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Abstract
This paper considers the determination of a spatially varying coefficient in a
parabolic equation from time trace data. There are many uniqueness theorems
known for such problemstihetreconstruction step is severally ill-posed:
essentially the problem comes down to trying to reconstruct an analytic func-
tion from values on a strip. However, we look at an even more restricted data
where the measurements are not made on the whole time axis but only for large
values adding further to the ill-conditioning situation. In addition, we do not
assume the initial state is known. Uniqueness is restored by making changes
to the boundary condition, in particular, to the impedance parameter, for each
of a series of measurem&wsshow thain undefined implementation of
the above paradigm leads to both uniqueness and an effective reconstruction
algorithm. Extension is also made to the case of fractional model and to repla-
cing the parabolic equation with a damped wave equation.

Keywordsinverse problems, coefficient recovery, parabolic,
subdiffusion and wave equations

1. Introduction

The recovery of unknown spatially-dependent coefficients in a parabolic equation from addi-
tional measurements is a ubiquitous inverse problem driven by numerous applications. One
canonicaxample is the recovery of the potedfifaciend(x) in a parabolic equation

setting

u—Au+qgx)u=0  x€EQ-
Bu= XY a0 xexme t>0 (1)

u(x<0) =up(x) X EQ»
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Here the boundary impedance pafametire initial conditiox) are given.

This particular problem dates to the early 1980’s but we will stipulate a sometimes very
reasonable physical but mathematically restrictive condition on our measurement data that
requires a novel approach to its solution.

We could also consider the non-homogeneous case of including known right-hand side
functionsix-t) in the differentiejuation and g(t) in the boundary condition in (1) but
this would add further deddiier than saliéeditures and we prefer to take the ‘less is
more’ approach. As we note below, we could also replace the elliptic part of the operator by
—[axux), where a(x) is a conductivity or instead considepxguteftred in the res-
uliing inkerse eigenvalue problem our potential can be converted from d(x) by the Liouville
nsform, [14].

Given the value of q(x), equation (1) constitutes a well-posed pedbdenh tloe u
inverse problem turns this around and seeks to impose additional iffdyrietion on u
allows the recovery of g. Two common cases are finalxifne-gafor x€Q and

time trace datg-t) =f(t) for t>0 for some poinER and, typicallyGsQ. These are

quite different inversion problems giving rise to distinctly different results.

In the former case we have a-mfaphat is definedband allows, for example, the
construction of a fixed point scheme based on

q(x) =Tlq = (xT<q) —Ah)sh (2)

where we have projected the equation onte ThUhidertsuitable conditions, a unique
fixed point can be shown, See, for example, [3, 12, 13, 19]. For a given value of g(x), lying
in @Y (Q), 0<y< 1, the solution of the direct pra@mand (2) is consistent from a
space-to-space perspective. Thus our data h shoard lieérirtverse problem is mildly
ill-conditioned with a two derivativedagsiine drawback in the above is the necessity
of taking interior measurements oewalichf most often is not feasible from an exper-
imental standpoint and time-trace data case is more commonly used in applications.

In this latter case we have the solution representation

tr

u(xet) :? ane t g, (X) (3)
1

wherefi<; 99, are the eigenvalues and eigenfunctions of the\epgerat@isubject

to the boundary conditions B and®a,*are the Fourier coefficients of the initial data

Up(X) with respect to the bfgi¢ Of course these are unknown as they depend on q. The

usual attack in one space dimension is to convert to an inverse Sturm-Liouville problem for
the unknown potential g. If we evaluate (3) at (say) the right hand belintdary point x

we obtain the relation

f(t) :=u(1et) z ane Mg (1) (4)
1

The measured f (t), in (4) is a Dirichlet series with the c@pgonesai®, (1) G-

Knowledge of this function on any interval allows the recovery oth¢ apddirum

endpoint valgg¢l) assuming the initial condixriswgiven, see lemma 3.1 in section 3.

From this, standard results for the inverse Sturm-Liouville problem show this pair is sufficient

to uniquely determine g(x) in this one space-dimensional setting. This approach was first pro-

posed by Pierce, [11] and has formed the basis of numerous works over the last 40 years: see,
for example, [4] and references cited below.
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Here we also take this aspect of the problem but do so under severe restrictions on the meas-
ured data: the often realistic physical situation when one can only make a small and discrete
number of time measurements within a relatively narrow interval and only for sufficiently large
values. We will invoke a similar inversion theorem for Dirichlet series together with a result
from [10] to prove uniqueness. With this we then demonstrate how a relatively small number
of time measurements taken at only large time values and for a selection of impedance values
% can lead to an effective reconstruction process.

However, the ill-conditioning now is considerably different from the case of spatial data
u(x<T). While the inversi®h,@,(1) ¢- q(x) is only mildly ill-conditioned, [14, 15], the
inversion of the Dirichlet series for the fagigdrtd the exponeftstis severely ill-
posed since the eigenvalue asymptotic beha=iota?is 4 O(¢?). Clearly, large or
even modest values of t lead to the terms of the series having effectively infinitesimal values.
Thus any optimal interval should include very small timkisadusst a question of
non-uniqueness but of the severe ill-conditioning inherent in inverting the Dirichlet series rep-
resentation for f (t) to o Even if an alternative to an inverse spectral approach is
taken the ill-conditioning of the-ma@<¢) is intrinsic and remains.

It is worthy of a remark here that recovery of just the diggfisaloem general
sufficient to determine q(x). One requires two differ@htspeatising from differ-
ent boundary conditions=at;xhat is the spectrum arising from two different values of
£ although a single spectrum suffices if g is known to be symméheaaioiaint,

g(X) =qg(1 —x). This is the landmark theorem of Borg’s 1946 paper, [1]. A few years later
Levinson gave a much shorter and elegant proof, [9]. A single time-trace measurement and
initial condition provides a spectrum and using the initial condition provides so-called norm-
ing constants, as noted above. Uniqueness of the q(x) from this combination is the result of
another early seminal paper on the topic by Gel'fand and Levitan in 1951, [2]. In the time-trace
recovery problem stated above these norming constants are obtained feath the sequence
which in turn is derived from the initig). ddm above arguments hold only in a single

space dimension and there is no multi-dimensional analogue as the multiplicity of eigenvalues
(amongst other things) in this case destroys the uniqueness results.

Our solution and the main novelty in the paper is to allow a change in impedance value
£ at the right-hand endpoint and then make measufktentitlef£) under these
conditions. While the uniqueness result to be stated requiresédllinglires ofon-
empty interval or having a finite accumulation point, we will see that from a reconstruction
perspective thiaking a relatively sndédtrete sample of values suffiteesiillshow
how this can be achieved by using multiple experiments. As an offset to this one will be able
to maintain effective uniqueness and reconstruction with just a pair of measurement points
u(1t), for each experiment. Of course, with any experimental error in the data f (t) additional
points will help to a great extent and with experimental error in the data f (t) some oversampling
is necessary.

We now clarify the meaning of ‘large times.” The mathematical version of the heat equation
U —cAu= 0 sets the diffusion constdotbe unity¥rhis constambuples the time and
space dimensions and in almag@itations is far from uiidy.examplenodelling
the diffusion of a molecule in the gas phase gives a c typically in tReoal@e 10
metefgsec; while in the liquid phase it would befta 10° metefgsection Thus
taking a time measurement atkagdond in the version withcorresponds to about
a week in the physical versiothis sense (mathematical) time values even in the range
04 —1 can be considered as ‘large times’ from a goyéedAn entirely analogous
situation holds for the wave equation and recovering the wave speed c(x) instead of q(x) (or fact
recovering the ‘effective potential’ Q(x) then using the Liouville transform to translate Q into

3
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c(x). Wave speeds can vary over quite considerable ranges from a fraction of a meter/second
for water waves to-B00 meters/second for electromagnetic waves.

On a broader front, the Liouville transform allows each of thegequb}izixig
and— [a(x)@ ) Angto be transformed into the canonical ‘potential form’ involving just g(x).
Thus{he cc;%fficient to be determined in the parabolic setting could be a conductivity or a
specific heat in place of the stated potential in equation (1). This is possible here due to the
fact that we have time trace data. If we replace the elliptic operator L in potential form with
g(x) by one with an unknown conductivity c(x), se ft@ajuy then the fixed point
analysis mentioned earlier for equation (2) and sp4gtial final time data becomes much more
complex.

In this paper we will also make the restriction of a single spatial variable. We will assume
that the only data that can be measured are time values of the solution at a boundary point and
that these measurements can only be taken for very large times. Specifically, we will assume
that the sampled points are taken from thetigtEnvhlWhere L is significantly smal-
ler than T and that the number of sampled ipailss small—in the low double digits
range. In the reconstructions shown in section 6=iteamset: 0.1 although L could
have been taken somewhat smaller to almost the same effect. We will not assume the initial
conditiong(x) to be known. This is an important feature of the approach—both from a math-
ematical and physical perspective.

Of course, recovering a general potential g(x) from this is impossible from only a single
experiment. Thus for uniqueness we assume that we are able to change the boundary imped-
ance paramefeeg; over an infinite range of j and we will show that this will suffice to
prove the unique recovery of the potential g(x). In addition, we will indicate how this approach
can lead to a reconstruction algorithm based on the above stated range of data measurements
u(1tp) and can effectively approximate q(x) by a relatively small sampling of measurements
u(1tp) for differerfg

In the final section of the paper we also briefly consider similar models that can benefit
from the same reconstruction paradigm. The first is the subdiffusion case where the pde in (1)
is replaced By —A u+ qg(x)u= 0 wheref denotes the fractional derivative of Djrbashian
type: that is, the usual time derivative is taken followed by an Abel fractional integral operator,
[5, 7]. The second, the damped wave aguation.u dy= 0, where the wave speed
c(x) has to be recovered from time-trace data. The solutions also decay exponentially for large
time if &0 and the problem can again be converted to one of inverse Sturm-Liouville type;
in this case for recovering c(x).

2. An Inverse Sturm-Liouville uniqueness theorem

The following resuttan form the core farvariety ofpatially varying undetermined
coefficieniroblems for time-depeneagndtiongarabolidyyperbolic and subdiffusion
equations,nder the premise thatcan (only) measure boundary time trace information
for very large times but with the limitation to a single space variable. Here is the setting in the
case of a potential g(x) although the Liouville transform will allow the inclusion of other basic
types.

Consider the eigenvalue problem

& +qWy=dy  ¥(0) =0 y (1) +8y(1) =0 (5)

4
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The usual Sturm-Liouville question is to be given the function g(xFand fihemnumber
this to determine the specteuph * As noted earlier, there are numerous versions of the
isl problem depending on what is measured. A slightly different version is the following, [10]

Theorem 2.1et qand g EL%(0-1) satisfy equation (5) . Fix j a positive integer and take a
sequencd¥gcof distinct real numbetsglfbc) =A;(q L) for k= 1-2eppthen (4X) =
G(X).

In other words, the potential g can be determined uniquely from measuring an eigenvalue
of fixed index for an infinite sequence of impedagcevanedboundary point while
keeping the condition at the other boundary fixed. A few remarks are in order here.

Firstly, the proof uses analyticity of the eigenvalues on fendarafaetemique-
ness holds for any infinite sequence of distifgaitrean accumulation point since
compactness then shows there must be a limit point. Howe 4 a sefiluenhte a
narrow interval is far form optimal and choosinggtte ealc@npass a maximal range
between Dirichlet-Neumann and Dirichlet-Dirichlet conditions leads to superior conditioning
of the inversion process.

Secondly, we could also set the left hand condition in (5) to be of Neumann type, or indeed
of impedance forr®y— ay(0) for any fixeg 0< a< «.

Combining this result with Borg’s original two spectral version gives a convenient way to
look at the inverse spectral uniqueness gdgstienotethe eigenvalues corresponding
to—u " +q(x) =Akp, with eithefQy =0 or 0) =0 together withly+Au(l) =0 and
considetindexed as an array with rows formed from the constant k indices and columns rep-
resenting tA&alues in a monotonic order with an accumulation point. Then the eigenvalues
taken from any two distinct columns or from any row uniquely determines q. This observation
in fact contains the essence of the proof of theorem (2.1) used in [10].

In our case due to theorem (2.1) we do not need to @higimhiab provides the
norming constants for the Gel'fand-Levitan approacfi @slgdinence as a function
of £. Hence we do not require knowing the initial dor@itidrisis a substantial and
possibly critical benefit since as we are measuring only for later times there is the likelihood
that a measurement of the initial distribution is unobtainable.

Further, for a unigueness result we need only measure g(t) over an arbitrary small interval
due to analyticity of the Dirichlet series representing this function. As a more practical matter
we will sample discrete @ggigwithin this interval and perform a least squares fit to these
measurements. We will address this point in the next section.

3. Recovery of the spectral valugh ffdm time-trace data

We begin by stating the unique recovery result for the components of a Dirichlet series from a
measurement of values over any interval.

Lemma 3.Let f(t) be given as in (4) he&” and the sequeitghhas nonnegative
entries. Then f(t) measured over any non-empty interval uniquely determines the sequences

%n Yin

The proof is very standard. The condfdgpguamantee convergence Gaartd the
series represents an analytic function on this set. Thus knowledge of f over any nonempty inter-
val (or even for a sequgriseith a finite accumulation point) detecmagése‘whole

positive line. Then we may take the Laplace h‘(a)risfosrt\o obtaifts) =

1 s—/\,,

5
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Then knowir?g;) allows recoveryfbfoand¥i, ¢identifying the latter as the ﬁ'@}as of
on the positive real axis.

For each impedance y&his series will contain eigen¥dfies,(5)ceeA «(B)per
whered () corresponds to thefkequency for this fixed valy& dhe lowestalue
will (shifted by an amount equal to the mean of q) lie in th&zmtetivalsecond in

(%24772), and so on. The question then becomes how maleyelftbasd k& extracted
from inverting the series to.giyfAm

Overalljt makes sense to concentrate on finding the lowest &ig@nfaiwach
impedance valgx: If we look directly at the solution itself and consider only the leading
term of); then: for a time valye T, e*1% will be approximately the same magnitude
as €722 when 4t= t;. Thus the expected ratio between the first and second range in k is
approximately*e= 0:018 and the first and third rangeditsi3@*. The second range
difference of these is likely to be close to the measurement error in the time trace data g(t) and
the third almost certainly there and hence neglible.

Given these values we can for all practical purposes exclude the third and higher eigenvalues
corresponding to the index k. Thus we have two remaining possibilities: we can recover only
the lowest eigenval#) with k=1 for eacff value used, or we can attempt to recover
Ak(B) with k= 1<2.

In the first case, for gdlal representatitin-gae*1#)t gives logegt) =log @ —

A1t and from which we can réchoeen two measurement values, in fact discgrding the a

since this is not needed for our spectral rekdneheafecond cagp-ga e 1Bt 4

ae?Bltand four measurement values are needed fofathe #al&s)) < i = 1-2

although once again the values corresponding to the initial condition can be neglected. We thus
have

Theorem 3.1et g, @ €L%(01) and let & u(x-t.q,f) satisfy (1). Then if we ignore all
frequencies above the ground stgfsthen for two time valugs & 12 we have
u(1<t;q16) = u(1<t;;qp<B) for an infinite sequence of gishuds 8-~ ) then o= q.

If we also seek to obtain the second lowest states then at least fodt fimeanealues
required.

Later we will see that there is a tangible advantage in being al#&48) ydoover
k>1 if this is feasible from our dlabaeans that the condition number of the next stage
inversion of converihginto q(x) is considerably reduced. An quantitative measure of this
will be seen in figure 4 in section 7.
In our reconstruction to be shown in section 6 in order to allow for measurement error in
the time trace g(t) arising from our direct solver we just used the lowest eigenvalue case above,
taking in fact 5 sample time points@m@achhen a simple least squares fit was used to
estimate our ground state eigefly6iigs
In the subdiffusion case involving a fractional operator to be discussed in the last section
we can in fact feasibly use this process to include highdrimdicgég& values.

4. Determining the Cauchy valuegfikpii the eigenvalues

For the momemte assume thanly the lowedigenvalue (and hence eigenfunction) is
involved and willse the subscriptdex to denote thagenvalue/eigenfunction arising

from thé'}value of the imped#hcEhese eigenfunctifiisca; b satisfyg(0) =0,

6
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# (1) +A(j)#(1) =0 and

A

X

V= -
;éj(x):sm{ /Ijx}+ K(x(t)sm{ /ijt}db (6)
0

Here the Gel’'fand-Levitan funqbidnskitisfies
Kt —Kxx+ q(X) K = O (7)

see [215].Note thasinceg (0) =0 we willhave Kx<0) =K,(0<t) =0. Now apply the
boundary condition=at xn equation (3) so that equation (6) becomes aftdr setting x

A

0

1 LV Vo W
Ky (1<t +,6}K(1<t)]sm{ At| dt= Ajcos{ /1,}
+(4+K(1c1))sin{‘//1,} fe 1<j<Be (8)

where K1) =1 ;q(s)ds.
We can also integrate this by parts to obtain equatioff§(£0t-th & kit

A A

1 v _ 1 v _
Ky(1t)sin( At dt—x% Ki(1t)cog A tydt=F
0 i 0

) v _
+%K(1c1>}co$ A =g (9)
)

again for4j <B.

From the now computed valu® ofor each; we obtain And then must recover
K(1<t), Kx(1<t) and hence the pfg(1-t)< Ki(1t) from the integral equatiorfri@n
this Cauchy data pair the recovery of g follows directly in a very stable way as in [15] which
we now explain. Note that in the second formulation, (9), there was a differentiation step in
computing{K<t) and thus this aspect of the inversion has a mild degree of ill-conditioning
and may seem relatively insignificant against the main terms and also benign in the sense that
it would have to be paid regardless for the case @i jgstnasiid-& as these would
only have delivered the \G&j@ds. In figure 1 to be shown below we see that the overall
condition number of our key inversion matrix M does show a potentially significant difference,
at least when involving the higher singular values.

Note that sincé&xkt) = —K(x<—t) for all xt then both(kt) and K{(1-t) will be odd
functions about® and K1<t) will be an even gnctlon aboun the representations (8),
(9). thus should ex&fidt) as a sine s ﬁ’aj sin(jzt) and K1<t) also as a sine
serie§ bsinjnt), but K1<t) as a cosine se e qcoa{jﬂt) Note also thatneed not
be zero.

The simplistic approach is to use the Gel’fand-Levitan representanon again mapping solu-
tions of q:y onto the reconstructed g. In the ‘usual cases’ theltdrasisin >
and sdsin A,t¢is an almost orthogonal set. This will be far from true in the current situ-
ation and a valuggef100 will be essentially Dirichlet conditions ghdlithclose
approximation. The action will take pl ace in tjfegi@gl@nand the most likely case
is they should be more densely concentrated near zero. The approach we describe is based on
[15].
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Note that(k-0) =K,(10) =0 and both kt) and k{1<t) are odd. Hence we may rep-
resent(y) :=K(1t), g(t) :=K¢(1t) and gt) :=K,(1t) as the Fourier approximations

K(1t) =388 2V gsin(mt Ke(14) => g cos jmt)-

Ky (1<t) =ZV by sin(jmt) (10)
j=1

wherd= q(x)dx.An additional term sucBeas is needed sin¢ek =1 Sq(s)ds

and hence we migtve K1-1) :%ﬂ. On the other handx-0) =0 for allx €[0<1] so

we require (K<0) =0. Now setgy = %ﬁ and p=0 and seek to recover theﬁpd/ﬁgo,

m@‘;l—meaning we haverZlNunknowns. This will require measuring the lowest eigen-
valuel(f) =A; for B values of where B 2N+ 1. This is totally consistent in terms of

operation count with the two-spectrum or single spectrum/norming constant formulations: in
general one needs N eigenvalue/parameter pairs to recover the first N Fourier modes of q.

A few remarks on the above are in order. First, it is not of course a requirement to use a
Fourier basis for g here and there are certainly other options, but choosing a mutually ortho-
gonal one will aid in minimising the condition humber of the inversion process. Second, in
the two-spectrum formulation where there are different boundary conditions for each spectral
sequence the behaviour of their asymptotic values obey a well-structured formula. This means
that for Dirichlet conditions on (0, 1) we have the asyimpt@tit fdrmo(n*) for
s>0 and for Dirichlet-Neumann conditiens — )27 + f§+ o(n~S where the index s
depends on the smoothness of the potential g, [15]. In particular, from this one can get a very
good estimate of the njgast from the data. This will not be the situation in our multi-
impedance version as the range of spectral values will [ tifea statgd thyor
the lowest frequency casefphdssto be considered as an unknown to be itself determined.

This requires at least one additional spectral measljmeth@humber N of basis
functions to be used.

When we put the above together we have from (8) and (10) a matrix equation to solve for
the Fourier coefficients. We examine only the case for recoglry-khel gaias
the other case is completely analogous

Ainbn+CinCh =g« bp=10 where
n=0 L A
1oV 1 v
Ain= sin{ /i,-t}sin(nﬂt) dte Cin= cos{ /ijt}cos(nﬂt) dt j=1lesrBy
0 0

(11)
Equation (11) can be written as the block matrix formulation
N
M.c,=g  where Mj,=|4i, 4ClH 5= —x%( = Lg:@ (12)
n=0 1

where M is ax8N+ 1 matrix arfd,Ja 2N+ 1 vector.
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Figure 1Singular valuesaf M.

What is important here is to compute the singular values for the matrix M to see how these
depend on the values of the impeffapite determine the optimal choices for these in
order to minimise the condition number of M. In fact, this is far from necessary in a precise
way; the key is to have as large a range as p@ssi|eloat is between Dirichlet and
Neumann conditions and to have a $pmadtice we computed B equal values not in
£ but indg corresponding te- §; thatis betweeF—f andr2. For each suchy we then
computed the corresponding endpoint impegaiNet e ghat the range dfntitiebe
q;ysmall perturbation of the mean of q(xp%wg]mmatﬂ will have range roughly

b+ 5.

Figlfre 1 shows the first several singular value of the matrix M in equation (12) for the case
of the zero potential. These were computed using {#nhadarsofthat the resulting
A(B) were approximately evenly spaced(betg\)aemc{mr 1)z for the potential®
wherg €]0:100.

We show only the singulalues ofthe matrix M in (12)¥ormed from computing
the lowestalue spectrubhatis the smallegtigenvalue for egélas this is the basic
paradigm of feasible measurements. There are two sequences, one from recovering the pair
[Kt(1<t)<Ky(1<t)] corresponding to equation (8) (using theesgnmbthe other from (9)
to recovéK(1-t)<K,(1t)] (using the symbBhlWe show both to illustrate the subtle point
noted above: recovering the former pair is slightly less ill-conditioned than for the latter pair.
This coupled with the fact that we do not need a further differentiation to recover g(x) in the
second case but do in the first as will be seen in the next section.

Several things that were expected now become immediately clear. First, each of the indi-
vidual singular value sequences coming from using the first, second, third, etc eigenvalue set as
the impedance parapgfetss varied, decay exponentially to zero. Second, if only the lowest
eigenvalue was used fogeéheh under anything but extremely accurate data no more than
the first 5 or 6 singular values can be used. In this situation, which as we have seen includes the
parabolic equation case, shows that only quite limited frequency information about the poten-
tial g can be extractidoe subdiffusion model to be considered in section 7 with its only
linear time-decay is able to utilise more of the singular values to advantage in the recovery
of g. Third, many more usable singular values become available for use when further eigen-
value sets are included: we will see this clearly in figure 4 shown in section 7. The above is
to be expected as we know that excellent reconstructions, especially for a relatively smooth
g, can be obtained from a modest number of eigenvalue measurements for each of just two

9
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impedance valugmt isthe two spectrum formulation of®@r@l5] for examples of
such reconstructions.

5. Recovering gq(x) from the Cauchy values K, K

The geometric configuration and conditions on thixdeamelskiown in the figure 2
below.

If g(x) is known then we have a hyperbolic equation with Gou@q@s}iﬁand
can thus recovéx<K within the shaded triangle and in particular obtain the Cauchy values
K(1<t) and K1-t). Note that sin¢e® =0 we can reflect the Cauchy data as odd functions
for t<0.

Alternatively, we can take a function g(x) and use the Caudhy Yaidgétag) x
within the triangle. Of course, there is no reason to expect that the obtained values at x
will correspond ¢o é‘q(s)ds. To achieve this requires an iterative process to be described
below.

We can just consider the regi@miid use the known valk@®Kk=0 as a boundary
condition for the hyperbolic equation. This is more efficient if, for example, a finite difference
scheme is used.

There are two approaches to recovering q(x) from tM tiatat)yaderived from
the valuetK(1<t)<K,(1t)<}). The first is to solve the map#ﬁ%@by,for example,
Newton’s method making an initial approxionatidiig in fact converges quite rapidly
even for large q(x) but requires computing the Gogq{alcttaba quadrature at each
iteratiom simpler version is to use a ‘quasi-Newton’” method obtained by computing the
derivative of the map frozerDatmthis situation we have things in closed form and local
injectivity of the derivative map follows immediately.

The second method is to use successive approximations by solving a Cauchy prob-
lem with data valueglKt) =g(t), Kx(1t) =gi(t). One reason this works is due to the
approximations

K(x.—x) = 1 3 q(s)ds

Figure 2K(x, t) function.
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; (x4 992) =q((x—<2)] =Ky (1D

(13)

NI =

(Q((x+ H<2) +q((x—t92)] =Ke(1b

Again,one needs an initiglproximatiog fpr the hyperbolic equation and this can be
obtained from the above. The update is obtained from

d
Gn+1(X) =2 S K (X% Gn)> (14)

Convergence here is also extremely rapid; typically 4 or 5 iterations suffice.
An alternative formulation of this scheme is towefiige by

S

X
Vit —Vix+ g(X) v= 0 v(x<0) =0- V(X<X) :% q(s)ds (15)
0
then recover g(x) by the iterative scheme.
Or+1 = Gn(X) +2(Ke(12x—1) +Ky)2x—1)) —w(12x—1) —v(12x—1)» (16)

For the analysis and convergence proofs for these methods and statements see [15].

Remark 5.I.he main reason for bringing Aefrakd K1t) into the discussion earlier
is now apparent: in one case this is the natural situation for equation (13) and in the other for
equation (14).

6. A reconstruction example

As noted previously, our model has normalised the combined diffusion coefficient coupling
the time and spatial scales to unity and an inverse scaling is then required to recover actual
time. Under this paradigindorresponds to a very large physical time.

We are assuming that the variable boundary condition is at the right #dnd endpoint x
and we are free to fix the boundary condifiolf atixgoal is minimise the eigenvalues
to lessen the solution decay then taking Neumann certitioptietat and Dirichlet
conditions give the laAgdstis choice may not be available for a specific application.

In practice we selected the pardf¢bserthe following process. £dr the lowest
eigenvalues {fn1] range from 0 €oin the case of Neumann conditi@®8 &0 and
from5 tozin the case of Dirichlet cond{@idhs-0. In each case we took equally spaced
eigenvalues for @ and then computed the corresfi@rfling order to better capture
the growth characteristics of what is an arctangent function4n0Othe case of g

Data was formed using by a Crank-Nicolson solver &fha-wgélues) fobtained as
our experimental time trace information. In the case of the fractional subdiffusion model of
the next section a similar time stepping method was used. We set the grid so that the estimated
error in f (t) was approximately 0.5%. We then took a sample of $Ttifnelyafues in
f (t) for eaghlin the graphic to be shown the~vdlules %0, B=21 and-55 was used
for a total of BS data points.

11
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Figure 3Reconstruction of g(x).

The eigenvaluBs¢were then estimated by the process described in section 3 and in turn
these were used to reconstruct thglvaesd K(1:t:q) as in section 4. The inversion
of the matrix M introduced there can be accomplished using either truncated svd or adding a
Tikhonov regularising term. In producing the figure below we used the latter approach.

In figure 3 we show a reconstruction of a piecewise continuous function q(x) with a discon-
tinuity near the midpoint, is not differentiable at several places and not periodic but it lies in
L?(0<1). A Fourier basis was useg Idy &d K(1<t) as noted previously and we also used
a Fourier basis to represent g(x). The initial appreXirwatidalgen and g recovered by
equation (16). Effective convergence was obtained after 4 or 5 iteration and this was typically
the case over a broad range of phantoms q(x).

Since we used a Fourier basis to represent g(x) this will yield a reconstructed g(x) with
periodicity imposé&tus the sharp edges/discontinuity in the graph could not be resolved
completely and the endpoint values are incorrect. Of course, if we have prior knowledge of the
function g then alternative basis functions would be appropriate. The important point though
is the fact that we are able to achieve a good fit within this standard chosen basis and thus
taking a non-orthogonal basis is likely to increase the condition number of the matrix M and
hence result in overall poorer reconstructions due to the increased regularisation that will be
needed. The trade-off involved could be delicate here.

7.0ther models

In a time-dependent situation where the experimental set up allows the change of boundary
conditions the paradigm described in the last sections has applicability to extend the range of
existing inverse problem models. In this section we look at two such possible cases where we
replace the parabolic equation in (1) by two models of time-dependent situations: a subdiffu-
sion operator where the time derivative is based on an Abel fractional operator of Djrbashian
type and a damppdssibly nonlineagve equatidn.each case we make the assump-

tion that our unknown coefficient is spatially dapem@srtihe ability to change the

boundary conditions and our measurement data consists of a time-trace which is only avail-
able for large time values. For background information on these models see [5, 8, 16, 17] or the
book [7].

12
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The fractional subdiffusion equation ofravdaronsider is the generalisation of the
parabolic

d —Au+q(x)u=0-

BU:M—F,BU:O XE X t>0¢

u(x<0) =up(x) X EQp (17)

The solution representation for (17) becomes

u(xet) :20 anEa (—Ant*)@n (X (18)
1

where £2) is the Mittag-Leffler function olwpfler< 1. The fundamental difference

is that the large time behaviour is now governed by the asyfapboticshed Eesult

that the solution decays only linéahisrheans that the severe ill-conditioning arising
from the exponential function decay is now replaced by a linear decay.

i 1 1 1 .
Eq(—7) :kzoir (1—afl<)7’<+o{t’\’+1} withr =t%» (19)
Thus the problem is still ill-posed but to a significantly milder degree. See, for example, [5,

71. On the other hand, benefit from using multiple experiments vwAthazarhateying
is still relevant.

We remark that such fractional models have been proposed as regularising operators for
time-reversal questions such as the classical backwards heat problem, [7, 17, 19]. Central to
this is the fact that-ad the Mittag-Leffler function with negative argument is continuous
from below and converges to the exponential function, [7]. It thus makes an appropriate choice
for such quasi-reversibility techniques. See for example, [5-7, 18, 19].

Howeveltthe likelihood is tHat sufficiently large T values and for larger eigenvalue
indices (that is n represent¥ gigdnvalue corresponding to afyihenvalues of the
solution are sufficiently small to lie outwith our error tolerances. This will again limit the max-
imum usable indices,fdrhus, for each impedance pgfareabery obtain the spectrum
Axp for allgbut k in the range A< kmax Clearly, this is now overposed information but
it will help in reducing the condition number of the matrix M in (12). Figure 4 confirms this
statement. It shows the singular values of M when thefifisstatid second)@nd
first three @ eigenvalues of iftesequence are all udéek resulting reduction in the
condition number can be substantial.

As a second example of a model fitting the framework of being recovered from only large
time measurements is the damped wave eguebipn. dy = 0 with initial values
Up(X) and g(x) and boundary conditiddd)u=0, y(1t) +Lu(1t) =0. This has sinus-
oidal solutions that decay exponentially with rate proportional to d. Thus for large time values
we are in exactly the same situation as with the heat equation: the recovery of the eigenvalues
of the operato) @, = —4,u from time trace data will be an extremely ill-conditioned prob-
lem. The likelihood is that once again only the lowest spedtrfalreddesnkpedance
valuggwould likely be available from the time series.

Certain nonlinear wave equations can also be treated with this approach. An example is the
damped Westervelt equation which is the basis of modelling ultrasound in a lossy media. This
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Figure 4Singular values of M.

amounts to identification of the space dependentxdeffitieritttenuated Westervelt
equation in pressure formulation. In a single spatial variable this is

V= 0V, —C(X) Vit 2v=0 in [0-1] x(OT)
\{(Oft) :vx}lct) =0
V(x0) =vp(X)c w(x0) =vi(X)c x€&E(01) (20)

where c(x) is the wave speed at positivis & dadhping term which we take to be of the
formzu= du.

The solutions of (20) also decay exponentially in time. This means that with our assumption
of only large time values the nonlirggrleeaomes negligible against v and now for all
practical purposes our model reduces to a damped wave equation with again possibly unknown
wave speed c(x). In this situation c(x) can be recovered from such time measurements as in the
linear case above.

Now if we had time trace measurements for all times (or just for very short and very large t
values) then this would lead to a decoupling of the two unknown coefficients. The large time
values would be used to obtain c(x) and then with tlimkHferhtime values could
be used to recowgk). This approachutusing Newton’s method to solve the resulting
nonlinear equations, was taken in [8].

We also remark that the dampinis teften taken to be of fractional type; for example,
at the simplest lewel= dDf u. This results in a slower decay of the solution in time in an
entirely analogous way to the subdiffusion situation. For further information here we refer to
the book [7].
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