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Abstract
This paper considers the determination of a spatially varying coefficient in a
parabolic equation from time trace data. There are many uniqueness theorems
known for such problems butthe reconstruction step is severally ill-posed:
essentially the problem comes down to trying to reconstruct an analytic func-
tion from values on a strip. However, we look at an even more restricted data
where the measurements are not made on the whole time axis but only for large
values adding further to the ill-conditioning situation. In addition, we do not
assume the initial state is known. Uniqueness is restored by making changes
to the boundary condition, in particular, to the impedance parameter, for each
of a series of measurements.We show thatan undefined implementation of
the above paradigm leads to both uniqueness and an effective reconstruction
algorithm. Extension is also made to the case of fractional model and to repla-
cing the parabolic equation with a damped wave equation.

Keywords:inverse problems, coefficient recovery, parabolic,
subdiffusion and wave equations

1.Introduction

The recovery of unknown spatially-dependent coefficients in a parabolic equation from addi-
tional measurements is a ubiquitous inverse problem driven by numerous applications. One
canonicalexample is the recovery of the potentialcoefficientq(x) in a parabolic equation
setting

ut−△ u+ q(x)u= 0 x∈Ω,

Bu=
∂u(x,t)

∂ν
+ βu= 0 x∈ ∂Ω, t> 0,

u(x,0) =u0(x) x∈Ω.

(1)
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Here the boundary impedance parameterβ and the initial condition u0(x) are given.
This particular problem dates to the early 1980’s but we will stipulate a sometimes very

reasonable physical but mathematically restrictive condition on our measurement data that
requires a novel approach to its solution.

We could also consider the non-homogeneous case of including known right-hand side
functions:f(x,t) in the differentialequation and g(t) in the boundary condition in (1) but
this would add further detailrather than salientfeatures and we prefer to take the ‘less is
more’ approach. As we note below, we could also replace the elliptic part of the operator by
−
(
a(x)ux

)
x where a(x) is a conductivity or instead consider a term d(x)ut. Then in the res-

ulting inverse eigenvalue problem our potential can be converted from d(x) by the Liouville
transform, [14].

Given the value of q(x), equation (1) constitutes a well-posed problem for u(x,t) and the
inverse problem turns this around and seeks to impose additional information on u(x,t) that
allows the recovery of q. Two common cases are final time data u(x,T) =h(x) for x∈Ω and
time trace data u(y,t) = f(t) for t>0 for some point y∈Ω and, typically, y∈∂Ω. These are
quite different inversion problems giving rise to distinctly different results.

In the former case we have a map q→ h that is defined onΩ and allows, for example, the
construction of a fixed point scheme based on

q(x) =T [q] := (ut(x,T,q)−△ h) /h (2)

where we have projected the equation onto the line t=T. Under suitable conditions, a unique
fixed point can be shown, See, for example, [3, 12, 13, 19]. For a given value of q(x), lying
in C0,γ ( )Ω , 0<  <γ 1, the solution of the direct problem u∈C2,γ and (2) is consistent from a
space-to-space perspective. Thus our data h should lie in C2,γ and the inverse problem is mildly
ill-conditioned with a two derivative loss h→ q. The drawback in the above is the necessity
of taking interior measurements over all ofΩwhich most often is not feasible from an exper-
imental standpoint and time-trace data case is more commonly used in applications.

In this latter case we have the solution representation

u(x,t) =
∞∑

1

ane−λ ntϕn(x) (3)

where{λ},{ϕn}are the eigenvalues and eigenfunctions of the operator−△+ q onΩ subject
to the boundary conditions B u= 0 and{an}are the Fourier coefficients of the initial data
u0(x) with respect to the basis{ϕn}. Of course these are unknown as they depend on q. The
usual attack in one space dimension is to convert to an inverse Sturm–Liouville problem for
the unknown potential q. If we evaluate (3) at (say) the right hand boundary point x= 1 then
we obtain the relation

f(t) :=u(1,t) =
∞∑

1

ane−λ ntϕn(1) . (4)

The measured f (t), in (4) is a Dirichlet series with the components{λn}∞
n=1,{anϕn(1)}∞

n=1.
Knowledge of this function on any interval allows the recovery of the spectrum{λn}, and an
endpoint valueϕn(1) assuming the initial condition u0(x) is given, see lemma 3.1 in section 3.
From this, standard results for the inverse Sturm–Liouville problem show this pair is sufficient
to uniquely determine q(x) in this one space-dimensional setting. This approach was first pro-
posed by Pierce, [11] and has formed the basis of numerous works over the last 40 years: see,
for example, [4] and references cited below.
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Here we also take this aspect of the problem but do so under severe restrictions on the meas-
ured data: the often realistic physical situation when one can only make a small and discrete
number of time measurements within a relatively narrow interval and only for sufficiently large
values. We will invoke a similar inversion theorem for Dirichlet series together with a result
from [10] to prove uniqueness. With this we then demonstrate how a relatively small number
of time measurements taken at only large time values and for a selection of impedance values
{βk}can lead to an effective reconstruction process.

However, the ill-conditioning now is considerably different from the case of spatial data
u(x,T). While the inversion{λn, ϕn(1)} → q(x) is only mildly ill-conditioned, [14, 15], the
inversion of the Dirichlet series for the weights{an}and the exponents{λn}is severely ill-
posed since the eigenvalue asymptotic behaviour isλn ≈ n2π2+ q̄+ O(ℓ2). Clearly, large or
even modest values of t lead to the terms of the series having effectively infinitesimal values.
Thus any optimal interval should include very small time values.This is not a question of
non-uniqueness but of the severe ill-conditioning inherent in inverting the Dirichlet series rep-
resentation for f (t) to obtain{λn}. Even if an alternative to an inverse spectral approach is
taken the ill-conditioning of the map q→ u(1,t) is intrinsic and remains.

It is worthy of a remark here that recovery of just the eigenvalues{λn}is not in general
sufficient to determine q(x). One requires two different spectra{λn, µ n}arising from differ-
ent boundary conditions at x= 1; that is the spectrum arising from two different values of
β although a single spectrum suffices if q is known to be symmetric aboutthe midpoint,
q(x) =q(1−x). This is the landmark theorem of Borg’s 1946 paper, [1]. A few years later
Levinson gave a much shorter and elegant proof, [9]. A single time-trace measurement and
initial condition provides a spectrum and using the initial condition provides so-called norm-
ing constants, as noted above. Uniqueness of the q(x) from this combination is the result of
another early seminal paper on the topic by Gel’fand and Levitan in 1951, [2]. In the time-trace
recovery problem stated above these norming constants are obtained from the sequence{an}
which in turn is derived from the initial data u0. The above arguments hold only in a single
space dimension and there is no multi-dimensional analogue as the multiplicity of eigenvalues
(amongst other things) in this case destroys the uniqueness results.

Our solution and the main novelty in the paper is to allow a change in impedance value
β at the right-hand endpoint and then make measurements of u(1,t) =u(1,t; β) under these
conditions. While the uniqueness result to be stated requires all values ofβ lying in a non-
empty interval or having a finite accumulation point, we will see that from a reconstruction
perspective thattaking a relatively smalldiscrete sample of values suffices.We willshow
how this can be achieved by using multiple experiments. As an offset to this one will be able
to maintain effective uniqueness and reconstruction with just a pair of measurement points
u(1,tj), for each experiment. Of course, with any experimental error in the data f (t) additional
points will help to a great extent and with experimental error in the data f (t) some oversampling
is necessary.

We now clarify the meaning of ‘large times.’ The mathematical version of the heat equation
ut−c△u= 0 sets the diffusion constantc to be unity.This constantcouples the time and
space dimensions and in almost allapplications is far from unity.For example,modelling
the diffusion of a molecule in the gas phase gives a c typically in the range 10−6 to 10−5

meters2/sec; while in the liquid phase it would be from 10−10 to 10−9 meters2/section Thus
taking a time measurement at say T=1 second in the version with c= 1 corresponds to about
a week in the physical version.In this sense (mathematical) time values even in the range
0.1−1 can be considered as ‘large times’ from a physicalcontext.An entirely analogous
situation holds for the wave equation and recovering the wave speed c(x) instead of q(x) (or fact
recovering the ‘effective potential’ Q(x) then using the Liouville transform to translate Q into
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c(x). Wave speeds can vary over quite considerable ranges from a fraction of a meter/second
for water waves to 300,000 meters/second for electromagnetic waves.

On a broader front, the Liouville transform allows each of the equations−ϕ  ′ ′ = λ nρ(x)ϕ
and−

(
a(x)ϕ′

)′
λnϕ to be transformed into the canonical ‘potential form’ involving just q(x).

Thus the coefficient to be determined in the parabolic setting could be a conductivity or a
specific heat in place of the stated potential in equation (1). This is possible here due to the
fact that we have time trace data. If we replace the elliptic operator L in potential form with
q(x) by one with an unknown conductivity c(x), so that Lu=

(
c(x)u′ ) ′ then the fixed point

analysis mentioned earlier for equation (2) and spatial final time data becomes much more
complex.

In this paper we will also make the restriction of a single spatial variable. We will assume
that the only data that can be measured are time values of the solution at a boundary point and
that these measurements can only be taken for very large times. Specifically, we will assume
that the sampled points are taken from the interval T⩽ t⩽T+L where L is significantly smal-
ler than T and that the number of sampled points nT is also small—in the low double digits
range. In the reconstructions shown in section 6 we used T= 1 and L=0.1 although L could
have been taken somewhat smaller to almost the same effect. We will not assume the initial
condition u0(x) to be known. This is an important feature of the approach—both from a math-
ematical and physical perspective.

Of course, recovering a general potential q(x) from this is impossible from only a single
experiment. Thus for uniqueness we assume that we are able to change the boundary imped-
ance parameterβ = βj over an infinite range of j and we will show that this will suffice to
prove the unique recovery of the potential q(x). In addition, we will indicate how this approach
can lead to a reconstruction algorithm based on the above stated range of data measurements
u(1,t;  β) and can effectively approximate q(x) by a relatively small sampling of measurements
u(1,t;  β) for different{βj}.

In the final section of the paper we also briefly consider similar models that can benefit
from the same reconstruction paradigm. The first is the subdiffusion case where the pde in (1)
is replaced by∂αt −△ u+ q(x)u= 0 where∂αt denotes the fractional derivative of Djrbashian
type: that is, the usual time derivative is taken followed by an Abel fractional integral operator,
[5, 7]. The second, the damped wave equation utt−c(x)uxx+ dut = 0, where the wave speed
c(x) has to be recovered from time-trace data. The solutions also decay exponentially for large
time if d>0 and the problem can again be converted to one of inverse Sturm–Liouville type;
in this case for recovering c(x).

2. An Inverse Sturm–Liouville uniqueness theorem

The following resultcan form the core fora variety ofspatially varying undetermined
coefficientproblems for time-dependentequations:parabolic,hyperbolic and subdiffusion
equations,under the premise thatwe can (only) measure boundary time trace information
for very large times but with the limitation to a single space variable. Here is the setting in the
case of a potential q(x) although the Liouville transform will allow the inclusion of other basic
types.

Consider the eigenvalue problem

−y  ′ ′ + q(x)y= λ y y(0) =0, y′ (1) + βy(1) =0. (5)
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The usual Sturm–Liouville question is to be given the function q(x) and the numberβand from
this to determine the spectrum =Λ {λn}. As noted earlier, there are numerous versions of the
isl problem depending on what is measured. A slightly different version is the following, [10]

Theorem 2.1.Let q1 and q2∈L2(0,1) satisfy equation (5) . Fix j a positive integer and take a
sequence{βk}of distinct real numbers. Ifλj(q1, βk) = λ j(q2, βk) for k= 1,2, . . .then q1(x) =
q2(x).

In other words, the potential q can be determined uniquely from measuring an eigenvalue
of fixed index for an infinite sequence of impedance valuesβk on one boundary point while
keeping the condition at the other boundary fixed. A few remarks are in order here.

Firstly, the proof uses analyticity of the eigenvalues on the parameterβ and in fact unique-
ness holds for any infinite sequence of distinct values{βj}with an accumulation point since
compactness then shows there must be a limit point. However, a sequence{βj}confined to a
narrow interval is far form optimal and choosing the values{βj}to encompass a maximal range
between Dirichlet–Neumann and Dirichlet–Dirichlet conditions leads to superior conditioning
of the inversion process.

Secondly, we could also set the left hand condition in (5) to be of Neumann type, or indeed
of impedance form y′ (0)−αy(0) for any fixedα, 0⩽  <α ∞ .

Combining this result with Borg’s original two spectral version gives a convenient way to
look at the inverse spectral uniqueness question. Letλk,β denote the eigenvalues corresponding
to−u  ′ ′ + q(x) = λk,β , with either u(0) =0 or u′ (0) =0 together with u′ (1) + βu(1) =0 and
considerλ indexed as an array with rows formed from the constant k indices and columns rep-
resenting theβ values in a monotonic order with an accumulation point. Then the eigenvalues
taken from any two distinct columns or from any row uniquely determines q. This observation
in fact contains the essence of the proof of theorem (2.1) used in [10].

In our case due to theorem (2.1) we do not need to obtain the{an}which provides the
norming constants for the Gel’fand-Levitan approach, only the{λn}sequence as a function
ofβ. Hence we do not require knowing the initial condition u(x,0). This is a substantial and
possibly critical benefit since as we are measuring only for later times there is the likelihood
that a measurement of the initial distribution is unobtainable.

Further, for a uniqueness result we need only measure g(t) over an arbitrary small interval
due to analyticity of the Dirichlet series representing this function. As a more practical matter
we will sample discrete point{τi}within this interval and perform a least squares fit to these
measurements. We will address this point in the next section.

3. Recovery of the spectral values {λn} from time-trace data

We begin by stating the unique recovery result for the components of a Dirichlet series from a
measurement of values over any interval.

Lemma 3.1.Let f(t) be given as in (4) where{an} ∈ℓ2 and the sequence{λn}has nonnegative
entries. Then f(t) measured over any non-empty interval uniquely determines the sequences
{an}, {λn}.

The proof is very standard. The conditions on{λn}guarantee convergence for t>0 and the
series represents an analytic function on this set. Thus knowledge of f over any nonempty inter-
val (or even for a sequence{tj}with a finite accumulation point) determines fover the whole
positive line. Then we may take the Laplace transformf̂(s) t→ s to obtain̂f(s) =

∑ ∞
1

bn
s−λ n

.

5
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Then knowingf̂(s) allows recovery of{bn}and{λn}identifying the latter as the poles off̂(s)
on the positive real axis.

For each impedance valueβ this series will contain eigenvaluesλ1(β), λ2(β) . . . λ k(β)  . . .
whereλk(β) corresponds to the kth frequency for this fixed value ofβ. The lowestvalue
will (shifted by an amount equal to the mean of q) lie in the interval(π

2
2, π2), the second in

(3π
2

2
,4π2), and so on. The question then becomes how many of these k−levels can be extracted

from inverting the series to obtainλk(β)?
Overall,it makes sense to concentrate on finding the lowest eigenvalueλ1(βj) for each

impedance value{βj}. If we look directly at the solution itself and consider only the leading
term ofλj then: for a time value t1 = T, e−λ 1t1 will be approximately the same magnitude
as e−λ 2t2 when 4t2 = t1. Thus the expected ratio between the first and second range in k is
approximately e−4 ≈ 0.018 and the first and third range it is e−9 ≈ 10−4. The second range
difference of these is likely to be close to the measurement error in the time trace data g(t) and
the third almost certainly there and hence neglible.

Given these values we can for all practical purposes exclude the third and higher eigenvalues
corresponding to the index k. Thus we have two remaining possibilities: we can recover only
the lowest eigenvalueλk(β) with k= 1 for eachβ value used, or we can attempt to recover
λk(β) with k= 1,2.

In the first case, for eachβ the representation g(t) =a1e−λ 1(β) t gives log gβ(t) = log a1,j −
λ1t and from which we can recoverλ1 from two measurement values, in fact discarding the a1,j

since this is not needed for our spectral recovery ofλ. In the second case g(t) =a1e−λ 1(β) t +

a2e−λ 2(β) t and four measurement values are needed for the values{ai,j},{λi,j(β( j))}, i = 1,2
although once again the values corresponding to the initial condition can be neglected. We thus
have

Theorem 3.1.Let q1, q2∈L2(0,1) and let u= u(x,t;q;  β) satisfy (1). Then if we ignore all
frequencies above the ground statesλa(β) then for two time values ti, i = 1,2 we have
u(1,ti;q1, β) = u(1, ti;q2, β) for an infinite sequence of distinctβvalues in[0,∞ ) then q1 = q2.
If we also seek to obtain the second lowest states then at least four time values{ti}4

i=1 are
required.

Later we will see that there is a tangible advantage in being able to recover{λk(β)}for
k>1 if this is feasible from our data.It means that the condition number of the next stage
inversion of converting{λ}into q(x) is considerably reduced. An quantitative measure of this
will be seen in figure 4 in section 7.

In our reconstruction to be shown in section 6 in order to allow for measurement error in
the time trace g(t) arising from our direct solver we just used the lowest eigenvalue case above,
taking in fact 5 sample time points in eachβ-run. Then a simple least squares fit was used to
estimate our ground state eigenvalues{λ1(β)}.

In the subdiffusion case involving a fractional operator to be discussed in the last section
we can in fact feasibly use this process to include higher indices k>1 in ourλk(β) values.

4. Determining the Cauchy values K, Kx from the eigenvalues

For the momentwe assume thatonly the lowesteigenvalue (and hence eigenfunction) is
involved and willuse the subscriptindex to denote thateigenvalue/eigenfunction arising
from the jthvalue of the impedanceβj. These eigenfunctions{ϕj(x;  λ j, β)}satisfyϕj(0) =0,

6
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ϕ′
j (1) + β( j)ϕj(1) =0 and

ϕj (x) =sin
(√

λjx
)

+

ˆ x

0
K (x,t)sin

(√
λj t
)

dt. (6)

Here the Gel’fand-Levitan function K(x,t) satisfies

Ktt−Kxx+q(x)K = 0, (7)

see [2,15].Note thatsinceϕ1(0) =0 we willhave K(x,0) =Kx(0,t) =0. Now apply the
boundary condition at x=1 in equation (3) so that equation (6) becomes after setting x= 1

ˆ 1

0
[Kx(1,t) + βjK (1,t)]sin

(√
λj t
)

dt=
√
λj cos

(√
λj

)

+ (βj + K (1,1))sin
(√

λj

)
=: fj, 1⩽ j⩽B. (8)

where K(1,1) = 1
2

´ 1
0 q(s)ds.

We can also integrate this by parts to obtain equations for the pair[K(x(1,t), Kt(1,t)]

ˆ 1

0
Kx(1,t)sin(

√
λj t)dt−

βj√
λj

ˆ 1

0
Kt(1,t)cos(

√
λj t)dt= fj

+
βj√
λj

K(1,1)
)
cos(

√
λj) =:gj (9)

again for 1⩽ j⩽B.
From the now computed values of{λj}for eachβj we obtain fj and then must recover

K(1,t), Kx(1,t) and hence the pair{Kx(1,t), Kt(1,t)}from the integral equation (8).From
this Cauchy data pair the recovery of q follows directly in a very stable way as in [15] which
we now explain. Note that in the second formulation, (9), there was a differentiation step in
computing Kt(1,t) and thus this aspect of the inversion has a mild degree of ill-conditioning
and may seem relatively insignificant against the main terms and also benign in the sense that
it would have to be paid regardless for the case of just using K(1,t) and Kx(1,t) as these would
only have delivered the value

´ x
0 q(s)ds. In figure 1 to be shown below we see that the overall

condition number of our key inversion matrix M does show a potentially significant difference,
at least when involving the higher singular values.

Note that since K(x,t) =−K(x,−t) for all x,t then both K(1,t) and Kx(1,t) will be odd
functions about t= 0 and Kt(1,t) will be an even function about t=0 in the representations (8),
(9). We thus should expandKx(1,t) as a sine series

∑ N
1 aj sin( jπ t) and K(1,t) also as a sine

series
∑

bj sin( jπ t), but Kt(1,t) as a cosine series
∑ N

0 cj cos( jπ t). Note also that c0 need not
be zero.

The simplistic approach is to use the Gel’fand-Levitan representation again mapping solu-
tions of q= 0 onto the reconstructed q. In the ‘usual cases’ the term sin

√
λt hasλn ≈ n2π2

and so{sin
√
λnt}is an almost orthogonal set. This will be far from true in the current situ-

ation and a value ofβ =100 will be essentially Dirichlet conditions and withβ =10 a close
approximation. The action will take pl ace in the regionβ∈[0,10] and the most likely case
is they should be more densely concentrated near zero. The approach we describe is based on
[15].
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Note that K(1,0) =Kx(1,0) =0 and both K(1,t) and Kx(1,t) are odd. Hence we may rep-
resent g(t) :=K(1,t), gt(t) :=Kt(1,t) and gx(t) :=Kx(1,t) as the Fourier approximations

K (1,t) = 1
2q̄ t+

∑ N
j=1aj sin( jπ t) , Kt(1,t) =

∑ N
j=0cj cos( jπt) ,

Kx(1,t) =
N∑

j=1

bj sin( jπ t) (10)

wherēq=
´ 1

0 q(x)dx.An additional term such as1
2q̄ t is needed since K(x,x) = 1

2

´ x
0 q(s)ds

and hence we musthave K(1,1) = 1
2q̄. On the other hand,K(x,0) =0 for allx∈[0,1] so

we require K(1,0) =0. Now seta0 = 1
2q̄ and b0=0 and seek to recover the pair{aj}N

j=0,
{bj}N

j=1—meaning we have 2N+ 1 unknowns. This will require measuring the lowest eigen-
valueλ(β) = λ j for B values ofβ where B⩾2N+ 1.This is totally consistent in terms of
operation count with the two-spectrum or single spectrum/norming constant formulations: in
general one needs N eigenvalue/parameter pairs to recover the first N Fourier modes of q.

A few remarks on the above are in order. First, it is not of course a requirement to use a
Fourier basis for q here and there are certainly other options, but choosing a mutually ortho-
gonal one will aid in minimising the condition number of the inversion process. Second, in
the two-spectrum formulation where there are different boundary conditions for each spectral
sequence the behaviour of their asymptotic values obey a well-structured formula. This means
that for Dirichlet conditions on (0, 1) we have the asymptotic formλn = n2π2+ q̄+ o(n−s) for
s>0 and for Dirichlet-Neumann conditionsµn = (n− 1

2)
2π2+ q̄+ o(n−s where the index s

depends on the smoothness of the potential q, [15]. In particular, from this one can get a very
good estimate of the meanq̄ just from the data. This will not be the situation in our multi-
impedance version as the range of spectral values will lie in the range[ π

2 , π] translated byq̄ for
the lowest frequency case and soq̄ has to be considered as an unknown to be itself determined.
This requires at least one additional spectral measurement ofλj over the number N of basis
functions to be used.

When we put the above together we have from (8) and (10) a matrix equation to solve for
the Fourier coefficients. We examine only the case for recovering the pair[Kt(1,t),Kx(1, t)] as
the other case is completely analogous

N∑

n=0

Ajnbn+Cjncn = gj, b0 = 0 where

Aj,n =

ˆ 1

0
sin
(√

λjt
)

sin(nπt) dt, Cj,n =

ˆ 1

0
cos
(√

λjt
)

cos(nπt) dt, j = 1, . . . ,B.

(11)

Equation (11) can be written as the block matrix formulation

2N∑

n=0

Mjncn = gj where Mjn =
[
Ajn β̃jCjn

]
, β̃j =−

βj√
λj
, cn =

[
bn

cn

]
(12)

where M is a B×2N+ 1 matrix and{cn}a 2N+ 1 vector.
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Figure 1.Singular values σn of M.

What is important here is to compute the singular values for the matrix M to see how these
depend on the values of the impedance{βj}to determine the optimal choices for these in
order to minimise the condition number of M. In fact, this is far from necessary in a precise
way; the key is to have as large a range as possible on(0,∞ ), that is between Dirichlet and
Neumann conditions and to have a spread.In practice we computed B equal values not in
β but inλ0 corresponding to q=0; thatis betweenπ

2

4 andπ2. For each suchλ0 we then
computed the corresponding endpoint impedance valueβ. Note that the range of theλwill be
a small perturbation of the mean of q(x) plus the[ π

2
2, π2] so that

√
λ will have range roughly√

q̄+ [π2 , π] .
Figure 1 shows the first several singular value of the matrix M in equation (12) for the case

of the zero potential. These were computed using ten values ofβ chosen so that the resulting
λ(β) were approximately evenly spaced between(n+ 1

2)π and(n+ 1)π for the potential q= 0
whenβ∈[0,100].

We show only the singularvalues ofthe matrix M in (12);formed from computing
the lowestvalue spectrum:thatis the smallesteigenvalue for eachβ as this is the basic
paradigm of feasible measurements. There are two sequences, one from recovering the pair
[Kt(1,t),Kx(1,t)] corresponding to equation (8) (using the symbol◦) and the other from (9)
to recover[K(1,t),Kx(1,t)] (using the symbol•). We show both to illustrate the subtle point
noted above: recovering the former pair is slightly less ill-conditioned than for the latter pair.
This coupled with the fact that we do not need a further differentiation to recover q(x) in the
second case but do in the first as will be seen in the next section.

Several things that were expected now become immediately clear. First, each of the indi-
vidual singular value sequences coming from using the first, second, third, etc eigenvalue set as
the impedance parameterβwas varied, decay exponentially to zero. Second, if only the lowest
eigenvalue was used for eachβ then under anything but extremely accurate data no more than
the first 5 or 6 singular values can be used. In this situation, which as we have seen includes the
parabolic equation case, shows that only quite limited frequency information about the poten-
tial q can be extracted.The subdiffusion model to be considered in section 7 with its only
linear time-decay is able to utilise more of the singular values to advantage in the recovery
of q. Third, many more usable singular values become available for use when further eigen-
value sets are included: we will see this clearly in figure 4 shown in section 7. The above is
to be expected as we know that excellent reconstructions, especially for a relatively smooth
q, can be obtained from a modest number of eigenvalue measurements for each of just two
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impedance values,that is,the two spectrum formulation of Borg.See [15] for examples of
such reconstructions.

5. Recovering q(x) from the Cauchy values K, Kx

The geometric configuration and conditions on the kernel K(x,t) are shown in the figure 2
below.

If q(x) is known then we have a hyperbolic equation with Goursat data±
´ x

0 q(s)ds and
can thus recover K(x,t) within the shaded triangle and in particular obtain the Cauchy values
K(1,t) and Kx(1,t). Note that since K(x,0) =0 we can reflect the Cauchy data as odd functions
for t<0.

Alternatively, we can take a function q(x) and use the Cauchy values at x= 1 to find K(x,t;q)

within the triangle. Of course, there is no reason to expect that the obtained values at x= ± t
will correspond to±

´ x
0 q(s)ds. To achieve this requires an iterative process to be described

below.
We can just consider the region t>0 and use the known value K(x,0) =0 as a boundary

condition for the hyperbolic equation. This is more efficient if, for example, a finite difference
scheme is used.

There are two approaches to recovering q(x) from the data pair{g(t),gx(t)}derived from
the values{K(1,t),Kx(1,t)}). The first is to solve the map F: q  →{ g(t)

gx(t)
}by,for example,

Newton’s method making an initial approximation q0 for q. This in fact converges quite rapidly
even for large q(x) but requires computing the Goursat data±

´ x
0 q(s)ds by quadrature at each

iteration.A simpler version is to use a ‘quasi-Newton’ method obtained by computing the
derivative of the map frozen at q=0. In this situation we have things in closed form and local
injectivity of the derivative map follows immediately.

The second method is to use successive approximations by solving a Cauchy prob-
lem with data values Kt(1,t) =g(t), Kx(1,t) =gx(t). One reason this works is due to the
approximations

Figure 2.K(x, t) function.
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1
2

[q((x+ t) /2) +q((x−t) /2)] ≈ Kt(1,t)
1
2

[q((x+ t) /2)−q((x−t) /2)] ≈ Kx(1,t)  .

(13)

Again,one needs an initialapproximation q0 for the hyperbolic equation and this can be
obtained from the above. The update is obtained from

qn+1(x) =2
d
dx

K (x,x;qn) . (14)

Convergence here is also extremely rapid; typically 4 or 5 iterations suffice.
An alternative formulation of this scheme is to define v= v(x,t;q) by

vtt−vxx+q(x)v= 0, v(x,0) =0, v(x,x) =
1
2

ˆ x

0
q(s) ds (15)

then recover q(x) by the iterative scheme.

qn+1 = qn(x) +2(Kt(1,2x−1) +Kx)2x−1))−vt(1,2x−1)−vx(1,2x−1). (16)

For the analysis and convergence proofs for these methods and statements see [15].

Remark 5.1.The main reason for bringing both K(1,t) and Kt(1,t) into the discussion earlier
is now apparent: in one case this is the natural situation for equation (13) and in the other for
equation (14).

6. A reconstruction example

As noted previously, our model has normalised the combined diffusion coefficient coupling
the time and spatial scales to unity and an inverse scaling is then required to recover actual
time. Under this paradigm t= 1 corresponds to a very large physical time.

We are assuming that the variable boundary condition is at the right hand endpoint x= 1
and we are free to fix the boundary condition at x= 0. If our goal is minimise the eigenvalues
to lessen the solution decay then taking Neumann conditions at x= 0 is optimal and Dirichlet
conditions give the largestλ. This choice may not be available for a specific application.

In practice we selected the parameters{βi}by the following process. For q= 0 the lowest
eigenvalues on[0,1] range from 0 toπ

2 in the case of Neumann conditions ux(0,t) =0 and
fromπ

2 toπ in the case of Dirichlet conditions u(0,t) =0. In each case we took equally spaced
eigenvalues for q= 0 and then computed the corresponding{βi}B

i=1 in order to better capture
the growth characteristics of what is an arctangent function in the case of q= 0.

Data was formed using by a Crank-Nicolson solver and values f(t) =u(1,t, β) obtained as
our experimental time trace information. In the case of the fractional subdiffusion model of
the next section a similar time stepping method was used. We set the grid so that the estimated
error in f (t) was approximately 0.5%. We then took a sample of S time values in[T,T+ L] of
f (t) for eachβ. In the graphic to be shown the values T= 1, L= 1

10, B= 21 and S= 5 was used
for a total of BS data points.
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Figure 3.Reconstruction of q(x).

The eigenvalues{λi}were then estimated by the process described in section 3 and in turn
these were used to reconstruct the values Kt(1,t;q) and Kx(1,t;q) as in section 4. The inversion
of the matrix M introduced there can be accomplished using either truncated svd or adding a
Tikhonov regularising term. In producing the figure below we used the latter approach.

In figure 3 we show a reconstruction of a piecewise continuous function q(x) with a discon-
tinuity near the midpoint, is not differentiable at several places and not periodic but it lies in
L2(0,1). A Fourier basis was used for Kt(1,t) and Kx(1,t) as noted previously and we also used
a Fourier basis to represent q(x). The initial approximation q0= 0 was taken and q recovered by
equation (16). Effective convergence was obtained after 4 or 5 iteration and this was typically
the case over a broad range of phantoms q(x).

Since we used a Fourier basis to represent q(x) this will yield a reconstructed q(x) with
periodicity imposed.Thus the sharp edges/discontinuity in the graph could not be resolved
completely and the endpoint values are incorrect. Of course, if we have prior knowledge of the
function q then alternative basis functions would be appropriate. The important point though
is the fact that we are able to achieve a good fit within this standard chosen basis and thus
taking a non-orthogonal basis is likely to increase the condition number of the matrix M and
hence result in overall poorer reconstructions due to the increased regularisation that will be
needed. The trade-off involved could be delicate here.

7.Other models

In a time-dependent situation where the experimental set up allows the change of boundary
conditions the paradigm described in the last sections has applicability to extend the range of
existing inverse problem models. In this section we look at two such possible cases where we
replace the parabolic equation in (1) by two models of time-dependent situations: a subdiffu-
sion operator where the time derivative is based on an Abel fractional operator of Djrbashian
type and a damped,possibly nonlinear,wave equation.In each case we make the assump-
tion that our unknown coefficient is spatially dependent,we have the ability to change the
boundary conditions and our measurement data consists of a time-trace which is only avail-
able for large time values. For background information on these models see [5, 8, 16, 17] or the
book [7].
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The fractional subdiffusion equation of orderα we consider is the generalisation of the
parabolic

∂αt −△ u+ q(x)u= 0,

Bu=
∂u(x,t)

∂ν
+ βu= 0 x∈ ∂Ω, t> 0,

u(x,0) =u0(x) x∈Ω. (17)

The solution representation for (17) becomes

u(x,t) =
∞∑

1

anEα (−λntα)  ϕn(x) . (18)

where Eα(z) is the Mittag–Leffler function of orderα, 0<  <α 1. The fundamental difference
is that the large time behaviour is now governed by the asymptotics of Eα(z) with the result
that the solution decays only linearly in tα . This means that the severe ill-conditioning arising
from the exponential function decay is now replaced by a linear decay.

Eα (−τ ) =

N∑

k=0

1
 (Γ 1−αk)

1
τk + O

(
1

tN+1

)
withτ =tα. (19)

Thus the problem is still ill-posed but to a significantly milder degree. See, for example, [5,
7]. On the other hand, benefit from using multiple experiments with a changingβ parameter
is still relevant.

We remark that such fractional models have been proposed as regularising operators for
time-reversal questions such as the classical backwards heat problem, [7, 17, 19]. Central to
this is the fact that asα→ 1 the Mittag–Leffler function with negative argument is continuous
from below and converges to the exponential function, [7]. It thus makes an appropriate choice
for such quasi-reversibility techniques. See for example, [5–7, 18, 19].

However,the likelihood is thatfor sufficiently large T values and for larger eigenvalue
indices (that is n represents the kth eigenvalue corresponding to a givenβ) the values of the
solution are sufficiently small to lie outwith our error tolerances. This will again limit the max-
imum usable indices forλn. Thus, for each impedance parameterβwe may obtain the spectrum
λk,β for allβ but k in the range 1⩽k⩽kmax. Clearly, this is now overposed information but
it will help in reducing the condition number of the matrix M in (12). Figure 4 confirms this
statement. It shows the singular values of M when the first (M1), first and second (M2) and
first three (M3) eigenvalues of theβ−sequence are all used.The resulting reduction in the
condition number can be substantial.

As a second example of a model fitting the framework of being recovered from only large
time measurements is the damped wave equation utt−c(x)uxx+ dut = 0 with initial values
u0(x) and ut0(x) and boundary conditions u(0,t) =0, ux(1,t) + βu(1,t) =0. This has sinus-
oidal solutions that decay exponentially with rate proportional to d. Thus for large time values
we are in exactly the same situation as with the heat equation: the recovery of the eigenvalues
of the operator c(x)uxx=−λnu from time trace data will be an extremely ill-conditioned prob-
lem. The likelihood is that once again only the lowest spectral values, k= 1 for each impedance
valueβ would likely be available from the time series.

Certain nonlinear wave equations can also be treated with this approach. An example is the
damped Westervelt equation which is the basis of modelling ultrasound in a lossy media. This
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Figure 4.Singular values of {Mi}3
i=1.

amounts to identification of the space dependent coefficientκ(x) for the attenuated Westervelt
equation in pressure formulation. In a single spatial variable this is

(
v−κ (x)v2)

tt−c(x)2vxx+Dv= 0 in [0,1] ×(0,T)

vx(0,t) =vx(1,t) =0

v(x,0) =v0(x) , vt(x,0) =v1(x)  , x∈(0,1) (20)

where c(x) is the wave speed at position x andD is a damping term which we take to be of the
formDu= dut.

The solutions of (20) also decay exponentially in time. This means that with our assumption
of only large time values the nonlinear termκ(x)v2becomes negligible against v and now for all
practical purposes our model reduces to a damped wave equation with again possibly unknown
wave speed c(x). In this situation c(x) can be recovered from such time measurements as in the
linear case above.

Now if we had time trace measurements for all times (or just for very short and very large t
values) then this would lead to a decoupling of the two unknown coefficients. The large time
values would be used to obtain c(x) and then with this known,small(er) time values could
be used to recoverκ(x). This approach,butusing Newton’s method to solve the resulting
nonlinear equations, was taken in [8].

We also remark that the damping termD is often taken to be of fractional type; for example,
at the simplest levelDu= dDαt u. This results in a slower decay of the solution in time in an
entirely analogous way to the subdiffusion situation. For further information here we refer to
the book [7].
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