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Abstract—Heterogeneous hardware like Gaudi processor has
been developed to enhance computations, especially matrix op-
erations for Transformer-based large language models (LLMs)
for generative AI tasks. However, our analysis indicates that
Transformers are not fully optimized on such emerging hardware,
primarily due to inadequate optimizations in non-matrix compu-
tational kernels like Softmax and in heterogeneous resource uti-
lization, particularly when processing long sequences. To address
these issues, we propose an integrated approach (called GFormer)
that merges sparse and linear attention mechanisms. GFormer
aims to maximize the computational capabilities of the Gaudi
processor’s Matrix Multiplication Engine (MME) and Tensor
Processing Cores (TPC) without compromising model quality.
GFormer includes a windowed self-attention kernel and an
efficient outer product kernel for causal linear attention, aiming
to optimize LLM inference on Gaudi processors. Evaluation
shows that GFormer significantly improves efficiency and model
performance across various tasks on the Gaudi processor and
outperforms state-of-the-art GPUs.

I. INTRODUCTION

Transformers [1] have revolutionized the field of natural

language processing (NLP) and beyond, becoming the back-

bone of numerous state-of-the-art (SOTA) machine learning

applications across machine translation [2], question answer-

ing, and computer vision [3]. Despite Transformers’ broad

applicability and potential to catalyze advancements across

various fields, the computation efficiency of Transformers

presents a significant challenge that hampers their broader

adoption and scalability. At the heart of this issue is the

self-attention mechanism requires quadratic memory and time

complexity O(N2) for processing contexts of N inputs [4].

As the ambition to process longer sequences and build larger,

more comprehensive models grows, this quadratic bottleneck

becomes increasingly prohibitive. The situation is further

exacerbated by the trend towards ever-increasing model sizes

and sequence lengths in pursuit of enhanced performance and

generalization capabilities.

To address these challenges, exploring specialized hardware

accelerators, such as Intel Gaudi processors [5], AMD Ver-

sal ACAP AI Engines (AIEs), SambaNova Reconfigurable

Dataflow Units (RDUs) [6], and Cerebras’s wafer-scale engine

(WSE) [7], has emerged as a promising avenue for mitigating

the computation demands of training and inference of large

Transformer-based models. Gaudi processors stand out for

their innovative architecture designed specifically to accelerate

deep learning (DL) workloads and offer a heterogeneous com-

pute architecture comprising a Matrix Multiplication Engine

(MME) and a cluster of fully programmable Tensor Processing

Cores (TPCs). This combination allows Gaudi to efficiently

handle various DL operations, both matrix-based and non-

matrix-based, with high performance and flexibility.

Despite the potential showcased by Gaudi, Softmax opera-

tions in Transformers become a performance bottleneck when

processing long sequence inputs [8]. The main reasons are

❶ The computational complexity of Softmax operations in

a Transformer is O(N2). ❷ Softmax operations are mapped

into TPC, but reduction operations in Softmax are not well-

suited for single instruction multiple data (SIMD) architectures

like TPC (see more details about TPC architecture in Section

II). Long sequences further exacerbate this problem especially

when the sequence length exceeds 2048. Overall, the limited

computational capability of TPC combined with complexities

of Softmax operations in Transformers hinders Gaudi’s overall

performance and efficiency.

Existing algorithmic approaches to optimize Transformers

fall into three categories: ❶ Exploiting the sparsity of attention

matrices, exemplified by methods such as Reformer [9] and

Big Bird [10]. ❷ Applying kernel methods [11], including

Performer [12] and Transformers as RNNs [4], to approximate

and eliminate Softmax operations. This attention mechanism is

referred to as linear attention because its complexity reduces

to O(N) upon the removal of Softmax. ❸ Combining diverse

attention methods to enhance Transformers’ performance. An

example is [13], which successfully integrates sparse and ker-

nel methods to improve model quality. While such integrations

often lead to models of higher quality, they may also result in

increased computational load and slower processing speeds.

Moreover, challenges arise when directly adapting these

efficient Transformer techniques to Gaudi processors. Specifi-

cally, Gaudi processors feature a heterogeneous compute archi-

tecture comprising Matrix Multiplication Engines (MME) and

Tensor Processing Cores (TPC). However, the sparse attention
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mechanism, which introduces irregular memory access and

computation, is primarily mapped onto TPCs, leaving MMEs,

which are not programmable and only support dense matrix-

matrix operations, idle in scenarios requiring sparse attention.

Conversely, linear attention, which is fundamentally based on

matrix multiplication, can utilize almost all calculations on

MMEs due to their stronger computational capabilities, but

this leaves TPCs idle in such cases. This situation raises a

critical question: Can we effectively combine sparse and dense

attention mechanisms in a way that fully leverages both MME

and TPC, while maintaining the quality of the model?

To this end, we propose an optimized Gaudi-based

Transformer (called GFormer) for large language models

(LLMs) acceleration on the Gaudi processor. GFormer syn-

ergistically combines sparse and linear attention mechanisms

to enhance computational efficiency by fully leveraging both

MME and TPC while preserving model quality. Key compo-

nents of our framework include: ❶ The integration of diverse

attention mechanisms to optimize both computation efficiency

and model fidelity. ❷ The implementation of a windowed

local-context self-attention kernel utilizing the vector units

in TPC, aimed at maximizing computational throughput. ❸

The development of an efficient outer product TPC kernel

for handling a subset of the outer product operations in

causal linear attention, effectively balancing the workload

between MME and TPC. ❹ The introduction of an optimal

workload partitioning algorithm to ensure balanced utilization

of TPC and MME resources. To the best of our knowledge,

this is the first work that facilitates high-performance and

high-utilization LLM inference on heterogeneous hardware

like Gaudi processors. This exploration aims to harness the

computational capabilities of Gaudi and the characteristics of

LLMs, inspiring future innovative ML hardware designs.

The main contributions of this paper are summarized below:

• We introduce an innovative approach to integrate dis-

parate sparse and linear attention mechanisms. This

strategy is designed to fully utilize the computational

capabilities of MME and TPC on the Gaudi processor.

• We develop a windowed local-context self-attention ker-

nel that is specifically tailored for TPC. This kernel is

optimized to leverage TPC’s local memory and vectorized

load and store operations.

• We present an efficient outer product kernel for TPC, em-

ploying the vector unit (SIMD) to optimize the processing

of causal linear attention operations.

• We introduce a performance modeling technique for

TPC and MME. This model is instrumental in balancing

workloads between TPC and MME.

• We evaluate GFormer on GPT and ViT models and find

that it achieves up to 2× and 2.2× speedups, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we present background information for

Transformers, the Gaudi processor architecture, the TPC pro-

gramming model, and our motivation.

A. Transformers

Transformer [1] architecture departs from previous

sequence-to-sequence models by relying on self-attention

to draw global dependencies among inputs, which allows it

to handle sequences of data in parallel and capture long-

range dependencies more effectively. Figure 1 presents the

architecture of a Transformer, which typically consists of an

encoder, a decoder, and other operations such as position

embedding. We describe the decoder for simplicity. A

decoder contains masked multi-head self-attention and a fully

connected feed-forward network. The masked multi-head self-

attention mechanism prevents the current token from attending

to tokens in masked positions. The feed-forward network

provides further transformation of the attention-aggregated

information.

Causal language models are just concerned with the

previous context (tokens on the left) when predicting the

next token in a sequence of tokens. In Softmax-based self

attention, we add an attention mask matrix into the raw

attention matrix to mask attention on the right of the current

position. All elements of the lower triangular part of the

attention mask matrix are 0, and the other elements of the

attention mask matrix are set to −∞. Here we refer to such

an attention mechanism as causal attention. Generative Pre-

trained Transformer (GPT) models [14] are based on the

Transformer decoder architecture. GPT models are typical

causal language models. GPT models are characterized by

their large scale, extensive pre-training on diverse text corpora,

and their ability to adapt to a wide range of tasks with minimal

task-specific modifications.

Vision Transformer (ViT) [3] adapts the Transformer for

image classification tasks. By treating images as sequences of

patches (akin to words in a sentence), ViT applies the self-

attention mechanism across these patches to capture global

dependencies within the image. ViT can attend to image tokens

bidirectionally (full access to the image tokens on the left and

right). This approach has demonstrated competitive or superior

performance to conventional convolutional neural networks

(CNNs) on image classification benchmarks.

B. Efficient Attention Mechanism

Efficient attention mechanisms aim to reduce the compu-

tational complexity traditionally associated with the Softmax-

based attention in Transformers, which scales quadratically

with the sequence length. Specifically, sparse attention selec-

tively focuses on a subset of key positions for each query in the

sequence, rather than attending to all positions. This selective

focus drastically reduces the number of computations and

memory requirements, as the attention matrix is no longer fully

dense but sparse. For example, Longformer [15] introduces a

sparse attention mechanism that judiciously selects a subset

of positions to attend to, blending local with a few global

attention patterns. Big Bird [10] incorporates a unique mix of

random, global, and sliding window attention. This approach

not only maintains the model’s ability to grasp complex




 








Fig. 1. Overview of Transformer architecture.

dependencies over vast stretches of text but also does so with

enhanced flexibility and efficiency.

The equation softmax(QKT )V ≈ ϕ(Q)(ϕ(K)TV ) ex-

presses the idea of linear attention. Linear attention first

uses the kernel method ϕ to project query Q and key K

matrices into feature spaces to approximate and remove Soft-

max operations. We can first compute (ϕ(K)TV ) to avoid

explicit calculation of attention matrix softmax(QKT ). Thus

the computation complexity of linear attention becomes O(N).
For example, “Transformers are RNNs” [4] employs a simple

feature map defined below:

ϕ(x) = elu(x) + 1 (1)

The Performer [12] employs a randomized feature map to

approximate the Softmax attention.

C. Gaudi Processor Architecture

Gaudi processor is a specialized hardware accelerator de-

signed for deep learning training workloads [5]. As shown

in Figure 2, it features a heterogeneous compute architecture

with a Matrix Multiplication Engine (MME), eight fully pro-

grammable Tensor Processing Cores (TPC), and fast memory

and network units [16]. The MME is specifically tuned for

doing all operations that can be lowered to matrix multiplica-

tion, such as fully connected layers, convolutions, and batched

GEMM. The TPC is a very long instruction word (VLIW)

single instruction multiple data (SIMD) processor crafted for

deep learning nonlinear operations.

The fast memory and network units enhance intra-/inter-

processor data transfers. Four high-bandwidth memory (HBM)

devices provide 32 GB of capacity with one terabyte-per-

second of memory bandwidth. Shared memory can be used

to streamline the data exchange between MME and TPC. On-

chip ten 100 gigabit integrated remote direct memory access

(RDMA) over converged Ethernet (RoCE) ports facilitate

efficient inter-processor communication.

Fig. 2. A high-level view of Gaudi architecture, which consists of Matrix
Multiplication Engine (MME), Tensor Processing Cores (TPC), Memory
Units (Local Memory, Shared Memory, DMA, HBM), and Connection Units
(Ethernet, PCIe).

D. TPC Programming

a) TPC architecture: TPC is responsible for executing

non-linear deep learning operators. Its wide SIMD vector unit

supports 2048-bit SIMD operations with data types such as

float, bfloat16, INT16, INT32, and INT8. The TPC’s arithmetic

logic unit can execute up to 64 floats/INT32, 128 INT16, or

256 INT8 operations per cycle. Multiple TPC cores in Gaudi

can be executed in parallel.

TPC processor includes four distinct memory spaces: scalar

local memory, vector local memory, global memory, and

configuration space. Global memory is accessed through spe-

cialized access points termed tensors. A 2,048-bit vector can

be loaded from or written to global memory every four cycles,

on average. Local memory of each TPC processor is divided

into scalar local memory (1 KB) and vector local memory (80

KB). Local memory can be either read from or written to on

every cycle with no bandwidth constraint [17].

b) TPC programming: TPC is programmed via TPC-C,

a derivative of C language. A TPC program contains TPC code

(kernel) and host glue code. TPC code is the actual kernel

implementation. TPC CLANG compiler is based on LLVM

and is used for TPC kernels’ compilation, simulation, and

debugging. Host glue code is executed on the host machine and

controls TPC kernels’ execution. A TPC kernel only accepts

tensors as inputs or outputs with dimensions ranging from 1 to

5. Index spacing, similar to threads in CUDA programming,

efficiently divides workloads among TPC processors. Each

index space member corresponds to an independent unit of

work executed on a single TPC. TPC CLANG compiler also

provides intrinsic functions for optimized kernel implemen-

tation. Intrinsics encompass arithmetic, bitwise, logical, load,

store, et al, operations.

E. Motivation

The impressive ability of Transformer-based models comes

from complex computational operations and the huge number

of parameters (340 million in BERT, 1.5 billion in GPT-

3) [2], [18], which results in intensive computations during

training and inference. Consequently, training and inference

of Transformer-based models is both time-consuming and



V′ = (
QKT

D
)V

Q = xWQ

K = xWk

V = xWV

Fig. 3. Matrix Computation workflow of each self-attention. Q, K and V are
query, key, value matrices of dimension size N by DQ,DK , DV , respectively.

resource-intensive. Utilizing a new efficient Transformer ar-

chitecture is a possible solution to reduce computation com-

plexity. However, the Gaudi-specific optimizations on Trans-

former architecture are not well studied. Additionally, Figure

3 shows the computation flow of Softmax-based self-attention.

Specifically, The input sequence x ∈ R
N×Dx is projected

by three weight matrices WQ,WK ,WV to corresponding

representations Q, K and V . Following common terminology,

the Q, K, and V are referred to as the ”queries”, ”keys”,

and ”values” respectively. Then Softmax is used to normalize

the attention matrix QKT into a probability distribution. As

indicated in [8], The Softmax operation is only executed on

TPC and becomes a performance bottleneck when processing

long sequence inputs. But there is no existing approach to

breaking this bottleneck on Gaudi processors. Furthermore,

Gaudi processors feature heterogeneous compute architecture

comprising MME and TPC. It is worthwhile to balance work-

loads between MME and TPC to fully utilize the computation

resources of both MME and TPC. However, there is no

previous method to investigate balancing workloads on Gaudi

processors.

Q = xWQ

K = xWk

V = xWV

V
′ = softmax(

QKT

√

D
)V

(2)

III. DESIGN METHODOLOGY

In this section, we propose our optimized Transformer

design and optimized TPC kernels.

A. Overview of This Work

Figure 2 shows the overview of GFormer. The Gaudi

processor is a heterogeneous architecture comprising a cluster

of TPCs, as well as configurable MMEs. To maximize the

utilization of both TPC and MME, our proposed design ef-

fectively combines sparse and linear attention approximations

in the following ways. Inputs of self-attention are Q, K, and

V . They are referred to as the “queries”, “keys” and “values”

respectively. Q,K, V ∈ R
B×N×H×E , where B, N , H , and

E are batch size, sequence length, the number of heads, head

size, respectively. We split Q,K, V along the head dimension

(H) into two groups, as inputs of sparse attention and inputs of

linear attention. The partition is according to a hyperparameter

τ . H × τ is the number of heads for sparse attention and

H × (1− τ) is the number of heads for linear attention.

For the sparse attention part, to take full advantage of ca-

pabilities of SIMD architecture in TPC, we adopt a windowed

local-context self-attention and implement an efficient TPC

kernel. Window attention avoids irregular data access and

enables task partition across multiple TPCs. For the linear

attention part, inspired by the Performer, we use positive

orthogonal random features to approximate the Softmax opera-

tion in the Transformer [12]. Specifically, softmax(QKT )V ≈

ϕ(Q)(ϕ(K)TV ), where ϕ is the feature map. Most calcula-

tions of linear attention are matrix-matrix multiplication and

can be mapped to MME, which brings two benefits. (1) it

takes advantage of powerful MME. (2) it avoids the data

movement between MME and TPC. Our mixed approach not

only maximizes hardware utilization in the Gaudi processor

but also helps reduce the accuracy loss caused by the Softmax

approximation. We expect that executions of TPC and MME

will overlap through our optimization.

B. TPC Best Fitted Sparse Attention

Problems: Softmax applies the standard exponential func-

tion to each element of the input tensor and normalizes these

values by dividing by the summation of all these exponentials

along a specific dimension. The computational complexity of

Softmax operations is O(N2). Sparse attention, for example,

Longformer [15], Big Bird [10], is proposed to reduce com-

putational complexity.

Challenges: However, we face two challenges when per-

forming Softmax on an irregularly sparse attention matrix.

First, irregular data access leads to high data reading latency

and low TPC utilization. Second, it is not able to perform

index space mapping (divide workloads) between TPC pro-

cessors evenly. The TPC programming only supports linear

transformations for mapping, but the random number of non-

zero elements in each row of the sparse attention matrix causes

these linear transformations to fail.

Proposed design: To overcome these challenges and benefit

the computation pattern of TPC, we adopt a windowed local-

context self-attention. Our attention pattern employs a fixed-

size window attention surrounding each token. Using multiple

stacked layers of such windowed attention results in a large

receptive field, where top layers have access to all input

locations and have the capacity to build representations that

incorporate information across the entire input, similar to

CNNs. Given a fixed window size w, each token attends to w

previous (left) tokens. Besides, the window size is a multiple

of 64 to fully utilize vector units in TPC. Since a TPC’s wide

SIMD vector unit supports 2048-bit SIMD operations. The

TPC can execute up to 64 float operations in parallel in one

cycle. Additionally, the TPC prefers directly loading a vector

of values from global memory.





programmable and only supports matrix-matrix multiplication.

To achieve outer product operation, we first insert a dimension

of size one into k and v at the specified dimension. Then

we perform a batch matrix-matrix multiplication of k prime

and v. We then perform the cumulative sum of att raw

and att norm over the sequence length dimension. Figure

5 shows the profiling result of causal linear attention of such

implementation. We can find the MME is overwhelmed by

matrix-matrix multiplication. But TPC is quite idle. The reason

is that the last dimensions of k and v (head dimension) are

usually less than 64, Lines 7 and 8 in Listing 2 are actually

B×H×N small matrix-matrix multiplication (1×E×E×1),

where B, H , N , and E are batch size, the number heads,

sequence length, head size, respectively. The small size of

matrix-matrix multiplication is not very efficient in MME.

1 def linear causal attention(q, k, v):

2 # Project key and queries onto the feature

map space

3 k prime = feature map(k)

4 q prime = feature map(q)

5

6 ref v = torch.ones like(v.unsqueeze(2))

7 out k v=k prime.unsqueeze(3)@v.unsqueeze(2)

8 norm = k prime.unsqueeze(3) @ ref v

9 # Consolidate against the feature dimension

10 att raw = q prime.unsqueeze(2) @ out k v

11 att norm = q prime.unsqueeze(2) @ norm

12 # Cumulative sum over the sequence

13 att raw = att raw.cumsum(1)

14 att norm = att norm.cumsum(1)

15 att raw = att raw.squeeze(2)

16 att norm = att norm.squeeze(2)

17 # Normalize

18 attn = att raw / att norm

19 return attn

Listing 2. Pseudocode of causal linear attention.

Challenges: To balance the utilization of both MME and

TPC. We propose to map a proportion of outer product oper-

ations onto TPC. However, the challenge is to implement an

efficient outer product kernel on TPC, which achieves similar

performance as MME. Otherwise, the outer products on TPC

will instead become a bottleneck. Specifically, we need to

solve the following issues: 1 We need to evenly distribute

outer product operations among TPC to avoid load imbalance

problems. 2 As aforementioned, we need the For loop to

implement B × H × N outer product operations, but serial

execution characteristics of the For loop will hinder instruction

parallelism on TPC. 3 In the outer product between vector 1

and vector 2. One element from vector 1 is multiplied by all

elements of vector 2. Additionally, we prefer to directly load

a vector of data into TPC for higher data reading bandwidth.

However, TPC intrinsics do not support accessing a specific

element in the vector data, which prevents us from achieving

the outer product.

Proposed implementation: To this end, we proposed an

Fig. 5. Profiling result of original causal linear attention.

Fig. 6. Profiling result of optimized causal linear attention.

efficient outer product kernel design in Listing 3 to solve the

aforesaid problems. Specifically, we assume the head size is

64. To solve the first issue, we partition computation using

index space (Lines 3-10) to evenly distribute outer product

operations among TPCs. We load a row of data from a mat

and b mat into a v, and b v, respectively (Lines 17-18). For

the second issue, We unroll the For loop to increase the

instruction level parallelism (Line 19). For the third issue, we

design a function, v broadcast element f32 to enable access

to the element in vector and convert the element into vector.

The idea of v broadcast element f32 is bit-level shuffle and

shift. We then can broadcast the element in a v at w position

into a vector a x. Then b v is multiplied by a x to generate

an output vector (Line 20-24). The advantages of this TPC

kernel are (1) vectorized load and store. (2) efficient vector

multiplication using SIMD. (3) without insertion of an extra

dimension (avoiding memory movement). Figure 6 depicts the

profiling result of causal linear attention after optimization.

Both MME and TPC have relatively balanced utilization.

1 #define A_LEN 64

2 void main(tensor a_mat, tensor b_mat, tensor o_mat

) {

3 const int5 index_space_start =

get_index_space_offset();

4 const int5 index_space_end =

get_index_space_size() + index_space_start;

5 int5 a_coords = {0};

6 int5 b_coords = {0};

7 int5 o_coords = {0};

8 const int height_step = 1;

9 const int h_s=index_space_start[1]*height_step;

10 const int h_e=index_space_end[1]*height_step;

11 for (int h = h_s; h < h_e; h += height_step) {

12 a_coords[1] = h;

13 a_coords[0] = 0;

14 b_coords[1] = h;

15 o_coords[1] = h;

16 // Load a row from a_mat, b_mat

17 float64 a_v=v_f32_ld_tnsr_b(a_coords, a_mat);



18 float64 b_v=v_f32_ld_tnsr_b(b_coords, b_mat);

19 #pragma unroll (8)

20 for(int w = 0; w < A_LEN; w += 1) {

21 float64 a_x=v_broadcast_element_f32(a_v, w);

22 float64 out_v = v_f32_mul_b(a_x, b_v);

23 o_coords[0] = w * A_LEN;

24 v_f32_st_tnsr(o_coords, o_mat, out_v);

25 }

26 } }

Listing 3. Pseudocode of outer product on TPC.

D. Optimal Partition Algorithm

As discussed in Section III-A, to fully utilize both MME

and TPC, we partition Q, K, and V along head dimension

according to a hyperparameter τ for sparse attention and

linear attention. The overall system’s runtime is determined

by the maximum runtime between the TPC and MME, so it is

crucial to balance their respective workloads. We are required

to carefully determine the hyperparameter τ to make MME

and TPC has balanced workloads. To achieve this balance,

we model computation latencies of both the TPC and MME,

which allows us to obtain the relationship between workload

and runtime for each engine. By estimating the runtime of TPC

and MME based on their respective workloads, we can obtain

the optimal partition when their runtime is equal or similar.

Specifically, we first analyze workloads’ floating point of

operations (FLOPs) quantitatively. We then develop a set of

micro-benchmarks to measure the average performance of

workloads on the TPC and MME. These micro-benchmarks

cover a wide range of sizes and sparsity levels. Algorithm 2

reveals how to obtain the optimal partition using FLOPs and

average performance. Inputs are initial partition (p), problem

size (size), FLOPs per unit of partition 0 (FLOPs per0),

FLOPs per unit of partition 1 (FLOPs per1), average per-

formance of partition 0 (perf0), and average performance of

partition 1 (perf1). The output (p′) is an optimal partition. We

estimate the computation latency of partitions 0 and 1 (Lines

3-4). We find the optimal partition when latency0 and latency1

are equal or similar (Line 5).

Algorithm 2: Optimal partition algorithm.

Inputs : p, size, FLOPs per0, FLOPs per1, perf0, perf1

Outputs: p′

1 FLOPs p0 = p × size × FLOPs per0

2 FLOPs p1 = (1-p) × size × FLOPs per1

3 latency0 =
FLOPs p0

perf0

4 latency1 =
FLOPs p1

perf1

5 Find p′ let latency0 = latency1

By estimating and balancing their runtime, we can achieve

better overall performance on the Gaudi processor. Specifi-

cally, assuming H0 is the number of sparse heads, H1 is the

number of linear heads, and H0

H1

= τ
(1−τ) . From the perspective

of linear attention, the number of FLOPs for applying random

features onto Q and K is 4BN(H1E)2. The number of FLOPs

for C = ϕ(K)TV is 2BN(H1E)2. The number of FLOPs for

ϕ(Q)C is 2BN(H1E)2. Then the number of FLOPs for linear

attention is:

4BN(H1E)2+2BN(H1E)2+2BN(H1E)2 = 8BN(H1E)2 (3)

Thus the computation latency for linear attention on MME can

be estimated as

MME latency =
8BN(H1E)2

MME perf
(4)

From the perspective of sparse attention, the number of

FLOPs for R = QKT is 2BH0ENW , where W is the

window size. The number of FLOPs for sparse Softmax

A = sparse softmax(R) operations is 3BH0NW , where W

is the window size. Then the number of FLOPs for sparse

attention is:

2BH0ENW + 3BH0NW = 5BH0NW (5)

Thus the computation latency for sparse attention on TPC can

be estimated as

TPC latency =
5BH0NW

TPC perf
(6)

We can obtain a suitable partition τ when letting

TPC latency is close to MME latency.

IV. PERFORMANCE EVALUATION

In this section, we present our experimental setup and

demonstrate the effectiveness of GFormer compared with other

solutions using different models.

A. Experimental Setup

a) Platforms: We perform our experiments on one Ha-

bana Labs System 1 (HLS-1) [5] AI training system. We

implement HLS-1 using AWS EC2 DL1 instances [19]. The

HLS-1 incorporates eight Gaudi processors and two Gen 4.0

PCIe switches. External host CPU is used to manage HLS-1

via PCIe switches. Each Gaudi processor is equipped with 1

MME, 8 TPC, and 32 GB on-chip memory. All experiments

are on a single Gaudi processor.

b) Implementation details: We implement our proposed

models based on PyTorch. Gaudi software stack version is

1.14.0. The Gaudi software stack includes the graph compiler,

Gaudi driver, Gaudi firmware, and corresponding PyTorch.

The PyTorch version is 2.1.1.

c) Models: For GPT model, we adopt GPT-Neo [20]

architecture in Huggingface [21]. Other representative LLMs

such as Llama [22] have similar structures. So for simplicity,

we just evaluate the GPT model. For ViT model, we use the

Vision Transformer [23] architecture in Huggingface. We set

batch size, the number of layers, the number of heads, and

head size as 4, 12, 16, and 64, respectively. These are realistic

scenarios of parameter configurations found in GPT-3 with 125

million parameters [20] and Vision Transformer (ViT) base

model [23].

B. Evaluation on Speedup of Sparse Attention Kernel

Figure 7 depicts the speedup of the windowed attention ker-

nel on different window sizes and sequence lengths. We vary

sequence length from 1k to 4k. Further increasing sequence

length causes memory errors. The baseline is Softmax-based

attention. Window 64 and Window 128 are short for windowed

attention with window sizes 64 and 128. As the sequence

length increases, the speedups of windowed attention over

baseline are up to 1.7×.









for processing causal linear attention operations. We evaluate

our proposed solution in GPT and ViT models on a Gaudi

processor. The evaluation shows that our solution achieves up

to 2 × and 2.2 × speedups in GPT and ViT compared to the

original models using Softmax attention.

In the future, we intend to initially extend our work to

enable distributed LLM acceleration across multiple Gaudi

cards, focusing on optimized communication. Subsequently,

we will adapt our mixed attention mechanism for use with

various heterogeneous AI accelerators, including Versal ACAP.

Lastly, we aim to investigate the application of Gaudi in other

emerging ML tasks, such as graph neural networks.
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