
To appear in EPTCS.
© Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin
This work is licensed under the
Creative Commons Attribution License.

Alda: Integrating Logic Rules with Everything Else, Seamlessly
(System Demonstration)*

Yanhong A. Liu Scott D. Stoller Yi Tong Bo Lin
Computer Science Department, Stony Brook University, Stony Brook, NY

{liu,stoller,yittong}@cs.stonybrook.edu

Sets and rules have been used for easier programming since the late 1960s. While sets are central to
database programming with SQL and are also supported as built-ins in high-level languages like Python,
logic rules have been supported as libraries or in rule-based languages with limited extensions for other
features. However, rules are central to deductive database and knowledge base programming, and better
support is needed.

This system demonstration highlights the design of a powerful language, Alda [16, 14], that supports
logic rules together with sets, functions, updates, and objects, all as seamlessly integrated built-ins,
including concurrent and distributed processes. The key idea is to allow sets of rules to be defined in
any scope, support predicates in rules as set-valued variables that can be used and updated directly, and
support queries using rules as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics [15] and is implemented by building on an object-oriented language
(DistAlgo [13, 3] extending Python [18]) and an efficient logic rule system (XSB [19, 20]). It has been
used successfully on benchmarks and problems from a wide variety of application domains—including
those in OpenRuleBench [6], role-based access control (RBAC) [1, 4], and program analysis—with
generally good performance [17]. Our implementation and benchmarks are publicly available [23].

This system demonstration shows how Alda is used for OpenRuleBench benchmarks, ANSI standard
for role-based access control, and program analysis for large Python programs, including with persistence
support for large datasets, all programmed seamlessly without boiler-plate code. For comparisons with
related work on rule languages and benchmarking, see [16, 14, 17].

An example

Figure 1 shows an example program in Alda. It is for a small portion of the ANSI standard for role-based
access control (RBAC) [1, 4]. It shows the uses (with line numbers in parentheses) of

• classes (1-8, 9-21) with inheritance (9, 11), and object creation (22) with setup (2-3, 10-12);

• sets, including relations (3, 12);

• methods, including procedures (5-6, 13-14) and functions (7-8, 18-19, 20-21), and calls (23, 24);

• updates, including initialization (3, 12) and membership changes (6, 14); and

• queries, including set queries (8, 19 after union “+”, 21) and queries using rules (19 before “+”);

where the rules are defined in a rule set (15-17), explained in the next part.
Note that queries using set comprehensions (e.g., on lines 8, 19, 21) can also be expressed by using

rules and inference, even though comprehensions are more widely used. However, only some queries

*This work was supported in part by NSF under grants CCF-1954837, CCF-1414078, and IIS-1447549 and ONR under
grants N00014-21-1-2719, N00014-20-1-2751, and N00014-15-1-2208.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration)

1 class CoreRBAC: # class for Core RBAC component/object

2 def setup (): # method to set up the object , with no arguments

3 self.USERS , self.ROLES , self.UR := {},{},{}

4 # set users , roles , user -role pairs to empty sets

5 def AddRole(role): # method to add a role

6 ROLES.add(role) # add the role to ROLES

7 def AssignedUsers(role): # method to return assigned users of a role

8 return {u: u in USERS | (u,role) in UR} # return set of users having the role
...

9 class HierRBAC extends CoreRBAC: # Hierarchical RBAC extending Core RBAC

10 def setup ():

11 super (). setup () # call setup of CoreRBAC , to set sets as in there

12 self.RH := {} # set ascendant -descendant role pairs to empty set

13 def AddInheritance(a,d): # to add inherit. of an ascendant by a descendant

14 RH.add((a,d)) # add pair (a,d) to RH

15 rules trans_rs: # rule set defining transitive closure

16 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)

17 path(x,y) if edge(x,z), path(z,y) # ... if edge holds for (x,z) and for (z,y)

18 def transRH (): # to return transitive RH and reflexive role pairs

19 return infer(path , edge=RH, rules=trans_rs) + {(r,r): r in ROLES}

20 def AuthorizedUsers(role): # to return users having a role transitively

21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}
...

22 h = new(HierRBAC , []) # create HierRBAC object h, with no args to setup

23 h.AddRole('chair ') # call AddRole of h with role 'chair'
...

24 h.AuthorizedUsers('chair') # call AuthorizedUsers of h with role `chair '
...

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC). In rules trans_rs, the
first rule says there is a path from x to y if there is an edge from x to y, and the second rule says there is a
path from x to y if there is an edge from x to z and there is an edge from z to y. The call to infer queries
and returns the set of pairs for which path holds given that edge holds for exactly the pairs in set RH, by
doing inference using rules in trans_rs.

using rules and inference can be expressed by using comprehensions; queries using recursive rules (e.g.,
on lines 16-17) cannot be expressed using comprehensions.

Rules with sets, functions, updates, and objects

In Alda, rules are defined in rule sets, each with a name and optional declarations for the predicates in
the rules.

ruleset ::= rules name (declarations): rule+
rule ::= p(arg1, ..., arga) if p1(arg11, ..., arg1a1), ..., pk(argk1, ..., argkak)

In the rule form, p, p1, ..., pk denote predicates, p(arg1, ..., arga) denotes that p holds for its tuple of
arguments, and if denotes that its left-side conclusion holds if its right-side conditions all hold. In a rule
set, predicates not in any conclusion are called base predicates; the other predicates are called derived
predicates.

The key ideas of seamless integration of rules with sets, functions, updates, and objects are:



Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin 3

1. a predicate is a set-valued variable that holds the set of tuples for which the predicate is true;

2. queries using rules are calls to an inference function, infer, that computes desired values of derived
predicates using given values of base predicates;

3. values of base predicates can be updated directly as for other variables, whereas values of derived
predicates can only be updated by infer; and

4. predicates and rule sets can be object attributes as well as global and local names, just as variables
and functions can.

Declarative semantics of rules are ensured by automatically maintaining values of derived predicates
when values of base predicates are updated, by appropriate implicit calls to infer.

For example, in Figure 1, one could use an object field transRH in place of calls to transRH() in
AuthorizedUsers(role), use the following rule set instead of trans_rs, and remove transRH().

rules transRH_rs: # no need to call infer explicitly

transRH(x,y) if RH(x,y)

transRH(x,y) if RH(x,z), transRH(z,y)

transRH(x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer.

Higher-order, patterns, distributed programming, and more

Higher-order. Note that predicates in rules as set-valued variables, e.g., edge, and calling infer to take
or return values of set variables, e.g., RH in edge=RH, avoids the need of high-order predicates or other
sophisticated features, e.g., [2], to reuse rules for different predicates in logic languages.

Patterns. Alda also supports tuple patterns for set elements in set queries (as in DistAlgo [13]) and in
queries using rules, e.g., (1,=x,y) in p matches any triple in set p whose first element is 1 and whose
second element equals the value of x, and binds y to the third element if such a triple exists.

Distributed programming. Of course, by building on DistAlgo, Alda also supports distributed pro-
gramming with distributed processes, message passing, and high-level queries of message histories, e.g.,
for distributed RBAC [7, 9], also called trust management [5], in decentralized systems.

Declarations for predicates in rules. Declarations in rules could specify predicate types and scopes,
but are designed more importantly for specifying assumptions about predicates being certain, complete,
closed, or not [10, 11, 12]. This is to give respective desired semantics for rules with unrestricted nega-
tion, quantification, and aggregation.

Python syntax. Note that the examples discussed use an ideal syntax, while the Alda implementation
supports the Python syntax. For example, x := {} is written as x = set() in Python syntax.

Implementation. The Alda implementation compiles rule sets in rules and queries using infer to XSB
rules and queries, and compiles the rest to Python, which calls XSB to do the inference. The current
implementation supports primarily Datalog rules, but also handles unrestricted negation by using XSB’s
computation of the well-founded semantics [24]. More general forms of rules and queries can be com-
piled to rules and queries in XSB or other rule systems using the same approach. In general, any efficient
inference algorithm and implementation method can be used to compute the semantics of rules and infer.



4 Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration)

Future work. Future work includes (1) support for easy use of different desired semantics, especially
with modular use of rules, similar to knowledge units in DA-logic [11]; and (2) efficient implementation
with complexity guarantees [8, 21, 22] for computing different desired semantics.

References

[1] ANSI INCITS (2004): Role-Based Access Control. ANSI INCITS 359-2004, American National Standards
Institute, International Committee for Information Technology Standards.

[2] Weidong Chen, Michael Kifer & David S. Warren (1993): HiLog: A Foundation for Higher-Order Logic
Programming. Journal of Logic Programming 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J.

[3] (2024): DistAlgo. http://distalgo.cs.stonybrook.edu. Accessed July 8, 2024.

[4] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn & Ramaswamy Chandramouli (2001):
Proposed NIST Standard for Role-Based Access Control. ACM Transactions on Information and Systems
Security 4(3), pp. 224–274, doi:10.1145/501978.501980.

[5] Ninghui Li, John C. Mitchell & William H. Winsborough (2002): Design of a Role-Based Trust-Management
Framework. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 114–130,
doi:10.1109/SECPRI.2002.1004366.

[6] Senlin Liang, Paul Fodor, Hui Wan & Michael Kifer (2009): OpenRuleBench: An Analysis of the Perfor-
mance of Rule Engines. In: Proceedings of the 18th International Conference on World Wide Web, ACM
Press, pp. 601–610, doi:10.1145/1526709.1526790.

[7] Yanhong A. Liu (2018): Role-Based Access Control as a Programming Challenge. In: LPOP: Challenges
and Advances in Logic and Practice of Programming, https://arxiv.org/abs/2008.07901, pp. 14–17,
doi:10.48550/arXiv.2008.07901.

[8] Yanhong A. Liu & Scott D. Stoller (2009): From Datalog Rules to Efficient Programs with Time
and Space Guarantees. ACM Transactions on Programming Languages and Systems 31(6), pp. 1–38,
doi:10.1145/1552309.1552311.

[9] Yanhong A. Liu & Scott D. Stoller (2018): Easier Rules and Constraints for Programming. In: LPOP:
Challenges and Advances in Logic and Practice of Programming, https://arxiv.org/abs/2008.07901,
pp. 52–60, doi:10.48550/arXiv.2008.07901.

[10] Yanhong A. Liu & Scott D. Stoller (2020): Founded Semantics and Constraint Semantics of Logic
Rules. Journal of Logic and Computation 30(8), pp. 1609–1638, doi:10.1093/logcom/exaa056. Also
http://arxiv.org/abs/1606.06269.

[11] Yanhong A. Liu & Scott D. Stoller (2021): Knowledge of Uncertain Worlds: Programming with Logical
Constraints. Journal of Logic and Computation 31(1), pp. 193–212, doi:10.1093/logcom/exaa077. Also
https://arxiv.org/abs/1910.10346.

[12] Yanhong A. Liu & Scott D. Stoller (2022): Recursive Rules with Aggregation: A Simple Unified Se-
mantics. Journal of Logic and Computation 32(8), pp. 1659–1693, doi:10.1093/logcom/exac072. Also
http://arxiv.org/abs/2007.13053.

[13] Yanhong A. Liu, Scott D. Stoller & Bo Lin (2017): From Clarity to Efficiency for Distributed Algorithms.
ACM Transactions on Programming Languages and Systems 39(3), pp. 12:1–12:41, doi:10.1145/2994595.

[14] Yanhong A. Liu, Scott D. Stoller, Yi Tong & Bo Lin (2023): Integrating logic rules with
everything else, seamlessly. Theory and Practice of Logic Programming 23(4), pp. 678–695,
doi:10.1017/S1471068423000108.

[15] Yanhong A. Liu, Scott D. Stoller, Yi Tong & Bo Lin (2023): Integrating logic rules with everything else,
seamlessly. Computing Research Repository arXiv:2305.19202 [cs.PL], doi:10.48550/arXiv.2305.19202.

https://doi.org/10.1016/0743-1066(93)90039-J
http://distalgo.cs.stonybrook.edu
https://doi.org/10.1145/501978.501980
https://doi.org/10.1109/SECPRI.2002.1004366
https://doi.org/10.1145/1526709.1526790
https://arxiv.org/abs/2008.07901
https://doi.org/10.48550/arXiv.2008.07901
https://doi.org/10.1145/1552309.1552311
https://arxiv.org/abs/2008.07901
https://doi.org/10.48550/arXiv.2008.07901
https://doi.org/10.1093/logcom/exaa056
http://arxiv.org/abs/1606.06269
https://doi.org/10.1093/logcom/exaa077
https://arxiv.org/abs/1910.10346
https://doi.org/10.1093/logcom/exac072
http://arxiv.org/abs/2007.13053
https://doi.org/10.1145/2994595
https://doi.org/10.1017/S1471068423000108
https://doi.org/10.48550/arXiv.2305.19202


Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin 5

[16] Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin & K. Tuncay Tekle (2022): Programming with
Rules and Everything Else, Seamlessly. Computing Research Repository arXiv:2205.15204 [cs.PL],
doi:10.48550/arXiv.2205.15204.

[17] Yanhong A. Liu, Scott D. Stoller, Yi Tong & K. Tuncay Tekle (2023): Benchmarking for Integrating Logic
Rules with Everything Else. In: Proceedings of the 39th International Conference on Logic Programming
(Technical Communications), Open Publishing Association, pp. 12–26, doi:10.4204/EPTCS.385.3.

[18] Python Software Foundation (2024): Python. http://python.org/.
[19] Terrance Swift & David S Warren (2012): XSB: Extending Prolog with tabled logic programming. Theory

and Practice of Logic Programming 12(1-2), pp. 157–187, doi:10.1017/S1471068411000500.
[20] Theresa Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire, Prasad Rao, Baoqiu Cui, Ernie John-

son, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve Dawson & Michael Kifer (2022): The XSB
System Version 5.0,x. http://xsb.sourceforge.net. Latest release May 12, 2022.

[21] K. Tuncay Tekle & Yanhong A. Liu (2010): Precise Complexity Analysis for Efficient Datalog Queries. In:
Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming, pp. 35–44, doi:10.1145/1836089.1836094.

[22] K. Tuncay Tekle & Yanhong A. Liu (2011): More Efficient Datalog Queries: Subsumptive Tabling Beats
Magic Sets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,
pp. 661–672, doi:10.1145/1989323.1989393.

[23] Yi Tong, Bo Lin, Yanhong A. Liu & Scott D. Stoller (2018 (Latest update May, 2024)): Alda. http:

//github.com/DistAlgo/alda.
[24] Allen Van Gelder, Kenneth Ross & John S. Schlipf (1991): The Well-Founded Semantics for General Logic

Programs. Journal of the ACM 38(3), pp. 620–650, doi:10.1145/116825.116838.

https://doi.org/10.48550/arXiv.2205.15204
https://doi.org/10.4204/EPTCS.385.3
http://python.org/
https://doi.org/10.1017/S1471068411000500
http://xsb.sourceforge.net
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.1145/1989323.1989393
http://github.com/DistAlgo/alda
http://github.com/DistAlgo/alda
https://doi.org/10.1145/116825.116838

