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ABSTRACT

Al-assisted decision making becomes increasingly prevalent, yet
individuals often fail to utilize Al-based decision aids appropri-
ately especially when the Al explanations are absent, potentially
as they do not reflect on AI’s decision recommendations critically.
Large language models (LLMs), with their exceptional conversa-
tional and analytical capabilities, present great opportunities to
enhance Al-assisted decision making in the absence of Al explana-
tions by providing natural-language-based analysis of AI’s decision
recommendation, e.g., how each feature of a decision making task
might contribute to the Al recommendation. In this paper, via a ran-
domized experiment, we first show that presenting LLM-powered
analysis of each task feature, either sequentially or concurrently,
does not significantly improve people’s Al-assisted decision perfor-
mance. To enable decision makers to better leverage LLM-powered
analysis, we then propose an algorithmic framework to charac-
terize the effects of LLM-powered analysis on human decisions
and dynamically decide which analysis to present. Our evaluation
with human subjects shows that this approach effectively improves
decision makers’ appropriate reliance on Al in Al-assisted decision
making.
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1 INTRODUCTION

Al systems have been significantly integrated into the human de-
cision making process in various domains, such as criminal jus-
tice [20, 93] and financial investment [3, 33], thereby creating a
new paradigm of human-AI collaboration [94]. In this paradigm,
Al models provide recommendations or analysis to assist humans
in making decisions, while human decision makers are ultimately
responsible for the final decisions [30, 71].

However, many empirical studies evaluating the effectiveness
of current Al-assisted decision making systems [41] have demon-
strated that when people collaborate with Al in decision mak-
ing tasks, they rarely engage in analytical thinking to combine
their own insights with the AI model’s recommendations intelli-
gently [6, 26, 68]. Instead, they often rely on Al inappropriately—
accepting an Al model’s recommendations when they are incorrect
or mistakenly ignoring Al’s correct recommendations—leading to
either overreliance or underreliance on Al [55, 77]. To address
this problem, previous research [2, 78, 79] proposed to display
explanations generated by post-hoc explainable AI (XAI) meth-
ods [29, 56, 72] along with the Al model’s decision recommenda-
tions to assist people in evaluating AI’s reliability and identifying
optimal strategies for relying on Al However, the computation
of Al explanation often requires access to the Al model’s internal
parameters and structures, while many evaluation studies have
revealed that it is challenging for humans to understand and utilize
such explanation without substantial effort to teach them how to
interpret the explanation [96]. Consequently, even with the pres-
ence of Al explanations, decision makers often still exhibit a low
level of appropriate reliance on Al let alone the case when the Al
explanations are not available.

As such, one would naturally wonder if it is still feasible to guide
decision makers to critically and systematically reflect on Al’s de-
cision recommendations and appropriately utilize them without
easily accessible or available Al explanations. Interestingly, in real-
world decision making across various domains like healthcare and
finance, when decision makers find the initial recommendations
lack transparency and clarity, they often seek additional insights or
interpretations from secondary sources. To this end, the exceptional
conversational and analytical capabilities exhibited by the latest
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Income Prediction

Education Level Value: 10 years

Concept: Higher education is commonly linked to higher earning potential.
In this case: With 10 years of education, this might be slightly below the threshold for high-earning positions, which decreases the
likelihood of making over $50000 per year.

Recidivism Prediction

Charge Degree Value: Felony

criminal behavior.

Concept: The severity of the charge can predict recidivism, with felonies often leading to harsher predictions than misdemeanors.
In this case: Facing a felony charge, which increases the likelihood of recidivating because felonies are associated with more severe

Table 1: Examples of analysis generated by the LLM for (top) how the education level of a person might have affected AI’s
prediction on this person’s income level; and (bottom) how the charge degree of a defendant might have affected AI’s prediction

on this defendant’s recidivism status.

state-of-the-art large language models (LLMs) could offer strong
promise [13, 31, 45, 59, 88, 102]. For example, LLMs can analyze a
decision making task and AI's decision recommendation on it, and
then provide potential reasons for why the Al recommends such
a decision in a natural language format, which is straightforward
for humans to process. While the Al model serves as the primary
advisor for human decision makers, when LLM-powered analyses
are used to augment the Al model’s recommendations, the LLM
effectively serves as a secondary advisor to provide additional per-
spectives and justifications through its analysis. These analyses
may help the human decision maker better interpret the recommen-
dation of the primary advisor. They may also offer a starting point
for decision makers to organize their thoughts and reflect on both
the Al model’s decision recommendation and their own judgment,
which may help them calibrate their trust in the Al model.

Therefore, in this paper, we start by conducting a randomized
human-subject experiment to examine whether incorporating LLM-
powered analyses in Al-assisted decision making can improve the
performance of human-AI teams and promote more appropriate
reliance on Al models in the absence of actual explanations of the
Al models. Given a decision making task as well as an Al model’s
decision recommendation on it, we first prompted OpenAI's GPT-4
model [67] to generate analyses for how each feature of the task
might have led to the Al model’s decision recommendation on the
task (see Table 1 for examples). Depending on whether and how
to present these LLM-powered analyses, we created three treat-
ments in our experiment—CONTROL (where participants would not
receive any analysis from the LLM), SEQ (where participants re-
ceive the analysis about each feature sequentially), and ALL (where
participants receive analyses about all features at once). Our exper-
imental results show that presenting LLM-powered analysis either
sequentially or concurrently to human decision makers does not
significantly improve their decision accuracy compared to those
decision makers who did not receive any LLM-powered analysis.
This suggests that more intelligent ways should be used to present
LLM-powered analyses to people to facilitate their utilization of
this information and promote their effective decision making.

In light of this, we propose an algorithmic framework to adap-
tively present LLM-powered analyses to decision makers—based
on the historical data on how human decision makers react to dif-
ferent LLM-powered analyses, our algorithmic framework learns
to present LLM-powered analysis selectively and progressively
to maximize the chance for the decision maker to rely on the Al

model’s decision recommendations appropriately and make the
correct decisions. To do so, we first learn a human behavior model
that characterizes the effects of LLM-powered analysis on human
decisions. We then dynamically decide which analysis to present
(among the LLM-powered analyses for all features of the decision
making task) by comparing the expected maximum utility of pre-
senting each analysis. To evaluate the effectiveness of this algorith-
mic approach in selecting the best set of LLM-powered analyses to
help improve decision makers’ appropriate reliance and decision
accuracy in Al-assisted decision making, we conducted another
randomized human-subject experiment. We find that compared to
other baseline approaches for presenting LLM-powered analysis,
when the LLM-powered analyses are selected using our algorithmic
approach, human decision makers can achieve significantly higher
accuracy in their final decisions and reduce overreliance on the
Al model across different types of decision making tasks. Addi-
tional analysis suggests that our algorithmic approach selects fewer
but more informative LLM-powered analysis to show to decision
makers compared to baseline approaches.

Together, our study provides important experimental evidence
regarding the effectiveness of incorporating LLMs in Al-assisted
decision making, and how to design intelligent interactions between
humans and LLMs to promote better human-AI collaboration in
decision making. We conclude by discussing the implications and
limitations of our study.

2 RELATED WORK
2.1 Al-Assisted Decision Making

The increasing prevalence of Al-assisted decision making has led
to a growing line of research to investigate how people engage
with, trust in, and rely on Al models in this new collaboration par-
adigm [11, 41, 54]. Early studies focus on empirically identifying
factors that influence Al-assisted decision making, including the
Al model’s performance [70], the explanation of the model recom-
mendation [74, 78, 79], the decision making workflow [12, 69], and
the influence of task complexity on human-Al interactions [75].
While it is expected that the complementarity between Al mod-
els and humans could enable the human-Al team to outperform
either party alone, in practice, the collaboration between humans
and Al in decision making is widely observed to be suboptimal [77].
It is observed that people usually exhibit inappropriate reliance



on Al models [85]. For instance, the design of conversational in-
terfaces can influence users’ trust, sometimes causing overreliance
on Al recommendations [23]. In addition, people may also blindly
rely on Al in time-pressured environments, where the presence
of Al suggestions may speed up decision making at the cost of
accuracy [89]. In contrast, people could also reject the Al model
recommendation even when it is correct, noted as underreliance
on Al [24, 61, 66]. Recent research has also discussed how mis-
aligned Al outputs can contribute to people’s underreliance on Al
systems despite their accuracy [22]. To help decision makers in-
teract with and rely on the Al model more appropriately, a wide
range of approaches was recently developed [7, 9, 25, 48, 49, 52, 53].
For instance, the cognitive forcing function encourages people to
engage with Al more cognitively, thus potentially reducing people’s
overreliance on the Al model [6, 16, 41, 76]. Ma et al. [58] explored
the calibration of user trust in Al-assisted decision making by infer-
ring the correctness likelihood of both human and Al on a decision
case, which informs the adaptive presentations of the Al model’s
decision recommendations.

In addition, providing Al explanations generated by various post-
hoc explainable AI (XAI) methods [57, 73] that reveal the decision
rationale of Al models is another popular approach used, aiming to
improve humans’ understanding of the Al model’s behavior and
enable humans to calibrate their trust in Al. However, many em-
pirical studies have observed that people often struggle to process
and comprehend these explanations [44, 50, 91, 96], letting alone
utilize the insights revealed from these explanations to trust Al
more appropriately. To realize the positive utility of explanations
in Al-assisted decision making, recent research highlights the need
to provide explanations selectively or progressively to aid human
comprehension [17, 43, 50, 83, 84] . For instance, Lai et al. [43]
demonstrated that selectively highlighting Al explanations, which
align with the user’s own decision rationale, can increase agreement
between human decisions and AI model predictions and reduce
human overreliance on Al recommendations. Springer and Whit-
taker [83] showed that users may benefit from initially simplified
feedback that hides potential Al system errors and assists users
in building working heuristics about how the AI system operates
progressively. In this work, we make an initial attempt to explore
that in the absence of AI explanations, whether the incorporation
of the natural-language-based, LLM-powered analysis of the Al
recommendations on decision making tasks can promote more ap-
propriate reliance behavior of humans on AI models in decision
making, and how to present such analysis in the most effective way.

2.2 Human-LLM Interaction

Recently, large language models (LLMs) have demonstrated their ex-
ceptional capabilities across various applications to assist humans,
including creative writing [47, 95, 99], software engineering [64, 65],
and generative design [28], which has sparked significant interest
within the HCI community to investigate the interaction between
humans and LLMs [12, 18, 19, 35, 46]. On the one hand, LLMs are
increasingly utilized to directly create content or solve problems,
which is shown to match or even surpass humans’ performance. For
example, Mirowski et al. [63] presented the framework leveraging
LLMs to create coherent scripts and screenplays with humans in
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the loop. In other cases, LLM-based services provide foundational
support for human creation, such as generating coding schemes for
qualitative analysis [10]. In these human-LLM collaboration scenar-
ios, akey challenge is that laypeople often lack the skill to effectively
prompt LLMs to generate the outputs that they desire [100]. To
address this challenge, novel approaches like AI Chains [97], auto-
matic prompting methods [80], and interactive interfaces [51, 92]
are developed to enhance the effectiveness of human-LLM inter-
action, either by improving LLMs’ usability [27, 98] or by guiding
humans’ engagement with LLMs.

Researchers have also explored the potential of LLMs in Al-
assisted decision making. For example, LLMs could directly provide
decision recommendations. However, it was found that the overcon-
fident and seemingly convincing LLM outputs can mislead people
to believe them to be correct [87] and result in people’s overre-
liance on LLM [14, 36]. Recently, Slack et al. [82] developed an
interactive dialogue system that allows users to inquire about the
reasons behind the ATl model’s predictions. This system leverages
a LLM to parse user intent and match it with pre-specified, hand-
crafted answers, demonstrating significant potential to enhance
user understanding and decision performance through conversa-
tional interactions with the Al model. Different from the previous
work, in this paper, we explore how to utilize LLMs to analyze an Al
model’s decision recommendations and augment them, and how to
build an algorithmic framework to dynamically decide what infor-
mation to present to humans from the rich information generated
by LLMs.

3 EMPIRICAL EXAMINATIONS OF THE
IMPACTS OF LLM-POWERED ANALYSIS IN
AI-ASSISTED DECISION MAKING

We start by investigating whether the incorporation of LLM-powered
analysis can enhance human decision makers’ decision performance

and promote their more appropriate reliance on Al models in Al-
assisted decision making. To do so, we conducted a randomized

human-subject experiment on Prolific.

3.1 Decision Making Task

In our experiment, we considered two types of decision making
tasks that have widely been used as the testbeds in Al-assisted
decision making research [12, 58, 101]:

e Income Prediction [38]: Human decision makers were
asked to determine whether a person’s annual income level is
higher or lower than $50k with the assistance of an Al model.
Specifically, in each task, we presented the participant with
a person’s profile containing 7 features, which include the
person’s gender, age, education level, marital status, occupa-
tion, work type, and working hours per week. We trained a
random forest model to provide decision recommendations,
and the accuracy of the model was 76%.

e Recidivism Prediction [15]: Human decision makers needed
to predict whether a defendant would reoffend within two
years. Each task presented a defendant profile with 8 fea-
tures, including basic demographics (e.g., gender, age, race),
criminal history (e.g., the count of prior non-juvenile crimes,
juvenile misdemeanor crimes, and juvenile felony crimes
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committed), and information related to their current charge
(e.g., charge issue, charge degree). We again trained a ran-
dom forest model to provide decision recommendations, and
the accuracy of the model was 62%!.

3.2 Generation of LLM-powered Analysis

We used LLMs to generate an analysis for each Al-assisted decision
making task. Specifically, we prompted GPT-4 to analyze the de-
cision making task and the AI model’s decision recommendation.
The prompts for GPT-4 to generate the analysis for both the income
prediction and recidivism prediction tasks consist of three parts:

e Introduction Prompt: Please take on the role of a
data analyst and prepare to analyze the provided
task instances. Your task is to explain how the
features in the presented task instances contribute
to the AI model predictions provided. Each profile
includes various features that you will need to
consider in your analysis, [INTRODUCE THE FEATURE
NAMES AND DESCRIPTIONS].

e Instruction Prompt: For each presented task, assess
how each feature might contribute to [AI MODEL
PREDICTION]. For each task, your analysis should
contain 1 identifier (index), [NUMBER OF FEATURES]
concepts (explanations of how the features could
support the model prediction), and [NUMBER OF
FEATURES] case descriptions (specific explanations
of how the feature values in the current profile
support the model prediction). [AN EXAMPLE OF THE
OUTPUT ANALYSIS].

¢ Emotional Stimuli Prompt: This is an academic study
aimed at enhancing human trust in AI system advice
through reasonable explanations. The knowledge
gained will help improve human-AI collaboration.
This mission is critical to the whole human society.
Please analyze the task instance thoroughly and
provide diverse insights.

The LLM examined the task features and determined how each
feature may have contributed to the AI model’s prediction. Con-
sequently, the LLM generated a set of analyses for each task in-
stance, associating each task feature with one analysis to indicate
its possible contribution to the Al recommendation. Table 1 shows
several examples of analyses generated by GPT-4. This set of anal-
yses serves as the LLM-powered analysis to be incorporated into
Al-assisted decision making in our study (see the supplemental
materials for more examples of the analyses). While such LLM-
powered analysis can be readily applied to decision making tasks
with tabular data where the task-related information is presented
in a structured manner as a collection of features and their values,
similar analysis can also be conducted on decision tasks involving

For the random forest models used in both the income prediction and recidivism
prediction tasks, we used grid search to fine-tune the model parameters such as the
depth of the tree and the number of trees. The relatively low level of prediction accuracy
of the random forest model was primarily due to the inherent difficulty and uncertainty
of the task. We also experimented with using zero-shot and few-shot approaches to
prompt the state-of-the-art LLM, GPT-4, to directly provide binary recommendations
on these tasks. When evaluating on the same test dataset, we found that the accuracy
of GPT-4 on income prediction tasks and recidivism prediction tasks were 59% and
56%, respectively, which were lower than the random forest models.
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other types of data (e.g., images, texts) after transforming the un-
structured data into structured formats (see more discussions on
this in Section 6.5).

Note that we do not consider the analysis generated by the LLM
as necessarily reflecting the AI model’s true decision rationale.
Instead, it is only the LLM’s interpretation/justification of the Al
recommendation, and is used to augment the Al recommendation
in the absence of explanations to the AI model. Alternatively, since
we prompted the LLM to justify a specific decision (i.e., the decision
that is consistent with the Al model’s recommendation), one can
also view the LLM-powered analysis as the LLM’s own explanations
to the specified decision.

3.3 Experimental Treatments

In our experiment, participants were asked to complete a series of
decision making tasks. For each task, they were provided with the
Al'model’s prediction along with the task instance, and they needed
to make the final decision. We created 3 experimental treatments by
varying whether and how LLM-powered analysis was introduced
into the Al-assisted decision making process. Specifically:

o CoNTROL: In this treatment, we did not incorporate LLM-
powered analysis into the Al-assisted decision making pro-
cess. Participants assigned to this treatment were asked to
make decisions with the assistance provided by the AT model
alone, without any additional analysis from the LLM.

e SEQUENTIAL (SEQ): In this treatment, participants started
working on the decision making task seeing only the task
instance and the Al model’s recommendation without receiv-
ing any LLM-generated analyses. Then, we told participants
that an LLM had analyzed how different features of the task
instance may contribute to the Al model’s recommendation
on this task. Participants were required to interact with the
LLM through a designated interface where, in each turn, the
LLM’s analysis about one task feature’s contribution to the
Al recommendation would be randomly sampled from the
generated set and presented to the participant. The partic-
ipant could respond to the analysis by indicating whether
they agreed or disagreed with it. The participant must inter-
act with the LLM for at least X rounds where X is randomly
sampled between 1 and 3 for each task. After meeting the
minimum interaction requirement, participants could con-
tinue to review the LLM-powered analysis on more features,
or they could stop the interaction and make their final deci-
sions at any point that they wish. Figure 1a shows an example
of the task interface used in this treatment.

e ALL: In this treatment, we presented all the LLM-powered
analyses for each one of the task features to participants at
once, along with the task instance and the Al model’s deci-
sion recommendation. After reviewing all this information,
participants made their final decisions. Figure 1b shows an
example of the task interface used in this treatment.

3.4 Experimental Procedure

Our experiment was conducted on Prolific. Upon the arrival of a
participant, we randomly assigned them to one of the two types



ChatGPT Analysis:

1. Race: 3 . Concept: Gender can play a role in recidivism rates, with
3 men generally having a higher likelihood of recidivating
than women, influenced by societal norms and
(@) | corertiniies forehabiliton.
Analysis: In this case, Being male, which increases the
likelihood of recidivating due to higher societal pressures
and potentially less access to supportive networks post-

incarceration.

Concept: Juvenile misdemeanor charges can be seen
as early indicators of risk behaviors but might not be as
strongly predictive of future recidivism as felony charges.
Analysis: In this case, In this case, Having no juvenile
misdemeanor charges, which decreases the likelihood of

4. Prior Crime Count after Age
18:

5. Felony Crime Count before
‘Age 18:

6. Misdemeanor Count before
Age 18:

7. Current Charge Degree:

CETIE T T Driving with a Revoked

Model Prediction: Our Al model predicts that this person will not
reoffend in two years.

recidivating.
Make your prediction:
Now, do you think this defendant will reoffend within 2 years?
Yes, | think this defendant will reoffend within 2 years.
No, | think this defendant will not reoffend within 2 years.
What's your confidence in your prediction?
Your confidence: 50%
Not sure Very sure
50% 60% 70% 80% %0% 100%

submit your prediction!

(a) SEQ treatment
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ChatGPT Analysis:
G Concept: Societal and systemic biases related to race
can influence recidivism predictions, with some races
@ Potenaly facing harsher prcictons dus toisorcal
and ongoing discrimination.
Analysis: In this case, Being White (Caucasian), which

has no impact on the likelihood of recidivating.

4. Prior Crime Count after Age
18:

5. Felony Crime Count before
Age 18:

Concept: Gender biases and societal norms may
influence recidivism predictions, as males are often
perceived to have a higher propensity for criminal

7. Current Charge Degree: behavior.

Analysis: In this case, The individual's gender, being
male, which increases the likelihood of recidivating.

6. Misdemeanor Count before
Age 18:

y . Driving with a Revoked
8: Current Charge Issue: o

Concept: Age s a significant factor in recidivism rates,
Model Prediction: Our Al model predicts that this person will not with younger individuals often having higher rates of
reoffend in two years. @ reoffence.

- Analysis: In this case, At the age of 46, which decreases
Make your prediction: ) the likelihood of recidivating.

Now, do you think this defendant will reoffend within 2 years?

Yes, I think this defendant will reoffend within 2 years.
No, | think this defendant will not reoffend within 2 years.

Concept: Juvenile felony counts are indicators of early
involvement with the criminal justice system, potentially

leading to higher rates of recidivism.
What's your confidence in your prediction? ® Anllygis: frried case, Having no juvenile felony
Your confidence: 50% charges, which has no impact on the likelihood of
Not sure Very sure recidivating.
50% 60% 0% 80% 90% 100% Concept: Like juvenile felonies, juvenile misdemeanors

submit your prediction!

(b) ALL treatment

Figure 1: The example interfaces used in the SEQ and ALL treatments of our experiment for the recidivism prediction task.

of tasks and one of the three treatments. In the experiment, partic-
ipants were asked to first fill out an initial survey to report their
demographic information and knowledge of Al models. Then, they
started the formal experiment by completing a tutorial that de-
scribed the decision making task they needed to work on. To help
participants get familiar with the decision making task, we set up a
training stage in which participants completed five decision making
tasks independently without seeing the Al model’s recommenda-
tion or any LLM-powered analyses. During these training tasks, we
immediately provided participants with the correct answer at the
end of each task. After completing the training tasks, participants
moved on to the real tasks. In the real tasks, each participant was
asked to complete a total of 15 decision making tasks in the assigned
treatment. We offered a base payment of $1.20 and a raffle with
$1 bonus if the participant’s accuracy was above 85%. The experi-
ment was open to U.S.-based workers only, and each worker could
only complete the experiment once. Additionally, we included two
attention check questions in the experiment where participants
were required to select a pre-specified option, and only the data of
those subjects who passed both attention checks was considered
valid. After filtering out the inattentive participants, for the income
prediction task, we obtained data from 134 participants (CONTROL:
41, SEQ: 45, ALL: 48), while for the recidivism prediction task, we
obtained data from 150 participants (CONTROL: 49, SEQ: 40, ALL:
61). The median working time for participants was about 8 min-
utes, which translates to a median hourly payment of $8.9 per hour.
For more details of the experiment and participant demographics,
please see the supplemental material.

3.5 Experimental Results

Following previous work [42, 101], we used participants’ decision
accuracy to measure the human-Al team performance in decision
making, while underreliance and overreliance were used to quan-
tify the degree to which participants’ reliance on the AI model is
appropriate. Overreliance refers to the fraction of tasks in which
the participant’s decision was the same as the Al model’s decision
among all tasks where the Al model’s decision was incorrect. Un-
derreliance refers to the fraction of tasks in which the participant’s
decision was different from the Al model’s decision among all tasks

where the Al model’s decision was correct. Lower overreliance and
underreliance indicate that participants’ reliance on Al is more
appropriate.

Figure 2 shows the comparisons of participants’ decision accu-
racy, overreliance, and underreliance on the Al model across the
three treatments for both the income prediction and the recidivism
prediction tasks. We found that compared to the CONTROL treat-
ment where participants did not receive any LLM-powered analysis,
incorporating LLM-powered analyses in Al-assisted decision mak-
ing does not appear to significantly change participants’ decision
accuracy or reliance on Al, no matter how they are presented (i.e.,
sequentially or concurrently). Our one-way ANOVA test results
further confirmed that the differences in accuracy, overreliance,
and underreliance across the three treatments are not significant
at the level of p = 0.05 for both types of decision making tasks. In
other words, the ways that human decision makers interact with
the LLM-powered analysis in both the ALL and SEQ treatments may
still be not effective for them to critically reflect on the task and
calibrate their reliance on the AI recommendation. For example,
in the ALL treatment, the sheer volume of information that people
need to process may cause a significant cognitive burden, and make
it challenging for people to grasp the essential insights from all
the information. Meanwhile, in the SEQ treatment, although the
LLM-powered analysis is presented sequentially to enable decision
makers to digest and reflect on each analysis, the random order in
which the analysis is presented may imply a miss of opportunity to
help decision makers prioritize the most crucial information needed
for correct decisions.

4 ALGORITHMIC SELECTION OF
LLM-POWERED ANALYSIS IN AI-ASSISTED
DECISION MAKING

Results of our experimental study suggest that in Al-assisted deci-
sion making, although LLMs possess the analytical ability to gener-
ate additional information to assist humans, the current ways that
humans interact with them are not yet optimal. This suboptimal
interaction makes it difficult for humans to effectively utilize the
information provided by the LLM, hindering their ability to iden-
tify essential insights and make informed decisions. Given these
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(a) Accuracy

(b) Overreliance

(c) Underreliance

Figure 2: Comparing the average decision accuracy, overreliance, and underreliance on the AI model for participants across the
CONTROL, SEQ, and ALL treatments, for both the income prediction and the recidivism prediction tasks. Error bars represent

the 95% confidence intervals of the mean values.

challenges, a natural question arises: How can we enhance the inter-
action between humans and the LLM to help humans better utilize
the analysis provided by the LLM in Al-assisted decision making?
To answer this question, we propose an algorithmic framework
that dynamically and strategically selects the most useful LLM-
powered analysis to present to human decision-makers, aiming
to help them rely on the AI model more appropriately and make
correct decisions.

4.1 Modeling the Effects of LLM-powered
Analysis on Human Decision

To enable the optimal selection of the LLM-powered analysis, we
start by quantitatively characterizing how the presentation of LLM-
powered analysis impacts humans’ decision making in an Al-assisted
task. Specifically, consider a human who needs to complete a de-
cision making task with the aid of an AI model. The human is
initially provided with the task x € X and the Al model’s decision
recommendation y™ € Y. Subsequently, the human interacts with
the LLM over several rounds to obtain analyses of the task fea-
tures. In each interaction round ¢ (1 < t < T)?, the human receives
a LLM-powered analysis r’ € R = R\ {r!,...,r!"1} from the
LLM, where R is the entire set of analyses generated for the task x
across all task features. The human can then reflect on this analy-
sis r’ and indicate their attitude towards it by selecting an option
a' € {agree, disagree}. After T rounds of interaction with the LLM,
the human makes a final decision y" € Y. To quantitatively model
the effects of these LLM analyses on the human’s final decision, we
begin by expressing the probability of the final decision given the
sequence of interactions as:

P(yhlx, y™rlal, rl, aT)

)
/ PP YP (T 1, g™ L al, e T aT)dhT

where h' reflects the human’s hidden state at interaction round T.
Without loss of generality, we assume that human’s hidden state in
any round t (i.e., h?) is only dependent on the previous hidden state

2T is the maximum rounds of interaction occurred, which varies with the specific
decision task and may vary across decision makers.

h*~!, the LLM-powered analysis presented in the current round
(i.e., r"), and the human’s reaction to this analysis (i.e., a®). Thus,
we can decompose the above probability as follows:

Py x, v rla, ... rTah) =
T
/ P(R|x, y™) (np(htlht_l,r‘,a‘) P(y"|AT)  an’--
— \z=1 _

Initial State Mapping Human Final Decision

Hidden State Updating

@
Based on this decomposition, our behavior model characterizing
how the human’s decision is influenced by the LLM-powered anal-
ysis consists of three components (see Figure 3 for a graphical
illustration):
1. Initial State Mapping: This component captures the human
decision maker’s initial hidden state h°, before they receive any
analysis from the LLM. As shown in Figure 3A, we assume that the
initial hidden state h? is only influenced by the task instance x and
the Al model’s recommendation y™, and a model parameterized
by Oinit can be learned to characterize the conditional probability
distribution of h’:

B ~ P (holx, y™; Oinit) (3

2. Hidden State Updating: This component characterizes how
the human decision maker’s hidden state evolves over time as they
interact with the LLM, i.e., seeing the LLM-powered analysis in
each interaction round, for which they may or may not agree with.
As shown in Figure 3B, the hidden state h! in the t-th round is de-
cided by the previous hidden state h’~1, the LLM-powered analysis
presented in the current round r?, and the human’s reaction to it a.
A model parameterized by 6ypdate can be learned to characterize
the conditional probability distribution of h?:

B ~ P<ht|ht71)rts at;eupdate) (4)

Note that the current hidden state h? encapsulates the cumulative
information gathered through all previous human interactions with
the LLM. It achieves this by iteratively encoding the LLM’s analy-
sis r and the human reasoning processes (as indicated by human
reactions to LLM’s analysis a) to update the hidden state. Each
iteration integrates new insights from the latest LLM analysis and

-dhT
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Figure 3: Our human behavior model comprises three components: A) Initial State Mapping: this component encodes the
decision making task and Al recommendation into the human’s initial hidden state, which serves as the foundational setup
to integrate the task details and initial AI insights into human decision making process. B) Hidden State Updating: This
component characterizes how the human’s hidden state evolves based on the presented LLM-powered analysis and the human’s
reactions (i.e., whether they agree or disagree with the LLM’s analysis). Each update is dependent on the previous hidden state,
reflecting the iterative incorporation of new information and human reasoning process into the decision making process. C)
Final Decision: This component maps the human’s latest hidden state to the actual decision made on the task. It translates the

cumulative understanding and reasoning process through the hidden states into the human actual decision outcome.

human responses to reflect humans’ evolving understanding of the
decision making task.
3. Final Decision: This component maps the human decision
maker’s last hidden state at the end of the interaction to the fi-
nal decision they make on the task. As shown in Figure 3C, the final
decision y” is only decided by the last hidden state h”, and a model
parameterized by O gecision 1S used to characterize the conditional
probability distribution of yh:

yh ~ P(yh|hT5 Odecision) (5
With a set of human behavior data indicating how humans re-

act to LLM-powered analysis and then make decisions, i.e., D =
{xi, y;", {r?, af}thl, y?}l{il, we can use maximum likelihood estima-

tion to learn the behavior model parameters © = {8init, Oupdate Odecision }-

4.2 Selecting the LLM-powered Analysis

Given a learned model © that characterizes the impacts of LLM-
powered analyses on humans’ decisions, we next explore how to
dynamically select the optimal analysis r* from the set of candidate
analysis (i.e., R’) to maximize human’s appropriate reliance on Al
models in Al-assisted decision making. To achieve this, we first
need to measure the reliability of the Al model’s prediction y™ on
each task instance x. Recent work [32, 86] has proposed methods
to leverage the complementary strengths of humans and Al in
decision making tasks by combining the human’s independent
decisions and an Al model’s decision recommendations intelligently
(e.g., using a Bayesian modeling framework), which often yields
more accurate decisions than those made by either the human or
the AI model alone. Specifically, given the human’s independent

h , the AT model’s recommendation y™, and the
independent
h

independent

decision y

task instance x, these methods learn models to combine y

and y" to produce a combined result:

Ycombine = CombineModel(yi};dependent, y", x) (6)

In this study, we adopted the human-AI combination method pro-
posed by Kerrigan et al. [32] to obtain y¢ompine- Since the accuracy

of Ycombine Was shown to be higher than either yi}; dependent and y™,

we treated Yeombine as the “target” decision and we selected the
LLM-powered analysis 7! in a way to nudge humans into making
this target decision®. In other words, when yeombine = 3™ We se-
lected a LLM-powered analysis to nudge humans towards relying
on the Al recommendation; otherwise, we nudged humans towards
not relying on the Al recommendation.

To effectively nudge the human towards making the target de-
cision Yeombine, We first define an immediate utility function for
evaluating the selection of an analysis r in round t given the hu-

man’s hidden state by the end of the previous round is h’~!. Since
our goal is to maximize the probability that the final decision made
by the human aligns with the target decision, the utility function
U(-) is defined as:

U (Yeombine |7 1) =
Lipt—1 t h t t
IE‘:a[~Bem(0.5) [/ PR ra i Oypdate) P (Y " = Yeombine 1’ Odecision) 4h"] (1)

log
P(yh = Ycombine L Odecision)

Here, inside the log term, the numerator represents the probability
for the human to make the target decision ycompine if they see the
analysis r in round t, and are asked to immediately make a decision
by the end of round . Since the human’s reaction a’ to the analysis
r is unknown at this point, when computing this probability, we
assume that the human is equally likely to agree or disagree with the

3We evaluated various human-Al combination models, and our results showed that the
method proposed by Kerrigan et al. [32] generally resulted in combined decisions that
outperform Al solo and independent human decisions, as well as other combination
methods. The evaluation details can be found in the supplementary material.
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analysis, i.e., a’ ~ Bern(0.5). Moreover, the denominator represents
the probability that the human would have made the target decision
at the end of the round ¢ — 1. Intuitively, U (ycombine|7> B~ 1) reflects
the immediate probability gain for the human to select the target
decision after they are presented with analysis r in round t—when
U (Yeombine|r> B ~1) > 0, it means that presenting r to the human
in round ¢t increases their chance of selecting the target decision
compared to that at the end of previous round; otherwise, the
human’s probability of selecting the target decision would decrease
or remain the same.

Note that when we need to select the analysis to be presented in
round ¢, instead of knowing the human’s precise hidden state h*~!
at the end of the previous round, we can only recursively estimate
a distribution of this hidden state using the learned model ® and
the history of past interactions {x, y™, {rk, ak }It(;} }. We denote this
distribution of the human’s hidden state prior to round ¢ as the

“state belief” B(t):

B(t) < Eprz_g(s y) [P R 2 0 Y Oypdare) | VE 2 2

®
and B(1) = P(h°|x, y™; Oinit). Thus, given a state belief B(t), the
expected immediate utility for selecting the analysis r in round ¢ is
defined as p(B(2), Ycombine» r) = Eh'*NB(t) [U(ycombine|ra ht_l)] >
which represents the expected probability gain for the human to
select the target decision after they are presented with the analysis
r in round ¢ and are asked to immediately make a decision by the
end of round t.

However, note that the human does not have to immediately
make a decision by the end of round t—instead, we could choose
to present more LLM-powered analyses to the human if they can
help further increase the human’s probability of selecting the target
decision ycombine- Therefore, to determine the optimal analysis that
maximizes the ultimate probability for humans to select ycombines
we define a value function V to represent the maximum expected
overall utility that is achievable from the current state belief B(t)
given the set of remaining analyses R?:

V(8B(t), Rt: ycombine) = n;?;g g(B(t), r, ycombine) (O]
g(B(t): r, ycombine) =
p(g(t), Ycombines 7‘)

N—— ——

+V(Eat~Bem(0.5) [B(r+1)], R \ {r}, Yeombine)

expected immediate utility maximum expected future utility

In this definition, g(B(t), 7, Ycombine ) represents the expected overall
utility that is achievable from round ¢ onward when the state belief
prior to round t is B(t) and the analysis r is presented to the
human in round ¢. It is composed of two parts. The first part is the
expected immediate utility p(B(t), Ycombines I')» Which represents
the immediate probability gain for the human to select the target
decision in the ¢-th round after r is presented. The second part is the
maximum expected future utility V(Eg: <gern(0.5) [B(t + 1], R\
{r}, Ycombine), Which represents the maximum future probability
gain for the human to select the target decision in the (¢ + 1)-
th round and beyond if we continue to present the human with
the optimal LLM-powered analyses selected from the set R? \ {r},
while our state belief prior to the (¢ +1)-th round is B(t +1). B(t +
1) is updated from B(t) according to Equation 8, assuming that
the human is equally likely to agree or disagree with the analysis
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r that is presented in the t-th round. Finally, the optimal LLM-
powered analysis r/ € R! for round ¢ is selected to maximize
g(B(t), 7, Ycombine), and the expected overall utility associated with
this optimal choice of analysis is denoted as V/(B(t), R?, Ycombine) =

9(B(1), rt, Ycombine)-
We can iteratively update the value function V(8B(t), RY, Ycombine)

until convergence, which yields the optimal policy 7(B(t), R%, Ycombine)

for selecting the optimal analysis r’ to present in the ¢-th round :

rf = x(8(t), R, Yeombine )
_ | Not presenting and stop interaction if V(B(¢), RY, Ycombine) < 0
argmax,.cgt g(B(t), ¥, Ycombine) otherwise

(10)

If the value function V(8B(t), R?, Ycombine) is less than or equal
to zero, it indicates that further interaction with the LLM is not
expected to increase the chance for the human to make the target
decision. Therefore, we stop presenting LLM analyses and let the
human make the final decision. Otherwise, we will present the
analysis that maximizes the expected overall utility.

5 EVALUATION OF ALGORITHMIC
FRAMEWORK

In this section, we explore whether and how our proposed frame-
work, which adaptively presents LLM-powered analysis by esti-
mating the human’s hidden state and the effects of LLM-powered
analysis on human decisions, can enhance human’s decision per-
formance in Al-assisted decision making and calibrate human trust
in AT models.

5.1 Operationalizing the Algorithmic
Framework

We operationalized our proposed algorithmic framework in Sec-
tion 4 in the context of Al-assisted income prediction and recidivism
prediction tasks. Specifically, we utilized the data collected in Sec-
tion 3 under the SEQ treatment to learn parameters © of the human
behavior models for both types of decision making tasks. The behav-
ior models are optimized using Adam [37] with an initial learning
rate of 1e — 4 and a batch size of each training iteration of 128. The
number of training epochs is set as 15. The 5-fold cross validation
on the collected data shows that the average accuracy of the learned
models in predicting humans’ decisions under the assistance of Al
recommendations and LLM-powered analysis is 0.74 for income
prediction and 0.71 for recidivism prediction, respectively. To en-
able the use of the human-AI combination method [32] to infer the
target decision for each decision making task, we also conducted a
pilot study collecting humans’ independent judgments on various
income prediction and recidivism prediction tasks. Using this pi-
lot data, we trained two models of humans’ independent decision
making, which achieved an average accuracy of 0.81 and 0.84 for
predicting humans’ independent judgment in income prediction
and recidivism prediction, respectively. Finally, we utilized these
learned human behavior models and human independent decision
making models to dynamically select the LLM-powered analysis
for humans in the following study. For more details related to the
algorithm setting, please refer to the supplementary material.



5.2 Experimental Treatments

In addition to the three baseline treatments discussed in Section 3.3
(i.e., CoNTROL, SEQ, ALL), we introduced two additional experimen-
tal treatments for this phase of evaluation:

e ALGORITHMIC (ALG): In this treatment, participants started
working on the decision making task seeing only the task
instance and the Al model’s recommendation without re-
ceiving any LLM-generated analysis. Then participants were
required to interact with the LLM, where in each turn, the
LLM-powered analysis to be presented was selected based
on Equation 10 to nudge the participant towards relying on
the Al model’s recommendation appropriately.

o Rank: This treatment followed the same experimental proce-
dure as the SEQ treatment regarding participants’ interaction
and decision making processes. However, the RANK treat-
ment differed in how the LLM-powered analysis to be pre-
sented was selected: We first used the post-hoc XAI method
LIME [73] to generate feature importance scores for each
task instance and then ranked all task features based on
the absolute values of their importance scores. We then se-
lected the LLM-powered analysis to present according to
a decreasing order of the absolute importance score of the
corresponding feature (instead of in a random order as done
in the SEQ treatment). This treatment is designed to examine
whether selecting LLM analysis based on our proposed algo-
rithm—which takes into account potential human reactions
to such analyses—can enhance human decision making ac-
curacy compared to selection of LLM analysis that is based
solely on heuristic feature importance, should it be available.

Finally, as a reference, we also included a HUMAN-Soro treatment
where participants completed the decision making tasks on their
own without receiving either the Al model’s recommendation or
any LLM-powered analysis.

5.3 Data Collection

Following the experimental procedure described in Section 3.4, we
again recruited participants from Prolific to complete Al-assisted
income prediction and recidivism prediction tasks in the six treat-
ments. For each participant in the income prediction task, we ran-
domly sampled 15 different tasks from a pool of about 500 task
instances, which were different from the instances used in either
the Section 3 study or our pilot study (i.e., these task instances
have not be used previously for learning human behavior models or
human independent decision models). Similarly, in the recidivism
task, we also randomly sampled 15 different tasks from a pool of
about 200 task instances which were different from the task pool
used in the Section 3 study and our pilot study. We offered a base
payment of $1.20 and a potential bonus of $1.00 if the participant’s
decision accuracy was above 85%. We also excluded participants
who had previously participated in our study in Section 3 or our
pilot study from taking this study. After filtering out inattentive
participants, for the income prediction task, we obtained data from
447 participants, while for the recidivism prediction task, we ob-
tained data from 397 participants. The median working time of the
participants was 9.3 minutes, which translates to a median hourly
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pay of $8.3 per hour. For more details of the collected data, see the
supplementary material.

5.4 Experimental Results

Below, we analyze whether our proposed algorithmic framework
can help decision makers make more accurate decisions, rely on
the Al model’s decision recommendation more appropriately, and
interact with LLM in an efficient manner.

5.4.1 Comparisons of Decision Accuracy. Figure 4a compares the
average decision accuracy of our participants across treatments.
Visually, it appears that participants in the ALG treatment achieve
the highest decision accuracy among participants in all treatments
for both types of tasks.

To examine whether these differences are statistically significant,
we conducted regression analyses. Specifically, the primary inde-
pendent variable of the regressions was the treatment participants
were assigned to. The dependent variable was the participants’
decision accuracy. To minimize the impact of potential confound-
ing variables, we included a set of covariates in the regression
models, such as participants’ demographic background (e.g., age,
gender, race, and education level), their knowledge of Al models,
and the accuracy of the Al recommendation they received in the
tasks. Our regression results indicate that our proposed algorithmic
framework can significantly improve humans’ decision making
accuracy in both the income prediction and recidivism prediction
tasks. Specifically, in the income prediction task, participants in the
A1LG treatment achieved significantly higher accuracy compared
to participants in the CONTROL (p < 0.001), SEQ (p = 0.007), RANK
(p = 0.041) and HumAN-SoLo (p < 0.001) treatments. Similarly, in
the recidivism prediction task, participants in the ALG treatment
achieved significantly higher accuracy compared to participants
in the SEQ (p = 0.006), ALL (p < 0.001), RANK (p = 0.047) and
HumaN-Soro (p < 0.001) treatments.

5.4.2  Comparisons of Appropriate Reliance on Al. Figures 4b and 4c
compare participants’ overreliance and underreliance on Al across
treatments, respectively. For participants in the HuMAN-SoLo treat-
ment, despite they did not see the Al model’s decision recommen-
dations, we still computed their hypothetical overreliance and un-
derreliance (i.e., computed as if the participant was presented with
the AI recommendation on each task) to reflect the natural ten-
dency for participants’ independent judgment to agree with an
incorrect Al recommendation (Figure 4b) or disagree with a correct
Al recommendation (Figure 4c). Here, we again see that partici-
pants in the ALG treatment almost always achieve the lowest level
of overreliance and underreliance on Al among participants in all
treatments. Our regression analyses suggest that for participants in
the ALG treatment, the decrease in their overreliance on Al is sta-
tistically significant compared to participants in other treatments.
For example, in the income prediction task, our proposed frame-
work led to participants’ significantly decreased overreliance on
Al compared to that of participants in the CONTROL (p = 0.028),
SEQ (p = 0.011), ALL (p = 0.014), and RANK (p = 0.034) treatments.
Similarly, in the recidivism prediction task, our proposed frame-
work significantly decreased overreliance compared to CONTROL
(p = 0.002), SEQ (p = 0.013), ALL (p < 0.001), and RANK (p < 0.001)
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Figure 4: Comparing the participants’ average decision accuracy, overreliance, and underreliance on Al in different treatments
for income prediction and recidivism prediction tasks. The pink dashed lines show that for participants in the Human-SoLo
treatment, (a) the accuracy of their decisions, (b) the frequencies at which their decisions align with AI recommendations
(despite not seeing them) when AI recommendations are wrong, and (c) the frequencies at which their decisions differ from
Al recommendations (despite not seeing them) when AI recommendations are correct. Error bars (shade) represent the 95%
confidence intervals of the mean values. , ,and ~ denote significance levels of 0.05, 0.01, and 0.001, respectively.

Treatment Income prediction Recidivism prediction

SEQ 4.88 = 1.79 4.71 + 1.89
RaNk 4.87 +1.03 3.72 +1.33
ALG 2.99 + 1.51 2.50 £ 1.19

Table 2: The mean and standard deviation in the round of
interactions between participants and the LLM in the SEQ,
RANK, and ALG treatments in a single decision making task.
According to the results of the ANOVA test, followed by
Tukey’s HSD test, the number of interaction rounds in the
ALG treatment is significantly lower than the number in the
other treatments.

treatments, and it even made participants agree with the wrong
Al recommendations less than the natural degree of agreement
exhibited by participants in the HuMAN-Soro treatment (p < 0.001).
On the other hand, our regression results suggest that the decrease
in participants’ underreliance on Al in the ALG treatment was not
statistically significant compared to other treatments; the only ex-
ception was that on the income prediction task, participants in the
A1LG treatment disagreed with correct Al recommendations signifi-
cantly less than the natural degree of disagreement exhibited by
participants in the HUMAN-SoLo treatment (p < 0.001).

5.4.3 Comparisons of Efficiency of Interactions. Lastly, we looked
into whether the proposed algorithm helps human decision makers
process the most informative information from the LLM-powered
analysis in an efficient manner. First, Table 2 compares the average
number of interaction rounds between participants and the LLM in
the SEQ, RANK, and ALG treatments in a single decision making task.
Results of ANOVA tests indicate that the number of interaction
rounds is significantly different across treatments for both types
of decision making tasks (p < 0.001). We then proceed with post-
hoc pairwise comparisons using Tukey’s HSD tests. We found that,
for both the income prediction task and the recidivism prediction
task, our proposed approach led to significantly fewer rounds of
interactions between participants and the LLM compared to the
RANK (p < 0.001 for both tasks) and SEQ (p < 0.001 for both tasks)

treatments. This suggests that our proposed algorithm potentially
decreased decision makers’ cognitive load and helped them make
decisions in a time-efficient manner.

In addition, as our proposed algorithm resulted in the highest
decision accuracy among all treatments, it is natural to ask if this
increase in accuracy was caused by the decreased number of LLM
analysis shown to participants, or by the nature of the LLM analysis
selected. To gain a deeper understanding on this, we conducted an-
other human-subject experiment with three treatments—SEQ, RANK,
and ALg—and we controlled the number of interaction rounds in
a decision making task in the SEQ or RANK treatments to match
that experienced by participants in the ALG treatment?. For each
type of decision making task, we recruited 50 participants for each
treatment. Figure 5 compares participants’ decision accuracy, over-
reliance, and underreliance on Al across the three treatments. Again,
we found that participants in the ALG treatment achieved signifi-
cantly higher accuracy compared to participants in the SEQ (income
prediction: p = 0.044, recidivism prediction: p < 0.001) and RANK
(income prediction: p = 0.032, recidivism prediction: p = 0.012)
treatments. Moreover, we observed that participants in the Arc
treatment significantly decreased their overreliance on AI com-
pared to those in the SEQ treatment for both the income prediction
task (p = 0.042) and the recidivism prediction task (p = 0.004). This
means that the proposed algorithm improved the accuracy of par-
ticipants’ decisions and promoted their appropriate reliance on the
Al recommendation primarily as it selected the most informative
LLM-powered analysis to be presented to people.

5.5 Exploratory Analyses

Finally, to gain deeper insights into why the proposed algorithm
effectively nudged decision makers towards making more accurate
decisions and relying on Al recommendations more appropriately,

4Based on our results in Table 2, for the income prediction task, we set the number
of interaction rounds in a task to be 3. For the recidivism prediction task, we set the
number of interaction rounds in a task to be 2 or 3 uniformly randomly.
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Figure 5: Comparing the participants’ average decision accuracy, overreliance, and underreliance on Al in different treatments
for income prediction and recidivism prediction tasks, when fixing the number of interaction rounds at the same level. Error

bars represent the 95% confidence intervals of the mean values. *, H, and "~ denote significance levels of 0.05, 0.01, and 0.001,

respectively.
Alignment Rate (%)
Task Initial Analysis All Analyses
| Al Correct Allncorrect | Al Correct Al Incorrect
Income Prediction 59 25 51 21
Recidivism Prediction 51 38 50 37

Table 3: The alignment rate between the LLM analyses and the AI model recommendations when the AT model’s decision
recommendation is correct or incorrect for the income prediction and recidivism prediction tasks.

Alignment Rate (%)
Task Initial Analysis All Analyses
[ AL= Target Al # Targei | AT Target A% Target
Income Prediction 66 5 64 11
Recidivism Prediction 64 23 69 15

Table 4: The alignment rate between the LLM analyses and the AI model recommendation when the AI model’s decision
recommendation matches or does not match the target decision for the income prediction and recidivism prediction tasks.

we conducted exploratory analyses to understand the nature of the
LLM-powered analysis selected by the algorithm.

As the example analysis shown in Table 1, given a decision task,
the LLM typically provides its interpretation on how the value of a
task feature influences the prediction—the value of a feature could
increase, decrease, or has no influence on the likelihood of a certain
prediction. The direction of this suggested influence can either
align or not align with the Al model’s actual recommendation. For
example, on an income prediction task, if the LLM suggests the
education level of the person in the task decreases the likelihood of
them making over $50k per year, and the Al model’s prediction on
the task is indeed “below $50k”, then this analysis “aligns” with the
Al prediction (i.e., on this task, the person’s education level provides
supporting evidence to the Al model’s recommendation). However,
if the ATl model’s prediction on the task is “above $50k”, then this
analysis does not align with the Al prediction, and the value of the
person’s education level provides a contradictory evidence to the Al
model’s recommendation.

For all participants in the ALG treatment of our experiment, we
analyzed whether each LLM-powered analysis presented to them
on a decision task aligned with the Al model’s recommendation on

that task. In Table 3, we compared the fraction of selected LLM anal-
ysis that aligned with AI recommendation for tasks in which the
Al recommendation was correct and tasks in which the Al recom-
mendation was wrong, and such comparison was conducted when
considering only the first analysis selected by the LLM on each
task (see the “Initial analysis” column), or considering all analyses
selected by the LLM on each task (see the “All analyses” column).
Clearly, for both income prediction and recidivism prediction tasks,
we found that LLM analyses that aligned with the AI recommenda-
tion were significantly more likely to be selected on tasks where
the Al recommendation was correct than on tasks where the Al rec-
ommendation was wrong (proportion tests suggest that p < 0.001).
In other words, when the Al recommendation was correct, our algo-
rithm was more likely to select analysis that provides “supporting
evidence” to the Al recommendation, while analysis that provides
“contradictory evidence” was more likely to be selected when the
Al recommendation was wrong.

Table 4 shows an even larger discrepancy in the alignment rate
of the LLM-powered analysis selected when focusing on the com-
parison between tasks where the target decision was the same as
the Al recommendation (hence the algorithm aimed to nudge the
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participant towards relying on Al), versus tasks where the target
decision was different from the Al recommendation (hence the
algorithm aimed to nudge the participant towards not relying on
AI). This means that the algorithm primarily presents supporting
evidence to humans to nudge them to rely on Al while primarily
presents contradictory evidence to humans to nudge them towards
not relying on Al As a qualitative example, in an income prediction
task, suppose the Al model predicts the person’s income would be
above $50k. If the algorithm aims to increase participants’ reliance
on this prediction, the top three LLM analysis selected by the algo-
rithm across all decision making tasks are “With an occupation of
professional specialty, this might increase the likelihood of making
over $50k per year”, “With the sex being male, this might increase
the likelihood of making over $50k per year”, and “With the work
type being in the private sector, this might increase the likelihood of
making over $50k per year”. In contrast, if the algorithm aims to
decrease participants’ reliance on this prediction, the top three LLM
analysis selected by the algorithm across all decision making tasks
are “With an age of X [X is a value that is below median], this might
decrease the likelihood of making over $50k per year”, “With a marital
status of divorced, this might decrease the likelihood of making over
$50k per year”, and “With X [X is a value that is below median] years
of education, this might decrease the likelihood of making over $50k
per year”.

6 DISCUSSIONS

In this paper, via two phases of study, we explore how to effec-
tively incorporate the analytical capabilities of LLMs in Al-assisted
decision making to improve human-Al team performance in the
absence of Al explanations. Based on our findings, we discuss the
potential societal impacts, design implications, and limitations of
our study.

6.1 Algorithmic Selection of LLM-powered
Analysis Could Be a Double-Edged Sword

In our study, we seek to enhance human-AI team performance
in decision making by selectively and progressively presenting
LLM-generated analyses that nudge humans towards making de-
cisions that are considered as optimal by a rational integration
of human and machine intelligence. This practice demonstrated
potential benefits, such as improving the accuracy of human-AI
team’s decisions and reducing human overreliance on Al models.
As we have shown in our study, the integration of carefully se-
lected LLM-powered analyses in Al-assisted decision making can,
under controlled conditions, lead to improved decision making per-
formance by augmenting Al recommendations with detailed task
analysis and enabling humans to reflect on the Al recommendations
in a structured way.

However, our findings also raise concerns about the susceptibil-
ity of human behavior to algorithmic selection of the information
that humans receive in their decision making. Despite the apparent
benefits, the ease with which human decisions can be influenced by
algorithmically selected LLM-powered analysis poses notable risks.
Our study reveals that it is relatively straightforward to set a nudge
direction that subtly manipulates human decision outcomes. This
manipulation, while potentially benign and intended to correct for
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known biases or decision making flaws, could also be maliciously
used by adversarial actors to achieve unethical goals. In the context
of recidivism prediction, an example of such misuse could involve
an adversarial actor manipulating the human decision making pro-
cess to be unfairly biased against certain groups [50]. By setting an
unethical nudge goal, the LLM-powered analysis can be algorith-
mically presented in a manner that selectively emphasizes certain
aspects over others. This selective presentation might influence
human judicial decisions, nudging them towards more punitive
measures for targeted populations, which reinforces existing soci-
etal biases and compromises the fairness.

To counteract the potential adversarial uses of LLM-powered
analysis, it is crucial that further research not only focuses on de-
veloping and enhancing the capability of Al models to support
human decision making, but also on devising strategies to prevent
their misuse in manipulating decisions adversely. For instance, to
mitigate the risks of adversarial nudges in Al-assisted decision
making, strengthening security measures around Al systems like
implementing both physical security measures and cybersecurity
protocols designed to guard against unauthorized access, hacking,
and manipulation is critical. In addition, in our study, the successful
nudging of human decisions to improve the human-Al team perfor-
mance was based upon the accurate modeling of human behavior.
This modeling was fundamentally based on empirical human-AI
interaction data. As such, protecting this data from misuse is crucial.
Strict controls must be in place to ensure that only authorized and
well-intentioned parties have access to sensitive interaction data,
to prevent the misuse of algorithmic nudges. Finally, implementing
continuous monitoring of decisions when humans interact with
AI/LLM-powered systems is necessary to detect any unusual pat-
terns in human behavior that may indicate potentially misleading
or biased Al information.

6.2 On Determining Nudging Directions
through Combining Human Decisions and
AI Recommendations

In our proposed framework, a key step is to determine the trustwor-
thiness of the Al recommendation and decide whether to present
LLM analysis to nudge human decision makers towards relying
on the Al recommendation or not. We did so by leveraging the
“human-AI complementarity”—we inferred a “target decision” on
each decision making task using existing methods (e.g., [32]) to
combine the predicted human’s independent decision on the task
and the AT model’s recommendation on the task, and nudging hu-
man decision makers towards making this target decision. While
these combination methods could always be used to generate a tar-
get decision, the quality of the target decision—to what extent the
target decision is more accurate than both human’s independent
decision and AI’s recommendation and therefore provides useful
information on the trustworthiness of the Al recommendation—
may vary with many factors. For example, the correlation between
human and Al decisions was found to be a significant factor that
would limit the human-AI complementarity—the more correlated
humans’ and AI’s decisions are, the less likely the combined de-
cision outperforms both human and AI alone [86]. This implies
that if the Al model is trained based on historic decisions made by



humans to mimic human decision making, the algorithmic combi-
nation of human and Al decisions may not yield target decisions
of significantly higher accuracy. Another key influencing factor is
the accuracy differences between humans and Al—the larger the
accuracy difference, the less likely the combination of human and
Al decisions would outperform the decision of the more accurate
party [5, 86]. Different combination methods may also yield target
decisions with varying levels of accuracy, as each method has its
own assumptions when modeling human decisions and Al deci-
sions, which may or may not be valid for a specific decision making
task.

As the effectiveness of the combination method may vary with
many different factors, in practice, given a particular type of de-
cision making task, we recommend first collecting pilot data on
human and AI’s decisions on this task. This data would enable the
comparison of the performance of various combination methods as
well as understanding if the combined decisions show true advan-
tages over the independent decisions of either humans’ or Al’s. If
the accuracies of combined decisions are similar to the more accu-
rate party between the human decision maker and the Al model,
instead of triggering additional computational cost to compute the
combined decisions, one may consider simply nudging the decision
maker to always rely on Al (if Al is more accurate than human) or
always not rely on Al (if human is more accurate than Al). However,
if the combined decisions are more accurate than both humans’
and AI’s decisions, one should select the combination method that
produces the most accurate combined decisions, or even design
new combination algorithms that are tailored to the unique charac-
teristics of human and AI decisions in the current decision making
task, thereby producing more accurate combined decisions than
existing algorithms.

6.3 On the Potential Misalignment between
LLM Analysis and True Al Decision
Rationales

As discussed earlier, in our framework, the analysis produced by
the LLM on a decision making task does not necessarily align with
the actual decision rationale of the AI model (e.g., the random
forest models used in this study). Since the LLM is not directly
informed of the internal workings of the AI model (as we focus
on scenarios where internals of Al models are not accessible in
this study), its analysis—generated based on general knowledge
about the task—may not capture the specific decision boundaries
or feature correlation relationships of the AI model. However, we
note that in this study, accurately explaining the AI model’s de-
cision rationale is not the primary motivation for including the
LLM-powered analysis. Instead, LLM-powered analysis is used to
provide a subjective interpretation of the Al model’s recommen-
dation and prompt decision makers to engage in critical thinking
when there is no access to the actual explanations of the Al model.
That is, while the Al model serves as the primary advisor for human
decision makers and provides them with the decision recommenda-
tion, the LLM serves as the secondary advisor supplementing the
primary advisor by providing its own justifications to the primary
advisor’s recommendation, which allows the decision maker to put
the recommendation into context.
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We argue that the potential lack of alignment between the LLM-
powered analysis and the Al model’s true decision rationale may
not be a concern in many cases. First, the main motivation for
including the LLM-powered analysis in our framework is to en-
courage decision makers’ critical reflection of the decision task as
well as the Al recommendation. Even if these analyses deviate from
the AT model’s true decision rationale, it could still effectively draw
decision makers’ attention to key features related to the decision,
thereby guiding decision makers’ independent and more thought-
ful evaluation of the recommendation, allowing them to act on
it cognitively rather than blindly trusting/not trusting it simply
due to the lack of transparency. Second, in many scenarios, there
may exist multiple reasoning paths to arrive at the same recom-
mendation, making it less practical to align the LLM analysis with
the “true” decision rationale of the Al model, which may not even
be well-defined. In fact, even when actual Al explanations can be
obtained, established explainable AI methods were often found to
have limited fidelity [62], and different methods can provide differ-
ent explanations for the same decision of the same model [39, 40].
Thus, when the actual Al explanations are not accessible, the LLM-
powered analysis could just be viewed as one possible reasoning
path to arrive at the Al model’s recommendation when having
the LLM engage in “perspective taking” to rationalize that recom-
mendation, or it could even be viewed as the LLM’s independent
(and true) reasoning path when it has to arrive at the AI model’s
recommendation. The degree to which the LLM’s reasoning path
looks reasonable may provide critical insights into the validity of
the AI recommendation, as the perceived reasonableness of the
LLM’s reasoning may correlate with the plausibility and robustness
of the Al recommendation. Finally, when the ultimate goal is to
improve the decision maker’s appropriate reliance on the AI model
and thus increase their decision accuracy, the exact reasoning be-
hind the recommendation of the Al model might not matter as
long as the information provided by the secondary advisor (i.e., the
LLM) leads to a better-informed decision. In this sense, compared
to the precise content of the LLM-powered analysis, the knowledge
about to what extent presenting a LLM analysis will nudge deci-
sion makers towards making a desirable target decision is more
critical for effectively improving humans’ decision accuracy. In our
algorithmic framework, this knowledge is captured through our
human behavior model.

That said, we acknowledge that the when helping decision mak-
ers gain accurate understandings of the internal workings of the Al
model is a primary end-goal, the LLM-powered analyses may bring
about risks as humans may build an inaccurate mental model of the
AT’s internal workings based on these analyses. In extreme cases,
the LLM-powered analyses may even “sugercoat” incorrect Al rec-
ommendations or hide ethical issues underneath the AI model, such
as model biases [81]. To address this risk, the ultimate solution is
to increase the transparency of the Al model to obtain the actual
explanations of the model, and the proposed algorithmic framework
could still be used to determine how to present these explanations
selectively and progressively. However, without access to actual
Al explanations, methods should be designed to increase people’s
awareness of the potential mismatch between the LLM analysis and
the true Al decision rationale. Moreover, one may consult multiple
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secondary advisors (e.g., multiple LLMs) to analyze the Al recom-
mendation and triangulate the reasoning process; this may help
the human decision makers understand the diversity of possible
interpretations of the Al recommendation and reduce the likelihood
of being misled by the misinterpretation of any single secondary
advisor.

6.4 Design Implications for Human-LLM
Interaction

Our study demonstrates that while LLMs can generate and provide
informative analysis for human decision makers, how to present
this information is critical to its effective utilization. The heuris-
tic design of interactions between humans and LLMs, when not
carefully curated, often proves inefficient and fails to achieve the
intended positive utility of LLM’s analytical capabilities. For exam-
ple, when decision makers are directly supplied with an abundance
of LLM-generated information, the information overload would
overwhelm users and potentially result in decision fatigue, making
it difficult for users to identify relevant information quickly. In
addition, the practice of randomly slicing abundant information
into pieces or relying solely on standard importance metrics to
guide the presentation of data does not adequately consider the
cognitive processes of how humans process such information. Such
methods may lead to prolonged interactions between humans and
LLMs, which may also overwhelm and confuse users, leading to
suboptimal engagement and diminished utility of the LLM outputs.

To mitigate these issues and enhance the practical utility of LLM
for users, it is essential to integrate considerations of cognitive and
contextual factors into the design of interaction paradigms between
humans and LLMs to facilitate more effective and efficient interac-
tion. For example, one important consideration in designing these
interaction paradigms is to determine the most valuable informa-
tion to present to users from the large pool of content that LLMs can
generate. Given that LLMs are adept at producing vast quantities of
information, ranging from seemingly meaningful to less relevant
content, it is crucial to implement intelligent selection strategies to
group information based on decision making priorities or estimated
human cognitive needs. This may allow the LLM to dynamically
adjust to the user’s immediate needs and contexts by predicting
what information is most pertinent based on user behavior and
feedback. Additionally, allowing users to customize the presenta-
tion and management of information within the interface can be
another promising approach to explore in the future. Customiza-
tion options might include adjusting the volume, complexity, and
format of the information to better align with individual processing
styles and needs. Finally, incorporating continuous feedback loops
within the interface design is crucial for optimizing the interaction
between humans and LLMs. These feedback loops enable users
to provide input on the usefulness of the information presented,
which can inform and refine the algorithms that select and present
data, ensuring that the LLM remains dynamically aligned with user
needs and preferences.

6.5 Generalization of Methods and Findings

We acknowledge that our study has a few important limitations
regarding the generalizability of our methods and findings. First,
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our study focused on two specific decision making tasks: income
prediction and recidivism prediction. These tasks are widely used in
previous research on Al-assisted decision making [4, 21, 90, 96, 101]
and feature a tabular data format with an explicit structure of fea-
tures; the property of these tasks allows us to effectively apply LLM
in the analysis and estimate how humans might react to these anal-
yses. The success of our proposed framework in these two different
tabular-data-based tasks strengthens our confidence in its potential
to generalize to other Al-assisted decision making scenarios in-
volving tabular data. However, applying our framework to decision
making tasks with different data types, such as vision-based or
text-based decision making tasks, presents additional challenges
and requires further adaptation. This is because the image or text
data do not contain explicit structured information that is amenable
to analysis by the LLM in the same manner as tabular data. One
potential solution is to convert these unstructured data types into
a structured format that fits our proposed framework. For example,
in text-based tasks, one could first use an LLM to extract seman-
tically meaningful information from the text (e.g., text sentiment,
key subjects in the text). This extracted information can then be
treated as features, similar to how features are handled in tabular
tasks, and subsequently input into the LLM for generating analyses.
Likewise, for vision-based tasks, one could start by segmenting
images into superpixels (i.e., groups of pixels representing visu-
ally meaningful entities) [1] or identifying relevant concepts in the
images [34]. The presence and absence of certain superpixels and
concepts would then serve as the features of the image, enabling
LLMs to directly analyze them. The LLM analysis obtained could
then be integrated into our framework, allowing it to work with a
wider range of decision making tasks. When the transformation of
unstructured data into structured formats is required before con-
ducting the LLM-powered analysis, the decision on what features
to be extracted from the data can be either made automatically (e.g.,
by the LLM) or manually by the human decision makers. Thus, how
to ensure a comprehensive set of features will be extracted from
the unstructured data becomes a critical challenge to be addressed.

Secondly, as previously discussed, successfully nudging humans
towards relying on Al models more appropriately hinges on the
accurate modeling and prediction of how humans will react to
different LLM-powered analyses. However, data on human-Al inter-
action collected in the past to train such behavioral models may not
always align perfectly with current human behavior patterns, lead-
ing to potential discrepancies in effectiveness when these models
are applied. It is thus essential to continually update the human-Al
interaction data. This update process ensures that the models can
make predictions that align more accurately with current human
behavior patterns.

In addition, in our current framework, we model human decision
makers’ reactions to LLM-powered analysis on a population level
without accounting for the unique characteristics of each individ-
ual. In other words, our human behavior model characterizes the
behavior of an “average” decision maker. In our study, we found
that the effects of the proposed algorithmic approach for selecting
LLM-powered analysis in improving participants’ final decision
accuracy and enhancing their appropriate reliance on Al are robust
across subpopulations with diverse demographic backgrounds and



varying levels of Al knowledge, suggesting that modeling an aver-
age decision-maker is a reasonable modeling choice. That said, we
acknowledge that this average modeling approach may neglect cru-
cial individual differences that significantly affect the dynamics of
human-Al interaction in Al-assisted decision making, and may indi-
cate missing opportunities to further improve different individuals’
decision performance by accounting for their unique characteristics.
Future work could integrate various human characteristics (e.g., a
person’s intuition or prior knowledge about the task [8], need for
cognition [6]) into the human behavior models (i.e., one or more of
the three model components—the initial state mapping model, the
hidden state updating model, and the final decision model) to fur-
ther accommodate individual preferences and traits. For instance,
a person’s competence or confidence in a specific decision task
could be a critical moderating factor influencing how they would
react to the Al recommendation and LLM-powered analyses. As
individuals tend to exhibit low reliance on Al when they are more
confident [60], explicitly accounting for human confidence in the
behavior models may enable more efficient presentation of LLM-
powered analyses (e.g., on tasks where humans are highly confident
and the target decision suggests Al is not trustworthy, one may
need to present fewer LLM analyses to nudge humans towards the
target decision). As another example, a person’s inherent tendency
to trust Al or LLM systems can also be explicitly accounted for in
the human behavior models, which may allow the algorithm to
dynamically adjust which and how many LLM-powered analyses
to be presented to the human decision makers based on their trust
inclination.

Finally, we note that our study was conducted on Prolific, which
primarily involved non-expert users in low-stake decision making
scenarios. While this setting provided a suitable testbed for the eval-
uation of the appropriateness of human trust in Al-assisted decision
making, we urge caution should be used when generalizing our
conclusions to other populations or decision making scenarios. For
example, in high-stake decision making scenarios where decision
makers may utilize different cognitive strategies and where the
consequences of errors are more significant, it is unclear whether
the intelligent interaction paradigms we designed for interactions
between humans and LLMs will perform equally well. However, we
believe that if sufficient human-Al interaction data can be collected
in high-stake scenarios to train highly accurate human decision
making models, the potential to successfully nudge human deci-
sions even in these critical environments still persists.

6.6 Other Limitations

Our study has a few additional limitations. For example, our LLM-
powered analysis mainly relies on the GPT-4 model. Consequently,
our results may not generalize to other fine-tuned LLMs that are
specifically designed for decision making support in various spe-
cialized fields, such as medical LLMs employed in clinical decision
making scenarios. The distinct capabilities and pre-designed func-
tionalities of these specialized models could lead to different out-
comes in human-LLM collaboration compared to those observed
with GPT-4, which has general-purpose capabilities. Furthermore,
in our study, we employed random forest models as the Al assistant
to provide decision support. The outcomes observed could vary
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significantly with the use of different AI models with its own set of
processing abilities, training datasets, and optimization goals, all of
which could potentially influence the effectiveness and reliability
of the decision making support provided.

7 CONCLUSION

In this paper, we present an initial exploration of whether and how
incorporating LLM-powered analysis can enhance the performance
of human-AlI teams in Al-assisted decision making, when expla-
nations of the AI recommendations are not easily accessible or
available. Through a randomized experiment, we first show that
presenting LLM-powered analysis of each feature in decision mak-
ing tasks, either sequentially or concurrently, does not significantly
improve humans’ performance in Al-assisted decision making. We
then propose an algorithmic framework to characterize the effects
of LLM-powered analysis on human decisions and dynamically
decide which analysis to present. Our evaluation with human sub-
jects shows that, by following the proposed approach, humans can
achieve higher decision accuracy and exhibit reduced overreliance
on Al in Al-assisted decision making. Overall, our study provides
important experimental evidence regarding the effectiveness of
incorporating LLMs in Al-assisted decision making, and how to de-
sign intelligent interaction methods between humans and LLMs to
fully unlock the potential of LLMs for promoting better human-Al
collaboration in decision making.
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