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Abstract—Heterogeneous hardware like Gaudi processor has
been developed to enhance computations, especially matrix op-
erations for Transformer-based large language models (LLMs)
for generative Al tasks. However, our analysis indicates that
Transformers are not fully optimized on such emerging hardware,
primarily due to inadequate optimizations in non-matrix compu-
tational kernels like Softmax and in heterogeneous resource uti-
lization, particularly when processing long sequences. To address
these issues, we propose an integrated approach (called GFormer)
that merges sparse and linear attention mechanisms. GFormer
aims to maximize the computational capabilities of the Gaudi
processor’s Matrix Multiplication Engine (MME) and Tensor
Processing Cores (TPC) without compromising model quality.
GFormer includes a windowed self-attention kernel and an
efficient outer product kernel for causal linear attention, aiming
to optimize LLM inference on Gaudi processors. Evaluation
shows that GFormer significantly improves efficiency and model
performance across various tasks on the Gaudi processor and
outperforms state-of-the-art GPUs.

I. INTRODUCTION

Transformers [1] have revolutionized the field of natural
language processing (NLP) and beyond, becoming the back-
bone of numerous state-of-the-art (SOTA) machine learning
applications across machine translation [2], question answer-
ing, and computer vision [3]. Despite Transformers’ broad
applicability and potential to catalyze advancements across
various fields, the computation efficiency of Transformers
presents a significant challenge that hampers their broader
adoption and scalability. At the heart of this issue is the
self-attention mechanism requires quadratic memory and time
complexity O(N?) for processing contexts of N inputs [4].
As the ambition to process longer sequences and build larger,
more comprehensive models grows, this quadratic bottleneck
becomes increasingly prohibitive. The situation is further
exacerbated by the trend towards ever-increasing model sizes
and sequence lengths in pursuit of enhanced performance and
generalization capabilities.

To address these challenges, exploring specialized hardware
accelerators, such as Intel Gaudi processors [5], AMD Ver-
sal ACAP Al Engines (AIEs), SambaNova Reconfigurable
Dataflow Units (RDUs) [6], and Cerebras’s wafer-scale engine
(WSE) [7], has emerged as a promising avenue for mitigating
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the computation demands of training and inference of large
Transformer-based models. Gaudi processors stand out for
their innovative architecture designed specifically to accelerate
deep learning (DL) workloads and offer a heterogeneous com-
pute architecture comprising a Matrix Multiplication Engine
(MME) and a cluster of fully programmable Tensor Processing
Cores (TPCs). This combination allows Gaudi to efficiently
handle various DL operations, both matrix-based and non-
matrix-based, with high performance and flexibility.

Despite the potential showcased by Gaudi, Softmax opera-
tions in Transformers become a performance bottleneck when
processing long sequence inputs [8]. The main reasons are
©® The computational complexity of Softmax operations in
a Transformer is O(N?). @ Softmax operations are mapped
into TPC, but reduction operations in Softmax are not well-
suited for single instruction multiple data (SIMD) architectures
like TPC (see more details about TPC architecture in Section
II). Long sequences further exacerbate this problem especially
when the sequence length exceeds 2048. Overall, the limited
computational capability of TPC combined with complexities

of Softmax operations in Transformers hinders Gaudi’s overall

performance and efficiency.

Existing algorithmic approaches to optimize Transformers
fall into three categories: @ Exploiting the sparsity of attention
matrices, exemplified by methods such as Reformer [9] and
Big Bird [10]. ® Applying kernel methods [11], including
Performer [12] and Transformers as RNNs [4], to approximate
and eliminate Softmax operations. This attention mechanism is
referred to as linear attention because its complexity reduces
to O(N) upon the removal of Softmax. ® Combining diverse
attention methods to enhance Transformers’ performance. An
example is [13], which successfully integrates sparse and ker-
nel methods to improve model quality. While such integrations
often lead to models of higher quality, they may also result in
increased computational load and slower processing speeds.

Moreover, challenges arise when directly adapting these
efficient Transformer techniques to Gaudi processors. Specifi-
cally, Gaudi processors feature a heterogeneous compute archi-
tecture comprising Matrix Multiplication Engines (MME) and
Tensor Processing Cores (TPC). However, the sparse attention



mechanism, which introduces irregular memory access and
computation, is primarily mapped onto TPCs, leaving MMEs,
which are not programmable and only support dense matrix-
matrix operations, idle in scenarios requiring sparse attention.
Conversely, linear attention, which is fundamentally based on
matrix multiplication, can utilize almost all calculations on
MMEs due to their stronger computational capabilities, but
this leaves TPCs idle in such cases. This situation raises a
critical question: Can we effectively combine sparse and dense
attention mechanisms in a way that fully leverages both MME
and TPC, while maintaining the quality of the model?

To this end, we propose an optimized Gaudi-based
Transformer (called GFormer) for large language models
(LLMs) acceleration on the Gaudi processor. GFormer syn-
ergistically combines sparse and linear attention mechanisms
to enhance computational efficiency by fully leveraging both
MME and TPC while preserving model quality. Key compo-
nents of our framework include: @ The integration of diverse
attention mechanisms to optimize both computation efficiency
and model fidelity. @ The implementation of a windowed
local-context self-attention kernel utilizing the vector units
in TPC, aimed at maximizing computational throughput. &
The development of an efficient outer product TPC kernel
for handling a subset of the outer product operations in
causal linear attention, effectively balancing the workload
between MME and TPC. @ The introduction of an optimal
workload partitioning algorithm to ensure balanced utilization
of TPC and MME resources. To the best of our knowledge,
this is the first work that facilitates high-performance and
high-utilization LLM inference on heterogeneous hardware
like Gaudi processors. This exploration aims to harness the
computational capabilities of Gaudi and the characteristics of
LLMs, inspiring future innovative ML hardware designs.

The main contributions of this paper are summarized below:

o We introduce an innovative approach to integrate dis-
parate sparse and linear attention mechanisms. This
strategy is designed to fully utilize the computational
capabilities of MME and TPC on the Gaudi processor.

o We develop a windowed local-context self-attention ker-
nel that is specifically tailored for TPC. This kernel is
optimized to leverage TPC’s local memory and vectorized
load and store operations.

o We present an efficient outer product kernel for TPC, em-
ploying the vector unit (SIMD) to optimize the processing
of causal linear attention operations.

e We introduce a performance modeling technique for
TPC and MME. This model is instrumental in balancing
workloads between TPC and MME.

o We evaluate GFormer on GPT and ViT models and find
that it achieves up to 2x and 2.2 x speedups, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we present background information for
Transformers, the Gaudi processor architecture, the TPC pro-
gramming model, and our motivation.

A. Transformers

Transformer [1] architecture departs from previous
sequence-to-sequence models by relying on self-attention
to draw global dependencies among inputs, which allows it
to handle sequences of data in parallel and capture long-
range dependencies more effectively. Figure 1 presents the
architecture of a Transformer, which typically consists of an
encoder, a decoder, and other operations such as position
embedding. We describe the decoder for simplicity. A
decoder contains masked multi-head self-attention and a fully
connected feed-forward network. The masked multi-head self-
attention mechanism prevents the current token from attending
to tokens in masked positions. The feed-forward network
provides further transformation of the attention-aggregated
information.

Causal language models are just concerned with the
previous context (tokens on the left) when predicting the
next token in a sequence of tokens. In Softmax-based self
attention, we add an attention mask matrix into the raw
attention matrix to mask attention on the right of the current
position. All elements of the lower triangular part of the
attention mask matrix are 0, and the other elements of the
attention mask matrix are set to —oo. Here we refer to such
an attention mechanism as causal attention. Generative Pre-
trained Transformer (GPT) models [14] are based on the
Transformer decoder architecture. GPT models are typical
causal language models. GPT models are characterized by
their large scale, extensive pre-training on diverse text corpora,
and their ability to adapt to a wide range of tasks with minimal
task-specific modifications.

Vision Transformer (ViT) [3] adapts the Transformer for
image classification tasks. By treating images as sequences of
patches (akin to words in a sentence), ViT applies the self-
attention mechanism across these patches to capture global
dependencies within the image. ViT can attend to image tokens
bidirectionally (full access to the image tokens on the left and
right). This approach has demonstrated competitive or superior
performance to conventional convolutional neural networks
(CNNs) on image classification benchmarks.

B. Efficient Attention Mechanism

Efficient attention mechanisms aim to reduce the compu-
tational complexity traditionally associated with the Softmax-
based attention in Transformers, which scales quadratically
with the sequence length. Specifically, sparse attention selec-
tively focuses on a subset of key positions for each query in the
sequence, rather than attending to all positions. This selective
focus drastically reduces the number of computations and
memory requirements, as the attention matrix is no longer fully
dense but sparse. For example, Longformer [15] introduces a
sparse attention mechanism that judiciously selects a subset
of positions to attend to, blending local with a few global
attention patterns. Big Bird [10] incorporates a unique mix of
random, global, and sliding window attention. This approach
not only maintains the model’s ability to grasp complex
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Fig. 1. Overview of Transformer architecture.

dependencies over vast stretches of text but also does so with
enhanced flexibility and efficiency.

The equation softmax(QKT)V =~ ¢(Q)(¢(K)TV) ex-
presses the idea of linear attention. Linear attention first
uses the kernel method ¢ to project query ) and key K
matrices into feature spaces to approximate and remove Soft-
max operations. We can first compute (¢(K)7'V) to avoid
explicit calculation of attention matrix softmax(QK 7). Thus
the computation complexity of linear attention becomes O (V).
For example, “Transformers are RNNs” [4] employs a simple
feature map defined below:

o(z) = elu(z) + 1 (1)
The Performer [12] employs a randomized feature map to
approximate the Softmax attention.

C. Gaudi Processor Architecture

Gaudi processor is a specialized hardware accelerator de-
signed for deep learning training workloads [5]. As shown
in Figure 2, it features a heterogeneous compute architecture
with a Matrix Multiplication Engine (MME), eight fully pro-
grammable Tensor Processing Cores (TPC), and fast memory
and network units [16]. The MME is specifically tuned for
doing all operations that can be lowered to matrix multiplica-
tion, such as fully connected layers, convolutions, and batched
GEMM. The TPC is a very long instruction word (VLIW)
single instruction multiple data (SIMD) processor crafted for
deep learning nonlinear operations.

The fast memory and network units enhance intra-/inter-
processor data transfers. Four high-bandwidth memory (HBM)
devices provide 32 GB of capacity with one terabyte-per-
second of memory bandwidth. Shared memory can be used
to streamline the data exchange between MME and TPC. On-
chip ten 100 gigabit integrated remote direct memory access
(RDMA) over converged Ethernet (RoCE) ports facilitate
efficient inter-processor communication.

Matrix Multiplication Engine

TPC TPC TPC TPC
Local Local Local Local
Memory Memory Memory Memory
TPC TPC TPC TPC

Local Local Local Local
Memory Memory Memory Memory
Shared Memory

DMA

10 x 100 Gb Ethernet
w/ RDMA

Fig. 2. A high-level view of Gaudi architecture, which consists of Matrix
Multiplication Engine (MME), Tensor Processing Cores (TPC), Memory
Units (Local Memory, Shared Memory, DMA, HBM), and Connection Units
(Ethernet, PCle).

D. TPC Programming

PCle 4.0 x 16

a) TPC architecture: TPC is responsible for executing
non-linear deep learning operators. Its wide SIMD vector unit
supports 2048-bit SIMD operations with data types such as
float, bfloat16, INT16, INT32, and INTS. The TPC’s arithmetic
logic unit can execute up to 64 floats/INT32, 128 INT16, or
256 INTS operations per cycle. Multiple TPC cores in Gaudi
can be executed in parallel.

TPC processor includes four distinct memory spaces: scalar
local memory, vector local memory, global memory, and
configuration space. Global memory is accessed through spe-
cialized access points termed tensors. A 2,048-bit vector can
be loaded from or written to global memory every four cycles,
on average. Local memory of each TPC processor is divided
into scalar local memory (1 KB) and vector local memory (80
KB). Local memory can be either read from or written to on
every cycle with no bandwidth constraint [17].

b) TPC programming: TPC is programmed via TPC-C,
a derivative of C language. A TPC program contains TPC code
(kernel) and host glue code. TPC code is the actual kernel
implementation. TPC CLANG compiler is based on LLVM
and is used for TPC kernels’ compilation, simulation, and
debugging. Host glue code is executed on the host machine and
controls TPC kernels’ execution. A TPC kernel only accepts
tensors as inputs or outputs with dimensions ranging from 1 to
5. Index spacing, similar to threads in CUDA programming,
efficiently divides workloads among TPC processors. Each
index space member corresponds to an independent unit of
work executed on a single TPC. TPC CLANG compiler also
provides intrinsic functions for optimized kernel implemen-
tation. Intrinsics encompass arithmetic, bitwise, logical, load,
store, et al, operations.

E. Motivation

The impressive ability of Transformer-based models comes
from complex computational operations and the huge number
of parameters (340 million in BERT, 1.5 billion in GPT-
3) [2], [18], which results in intensive computations during
training and inference. Consequently, training and inference
of Transformer-based models is both time-consuming and
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resource-intensive. Utilizing a new efficient Transformer ar-
chitecture is a possible solution to reduce computation com-
plexity. However, the Gaudi-specific optimizations on Trans-
former architecture are not well studied. Additionally, Figure
3 shows the computation flow of Softmax-based self-attention.
Specifically, The input sequence z € RM*P= is projected
by three weight matrices Wg, Wi, Wy to corresponding
representations (), K and V. Following common terminology,
the @, K, and V are referred to as the “queries”, keys”,
and “values” respectively. Then Softmax is used to normalize
the attention matrix QK7 into a probability distribution. As
indicated in [8], The Softmax operation is only executed on
TPC and becomes a performance bottleneck when processing
long sequence inputs. But there is no existing approach to
breaking this bottleneck on Gaudi processors. Furthermore,
Gaudi processors feature heterogeneous compute architecture
comprising MME and TPC. It is worthwhile to balance work-
loads between MME and TPC to fully utilize the computation
resources of both MME and TPC. However, there is no
previous method to investigate balancing workloads on Gaudi
processors.

Q =Wy

K =xzWyg

V =xWy ()
, T

V' = softmax %4

III. DESIGN METHODOLOGY

In this section, we propose our optimized Transformer
design and optimized TPC kernels.

A. Overview of This Work

Figure 2 shows the overview of GFormer. The Gaudi
processor is a heterogeneous architecture comprising a cluster
of TPCs, as well as configurable MMEs. To maximize the
utilization of both TPC and MME, our proposed design ef-
fectively combines sparse and linear attention approximations
in the following ways. Inputs of self-attention are ), K, and
V. They are referred to as the “queries”, “keys” and “values”
respectively. Q, K,V € REXNXHXE where B, N, H, and
E are batch size, sequence length, the number of heads, head

size, respectively. We split @, K,V along the head dimension
(H) into two groups, as inputs of sparse attention and inputs of
linear attention. The partition is according to a hyperparameter
7. H x 7 is the number of heads for sparse attention and
H x (1 —7) is the number of heads for linear attention.

For the sparse attention part, to take full advantage of ca-
pabilities of SIMD architecture in TPC, we adopt a windowed
local-context self-attention and implement an efficient TPC
kernel. Window attention avoids irregular data access and
enables task partition across multiple TPCs. For the linear
attention part, inspired by the Performer, we use positive
orthogonal random features to approximate the Softmax opera-
tion in the Transformer [12]. Specifically, softmax(QK )V ~
#(Q)(¢p(K)TV), where ¢ is the feature map. Most calcula-
tions of linear attention are matrix-matrix multiplication and
can be mapped to MME, which brings two benefits. (1) it
takes advantage of powerful MME. (2) it avoids the data
movement between MME and TPC. Our mixed approach not
only maximizes hardware utilization in the Gaudi processor
but also helps reduce the accuracy loss caused by the Softmax
approximation. We expect that executions of TPC and MME
will overlap through our optimization.

B. TPC Best Fitted Sparse Attention

Problems: Softmax applies the standard exponential func-
tion to each element of the input tensor and normalizes these
values by dividing by the summation of all these exponentials
along a specific dimension. The computational complexity of
Softmax operations is O(NN?). Sparse attention, for example,
Longformer [15], Big Bird [10], is proposed to reduce com-
putational complexity.

Challenges: However, we face two challenges when per-
forming Softmax on an irregularly sparse attention matrix.
First, irregular data access leads to high data reading latency
and low TPC utilization. Second, it is not able to perform
index space mapping (divide workloads) between TPC pro-
cessors evenly. The TPC programming only supports linear
transformations for mapping, but the random number of non-
zero elements in each row of the sparse attention matrix causes
these linear transformations to fail.

Proposed design: To overcome these challenges and benefit
the computation pattern of TPC, we adopt a windowed local-
context self-attention. Our attention pattern employs a fixed-
size window attention surrounding each token. Using multiple
stacked layers of such windowed attention results in a large
receptive field, where top layers have access to all input
locations and have the capacity to build representations that
incorporate information across the entire input, similar to
CNNs. Given a fixed window size w, each token attends to w
previous (left) tokens. Besides, the window size is a multiple
of 64 to fully utilize vector units in TPC. Since a TPC’s wide
SIMD vector unit supports 2048-bit SIMD operations. The
TPC can execute up to 64 float operations in parallel in one
cycle. Additionally, the TPC prefers directly loading a vector
of values from global memory.
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Fig. 4. Overview of GFormer workflow.

Listing 1 illustrates the pseudocode of windowed attention
on TPC. Specifically, we declare exp_x in local memory (Line
1) to enable high-bandwidth reading and writing. We directly
load a vector of data into x from the input tensor (Line 22).
We apply the exponential function to each element of x to
generate y (Line 23). We store y into exp_x (Line 24). We
avoid writing y into global memory to speed up intermediate
data write and read since window size is typically less than
256, in which all exponential data y can be held in local
memory. Then we obtain reciprocal of the sum of exponents
and multiply all exponents by the reciprocal value (Lines 28-
40). The advantages of this TPC kernel are (1) utilizing local
memory. (2) vectorized load and store.

float64 exp_x[C];
void main (tensor in, tensor out,
int window_size) {
const int5 index_space_start
0

int window_start,

)

const int5 index_space_end
() + index_space_start;

const int width_step 64;

int w_s window_start;

int w_e window_start + window_size;

const int height_step = 1;

const int h_s=index_space_start[1l]xheight_step;

const int h_e=index_space_end[1l] xheight_step;

1 int5 coords = {w_s, h_s, 0, 0, 0};

12 float64 x, y, sum;

13 int e_1i = 0;

14 for (int h = h_s; h < h_e; h += height_step)
15 |

16 coords[1l] = h;

17 sum = 0.f;

18 for (int w = w_s; w < w_e; w += width_step)
19 {

20 coords[0] = w;

21 // Load input tensors

2 X = (coords, in);

23 y = (x);

24 exp_xle_1] = vy;

25 e 1 =-e_1 + 1;

26 sum = sum + y;

27 }

28 // Sum across the vector

sum
// 1/ (sum_of_exponents)

(sum) ;

7 of the heads is for sparse attention.

31 sum = (sum) ;

32 e_1i = 0;

33 for (int w = w_s; w < w_e; w += width_step)
34 {

35 coords[0] = w;

36 x = exp_x[e_1i];

37 e_i=e_1+ 1;

// Multiply exp (x
y = X * sum;

)

x 1/ (sum_of_exponents)

(coords, out,

y)i

Listing 1. Pseudocode of windowed attention on TPC.

C. Efficient Outer Product on TPC

Problems: For causal linear attention, we need manually to
let the current token only pay attention to previous tokens since
there is no attention mask matrix in the causal linear attention
scenario. Algorithm 1 describes computation procedures in
causal linear attention. Inputs of the procedure are @), K, and
V. The Q, K, and V are referred to as the “queries”, “keys”
and “values” respectively. The output of the procedure is H
(hidden state). Given that subscripting a matrix with ¢ returns
the i-th row as a vector. Within the loop, each pair of ); and
K is transformed using a random feature map ¢, resulting in
Q@ and K!. A normalized output vector H; is computed via
accumulation of outer product of K and V; from 1 to i.

Algorithm 1: Causal linear attention.

Inputs : {Q; } i1 {K; }1, 1 {Vt}iv=1
Outputs: {H; }Z 1
1 AeRFXF Z cRF
2 A, Z <+ 0,0
for i =1 to N do
# Rdnd()m feature maps
Q' Ki' + ¢(Q;), o(K3)
A+~ A+K/'QV
Z«+— Z+ K;’
HT « Ki/TS/(QiI .

3
4
5
6
7
8 Z)
9

end

Listing 2 describes the Pytorch implementation of the
causal linear attention on Gaudi. Specifically, MME is not



programmable and only supports matrix-matrix multiplication.
To achieve outer product operation, we first insert a dimension
of size one into k£ and v at the specified dimension. Then
we perform a batch matrix-matrix multiplication of k_prime
and v. We then perform the cumulative sum of at{_raw
and att_norm over the sequence length dimension. Figure
5 shows the profiling result of causal linear attention of such
implementation. We can find the MME is overwhelmed by
matrix-matrix multiplication. But TPC is quite idle. The reason
is that the last dimensions of k& and v (head dimension) are
usually less than 64, Lines 7 and 8 in Listing 2 are actually
B x H x N small matrix-matrix multiplication (1 x E'x E x 1),
where B, H, N, and FE are batch size, the number heads,
sequence length, head size, respectively. The small size of
matrix-matrix multiplication is not very efficient in MME.

i def linear_causal_attention(q, k, v):
2 # Project key and queries onto the feature

map space

3 k_prime = feature_map (k)

4 q_prime = feature_map(q)

6 ref_v = torch.ones_like(v.unsqueeze(2))

7 out_k_v=k_prime.unsqueeze (3)@v.unsqueeze (2)
8 norm = k_prime.unsqueeze(3) @ ref_v

9 # Consolidate against the feature dimension

10 att_raw = q_prime.unsqueeze(2) @ out_k_v
11 att_norm = ¢_prime.unsqueeze(2) @ norm
12 # Cumulative sum over the sequence

13 att_raw = att_raw.cumsum(l)

14 att_norm = att_norm.cumsum(l)

15 att_raw = att_raw.squeeze(2)

16 att_norm = att_norm.squeeze(2)

17 # Normalize

18 attn = att_raw / att_norm

19 return attn

Listing 2. Pseudocode of causal linear attention.

Challenges: To balance the utilization of both MME and
TPC. We propose to map a proportion of outer product oper-
ations onto TPC. However, the challenge is to implement an
efficient outer product kernel on TPC, which achieves similar
performance as MME. Otherwise, the outer products on TPC
will instead become a bottleneck. Specifically, we need to
solve the following issues: ‘1 We need to evenly distribute
outer product operations among TPC to avoid load imbalance
problems. 2 As aforementioned, we need the For loop to
implement B x H x N outer product operations, but serial
execution characteristics of the For loop will hinder instruction
parallelism on TPC. ‘3 In the outer product between vector 1
and vector 2. One element from vector 1 is multiplied by all
elements of vector 2. Additionally, we prefer to directly load
a vector of data into TPC for higher data reading bandwidth.
However, TPC intrinsics do not support accessing a specific
element in the vector data, which prevents us from achieving
the outer product.

Proposed implementation: To this end, we proposed an

Fig. 5. Profiling result of original causal linear attention.

Fig. 6. Profiling result of optimized causal linear attention.

efficient outer product kernel design in Listing 3 to solve the
aforesaid problems. Specifically, we assume the head size is
64. To solve the first issue, we partition computation using
index space (Lines 3-10) to evenly distribute outer product
operations among TPCs. We load a row of data from a_mat
and b_mat into a_v, and b_v, respectively (Lines 17-18). For
the second issue, We unroll the For loop to increase the
instruction level parallelism (Line 19). For the third issue, we
design a function, v_broadcast_element_f32 to enable access
to the element in vector and convert the element into vector.
The idea of v_broadcast_element_f32 is bit-level shuffle and
shift. We then can broadcast the element in a_v at w position
into a vector a_x. Then b_v is multiplied by a_x to generate
an output vector (Line 20-24). The advantages of this TPC
kernel are (1) vectorized load and store. (2) efficient vector
multiplication using SIMD. (3) without insertion of an extra
dimension (avoiding memory movement). Figure 6 depicts the
profiling result of causal linear attention after optimization.
Both MME and TPC have relatively balanced utilization.

| #define A_LEN 64

2 void main (tensor a_mat,

) {
const int5 index_space_start =
();

tensor b_mat, tensor o_mat

4 const int5 index_space_end =
() + index_space_start;
5 int5 a_coords = {0};
6 int5 b_coords = {0};
7 int5 o_coords = {0};
8 const int height_step = 1;

9 const int h_s=index_space_start[1l]height_step;
10 const int h_e=index_space_end[1l] xheight_step;

1 for (int h = h_s; h < h_e; h += height_step) {
12 a_coords([1l] = h;

13 a_coords[0] = 0;

14 b_coords[1l] = h;

15 o_coords[1l] = h;

16 // Load a row from a_mat, b_mat

17 float64 a_v= (a_coords, a_mat);



float64 b_v=
#pragma unroll (8)
for(int w = 0; w < A_LEN; w += 1) {
float64 a_x=
float64 out_v =
o_coords[0] = w * A_LEN;
(o_coords, o_mat, out_v);

(b_coords, b_mat);

(a_v, w);

(a_x, b_v);

Listing 3. Pseudocode of outer product on TPC.

D. Optimal Partition Algorithm

As discussed in Section III-A, to fully utilize both MME
and TPC, we partition ), K, and V along head dimension
according to a hyperparameter 7 for sparse attention and
linear attention. The overall system’s runtime is determined
by the maximum runtime between the TPC and MME, so it is
crucial to balance their respective workloads. We are required
to carefully determine the hyperparameter 7 to make MME
and TPC has balanced workloads. To achieve this balance,
we model computation latencies of both the TPC and MME,
which allows us to obtain the relationship between workload
and runtime for each engine. By estimating the runtime of TPC
and MME based on their respective workloads, we can obtain
the optimal partition when their runtime is equal or similar.

Specifically, we first analyze workloads’ floating point of
operations (FLOPs) quantitatively. We then develop a set of
micro-benchmarks to measure the average performance of
workloads on the TPC and MME. These micro-benchmarks
cover a wide range of sizes and sparsity levels. Algorithm 2
reveals how to obtain the optimal partition using FLOPs and
average performance. Inputs are initial partition (p), problem
size (size), FLOPs per unit of partition 0 (FLOPs_per0),
FLOPs per unit of partition 1 (FLOPs_perl), average per-
formance of partition O (perf0), and average performance of
partition 1 (perfl). The output (p’) is an optimal partition. We
estimate the computation latency of partitions O and 1 (Lines
3-4). We find the optimal partition when latency0 and latency1
are equal or similar (Line 5).

Algorithm 2: Optimal partition algorithm.
P p g
Inputs : p, size, FLOPs_per0, FLOPs_perl, perf0, perfl
Outputs: p’
FLOPs_p0 = p X size X FLOPs_per0
FLOPs_pl = (1-p) X size X FLOPs_perl
FLOPs_p0
latency0 = Wﬁopl
latencyl = ===

Find p’ let latency0 = latencyl

L I N S

By estimating and balancing their runtime, we can achieve
better overall performance on the Gaudi processor. Specifi-
cally, assuming Hj is the number of sparse heads, H; is the
number of linear heads, and From the perspective
of linear attention, the number of F<LOPS for applying random
features onto Q and K is 4BN (H; E)2. The number of FLOPs
for C = ¢(K)*V is 2BN(H1 E)?. The number of FLOPs for
#(Q)C is 2BN (H; E)?. Then the number of FLOPs for linear
attention is:

4BN(H\E)*+2BN(H,E)*+2BN(H,E)*> = 8BN(H, E)®

3)

Thus the computation latency for linear attention on MME can
be estimated as
8BN(H,E)? @
MME_perf

From the perspective of sparse attention, the number of
FLOPs for R = QK" is 2BHoENW, where W is the
window size. The number of FLOPs for sparse Softmax
A = sparse softmax(R) operations is 3SBHoNW, where W
is the window size. Then the number of FLOPs for sparse
attention is:

2BHoENW +3BHoNW =5BHoNW 5)

Thus the computation latency for sparse attention on TPC can
be estimated as

MME _latency =

_ 5BHoNW
TPC _latency = TPC perf 6)
We can obtain a suitable partition 7 when letting

TPC _latency is close to MME_latency.

IV. PERFORMANCE EVALUATION

In this section, we present our experimental setup and
demonstrate the effectiveness of GFormer compared with other
solutions using different models.

A. Experimental Setup

a) Platforms: We perform our experiments on one Ha-
bana Labs System 1 (HLS-1) [5] Al training system. We
implement HLS-1 using AWS EC2 DL1 instances [19]. The
HLS-1 incorporates eight Gaudi processors and two Gen 4.0
PCle switches. External host CPU is used to manage HLS-1
via PCle switches. Each Gaudi processor is equipped with 1
MME, 8 TPC, and 32 GB on-chip memory. All experiments
are on a single Gaudi processor.

b) Implementation details: We implement our proposed
models based on PyTorch. Gaudi software stack version is
1.14.0. The Gaudi software stack includes the graph compiler,
Gaudi driver, Gaudi firmware, and corresponding PyTorch.
The PyTorch version is 2.1.1.

¢) Models: For GPT model, we adopt GPT-Neo [20]
architecture in Huggingface [21]. Other representative LLMs
such as Llama [22] have similar structures. So for simplicity,
we just evaluate the GPT model. For ViT model, we use the
Vision Transformer [23] architecture in Huggingface. We set
batch size, the number of layers, the number of heads, and
head size as 4, 12, 16, and 64, respectively. These are realistic
scenarios of parameter configurations found in GPT-3 with 125
million parameters [20] and Vision Transformer (ViT) base
model [23].

B. Evaluation on Speedup of Sparse Attention Kernel

Figure 7 depicts the speedup of the windowed attention ker-
nel on different window sizes and sequence lengths. We vary
sequence length from 1k to 4k. Further increasing sequence
length causes memory errors. The baseline is Softmax-based
attention. Window 64 and Window 128 are short for windowed
attention with window sizes 64 and 128. As the sequence
length increases, the speedups of windowed attention over
baseline are up to 1.7x.
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Fig. 7. Speedup of windowed attention kernel.

C. Evaluation on Performance of Outer Product kernel

As illustrated in Figure 8, we compare the performance of
outer product kernels on both MME and TPC. As discussed in
§III-C we use batch matrix-matrix multiplication to implement
the outer product on MME. We directly implement our outer
product kernel on TPC using TPC intrinsic. To compare the
performance of outer product operations on CPU and GPU,
we vary sequence length from 1k to 4k and the corresponding
number of outer products varies from 64k to 512k. Even
though TPC is less computationally powerful than the MME,
the outer product kernel on TPC achieves a better performance
(1.2x) than the outer product on MME.

25

20

~—-MME TPC

—
9]

Time (ms)
=

64 128
Nums (k)

256 512

Fig. 8. Performance of Outer Product Kernel.

D. Evaluation on Partition

We evaluate our partition algorithm on both causal and
self-attention. Here we fix the sequence length to 4k. Here
we set MME_perf and TPC_perf as 13.37 TFLOPS and 2.31
TFLOPS according to extensive micro-benchmarks. Figure 9
shows the speedup over baseline using different percentages
of sparse attention. For causal attention, we find the ideal
number of sparse attention heads is 3 according to our partition
algorithm. The experiment also shows that there is maximum
speedup when the number of sparse attention heads is 3. For
self-attention, we find the ideal number of sparse attention
heads is 4 according to our partition algorithm. As shown in
the Figure 9. There is maximum speedup when the number
of sparse attention heads is 4. This experiment proves the
effectiveness of our partition algorithm.

—a&— Causal Self

6.25 12.5 18.75 25 31.25 37.5 43.75 50 56.25 62.5

Percent (%)

Fig. 9. Performance of different partition. Causal and self are short for causal
attention and self-attention.
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Fig. 10. Performance of causal attention.

E. Evaluation on Mixed Attention

GPT or ViT is composed of multiple identical attention
layers. Hence we evaluate the performance of a single attention
layer across different sequence lengths as shown in Figure 10
11. For causal attention, GFormer achieves up to 1.6x speedup
over the baseline. For self-attention, GFormer achieves up to
2.1x speedup over the baseline.

F. Evaluation on Speedup and Accuracy

We evaluate our method’s speedup and approximation accu-
racy in LLM and ViT. We compare it with baseline, Performer,
and Big Bird. The baseline uses Softmax attention. The
Performer adopts linear attention. The Big Bird uses sparse
attention. Our approach mixes sparse attention and linear
attention. All models contain 12 layers and 16 attention heads
in each layer.

a) LLM Speedup: Figure 12 shows the performance of
GPT with different attention mechanisms on Gaudi. Compared
with the baseline, The Performer takes 16% more run time
since causal linear attention in the GPT model has low
computation efficiency. GPT with GFormer achieves 2.0 x
speedup over baseline when sequence length is 6k due to
efficiently balancing computation of linear causal attention on
both MME and TPC.

b) LLM Accuracy: As shown in Table II, we compare
perplexity between different models across wikitext-103 [24]
and bookcorpus [25]. We pre-train all models on wikitext-103
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Fig. 12. Performance of GPT with our attention on Gaudi.

and bookcorpus for 120k steps. Lower Perplexity means better
model performance. Perplexity (PPL) is one of the most com-
mon metrics for evaluating autoregressive or causal language
models. Perplexity is defined as the exponentiated average neg-
ative log-likelihood of a sequence. For a tokenized sequence
X = (20,21,.2), PPL(x) = eap(—1 Y logp(a;lz<)).
The perplexity of our method is only 1.2 higher than the
baseline but lower than other methods.

To evaluate the performance of our method on real NLP
tasks, in Table I, we compare the performance of different
models using the General Language Understanding Evaluation
benchmark (GLUE) [26]. GLUE is a collection of resources
for training, evaluating, and analyzing natural language under-
standing systems. Here we follow the BERT architecture [2].
We pre-train all our models on wikitext-103 for 120k steps and
then fine-tune on GLUE. The average score of our method is
only 5 lower than the baseline but higher than other methods.

c¢) ViT Speedup: As shown in Figure 13, the ViT model
with Performer only achieves up to 1.1 X speedup over
baseline. ViT model with GFormer achieves up to 2.2 X
speedup over baseline since GFormer fully utilizes both MME
and TPC.

d) ViT Accuracy: To evaluate different models’ accuracy
in Vision Transformer. We pre-train all models on ImageNet
2012 [27] (1 million images, 1,000 classes) at a resolution
384x384. We set the patch size to 16x16. As illustrated in
Table III, ViT with GFormer has only 1.4% accuracy drop
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Fig. 13. Performance of ViT with our attention on Gaudi.
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Fig. 14. Performance of GPT on GPU and Gaudi.
compared with baseline.

G. Comparison with GPUs.

We evaluate the performance of GPT and ViT on both GPU
and Gaudi. The GPU type is V100 GPU with 32GB of memory
on Bridges-2 [28]. As shown in Figure 14, we compare the
GPT model with GFormer on Gaudi (GFormer-gaudi) with
the GPT model with Softmax attention on Gaudi (GPT-gaudi)
and the GPT model with Softmax attention on Gaudi on
GPU (GPT-gpu). GPT-gaudi only has a similar performance
to GPT-gpu. But it has worse performance when the sequence
length reaches 6k. But our proposed GFormer-gaudi always
has speedup over GPT-gpu, the speedup is up to 1.5 x when
the sequence length is 6k.

Figure 15 shows the performance comparison among ViT
with Softmax attention on GPU (ViT-gpu), ViT with Soft-
max attention on Gaudi (ViT-gaudi), and proposed ViT with
GFormer on Gaudi (GFormer-gaudi). ViT-gaudi is 1.5 X
on average slower than ViT-gpu. However, our proposed
GFormer-gaudi achieves up to 1.2x speedup over Soft-gpu.
These two experiments prove that transformer-based models
on Gaudi can achieve speedup over GPU when we fully utilize
its hardware resource.

V. RELATED WORK

Existing works exemplify the ongoing efforts to redesign
attention mechanisms from both algorithm and algorithm-
hardware co-deign aspects to balance computational efficiency



TABLE I
A COMPARISON OF THE GLUE SCORES BETWEEN THE BASELINE (SOFTMAX ATTENTION), KERNEL METHODS (PERFORMER), SPARSE ATTENTION (BIG
BIRD), AND OUR METHOD.

GLUE
Model | COLA (m) SST-2 (a) MRPC (fl/a) STS-B (p/s) QQP (fl/a) MNLI (a) QNLI (a) RTE (a) | Average
Baseline | 48.7 90.8 89.2/84.6 85.7/85.8 85.9/89.8 81.1 87.9 65.8 | 81.3
Performer | 39.3 90.1 84.7/75.6 81.0/80.7 83.4/88.1 76.6 83.5 613 | 76.4
Big Bird | 30.2 90.0 83.3/78.7 81.9/81.6 83.5/87.5 76.3 83.3 59.7 | 76.1
Our | 40.1 90.4 84.6/75.9 81.7/81.8 83.7/88.2 76.9 834 62.6 | 76.8
TABLE II 2000
A COMPARISON OF PERPLEXITY BETWEEN ALL THE MODELS ON —
WIKITEXT-103 AND BOOKCORPUS 1600
oVviT- OViT-gaudi OGF -gaudi
Model | wikitext-103 (ppl) | bookcorpus (ppl) 100 Lept — 1 Teand —orormersand
g
Baseline | 5.665 | 7.723 e
£ 800
Performer | 7.364 | 8.957 =
Big Bird | 7.798 | 9.132 400 H
GFormer | 6.837 | 8.558 0 1 ’_‘ |_‘
256 384 512
Image size
TABLE III

ToP-1 ACCURACY OF PRE-TRAINED VISION TRANSFORMER BASE ON
IMAGENET WITH DIFFERENT ATTENTION REPLACEMENTS. ACC. A
REPRESENTS THE AVERAGE ACCURACY DROP TO BASELINE.

Model Top-1 Acc  Acc. A
Baseline 81.5% -
Performer 79.9% -1.6%
Big Bird 79.6% -1.9%
GFormer 80.1% -1.4%

with the powerful representational capabilities of Transform-
ers. Specifically, Scatterbrain [13] presents a hybrid attention
algorithm that combines the benefits of sparse and low-rank
attention mechanisms. This approach aims to capture the
advantages of both methods, offering a more flexible and
efficient solution for approximating attention in Transformers.
Even though this method showcases the higher attention ap-
proximation accuracy, it doesn’t consider hardware efficiency.

Works such as DOTA [29] and ViTALiTy [30] exemplify
specific hardware designs to meet the unique demands of
Transformers. DOTA introduces a method to dynamically
identify and omit attentions with minimal impact on per-
formance, allowing for significant acceleration by reducing
computational load. ViTALiTy, on the other hand, combines
low-rank and sparse approximation techniques within a novel
hardware design to accelerate Vision Transformers, showcas-
ing the potential of custom hardware solutions to optimize
performance efficiently.

On the other hand, several works leverage existing hardware
to accelerate Transformer models effectively. Fang, et al. [31]
presents a co-optimized framework that intelligently adjusts

Fig. 15. Performance of ViT on GPU and Gaudi.

both the algorithmic and hardware aspects to exploit the spar-
sity of transformers, making it possible to achieve substantial
acceleration without the need for specialized hardware. Yu,
et al [32] discuss GPU-friendly 2:4 fine-grained structured
sparsity and quantization for Transformers. Liu et al. [33]
exploit the dynamic sparsity in the attention of Transformers
and provide corresponding GPU optimization. Zhao, et al.
[34] introduce an FPGA-based Transformer accelerator with
an output block stationary dataflow to minimize the repeated
memory access by block-level and vector-level broadcasting.

While specialized hardware designs offer increased flexibil-
ity, they necessitate knowledge of the hardware domain and
pose challenges in real-world implementation. Our GFormer
leverages existing hardware, enabling large-scale applica-
tions in real-world scenarios without additional effort. Unlike
FPGA-based designs, which are complex to program, GFormer
is user-friendly. Moreover, GFormer provides an economical
alternative to GPU designs, delivering comparable function-
ality and performance at a lower cost. Targeting commercial,
emerging heterogeneous hardware, GFormer underscores the
potential of heterogeneous computing as an effective path for
accelerating Transformer-based DL tasks.

VI. CONCLUSION AND FUTURE WORK

Softmax operation is one of the major performance bottle-
necks on the Gaudi processor, particularly when processing
long sequences. In this work, we introduce an integrated
approach that combines sparse and linear attention mecha-
nisms. Our approach includes a windowed local-context self-
attention TPC kernel and an efficient outer product TPC kernel



for processing causal linear attention operations. We evaluate
our proposed solution in GPT and ViT models on a Gaudi
processor. The evaluation shows that our solution achieves up
to 2 x and 2.2 x speedups in GPT and ViT compared to the
original models using Softmax attention.

In the future, we intend to initially extend our work to
enable distributed LLM acceleration across multiple Gaudi
cards, focusing on optimized communication. Subsequently,
we will adapt our mixed attention mechanism for use with
various heterogeneous Al accelerators, including Versal ACAP.
Lastly, we aim to investigate the application of Gaudi in other
emerging ML tasks, such as graph neural networks.
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