i2k2

, maintain the same variance.

Remember that for the one-dimensional scenario, the essence of our design hinges on the observation that if
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X,Y ⇠ N(0, 1), then the variables X0, X1 given by

X0 =
1

2
X +

p
3

2
Y, X1 =

1

2
X �

p
3

2
Y.

also follow a N(0, 1) distribution. The above construction can be generalized to higher dimensions. For example,
let X,Y, Z,W be i.i.d. N(0, 1) random variables, and define:

X0 =
1

2
X +

p
3

2
Y, X1 =

1

2
X �

p
3

2
Y

X̃0 =
1

2
Z +

p
3

2
W, X̃1 =

1

2
Z �

p
3

2
W.

Then we can construct

(X00, X01) =
1

2
(X0, X1) +

p
3

2

⇣
X̃0, X̃1

⌘

(X10, X11) =
1

2
(X0, X1)�

p
3

2

⇣
X̃0, X̃1

⌘
,

or equivalently

X00 =
1

4
X +

p
3

4
Y +

p
3

4
Z +

3

4
W

X01 =
1

4
X �

p
3

4
Y +

p
3

4
Z � 3

4
W

X10 =
1

4
X +

p
3

4
Y �

p
3

4
Z � 3

4
W

X11 =
1

4
X �

p
3

4
Y �

p
3

4
Z +

3

4
W.

We can verify that the matrix

0

@X00 X01

X10 X11

1

A

satisfies the following:

• Each entry is a standard normal

• The summations of each row, each column are all standard normals

• The summation of all entries are standard normals.

• X00 +X10 = X0, X01 +X11 = X1.

Building on this concept, we will now describe how to extend our method (Algorithm 1) for creating private
noise mechanisms suitable for 2-dimensional range queries. Initially, we’ll utilize Algorithm 1 to sample the
summation of all 2k2 columns, meaning the noise values indexed as (?, J). Following that, we will implement
the aforementioned strategy to divide each of these column totals into smaller groups of 2, 4, 8, . . . , 2k1 values.
The detailed algorithm is described below.

It is not hard to verify from the construction that every XI,J has the same marginal distribution, and satisfies
XI,J = XI0,J +XI1,J and XI,J = XI,J0 +XI,J1. The computational cost of Algorithm 4 is also linear with the
number of data points. More detailed analysis of the appropriate level for the privacy budget, along with an
analysis of utility, will be deferred to our future research.
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Algorithm 4: Noise Allocation Mechanism for two-dimensional range queries

Input: Depths K1,K2 of the binary tree indexing rows and columns, variance �
2 determined by the privacy

budget.
Output: Noise values {XI,J} for all node pairs (I, J) 2 [0k1K1{0, 1}k1 ⇥ [0k2K2{0, 1}k2

Fix I = ?, implement Algorithm 1 to assign X?J for every J 2 [0k2K2{0, 1}k2 ;
for each node ? 2 {0, 1}k1 for some 0  k1  K � 1 do

Implement Algorithm 1 to assign Y?J for every J 2 [0k2K2{0, 1}k2 ;
Define the noise values for the children nodes of ?:;

X?0,J := 1
2X?,J +

p
3
2 Y?,J for every J ;

X?1,J := 1
2X?,J �

p
3
2 Y?,J for every J ;

end

E Additional experiments

In this section, we demonstrate numerical experiments for when the workload matrix consists of node and random
queries and also runtime comparisons.

E.1 E�ciency of Cascade Sampling

To justify the practical e�ciency of the Cascade Sampling algorithm described in Section 3.2, we compare it
against Scipy’s built-in function for generating multivariate Gaussian distributions. On a personal laptop, we
use both methods to produce Gaussians with a covariance matrix Ck for k 2 {3, 4, . . . , 25}, which corresponds
to dimensionalities ranging from 23 = 8 to 225 ⇡ 33.5 million. In comparison to our sampling algorithm, Scipy’s
multivariate normal function consistently takes longer time. Its e�ciency diminishes at higher dimensions.
For example, it takes over 28 minutes to sample a 16, 384 (214)-dimensional Gaussian, and more than 3 hours for
a 32, 768 (215)-dimensional Gaussian, making it impractical for larger dimensions. Samplers from other libraries
like Numpy were also tested but could not execute for dimensions exceeding 1024.

E.2 Node queries

Consider a binary tree such that elements of x form the leaves of the tree. The queries are the nodes (including
leaves) of this tree, which correspond to an interval summing up the leaves of tree rooted at the particular node.
The error values are shown in Figure 3.

Figure 3: errW ,2(W�) and errW ,1(W�) for node queries.

The gap in utility across mechanisms for errW ,2(W�) is small with Hierarchial, Wavelet and ours providing
smallest error values, then closely followed by remaining mechanisms. But that is not the case for errW ,1(W�),
where Gaussian, HDMM and explicit factorization perform significantly worse. The remaining mechanisms
perform very similarly (except for Binary Tree which has slightly larger error) as n increases. The gap in
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correlated input perturbation and Binary tree mechanism is easier to see which comes from the smaller constant
for noise that is required for guaranteeing privacy (2 + 2

3 log n vs log n).

E.3 Random queries

Here, each query asks for sum of random elements from x. Note that unlike first two settings, the query is
not contiguous over elements in x. We sample the queries as follows - for each query we sample a number
k 2 {n/4, · · · , n} (to simulate dense queries). We then sample k indices uniformly at random from [n] and these
indices form the query (these indices are set to 1 for the particular row in W ). We fix number of queries to be
2500. The results are shown in Figure 4

Figure 4: errW ,2(W�) and errW ,1(W�) for random queries.

For this setting of workload matrix, HDMM and Gaussian mechanism perform best utility wise for both
errW ,2(W�) and errW ,1(W�). Wavelet, ours and Hierarchical perform almost similarly w.r.t noise magnitude
whereas explicit factorization mechanism has the largest noise. Explicit factorization uses a very special decom-
position tailored to continual counting hence it has worse performance and Hierarchical, ours and Binary tree
mechanisms are more suited for sum over contiguous arrays by design, and as a result for random queries they
perform slightly worse. Gaussian mechanism has the least error majorly due to the fact that the noise scale is
smallest due to smaller sensitivity. To see this, note that the queries sum over O(n) elements in x. For Gaussian,
this corresponds to sum of O(n) i.i.d Gaussians, whereas for Hierarchical and Correlated mechanism, worst case
we still sum over O(n) elements but with higher variance (by a factor of O(log n)), resulting in larger noise added
to the query answers.

E.4 Runtime comparison

We compare runtime for di↵erent mechanisms in seconds for answering the queries provided by the given workload
matrix. For runtime, Gaussian and Wavelet are typically the fastest across di↵erent settings of workload matrix
and n whereas our mechanism is competitive with these and faster than Hierarchical. HDMM typically takes the
longnest which is expected as it involves expensive optimization to achieve the matrix decomposition. The time
required for explicit factorization mechanism majorly comes from answering queries, as their decomposition is
fast but for each query, the answer has to be constructed via di↵erence of two other queries.

E.5 Implementation Details

We first describe the implementation for all mechanisms used in evaluations. All experiments were performed
on a Macbook Pro with M1 processor and 16GB of RAM. Code is implemented in python language.

Binary Tree: Here the mechanism builds a binary tree with elements being the leaves of the tree, and appro-
priately scaled Gaussian noise (for preserving privacy) is added to the the counts of nodes. We use the segment
tree package for building and answering queries.
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Hierarchical and Wavelet: Hierarchical mechanisn follows the same methodology as the Binary tree mech-
anism, followed by post-processing to find consistent sums for the internal nodes. We use the implementation
from dpcomp-core package [25] for Hierarchical and Wavelet.

HDMM: We use the implementation from dpcompcore library, using the default parameter for number of
restarts.

Explicit factorization [17] provides implicit matrix factorization for continual counting, i.e., counting of
ranges [1, i], for all i. Notice that this is a special case of range queries [i, j] for all . One can easily retrieve
the query answer [i, j] by calculating the privatized query answer for [1, j] minus that of [1, i � 1]. Privacy is
preserved (post-processing) although variance for query of [i, j] can possibly increase (at most twice).

Gaussian and Correlated mechanism: Implementing these mechanisms is straight forward by adding ap-
propriately scaled noise for privacy and then using the private histograms to answer queries.

Monte Carlo sampling for estimating errors of continuous queries: Now we discuss some implemen-
tation details of the continuous range queries in Section 5. After implementing the Cascade Sampling algorithm
for the correlated perturbation M�(x) = x + N(0,�2Ck), calculating the error introduced by all the ⇥(n2)
continuous range queries requires a cost of O(n3) to sum up all the noises in the corresponding entries, which is
prohibitive when n is large.

Our primary goal is to evaluate the errors errW ,2(W�) and errW ,1(W�) in comparison to current algorithms, so
we employ the Monte Carlo method for estimating these errors. It is clear from the mean and standard deviation
plot presented in Figure 2 that our estimation is su�ciently accurate.

We now outline the implementation process for n � 28. In each iteration, we uniformly select one range from all�n
2

�
+n queries. This step is repeated m times. Using the m sampled errors E1, . . . , Em, we estimate errW ,2(W�)

and errW ,1(W�). For instance, (
�n
2

�
+ n) ⇥

Pm
i=1(E

2
i )/m serves as an unbiased estimator for errW ,2(W�),

becoming more accurate as m increases. Additionally, maxi Ei consistently estimates errW ,1(W�) .

In further details, to uniformly select a continuous range, our sampling method involves: 1. Flip a coin with
head probability 2/(n + 1). 2. If heads, then random choose one element in {1, . . . , n}. 3. If tails, uniformly
choose two distinct elements and use min{n1, n2} to max{n1, n2} as our range.

A final remark is that one could compute all
�n
2

�
+ n errors without Monte Carlo methods using faster than

O(n3) algorithms by properly storing intermediate results. However, these are not implemented in our current
work.

Figure 5: Runtime comparison for di↵erent configurations of the workload matrix.
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