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Sets and rules have been used for easier programming since the late 1960s. While sets are central to
database programming with SQL and are also supported as built-ins in high-level languages like Python,
logic rules have been supported as libraries or in rule-based languages with limited extensions for other
features. However, rules are central to deductive database and knowledge base programming, and better
support is needed.

This system demonstration highlights the design of a powerful language, Alda [16, 14], that supports
logic rules together with sets, functions, updates, and objects, all as seamlessly integrated built-ins,
including concurrent and distributed processes. The key idea is to allow sets of rules to be defined in
any scope, support predicates in rules as set-valued variables that can be used and updated directly, and
support queries using rules as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics [15] and is implemented by building on an object-oriented language
(DistAlgo [13, 3] extending Python [18]) and an efficient logic rule system (XSB [19, 20]). It has been
used successfully on benchmarks and problems from a wide variety of application domains—including
those in OpenRuleBench [6], role-based access control (RBAC) [1, 4], and program analysis—with
generally good performance [17]. Our implementation and benchmarks are publicly available [23].

This system demonstration shows how Alda is used for OpenRuleBench benchmarks, ANSI standard
for role-based access control, and program analysis for large Python programs, including with persistence
support for large datasets, all programmed seamlessly without boiler-plate code. For comparisons with
related work on rule languages and benchmarking, see [16, 14, 17].

An example

Figure 1 shows an example program in Alda. It is for a small portion of the ANSI standard for role-based
access control (RBAC) [1, 4]. It shows the uses (with line numbers in parentheses) of

• classes (1-8, 9-21) with inheritance (9, 11), and object creation (22) with setup (2-3, 10-12);

• sets, including relations (3, 12);

• methods, including procedures (5-6, 13-14) and functions (7-8, 18-19, 20-21), and calls (23, 24);

• updates, including initialization (3, 12) and membership changes (6, 14); and

• queries, including set queries (8, 19 after union “+”, 21) and queries using rules (19 before “+”);

where the rules are defined in a rule set (15-17), explained in the next part.
Note that queries using set comprehensions (e.g., on lines 8, 19, 21) can also be expressed by using

rules and inference, even though comprehensions are more widely used. However, only some queries
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1 class CoreRBAC: # class for Core RBAC component/object

2 def setup (): # method to set up the object , with no arguments

3 self.USERS , self.ROLES , self.UR := {},{},{}

4 # set users , roles , user -role pairs to empty sets

5 def AddRole(role): # method to add a role

6 ROLES.add(role) # add the role to ROLES

7 def AssignedUsers(role): # method to return assigned users of a role

8 return {u: u in USERS | (u,role) in UR} # return set of users having the role
...

9 class HierRBAC extends CoreRBAC: # Hierarchical RBAC extending Core RBAC

10 def setup ():

11 super (). setup () # call setup of CoreRBAC , to set sets as in there

12 self.RH := {} # set ascendant -descendant role pairs to empty set

13 def AddInheritance(a,d): # to add inherit. of an ascendant by a descendant

14 RH.add((a,d)) # add pair (a,d) to RH

15 rules trans_rs: # rule set defining transitive closure

16 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)

17 path(x,y) if edge(x,z), path(z,y) # ... if edge holds for (x,z) and for (z,y)

18 def transRH (): # to return transitive RH and reflexive role pairs

19 return infer(path , edge=RH, rules=trans_rs) + {(r,r): r in ROLES}

20 def AuthorizedUsers(role): # to return users having a role transitively

21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}
...

22 h = new(HierRBAC , []) # create HierRBAC object h, with no args to setup

23 h.AddRole('chair ') # call AddRole of h with role 'chair'
...

24 h.AuthorizedUsers('chair') # call AuthorizedUsers of h with role `chair '
...

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC). In rules trans_rs, the
first rule says there is a path from x to y if there is an edge from x to y, and the second rule says there is a
path from x to y if there is an edge from x to z and there is an edge from z to y. The call to infer queries
and returns the set of pairs for which path holds given that edge holds for exactly the pairs in set RH, by
doing inference using rules in trans_rs.

using rules and inference can be expressed by using comprehensions; queries using recursive rules (e.g.,
on lines 16-17) cannot be expressed using comprehensions.

Rules with sets, functions, updates, and objects

In Alda, rules are defined in rule sets, each with a name and optional declarations for the predicates in
the rules.

ruleset ::= rules name (declarations): rule+
rule ::= p(arg1, ..., arga) if p1(arg11, ..., arg1a1), ..., pk(argk1, ..., argkak)

In the rule form, p, p1, ..., pk denote predicates, p(arg1, ..., arga) denotes that p holds for its tuple of
arguments, and if denotes that its left-side conclusion holds if its right-side conditions all hold. In a rule
set, predicates not in any conclusion are called base predicates; the other predicates are called derived
predicates.

The key ideas of seamless integration of rules with sets, functions, updates, and objects are:
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1. a predicate is a set-valued variable that holds the set of tuples for which the predicate is true;

2. queries using rules are calls to an inference function, infer, that computes desired values of derived
predicates using given values of base predicates;

3. values of base predicates can be updated directly as for other variables, whereas values of derived
predicates can only be updated by infer; and

4. predicates and rule sets can be object attributes as well as global and local names, just as variables
and functions can.

Declarative semantics of rules are ensured by automatically maintaining values of derived predicates
when values of base predicates are updated, by appropriate implicit calls to infer.

For example, in Figure 1, one could use an object field transRH in place of calls to transRH() in
AuthorizedUsers(role), use the following rule set instead of trans_rs, and remove transRH().

rules transRH_rs: # no need to call infer explicitly

transRH(x,y) if RH(x,y)

transRH(x,y) if RH(x,z), transRH(z,y)

transRH(x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer.

Higher-order, patterns, distributed programming, and more

Higher-order. Note that predicates in rules as set-valued variables, e.g., edge, and calling infer to take
or return values of set variables, e.g., RH in edge=RH, avoids the need of high-order predicates or other
sophisticated features, e.g., [2], to reuse rules for different predicates in logic languages.

Patterns. Alda also supports tuple patterns for set elements in set queries (as in DistAlgo [13]) and in
queries using rules, e.g., (1,=x,y) in p matches any triple in set p whose first element is 1 and whose
second element equals the value of x, and binds y to the third element if such a triple exists.

Distributed programming. Of course, by building on DistAlgo, Alda also supports distributed pro-
gramming with distributed processes, message passing, and high-level queries of message histories, e.g.,
for distributed RBAC [7, 9], also called trust management [5], in decentralized systems.

Declarations for predicates in rules. Declarations in rules could specify predicate types and scopes,
but are designed more importantly for specifying assumptions about predicates being certain, complete,
closed, or not [10, 11, 12]. This is to give respective desired semantics for rules with unrestricted nega-
tion, quantification, and aggregation.

Python syntax. Note that the examples discussed use an ideal syntax, while the Alda implementation
supports the Python syntax. For example, x := {} is written as x = set() in Python syntax.

Implementation. The Alda implementation compiles rule sets in rules and queries using infer to XSB
rules and queries, and compiles the rest to Python, which calls XSB to do the inference. The current
implementation supports primarily Datalog rules, but also handles unrestricted negation by using XSB’s
computation of the well-founded semantics [24]. More general forms of rules and queries can be com-
piled to rules and queries in XSB or other rule systems using the same approach. In general, any efficient
inference algorithm and implementation method can be used to compute the semantics of rules and infer.
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Future work. Future work includes (1) support for easy use of different desired semantics, especially
with modular use of rules, similar to knowledge units in DA-logic [11]; and (2) efficient implementation
with complexity guarantees [8, 21, 22] for computing different desired semantics.
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