

PAPER • OPEN ACCESS

You may also like

Recovery of a coefficient in a diffusion equation Time-harmonic optical flow with applications in elastography Oleh Melnyk, Michael Quellmalz, Gabriele from large time dåta

To cite this article: William Rundell 2024rse Problem 125013

View the article online for updates and enhancements.

Steidl et al.

- Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction

principle
Trong D Dang, Loc H Nguyen and Huong
T T Vu

- Inverse problems for a generalized fractional diffusion equation with unknown Jaan Janno

Inverse Problems 40 (2024) 125013 (15pp)

https://doi.org/10.1088/1361-6420/ad904c

Recovery of a coefficient in a diffusion equation from large time* data

William Rundell

Department of Mathematics, Texas A&M University, College Station, TX 77843, United States of America

E-mail: rundell@math.tamu.edu

Received 14 April 2024; revised 23 September 2024 Accepted for publication 8 November 2024 Published 20 November 2024

Abstract

This paper considers the determination of a spatially varying coefficient in a parabolic equation from time trace data. There are many uniqueness theorems known for such problems the treconstruction step is severally ill-posed: essentially the problem comes down to trying to reconstruct an analytic function from values on a strip. However, we look at an even more restricted data where the measurements are not made on the whole time axis but only for large values adding further to the ill-conditioning situation. In addition, we do not assume the initial state is known. Uniqueness is restored by making changes to the boundary condition, in particular, to the impedance parameter, for each of a series of measurem the show that undefined implementation of the above paradigm leads to both uniqueness and an effective reconstruction algorithm. Extension is also made to the case of fractional model and to replacing the parabolic equation with a damped wave equation.

Keywordsinverse problems, coefficient recovery, parabolic, subdiffusion and wave equations

1. Introduction

The recovery of unknown spatially-dependent coefficients in a parabolic equation from additional measurements is a ubiquitous inverse problem driven by numerous applications. One canonical equation satisfies the recovery of the potential tient (x) in a parabolic equation setting

$$u_{t} - \Delta u + q(x)u = 0 \qquad x \in \Omega^{c}$$

$$Bu = \frac{\partial u(x \cdot t)}{\partial \nu} + \beta u = 0 \qquad x \in \partial\Omega^{c} \quad t > 0^{c}$$

$$u(x \cdot 0) = u_{0}(x) \qquad x \in \Omega_{P}$$
(1)

.

^{*} This work was supported in part by the National Science Foundation through award DMS-2111020.

Here the boundary impedance pagamettere initial condition are given.

This particular problem dates to the early 1980's but we will stipulate a sometimes very reasonable physical but mathematically restrictive condition on our measurement data that requires a novel approach to its solution.

We could also consider the non-homogeneous case of including known right-hand side function $\mathbf{s}(x \cdot t)$ in the differential quation and $\mathbf{g}(t)$ in the boundary condition in (1) but this would add further detailer than salideratures and we prefer to take the 'less is more' approach. As we note below, we could also replace the elliptic part of the operator by $-\left(\mathbf{a}(x)u_x\right)_x$ where $\mathbf{a}(x)$ is a conductivity or instead conside $\mathbf{x}(x)u_x$ in the resulting inverse eigenvalue problem our potential can be converted from $\mathbf{d}(x)$ by the Liouville transform, [14].

Given the value of q(x), equation (1) constitutes a well-posed (problement flow u inverse problem turns this around and seeks to impose additional information on u allows the recovery of q. Two common cases are $fina(x \in \Pi) = b(x)$ for $x \in \Omega$ and $final(x \in \Pi) = b(x)$ for $final(x \in \Pi)$ and, typically $final(x \in \Pi)$. These are quite different inversion problems giving rise to distinctly different results.

In the former case we have a maphat is defined Domand allows, for example, the construction of a fixed point scheme based on

$$q(x) = \mathbf{T}[q] := (u_t(x \circ T \circ q) - \Delta h) \triangleleft h$$
 (2)

where we have projected the equation onto The Inioher Is uitable conditions, a unique fixed point can be shown, See, for example, [3, 12, 13, 19]. For a given value of q(x), lying in $C^{0,\gamma}(\Omega)$, $0<\gamma<1$, the solution of the direct profile Thand (2) is consistent from a space-to-space perspective. Thus our data h strought It be in the above is mildly ill-conditioned with a two derivative constant of the direct profile is not feasible from an experimental standpoint and time-trace data case is more commonly used in applications.

In this latter case we have the solution representation

$$u(x \cdot t) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n t} \phi_n(x)$$
 (3)

where $\mathbb{N} \lozenge \mathbb{N}_n \lozenge$ are the eigenvalues and eigenfunctions of the operators under conditions \mathbf{B} and $\mathbb{N}_n \lozenge$ are the Fourier coefficients of the initial data $u_0(x)$ with respect to the basis of course these are unknown as they depend on q. The usual attack in one space dimension is to convert to an inverse Sturm-Liouville problem for the unknown potential q. If we evaluate (3) at (say) the right hand belief \mathbf{A} we obtain the relation

$$f(t) := u(1 \cdot t) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n t} \phi_n(1)$$
 (4)

The measured f(t), in (4) is a Dirichlet series with the configuration f(t) is a Dirichlet series with the configuration f(t) is a Dirichlet series with the configuration f(t) is a Dirichlet series with the recovery of the application endpoint value (1) assuming the initial condition in the initial condition in the inverse Sturm-Liouville problem show this pair is sufficient to uniquely determine f(t) in this one space-dimensional setting. This approach was first proposed by Pierce, [11] and has formed the basis of numerous works over the last 40 years: see, for example, [4] and references cited below.

Here we also take this aspect of the problem but do so under severe restrictions on the measured data: the often realistic physical situation when one can only make a small and discrete number of time measurements within a relatively narrow interval and *only* for sufficiently large values. We will invoke a similar inversion theorem for Dirichlet series together with a result from [10] to prove uniqueness. With this we then demonstrate how a relatively small number of time measurements taken at only large time values and for a selection of impedance values $\Re k$ can lead to an effective reconstruction process.

However, the ill-conditioning now is considerably different from the case of spatial data $u(x \cdot T)$. While the inversion $\phi_n(1) \diamond \to q(x)$ is only mildly ill-conditioned, [14, 15], the inversion of the Dirichlet series for the posed since the eigenvalue asymptotic behavior f(x) is f(x). Clearly, large or even modest values of f(x) lead to the terms of the series having effectively infinitesimal values. Thus any optimal interval should include very small times as unestion of non-uniqueness but of the severe ill-conditioning inherent in inverting the Dirichlet series representation for f(x) to obtain Even if an alternative to an inverse spectral approach is taken the ill-conditioning of the material f(x) is intrinsic and remains.

It is worthy of a remark here that recovery of just the **precision and the precision of the analysis and the analysis and the precision of th**

Our solution and the main novelty in the paper is to allow a change in impedance value β at the right-hand endpoint and then make measu($\frac{1}{2}$) under these conditions. While the uniqueness result to be stated require β in the footnote empty interval or having a finite accumulation point, we will see that from a reconstruction perspective that king a relatively snow that the sample of values suffice will show how this can be achieved by using multiple experiments. As an offset to this one will be able to maintain effective uniqueness and reconstruction with just a pair of measurement points $u(1 - t_j)$, for each experiment. Of course, with any experimental error in the data f(t) additional points will help to a great extent and with experimental error in the data f(t) some oversampling is necessary.

We now clarify the meaning of 'large times.' The mathematical version of the heat equation $u_t - c \triangle u = 0$ sets the diffusion constant be unit. This constant buples the time and space dimensions and in almost pall ations is far from unity. example nodelling the diffusion of a molecule in the gas phase gives a c typically in the transfer of c meters sec; while in the liquid phase it would be from c meters section. Thus taking a time measurement at a so and in the version with corresponds to about a week in the physical version this sense (mathematical) time values even in the range c and c can be considered as 'large times' from a propositive c and c analogous situation holds for the wave equation and recovering the wave speed c (c) instead of c into

c(x). Wave speeds can vary over quite considerable ranges from a fraction of a meter/second for water waves to 600 meters/second for electromagnetic waves.

On a broader front, the Liouville transform allows each of the equation of and f(x) of f(x) of f(x) of f(x) of the beta transformed into the canonical 'potential form' involving just f(x). Thus the coefficient to be determined in the parabolic setting could be a conductivity or a specific heat in place of the stated potential in equation (1). This is possible here due to the fact that we have time trace data. If we replace the elliptic operator f(x) in potential form with f(x) by one with an unknown conductivity f(x), so f(x) then the fixed point analysis mentioned earlier for equation (2) and spatial final time data becomes much more complex.

In this paper we will also make the restriction of a single spatial variable. We will assume that the only data that can be measured are time values of the solution at a boundary point and that these measurements can only be taken for very large times. Specifically, we will assume that the sampled points are taken from the tister wall where L is significantly smaller than T and that the number of sampled is called small—in the low double digits range. In the reconstructions shown in section 6—vie anset T although T could have been taken somewhat smaller to almost the same effect. We will not assume the initial condition T to be known. This is an important feature of the approach—both from a mathematical and physical perspective.

Of course, recovering a general potential q(x) from this is impossible from only a single experiment. Thus for uniqueness we assume that we are able to change the boundary impedance parame $\mathcal{E} \in \beta_j$ over an infinite range of j and we will show that this will suffice to prove the unique recovery of the potential q(x). In addition, we will indicate how this approach can lead to a reconstruction algorithm based on the above stated range of data measurements $u(1 \cdot t, \beta)$ and can effectively approximate q(x) by a relatively small sampling of measurements $u(1 \cdot t, \beta)$ for differer $\beta_j \circ \beta$

In the final section of the paper we also briefly consider similar models that can benefit from the same reconstruction paradigm. The first is the subdiffusion case where the pde in (1) is replaced by $-\Delta u + q(x)u = 0$ where denotes the fractional derivative of Djrbashian type: that is, the usual time derivative is taken followed by an Abel fractional integral operator, [5, 7]. The second, the damped wave equation du = 0, where the wave speed du = 0 where the wave speed du = 0 and the problem can again be converted to one of inverse Sturm-Liouville type; in this case for recovering du = 0.

2. An Inverse Sturm-Liouville uniqueness theorem

The following resultan form the core for variety of patially varying undetermined coefficient roblems for time-dependention arabolic perbolic and subdiffusion equations nder the premise that (only) measure boundary time trace information for very large times but with the limitation to a single space variable. Here is the setting in the case of a potential q(x) although the Liouville transform will allow the inclusion of other basic types.

Consider the eigenvalue problem

$$-y' + q(x)y = \lambda y$$
 $y(0) = 0$ $y'(1) + \beta y(1) = 0$ (5)

The usual Sturm–Liouville question is to be given the function $q(x)\beta$ amd them umber this to determine the spectrum A As noted earlier, there are numerous versions of the isl problem depending on what is measured. A slightly different version is the following, [10]

Theorem 2.1et q and $q \in L^2(0.1)$ satisfy equation (5) . Fix j a positive integer and take a sequence of distinct real number $q(f\beta_k) = \lambda_j(q_2 \cdot \beta_k)$ for k=1.2 for $p(x) = q_2(x)$.

In other words, the potential q can be determined uniquely from measuring an eigenvalue of fixed index for an infinite sequence of impeda $\beta_{\mathcal{E}}$ or value soundary point while keeping the condition at the other boundary fixed. A few remarks are in order here.

Firstly, the proof uses analyticity of the eigenvalues on **Brandarafaetter**niqueness holds for any infinite sequence of disting waithean accumulation point since compactness then shows there must be a limit point. However constitute a narrow interval is far form optimal and choosing the values pass a maximal range between Dirichlet–Neumann and Dirichlet–Dirichlet conditions leads to superior conditioning of the inversion process.

Secondly, we could also set the left hand condition in (5) to be of Neumann type, or indeed of impedance for $(0)y-\alpha y(0)$ for any fixed $0 \le \alpha < \infty$.

Combining this result with Borg's original two spectral version gives a convenient way to look at the inverse spectral uniqueness quantize the eigenvalues corresponding to $-u^{''}+q(x)=\lambda_{k,\beta}$, with eithe (0)=0 or u(0)=0 together with $1)u+\beta u(1)=0$ and consider indexed as an array with rows formed from the constant k indices and columns representing the values in a monotonic order with an accumulation point. Then the eigenvalues taken from any two distinct columns or from any row uniquely determines q. This observation in fact contains the essence of the proof of theorem (2.1) used in [10].

In our case due to theorem (2.1) we do not need to \P with provides the norming constants for the Gel'fand-Levitan approach of \P . Hence we do not require knowing the initial condition is a substantial and possibly critical benefit since as we are measuring only for later times there is the likelihood that a measurement of the initial distribution is unobtainable.

Further, for a uniqueness result we need only measure g(t) over an arbitrary small interval due to analyticity of the Dirichlet series representing this function. As a more practical matter we will sample discrete ϕ within this interval and perform a least squares fit to these measurements. We will address this point in the next section.

3. Recovery of the spectral values from time-trace data

We begin by stating the unique recovery result for the components of a Dirichlet series from a measurement of values over any interval.

Lemma 3.1.et f(t) be given as in (4) **Table 66** and the seque**The** has nonnegative entries. Then f(t) measured over any non-empty interval uniquely determines the sequences $\P_0 \lozenge \P_0 \lozenge$

The proof is very standard. The cond $\text{Min} \cos \omega$ convergence Most the series represents an analytic function on this set. Thus knowledge of f over any nonempty interval (or even for a sequence in a finite accumulation point) determined whole positive line. Then we may take the Laplace $\hat{\textbf{tr}} \cos \omega \cos \omega$ obtains $\hat{\textbf{tr}} \cos \omega \cos \omega$.

Then knowings) allows recovery \mathfrak{M}_n and \mathfrak{M}_n dentifying the latter as the $\hat{\mathfrak{p}}$ of on the positive real axis.

For each impedance yeallois series will contain eigen $\mathbb{A}_{k}(\beta) \otimes \mathbb{A}_{k}(\beta) \otimes \mathbb{$

Overallit makes sense to concentrate on finding the lowest $\underline{A}_{\underline{i}}(\underline{G}_{\underline{i}})$ fixed when the look directly at the solution itself and consider only the leading term of $\underline{A}_{\underline{i}}$ then: for a time value \underline{I} , $e^{-\lambda_1 t_1}$ will be approximately the same magnitude as $\underline{e}^{\lambda_2 t_2}$ when $\underline{A}_{\underline{i}} = t_1$. Thus the expected ratio between the first and second range in k is approximately $\underline{A}_{\underline{i}} = 0.018$ and the first and third range $\underline{A}_{\underline{i}} = t_1$. The second range difference of these is likely to be close to the measurement error in the time trace data $\underline{g}(t)$ and the third almost certainly there and hence neglible.

Given these values we can for all practical purposes exclude the third and higher eigenvalues corresponding to the index k. Thus we have two remaining possibilities: we can recover only the lowest eigenvalue) with k=1 for eac β 0 value used, or we can attempt to recover $\lambda_k(\beta)$ 0 with k=1.

In the first case, for **state** representat (\mathfrak{g})n= $\mathfrak{g}a_1e^{-\lambda_1(\beta)t}$ gives $\log_{\beta}\mathfrak{g}t$) = $\log_{\mathfrak{g}_j}-\lambda_1t$ and from which we can reconstruct two measurement values, in fact discerding the a since this is not needed for our spectral reconstruction case $\mathfrak{g}a_1e^{-\lambda_1(\beta)t}+a_2e^{-\lambda_2(\beta)t}$ and four measurement values are needed for $\mathfrak{g}a_1t$ ($\mathfrak{g}a_1t$) $\mathfrak{g}a_1t$ $\mathfrak{g}a$

Theorem 3.1.et $q, q_2 \in L^2(0:1)$ and let $\# u(x:t;q;\beta)$ satisfy (1). Then if we ignore all frequencies above the ground # # sthen for two time values # 1:2 we have $u(1:t_i;q_1:\beta)=u(1:t_i;q_2:\beta)$ for an infinite sequence of # stimets $\# 0:\infty$) then $q=q_2$. If we also seek to obtain the second lowest states then at least for # stime arealues required.

Later we will see that there is a tangible advantage in being at k>1 if this is feasible from our dataeans that the condition number of the next stage inversion of converting to q(x) is considerably reduced. An quantitative measure of this will be seen in figure 4 in section 7.

In our reconstruction to be shown in section 6 in order to allow for measurement error in the time trace g(t) arising from our direct solver we just used the lowest eigenvalue case above, taking in fact 5 sample time points from a simple least squares fit was used to estimate our ground state eigenvalues

In the subdiffusion case involving a fractional operator to be discussed in the last section we can in fact feasibly use this process to include high-driim diameters.

4. Determining the Cauchy values flood the eigenvalues

For the momente assume than the lowestigenvalue (and hence eigenfunction) is involved and will be the subscript to denote the person that f(x) = f(x) value of the impedence has eigenfunction f(x) = f(x).

 $\phi_i(1) + \beta(j)\phi_i(1) = 0$ and

$$\phi_{j}(x) = \sin \begin{cases} \sqrt[3]{\lambda_{j}}x \\ + \int_{0}^{x} K(x \cdot t) \sin \begin{cases} \sqrt[3]{\lambda_{j}}t \\ \end{bmatrix} dt$$
 (6)

Here the Gel'fand-Levitan functions letisfies

$$K_{tt} - K_{xx} + q(x)K = 0$$
 (7)

see [2,15]. Note that ince $\phi_1(0) = 0$ we will have $K(x^c,0) = K_x(0,t) = 0$. Now apply the boundary condition at x equation (3) so that equation (6) becomes at t

$$\begin{bmatrix}
1 \\
[K_{X}(1 \cdot t) + \beta_{j}K(1 \cdot t)] \sin \begin{cases}
\sqrt{\lambda_{j}} t dt = \sqrt[4]{\lambda_{j}} \cos \sqrt[4]{\lambda_{j}} \\
+ (\beta_{j} + K(1 \cdot 1)) \sin \sqrt[4]{\lambda_{j}}
\end{bmatrix} =: f_{j} \cdot 1 \leq j \leq B_{\triangleright}$$
(8)

where $(1) = \frac{1}{2} \cdot {}_{0}^{1} q(s) ds$.

We can also integrate this by parts to obtain equation (f() the the ktp bit)

$$\int_{0}^{1} K_{x}(\mathbf{1} \cdot t) \sin^{\sqrt{\lambda_{j}}} t \, dt - \sqrt{\frac{\beta_{j}}{\overline{A_{j}}}} \int_{0}^{1} K_{t}(\mathbf{1} \cdot t) \cos^{\sqrt{\lambda_{j}}} t \, dt = f_{j} + \sqrt{\frac{\beta_{j}}{\overline{A_{j}}}} K(\mathbf{1} \cdot \mathbf{1}) \left\{ \cos^{\sqrt{\lambda_{j}}} \overline{A_{j}} \right\} =: g_{j}$$
(9)

again for $\leq i \leq B$.

From the now computed values of for each we obtain and then must recover K(1:t), $K_x(1:t)$ and hence the part (1:t) of from the integral equation (1:t) and hence the part (1:t) of from the integral equation (1:t) and this Cauchy data pair the recovery of (1:t) of from the integral equation (1:t) which we now explain. Note that in the second formulation, (1:t) there was a differentiation step in computing (1:t) and thus this aspect of the inversion has a mild degree of ill-conditioning and may seem relatively insignificant against the main terms and also benign in the sense that it would have to be paid regardless for the case of (1:t) and (1:t) as these would only have delivered the values. In figure 1 to be shown below we see that the overall condition number of our key inversion matrix (1:t) does show a potentially significant difference, at least when involving the higher singular values.

Note that $\operatorname{sinc}(x t) = -K(x - t)$ for all xt then $\operatorname{both}(Kt)$ and K(1 t) will be odd functions $\operatorname{about0}(x t)$ and $\operatorname{cons}(x t)$ will be an even function $\operatorname{about0}(x t)$ the representations (8), (9). We thus should $\operatorname{exp}(x t)$ as a sine $\operatorname{series}^{k}_{0} t$ and $\operatorname{cons}(x t)$ also as a sine $\operatorname{series}^{k}_{0} t$ by $\operatorname{cons}(j\pi t)$, but $\operatorname{cons}(j\pi t)$ as a cosine $\operatorname{series}^{k}_{0} t$ by $\operatorname{cons}(j\pi t)$. Note also that need not be zero.

Note that $(K \cap 0) = K_X(1 \cap 0) = 0$ and both $(K \cap t)$ and $K(1 \cap t)$ are odd. Hence we may represent $(D \cap t) = K(1 \cap t)$, $Q(t) := K_X(1 \cap t)$ and $Q(t) := K_X(1 \cap t)$ as the Fourier approximations

$$K(1^{c}t) = \frac{1}{2} f_{1} t + \sum_{j=1}^{N} a_{j} \sin(j\pi t)^{c} \quad K_{t}(1^{c}t) = \sum_{j=0}^{N} c_{j} \cos(j\pi t)^{c}$$

$$K_{x}(1^{c}t) = \sum_{j=1}^{N} b_{j} \sin(j\pi t)$$

$$(10)$$

where $q = \frac{1}{0}q(x) \, dx$. An additional term $\sup_{z \in \mathbb{R}} q_z = \frac{1}{0}q(x) \, dx$ and hence we must $q \in \mathbb{R} \cdot (1 - 1) = \frac{1}{2}q$. On the other $\max_{z \in \mathbb{R}} (x \cdot 0) = 0$ for $\max_{z \in \mathbb{R}} (x \cdot 0) = 0$. Now $\max_{z \in \mathbb{R}} q_z = \frac{1}{2}q$ and $q_z = 0$ and seek to recover the $\max_{z \in \mathbb{R}} q_z = 0$. $\min_{z \in \mathbb{R}} q_z = 0$ and seek to recover the $\max_{z \in \mathbb{R}} q_z = 0$. $\min_{z \in \mathbb{R}} q_z = 0$ and seek to recover the $\max_{z \in \mathbb{R}} q_z = 0$. $\min_{z \in \mathbb{R}} q_z = 0$ and seek to recover the $\max_{z \in \mathbb{R}} q_z = 0$. This will require measuring the lowest eigenvalue $q_z = 0$ operation count with the two-spectrum or single spectrum/norming constant formulations: in general one needs $q_z = 0$ is general one needs $q_z = 0$.

A few remarks on the above are in order. First, it is not of course a requirement to use a Fourier basis for q here and there are certainly other options, but choosing a mutually orthogonal one will aid in minimising the condition number of the inversion process. Second, in the two-spectrum formulation where there are different boundary conditions for each spectral sequence the behaviour of their asymptotic values obey a well-structured formula. This means that for Dirichlet conditions on (0,1) we have the asymptotic formo (n^{-s}) for s>0 and for Dirichlet-Neumann conditions (n,1) we have the asymptotic formo (n^{-s}) for s>0 and for Dirichlet-Neumann conditions of the potential (n,1). In particular, from this one can get a very good estimate of the regions from the data. This will not be the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version as the range of spectral values will for the situation in our multi-impedance version astate of the situation in our multi-impedance version as the situa

When we put the above together we have from (8) and (10) a matrix equation to solve for the Fourier coefficients. We examine only the case for recoefficients. We examine only the case for recoefficients the other case is completely analogous

$$\sum_{n=0}^{N} A_{jn}b_{n} + C_{jn}c_{n} = g_{j} \cdot b_{0} = 0 \quad \text{where}$$

$$A_{j,n} = \int_{0}^{1} \sin \left\{ \sqrt[N]{\lambda_{j}}t \right\} \sin(n\pi t) dt \quad C_{j,n} = \int_{0}^{1} \cos \left\{ \sqrt[N]{\lambda_{j}}t \right\} \cos(n\pi t) dt \quad j = 1 \text{ and } j = 1$$

Equation (11) can be written as the block matrix formulation

$$\sum_{n=0}^{N} \mathbf{M}_{jn} c_n = g_j \quad \text{where } \mathbf{M}_{jn} = \underbrace{A_{jn}}_{jn} \tilde{\beta}_j C_{jn} + \underbrace{\tilde{\beta}_j}_{j} = -\underbrace{A_{jn}}_{\overline{A_j}} c \quad c_n = \underbrace{A_{jn}}_{C_n} + \underbrace{A_{jn}}_{C_n} c_n = \underbrace$$

where **M** is $a \times B2N + 1$ matrix $a \cap A_n = 2N + 1$ vector.

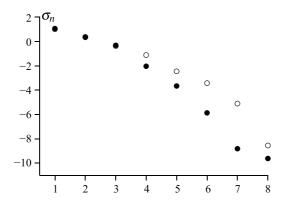


Figure 1Singular values of M.

What is important here is to compute the singular values for the matrix \mathbf{M} to see how these depend on the values of the impersactive determine the optimal choices for these in order to minimise the condition number of \mathbf{M} . In fact, this is far from necessary in a precise way; the key is to have as large a range as $\mathbf{p}(\mathbf{0}\mathbf{s}\mathbf{s}\mathbf{i}\mathbf{t})$ between Dirichlet and Neumann conditions and to have a spremadtice we computed B equal values not in \mathbf{b} but in \mathbf{b} corresponding to \mathbf{b} ; that is between \mathbf{b} and \mathbf{b} . For each such we then computed the corresponding endpoint impersactive that \mathbf{b} will have range roughly \mathbf{b} the \mathbf{b} that \mathbf{b} is the that \mathbf{b} will have range roughly \mathbf{b} that \mathbf{b} is the that \mathbf{b} will have range roughly \mathbf{b} that \mathbf{b} is the that \mathbf{b} is the that \mathbf{b} will have range roughly \mathbf{b} that \mathbf{b} is the t

Figure 1 shows the first several singular value of the matrix M in equation (12) for the case of the zero potential. These were computed using then when softhat the resulting $\lambda(\beta)$ were approximately evenly spaced between $\pi(n+1)\pi$ for the potential $\pi(n+1)\pi$ when $\pi(n+1)\pi$.

We show only the singulærlues of the matrix M in (12) formed from computing the lowestralue spectrub that is the smallestigenvalue for each as this is the basic paradigm of feasible measurements. There are two sequences, one from recovering the pair $[K_t(1:t):K_x(1:t)]$ corresponding to equation (8) (using the symbol we other from (9) to recover $K(1:t):K_x(1:t)$ (using the symbol we show both to illustrate the subtle point noted above: recovering the former pair is slightly less ill-conditioned than for the latter pair. This coupled with the fact that we do not need a further differentiation to recover q(x) in the second case but do in the first as will be seen in the next section.

Several things that were expected now become immediately clear. First, each of the individual singular value sequences coming from using the first, second, third, etc eigenvalue set as the impedance paragragary varied, decay exponentially to zero. Second, if only the lowest eigenvalue was used for the under anything but extremely accurate data no more than the first 5 or 6 singular values can be used. In this situation, which as we have seen includes the parabolic equation case, shows that only quite limited frequency information about the potential q can be extraction subdiffusion model to be considered in section 7 with its only linear time-decay is able to utilise more of the singular values to advantage in the recovery of q. Third, many more usable singular values become available for use when further eigenvalue sets are included: we will see this clearly in figure 4 shown in section 7. The above is to be expected as we know that excellent reconstructions, especially for a relatively smooth q, can be obtained from a modest number of eigenvalue measurements for each of just two

impedance values is the two spectrum formulation of \$\mathbb{Boor \(\) 15 for examples of such reconstructions.

5. Recovering q(x) from the Cauchy values K, K

The geometric configuration and conditions on the whom in the figure 2 below.

If q(x) is known then we have a hyperbolic equation with Gours at the Cauchy values $K(1 \cdot t)$ and $K(1 \cdot t)$. Note that $\sin(x \cdot t) = 0$ we can reflect the Cauchy data as odd functions for t < 0.

Alternatively, we can take a function q(x) and use the Cauthy virid (46 tax) x within the triangle. Of course, there is no reason to expect that the obtained values at x will correspond to $_0^X q(s) \, \mathrm{d} s$. To achieve this requires an iterative process to be described below.

We can just consider the regionated use the known value of as a boundary condition for the hyperbolic equation. This is more efficient if, for example, a finite difference scheme is used.

There are two approaches to recovering q(x) from the walue $K(1 \cdot t) \cdot K_x(1 \cdot t) \diamondsuit$. The first is to solve the map $F = \frac{g(t)}{g_x(t)} \diamondsuit$ by, for example, Newton's method making an initial approximation is in fact converges quite rapidly even for large q(x) but requires computing the $Good_{\mathbf{q}}$ in the derivative of the map frozen at $Good_{\mathbf{q}}$ is the derivative of the map frozen at $Good_{\mathbf{q}}$ is the derivative of the derivative map follows immediately.

The second method is to use successive approximations by solving a Cauchy problem with data value($\mathbf{1}Kt$) = g(t), $K_X(\mathbf{1} \cdot t) = g_X(t)$. One reason this works is due to the approximations

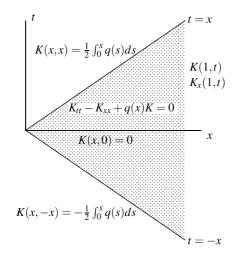


Figure 2K(x, t) function.

$$\frac{1}{2}[q((x+t)\triangleleft 2) + q((x-t)\triangleleft 2)] \approx K_t(1 \cdot t) \qquad \frac{1}{2}[q((x+t)\triangleleft 2) - q((x-t)\triangleleft 2)] \approx K_x(1 \cdot t) \bowtie (13)$$

Again, one needs an inited proximation for the hyperbolic equation and this can be obtained from the above. The update is obtained from

$$q_{n+1}(x) = 2\frac{d}{dx}K(x \cdot x; q_n) \triangleright$$
 (14)

Convergence here is also extremely rapid; typically 4 or 5 iterations suffice. An alternative formulation of this scheme is to whether by

$$v_{tt} - v_{xx} + q(x) v = 0$$
 $v(x = 0) = 0$ $v(x = 0) = 0$ (15)

then recover q(x) by the iterative scheme.

$$q_{n+1} = q_n(x) + 2(K_t(1\cdot 2x - 1) + K_x)2x - 1) - v_t(1\cdot 2x - 1) - v_x(1\cdot 2x - 1) >$$
(16)

For the analysis and convergence proofs for these methods and statements see [15].

Remark 5. The main reason for bringing (1 < t) into the discussion earlier is now apparent: in one case this is the natural situation for equation (13) and in the other for equation (14).

6. A reconstruction example

As noted previously, our model has normalised the combined diffusion coefficient coupling the time and spatial scales to unity and an inverse scaling is then required to recover actual time. Under this paradia indorresponds to a very large physical time.

We are assuming that the variable boundary condition is at the right $\pm a$ Ind endpoint x and we are free to fix the boundary condition at x and x are free to fix the boundary condition is minimise the eigenvalues to lessen the solution decay then taking Neumann cerx and Dirichlet conditions give the largestis choice may not be available for a specific application.

In practice we selected the paragraph by the following process. For the lowest eigenvalues [01] range from 0 from the case of Neumann conditions #0 and from to π to π in the case of Dirichlet cond to π . In each case we took equally spaced eigenvalues for π and then computed the corresponding order to better capture the growth characteristics of what is an arctangent function π 0 the case of π 0.

Data was formed using by a Crank-Nicolson solver m = wal was footned as our experimental time trace information. In the case of the fractional subdiffusion model of the next section a similar time stepping method was used. We set the grid so that the estimated error in f(t) was approximately 0.5%. We then took a sample of $\pi d = 1$ and $\pi d = 1$

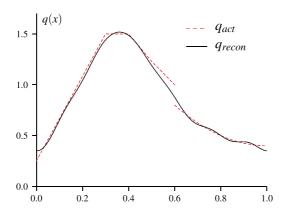


Figure 3Reconstruction of q(x).

The eigenvalues were then estimated by the process described in section 3 and in turn these were used to reconstruct the late of the matrix M introduced there can be accomplished using either truncated svd or adding a Tikhonov regularising term. In producing the figure below we used the latter approach.

In figure 3 we show a reconstruction of a piecewise continuous function q(x) with a discontinuity near the midpoint, is not differentiable at several places and not periodic but it lies in $L^2(0\cdot 1)$. A Fourier basis was used for and $k(1\cdot t)$ as noted previously and we also used a Fourier basis to represent q(x). The initial appreximation and q recovered by equation (16). Effective convergence was obtained after 4 or 5 iteration and this was typically the case over a broad range of phantoms q(x).

Since we used a Fourier basis to represent q(x) this will yield a reconstructed q(x) with periodicity imposed us the sharp edges/discontinuity in the graph could not be resolved completely and the endpoint values are incorrect. Of course, if we have prior knowledge of the function q then alternative basis functions would be appropriate. The important point though is the fact that we are able to achieve a good fit within this standard chosen basis and thus taking a non-orthogonal basis is likely to increase the condition number of the matrix M and hence result in overall poorer reconstructions due to the increased regularisation that will be needed. The trade-off involved could be delicate here.

7. Other models

In a time-dependent situation where the experimental set up allows the change of boundary conditions the paradigm described in the last sections has applicability to extend the range of existing inverse problem models. In this section we look at two such possible cases where we replace the parabolic equation in (1) by two models of time-dependent situations: a subdiffusion operator where the time derivative is based on an Abel fractional operator of Djrbashian type and a dampedsibly nonlinear equation. Each case we make the assumption that our unknown coefficient is spatially dependent the ability to change the boundary conditions and our measurement data consists of a time-trace which is only available for large time values. For background information on these models see [5, 8, 16, 17] or the book [7].

The fractional subdiffusion equation of two demonsider is the generalisation of the parabolic

$$\partial_t^{\alpha} - \Delta u + q(x)u = 0^{\epsilon}$$

$$Bu = \frac{\partial u(x \cdot t)}{\partial \nu} + \beta u = 0 \qquad x \in \partial \Omega^{\epsilon} \quad t > 0^{\epsilon}$$

$$u(x \cdot 0) = u_0(x) \qquad x \in \Omega_{\triangleright} \tag{17}$$

The solution representation for (17) becomes

$$u(x \circ t) = \sum_{n=1}^{\infty} a_n E_{\alpha} \left(-\lambda_n t^{\alpha} \right) \phi_n(x)$$
 (18)

where E(z) is the Mittag–Leffler function of z or z of z of z of z is that the large time behaviour is now governed by the asy z or z of z

$$E_{\alpha}\left(-\tau\right) = \sum_{k=0}^{N} \frac{1}{\Gamma\left(1-\alpha k\right)} \frac{1}{\tau^{k}} + O\left\{\frac{1}{t^{N+1}}\right\} \quad \text{with } \tau = t^{\alpha}$$
 (19)

Thus the problem is still ill-posed but to a significantly milder degree. See, for example, [5, 7]. On the other hand, benefit from using multiple experiments well-based heatening is still relevant.

We remark that such fractional models have been proposed as regularising operators for time-reversal questions such as the classical backwards heat problem, [7, 17, 19]. Central to this is the fact that-as the Mittag-Leffler function with negative argument is continuous from below and converges to the exponential function, [7]. It thus makes an appropriate choice for such quasi-reversibility techniques. See for example, [5–7, 18, 19].

However, the likelihood is the sufficiently large T values and for larger eigenvalue indices (that is n represent the convalue corresponding to \mathcal{B} then values of the solution are sufficiently small to lie outwith our error tolerances. This will again limit the maximum usable indices for hus, for each impedance parametery obtain the spectrum $\lambda_{k\beta}$ for all but k in the range $k \le k_{\text{max}}$ Clearly, this is now overposed information but it will help in reducing the condition number of the matrix M in (12). Figure 4 confirms this statement. It shows the singular values of M when the first target k second k when the condition number can be substantial.

As a second example of a model fitting the framework of being recovered from only large time measurements is the damped wave $equa(t) u_{N,u} u du = 0$ with initial values $u_0(x)$ and $u_0(x)$ and boundary conditions $u_0(x) u = 0$, $u_0(x) u = 0$. This has sinusoidal solutions that decay exponentially with rate proportional to $u_0(x)$. Thus for large time values we are in exactly the same situation as with the heat equation: the recovery of the eigenvalues of the operaton $u_0(x) u_0(x) = -\lambda_n u$ from time trace data will be an extremely ill-conditioned problem. The likelihood is that once again only the lowest spectral real desimple dance values would likely be available from the time series.

Certain nonlinear wave equations can also be treated with this approach. An example is the damped Westervelt equation which is the basis of modelling ultrasound in a lossy media. This

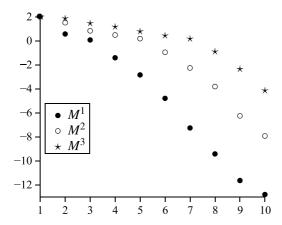


Figure 4Singular values of $\mathcal{H}_{\underline{M}}$.

amounts to identification of the space depender (x) defft tierattenuated Westervelt equation in pressure formulation. In a single spatial variable this is

$$\int_{V} (v - \kappa (x)v^{2})_{tt} - c(x)^{2} v_{xx} + \mathcal{D}v = 0 \quad \text{in} \quad [0 \cdot 1] \times (0 \cdot T)$$

$$v_{k}(0 \cdot t) = v_{x} \int_{V} (t - t) = 0$$

$$v(x \cdot 0) = v_{0}(x) \cdot v_{t}(x \cdot 0) = v_{1}(x) \cdot x \in (0 \cdot 1)$$
(20)

where c(x) is the wave speed at positions a dadhping term which we take to be of the form $\mathcal{D}u = du$.

The solutions of (20) also decay exponentially in time. This means that with our assumption of only large time values the nonline e^2t becomes negligible against v and now for all practical purposes our model reduces to a damped wave equation with again possibly unknown wave speed c(x). In this situation c(x) can be recovered from such time measurements as in the linear case above.

Now if we had time trace measurements for all times (or just for very short and very large t values) then this would lead to a decoupling of the two unknown coefficients. The large time values would be used to obtain c(x) and then with this half (and high time values could be used to recover). This approach putuing Newton's method to solve the resulting nonlinear equations, was taken in [8].

We also remark that the damping tentern taken to be of fractional type; for example, at the simplest $lembelle dD_t^{\alpha}u$. This results in a slower decay of the solution in time in an entirely analogous way to the subdiffusion situation. For further information here we refer to the book [7].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iD

William Rundell ☐ https://orcid.org/0000-0001-9579-2183

References

- [1] Borg G 1946 Eine Umkehrung der sturm-liouvilleschen eigenwertaufgabe. Bestimmung der differentialgleichung durch die eigenwerte *Acta Math.* **78** 1–96
- [2] Gel'fand I M and Levitan B M 1951 On the determination of a differential equation from its spectral function Amer. Math. Soc. Transl. 1 253–91
- [3] Isakov V 1991 Inverse parabolic problems with the final overdetermination Commun. Pure Appl. Math. 44 185–209
- [4] Isakov V 2017 Inverse Problems for Palbitalerentia Equations Volume 127 of pplied Mathematical Sciences 3rd edn (Springer)
- [5] Jin B and Rundell W 2015 A tutorial on inverse problems for anomalous diffusion processes *Inverse Problems* **31** 035003
- [6] Kaltenbacher B and Rundell W 2019 Regularization of a backwards parabolic equation by fractional operators *Inverse Problems Imaging* **13** 401–30
- [7] Kaltenbach and RundellW 2023 Inverse Problem Fractiona Partial Differential Equations, Volume 230 of Graduate Studies in Mathematics (American Mathematical Society)
- [8] Kaltenbacher B and Rundell W 2023 On the simultaneous reconstruction of the nonlinearity coefficient and the sound speed in the westervelt equation *Inverse Problems* **39** 105001
- [9] Levinson N 1949 The inverse Sturm-Liouville problem Mat. Tidsskr. B 25–30
- [10]McLaughlin J R and Rundell W 1987 A uniqueness theorem for an inverse Sturm-Liouville problem J. Math. Phys. 28 1471–2
- [11]Pierce A 1979 Unique identification of eigenvalues and coefficients in a parabolic problem *SIAM J. Control Optim.* **17** 494–9
- [12]Rundell W 1983 An inverse problem for a parabolic partial differential equation *Rocky Mt. J. Math.* 13 679–88
- [13]Rundell W 1987 The determination of a parabolic equation from initial and final data *Proc. Am. Math. Soc.* **99** 637–42
- [14]Rundell W and Sacks P E 1992 The reconstruction of Sturm-Liouville operators *Inverse Problems* 8 457–82
- [15]Rundell W and Sacks P E 1992 Reconstruction techniques for classical inverse Sturm-Liouville problems *Math. Comp.* **58** 161–83
- [16]RundelW and Yamamoto M 2023 Uniqueness for an inverse coefficient for a onedimensional time-fractional diffusion equation with non-zero boundary conditions *Appl. Anal.* 102 815–29
- [17]Sakamoto K and Yamamoto M 2011 Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems *J. Math. Anal. Appl.* **382** 426–47
- [18]Sakamoto K and Yamamoto M 2011 Inverse source problem with a final overdetermination for a fractional diffusion equation *Math. Control Relat. Fields* **1** 509–18
- [19]Zhang Z, Zhang Z and Zhou Z 2022 Identification of potential in diffusion equations from terminal observation: analysis and discrete approximation *SIAM J. Numer. Anal.* **60** 2834–65