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Sparse data structures are ubiquitous in modern computing, and numerous formats have been designed to
represent them. These formats may exploit speci�c sparsity patterns, aiming to achieve higher performance
for key numerical computations than more general-purpose formats such as CSR and COO.

In this work we present UZP, a new sparse format based on polyhedral sets of integer points. UZP is a �exible
format that subsumes CSR, COO, DIA, BCSR, etc., by raising them to a common mathematical abstraction:
a union of integer polyhedra, each intersected with an a�ne lattice. We present a modular approach to
building and optimizing UZP: it captures equivalence classes for the sparse structure, enabling the tuning of
the representation for target-speci�c and application-speci�c performance considerations. UZP is built from
any input sparse structure using integer coordinates, and is interoperable with existing software using CSR
and COO data layout. We provide detailed performance evaluation of UZP on 200+ matrices from SuiteSparse,
demonstrating how simple and mostly unoptimized generic executors for UZP can already achieve solid
performance by exploitingZ-polyhedra structures.
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1 Introduction
Sparse computations typically trade o� the regularity and ease-to-optimize of dense versions for
the bene�ts of reducing storage and computation time, by avoiding operations that produce a
zero value (e.g., multiplications by zero). While the throughput may decrease compared to a dense
implementation, sparse implementations compensate by reducing the total number of operations
to perform.
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Sparse computations are typically implemented using specialized data structures that can conve-
niently represent arbitrary sets of nonzero coordinates. They must cope with the irregular nature
of these sets of nonzeros, in contrast to the regular loops and accesses used in dense computations.
In sparse computations, the set of nonzero coordinates to operate on is typically stored explicitly,
in contrast to dense codes where the coordinates are computed using, e.g., a�ne functions of the
loop iterators. Such approaches enable the modeling of arbitrary sparsity, irrespective of any “struc-
ture” it may expose, making formats like CSR, CSC, COO, BCSR, etc. general-purpose. However,
format-speci�c executor programs need to be created to implement a particular computation on
these stored nonzero coordinates [23], and these executors must be optimized to the particular
hardware targeted [4, 36, 46].

On the other hand, dense computations are typically implemented using regular loops and simple
array accesses, where indices are computed as a function of loop iterators, enabling aggressive
optimizations such as tiling and parallelization [5] including e�cient SIMD vectorization [22]. There
is a large landscape of frameworks to optimize dense computations, and especially dense linear
algebra, for a multitude of hardware targets. As dense linear algebra computations often �t the
restrictions of polyhedral compilation, i.e., that loops and array accesses are represented using a�ne
functions of the loop iterators, numerous polyhedral frameworks can automatically optimize such
dense computations. Recently, the A�ne MLIR dialect [25] has gained popularity as it bridges the
gap between expressing regular dense computations (e.g., arising from deep learning applications)
and the polyhedral optimizers that have proved successful over the past decade [5, 43]. In this work,
we target the expression of sparse computations as a union of smaller dense computations.

Approaches developed to improve the performance of sparse computations range from Inspec-
tor/Executor (I/E) frameworks using general-purpose sparse formats [35, 40], where the sparse
structure is traversed and manipulated (partitioned, reordered) prior to computation to enable
a more e�cient executor program; to sparsity-speci�c approaches where code is generated at
compile-time for one speci�c set of nonzero coordinates, removing all indirection arrays [2] and
enabling e�ective SIMD vectorization [9, 22, 47]. In between, numerous formats exploiting some
form of regularity in the sparsity have also been developed, e.g., DIA and BCSR, to alleviate part of
the performance penalty of using structure-agnostic general-purpose formats like CSR or COO.
An open question, recurring for practitioners, is to �gure out which format(s) perform best

for a particular sparsity structure, and how best to optimize the computation (executors) for a
particular hardware target. In this work we propose an alternate approach, which reconciles sparse
and dense computations and their optimizations. We present a tunable uni�ed sparse representation
format, inspired from recent results in reconstructing sparse sequences of integer tuples as unions
of polyhedra and lattices [2, 34]. We introduce UZP, a novel and highly �exible sparse format that
exploits a simple yet fundamental observation: that any set of sparse integer coordinates can be
equivalently represented as a union of dense sets of such coordinates. To an extreme, an arbitrary
set of = sparse coordinates can be represented with = dense sets containing 1 coordinate each,
preserving generality. To another extreme, e.g., if only points along the diagonal are nonzero, a
single dense set {(8, 9) : 0  8 < = ^ 8 = 9} is su�cient. This idea generalizes to sparse tensors
of arbitrary dimensionality, which UZP supports natively. In UZP, or Union of Z-Polyhedra,
these regular sets are modeled as the intersection of a polyhedron of integer points and an a�ne
multidimensional integer lattice [19]. UZP supports strides between coordinates represented within
one Z-polyhedron and therefore can exploit some forms of structure in the sparsity patterns. We
make the following contributions:
• We introduce the UZP sparse format, its design principles and �exibility, and its ability to
seamlessly subsume other formats such as DIA and BCSR. This is presented in Sec. 2.
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• We present a modular approach to build UZP from a sparse structure, enabling the design of
simple generic executors for UZP targeting here SpMV computations on CPUs, computing on
UZP by using regular computations without any indirection array. This is presented in Sec. 3.

• UZP is designed to seamlessly enable alternate representations of the same sparse structure. We
discuss techniques to quickly build UZP from any sparse structure, and tune the UZP representa-
tion for di�erent objectives such as data compression or performance of a particular application.
This is presented in Sec. 4.

• We extensively evaluate UZP on a set of 229 matrices broadly selected from SuiteSparse, targeting
SpMV computations on single and multi-core CPUs. We compare performance against Intel MKL,
sparsity-speci�c code generation approaches, and other custom SpMV executors demonstrating
the merits and trade-o�s of UZP. This is presented in Sec. 5.

2 The UZP Sparse Format
2.1 Motivation and Prior Work
Augustine et al. [2] demonstrated the feasibility of using polyhedra and lattices to compress the set
of nonzero coordinates of a sparse matrix. Intuitively, a coordinate in the =-dimensional sparse
data can be represented as an = + 1 integer tuple (Æ8,30C0) where Æ8 is the =-dimensional nonzero
coordinate (nzc), and 30C0 the corresponding location in the data vector of the actual data value for
this nzc. Using this encoding, they attempt to build Z-polyhedra [19] that group several, possibly
non-consecutive, nzc together. To perform a computation on the sparse structure, code that scans
these Z-polyhedra and therefore computes the actual nzc coordinates can be generated. Precisely,
polyhedral code generation [3] produces a dense, regular loop nest that, when executing, computes
exactly the integer tuples captured by the Z-polyhedra. A Z-polyhedron is de�ned as follows.

D��������� 2.1 (Z�����������). A Z-polyhedron is the image of a :-dimensional integer poly-
hedron % by an< ⇥: a�ne integer lattice !. % is de�ned by a conjunction of a�ne inequalities, which
are a�ne expressions of the dimensions of % . Similarly, ! is a function represented as a matrix of
integer coe�cients, with< rows and : columns.

Note we do not restrict the input dimension size : , and< = = + 1 using the encoding above.
That is, the image !(%) of % by ! (equivalently, the intersection of % and !) models the nzc and the
corresponding position(s) in the data vector.
For illustration, suppose we manipulate a sparse matrix with 6 nzc: (0, 0, 0), (0, 71, 1), (1, 42, 2),

(2, 44, 3), (3, 46, 4), (42, 42, 5) where the last element of each 3-tuple represents the position in the
data vector, here following CSR/COO storage. A possible representation of this sparse structure
uses 6 Z-polyhedra: %1 : {(8, 9,3) : 8 = 0 ^ 9 = 0 ^ 3 = 0} and !1 : {(8, 9,3) ! (8, 9,3)};
%2 : {(8, 9,3) : 8 = 0 ^ 9 = 71 ^ 3 = 1} and !2 = !1, etc. However, this is arguably of limited use
versus a traditional COO representation: we use one polyhedron per nzc.

Fig. 1. HB/can_1072: 12444 nzc

Instead, compressing several nzc into a single polyhedron can be
achieved: %3 : {(;) : 1  ;  3} and !3 : {(;) ! (8, 9,3) : 8 = ; ^ 9 =
40 + 2; ^ 3 = ; + 1} directly captures (1, 42, 2), (2, 44, 3), (3, 46, 4)
in a single polyhedral structure, reducing the number of polyhedra
needed to model the full sparse structure by 2. As we demonstrated
in prior work, this approach is robust to seemingly unstructured
sparsity, discovering when feasible strided repetitive (regular) pat-
terns in the nzc set. For example, Fig. 1 is reconstructed using 870
Z-polyhedra using up to 8 dimensions (: = 8) for them [2, 16].
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2.2 Design Principles of UZP
We now present our novel polyhedral-based sparse format, UZP. A key objective of UZP, in contrast
to other works [2, 22], is to enable the easy development of a class of generic executors that are
independent of the speci�c sparsity structure, but still leverage the compression of the nonzero
coordinates into polyhedra. Generic executors operating on UZP are presented in Sec. 3. Returning
to the example in Sec. 2.1, an explicit list of all polyhedra used may contain a lot of redundancy.
In particular, the same polyhedral shape (e.g., a diagonal of 3 elements strided by 2) may occur
numerous times, as a result of the reconstruction approach used, which mines for repetitions of such
shapes [2, 22]. UZP splits this representation, separating the description of the prototype shapes
from the list of origins on which they are applied, removing redundancy and signi�cantly reducing
storage size. In addition, UZP contains segments that allow storing (parts of) the sparse structure
in the classical CSR and COO formats. Indeed, for highly unstructured sparsity (e.g., polyhedra
typically model 2 or less nzc) bene�tting from a polyhedral representation, in terms of storage
as well as performance, is unlikely. Enabling mixed representation within a single format greatly
facilitates the tuning of the representation itself, and its interoperability with existing layouts, as
discussed in Sec. 4.

A UZP representation is therefore composed of 5 distinct sections: (a) a dictionary of parametric
shapes, that are parameterized Z-polyhedra; (b) a list of origins, on which to apply a particular
shape; (c) a CSR-encoded segment, (d) a COO-encoded segment and (e) a data vector.

2.2.1 Dictionary of Shapes and Origins. UZP splits the encoding ofZ-polyhedra into two structures:
parameterized Z-polyhedra, and origins they shall be applied on. For example, %3 is encoded as
%1 : {(;) : 1  ;  3} and !1 : {(;) ! (8, 9,3) : 8 = �1 + ; ^ 9 = �2 + 40 + 2; ^ 3 = ⇡ + ; + 1}
where �1, �2,⇡ 2 Z are constant parametric integers. That is, �1, �2 and ⇡ are o�sets (for coordinates,
and position in the data vector respectively). We have therefore %3 : (0, 0, 0, (%1, !1)). That is,
applying the origin (0, 0, 0) to this parametric Z-polyhedron (i.e., setting �1 = 0, �2 = 0, ⇡ = 0)
leads to describing exactly %3. This representation allows to store separately the description of
shapes from the description of the origins on which each shape is applied. Consequently, if a
prototype shape occursmultiple times in the sparse structure, only the various origins and associated
shape identi�ers need to be stored. An origin is simply an< + 2-dimensional integer tuple, e.g.
(0, 0, 0, 83 (%1, !1)). This aspect is essential to reduce storage versus a classical explicit polyhedral
representation. It is also essential to enable the design of simple executors, that amount to a simple
parametric regularly strided loop nest, as detailed in the next section.

2.2.2 UZP Tuners. UZP fundamentally exposes a large set of equivalence classes, between di�erent
encodings of the same sparse structure. One may use di�erent polyhedral shapes to compress the
nzc, i.e., di�erent reconstruction approaches lead to equivalent but di�erent UZP representations.
But, conveniently, the list of origins can be reordered in the format itself: this directly in�uences
the schedule of operations implemented in the executor.
UZP is designed to enable the development of tuners: tools that optimize a UZP representation

into another UZP one, for example trading o� compression (size of the representation) versus
performance (e.g., ability to e�ciently vectorize the computation) by changing the shapes being
used or the order in which they are iterated. We discuss this approach in Sec. 4.

2.2.3 Insertion and Deletion of Nonzeros. Many sparse formats, including CSR, implement storage
of the actual data following a lexicographic ordering of the nonzero coordinates. This makes
insertion/deletion of nzc tedious, possibly requiring to recompute/shift all arrays used for the
sparse representation. In UZP, the insertion of a new nonzero coordinate, at any position, is an
$ (1) operation: it simply amounts to adding a new origin at the end of the list, using a single-point
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shape. This feature is possible because we explicitly encode the position in the data vector in UZP,
via the integer lattice, and thanks to the generic executors presented in Sec. 3. However deletion
of a nonzero coordinate still requires possibly shifting the data array, and re-generation of the
shape/origin associated with this deleted point.

2.2.4 Limitations of UZP. By design, UZP groups possibly nonconsecutive points in the original
sparse structure in the same shape. The processing of each individual shape by the executors
being atomic, it constrains the order within which the nonzero coordinates are traversed, and a
lexicographic ordering (e.g., as in CSR) is not implemented anymore, which may be detrimental to
data locality without careful tuning.
UZP also heavily relies on branching: loops, possibly with very small trip counts, are used to

compress nzc. As such, a high ratio of branches to nzc can introduce a signi�cant penalty, especially
if polyhedra of very few points are used (e.g., less than 4), and/or origins are sorted in a way that
results in a high rate of branch mispredictions.
UZP may also have a storage size exceeding, e.g., CSR if the number of points compressed into

each polyhedron is low (e.g., averaging less than 2 points per instantiated shape). To partially
overcome this issue UZP supports a hybrid format, where an arbitrary set of points (those not
e�ciently compressed into polyhedra) can be modeled using the classical CSR or COO formats. We
refer to these points as unincorporated points below.

2.3 Comparison of UZP with Other Formats
In terms of storage, UZP typically consumes< + 2 integers per origin, for an<-dimensional sparse
structure. The size of the dictionary is typically negligible in comparison to the list of origins.

2.3.1 CSR and CSC. These formats typically use at least $ (==I) metadata (for the column or row
index), and compression versus COO is achieved irrespective of any structure within the sparse
coordinates. UZP needs $ (4=) where = is the number of origins. That is, if on average there are
more than 4 nzc per shape in the reconstructed structure (i.e., there are $ (==I/4) origins), UZP
will necessarily have a smaller footprint than CSR or CSC. Note the 30C0 value is optional, and one
can reorder the data according to the list of origins and remove this 4th component, reducing to
O(3n) for a 2D sparse matrix. Note that we also ignore here the additional metadata proportional to
the number of columns (resp. rows) needed in CSR (resp. CSC).

2.3.2 ELLPack. Similarly, ELL requires$ (==I) metadata, in addition to possible additional storage
for zero elements in the data vector. Pro�tability of UZP is analogous to CSR/CSC.

2.3.3 DIA and HDC. The DIA format allows the representation of dense diagonals using simply
one element: the o�set describing the position of the diagonal. In UZP a diagonal, dense or strided,
wherever its starting point, is represented using one origin, that is up to 4 elements for a 2D matrix.
This is negligible overhead versus DIA. Note that the generic executor for a UZP diagonal shape
and the typical DIA generic executor are essentially identical, and therefore can deliver identical
performance. HDC is a hybrid format combining DIA and CSR for elements outside the diagonal
[18]; HDC is fully subsumed by UZP.

2.3.4 CSF. Compressed Sparse Fiber [38] has gained popularity to represent higher-dimensional
tensors and their tiling/permutations [27]. CSF can achieve compression, especially when there are
identical pre�xes between nzc (i.e., identical values on the G �rst dimensions of the nzc). Similarly,
this can be achieved when mining for shapes modeling an identical pre�x in UZP. Overall, CSF will
use at least one element per nzc, giving it an$ (==I) footprint. UZP can achieve further compression
as described above. UZP supports arbitrary shape sizes, including di�erent shapes for di�erent
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parts of the matrix, subsuming formats such as Adaptive tiling [21] which supports di�erent tile
sizes for di�erent tiles within a matrix.
Numerous other sparse formats can be encoded in UZP, making it a nearly one-size-�ts-all

representation, which can be easily converted to other formats such as CSR or DIA.

2.4 Implementation of UZP
We have implemented both the UZP format and the associated generic executors, presented in the
next section, using C/C++ data structures. UZP is fully implemented, including conversion from/to
CSR and COO, automatic mining of polyhedral shapes to build a UZP �le, and very simple generic
executors for SpMV and other computations as illustrated later in this paper. We summarize below
some key aspects of the format implementation and illustrate with Fig. 2.

2.4.1 Dictionary of Shapes. A shape is a parametricZ-polyhedron, and is applied to a set of origins.
Z-Polyhedra are typically represented using matrices of integer coe�cients [3] representing
inequalities bounding the polyhedron, and the associated lattice. In UZP, columns of this matrix can
be skipped when the shape is hyper-rectangular, as only extremal vertices are needed to represent
the shape. For example a block of 8x8 dense points is simply represented as the pair of vertices
(0, 0); (8, 8) and a unit lattice. A dense block of nonzero coordinates located at (42..50 ⇥ 128..136)
is therefore represented with the origin (42,128), on which the dense block prototype (0, 0); (8, 8)
with unit-stride is applied, leading to the set (42 + 0..42 + 8 ⇥ 128 + 0..128 + 8).

2.4.2 List of Origins. An origin is an < + 2-tuple of integer coe�cients, including the �rst <-
dimensional vertex (e.g., (42, 128) above), the 30C0 o�set, and the shape identi�er in the dictionary.
The list of origins may never be larger than the nnz.

2.4.3 Modeling Data. The data vector stores the actual data values for each nzc. While it is possible
to constrain the reconstruction of the sparse structure into polyhedral shapes to operate on a �xed
data vector (e.g., the exact data vector of an existing CSR matrix representation, to ease integration
in a full application �ow of data-speci�c SpMV codes without any data conversion [2]), UZP allows
reordering the data vector, for example, so that elements accessed by a single shape applied to a
single origin appear consecutively in the data vector, in the lexicographic order of coordinates
generated by this shape. This simpli�es the representation of origins and shapes as described above.

2.4.4 Modeling Unincorporated Points. Finally, UZP contains an optional section, typically used to
encode points that cannot be e�ciently captured by Z-polyhedral shapes: instead of modeling
them using a single-point shape and the associated origins, we support modeling these points using
the classical CSR and COO formats, with their separate data segment.

2.4.5 Example. Fig. 2 exempli�es the representation of a sparse matrix in CSR, COO, and two
possible UZP representations. The dictionary encodes here hyper-rectangular shapes, but we also
support more general shapes. Taking s1 on the bottom left, it describes a 1D shape. Shapes are
encoded as a polyhedron and a lattice. The �rst two values describe the 1D polyhedron vertices (e.g.
; : 0  ;  2, so we store 0, 2). The next values describe the coe�cients of an integer a�ne lattice
(;) ! (8, 9,3). That is 0, 0, 2, 0, 1, 0 corresponds to 8 = 0 ⇤ ; + 0, 9 = 2 ⇤ ; + 0, 3 = 1 ⇤ ; + 0. Origins are
then applied to this Z-polyhedron, e.g. the origin (0, 0, 0, B1) on the left UZP example, which leads
to producing the tuples (0, 0, 0), (0, 2, 1) and (0, 4, 2) which correspond to the �rst three nzc, S-C-A.
Optionally, a CSR or COO fragment can be used to encode some nzc, but equivalently they can be
encoded with a polyhedron of one point, as shown in the right UZP example (s4). Note that shapes
of multiple dimensionalities can coexist in the dictionary, as shown in the example on the right in
which s1 is a 2D shape (de�ned as ;1, ;2 : 0  ;1  1 ^ 0  ;2  2, that is 0, 1, 0, 2 and the lattice
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Origins: 
        0,  0,   0,  s1    
         2,  3,    3,  s2  
         6,  0,   6,  s3 
         9,  0, 10,  s1 

S C A T E A R E D M R I X

Dictionary = {
      s1: 0, 1, 0, 2, 9, 0, 0, 0, 2, 0, 3, 1, 0
      s2: 0, 2,          2,      0,l 1,      0, 1,     0
      s3: 0, 3,          0,     0, t1,      0, 1,     0
      s4: 0, 1,          0,     0,  0,      0, 0, l  0
}

TT

S C A T T E R E D M A T R I X

0 2 4 7 3 4 0 1 2 3 5 6 0 2 4

S C A R I X T E A R E D M

  Values

Row Index

Col Index

Origins: 
        0,   0,    0,   s1 
        2,    3,    6,   s2 
        6,   0,    9,   s3
        0,   9,   13,  s4
        8,   7,    14,  s4

  Values

Row Index

Col Index

Values:

CSR Format

 COO Format

UZP Format - 1D Shapes & COO UZP Format - 2D & 1D Shapes

Values:

Dictionary = {
        s1:  0,   2,   0,   0,   2,   0,   1,   0
        s2:  0,   2,   2,  t0,   1,   0,   1,   0
        s3:  0,   3,   0,   0,   1,   0,   1,   0  
}

T T

Fig. 2. Di�erent possible representations of the same sparse matrix: CSR, COO and two possible UZPs.

(;1, ;2) ! (8, 9,3) e.g. 8 = 9 ⇤ ;1 + 0 ⇤ ;2 + 0). This shape now requires 3 integer coe�cients per output
dimension instead of 2, and when the origin (0, 0, 0, B1) is applied, it captures the nzc S-C-A-R-I-X.

3 Generic Executors for UZP-GenEx
Prior work using Z-polyhedra to encode sparse structures targeted speci�cally the generation of
sparsity-speci�c programs, from that representation [2, 22]. We aim in this work to remove this
limitation, enabling the design of generic executors, similarly to traditional sparse formats, that can
then be tuned for a particular objective or hardware targeted.

A central aspect of UZP is the ability to bene�t from coordinate compression usingZ-polyhedra
while also enabling the development of simple generic executors for various computations, such as
SpMV illustrated in Sec. 5. These executors perform (strided) dense computations, and can be
seamlessly optimized by polyhedral optimizers. They implement a complete traversal of all nonzero
coordinates to form a computation. An important contrast with the generation of sparsity-speci�c
code specialized for a particular computation is the independence of the executor binary size from
the size of the sparse structure, since now the coordinates to operate on are externalized in a
separate UZP data structure. It therefore alleviates the issues with potential binary size explosion
and stress of the instruction cache [2, 22], however at the cost of some performance potential lost
by lack of code specialization [22], as shown below.

3.1 Design Principles of the Generic Executors
The generic executor scans all nonzero coordinates by (1) enumerating all origins and, for each, (2)
scanning the corresponding shape using a loop nest to compute the original nonzero coordinates,
and using them to perform the desired computation. While it is possible to create a single “generic”
parametric polyhedral loop nest that can handle arbitrary polyhedral shapes, to facilitate the
C/C++ compiler’s optimizations of the executor code, we instead explicitly provide a prototype
parameterized loop nest for each dimensionality case. This remains a small and practical set, as we
never use shapes above 8D, and model only sparse tensors of 1D to 4D, leading to 80 cases.
We exemplify this by showing below a generic 2D shape executor code, for SpMV, on UZP.

Note we perform strength reduction to present the compiler with a clear induction for the lattice
coordinates. For simplicity, we assume below the data vector has been laid out to use the unit lattice
to compute the data position of every element.
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1 double* const data_vector = uzp_matrix ->data;

2 int idx_i , idx_j;

3 // Retrieve the shape information from origin:

4 int a_data_pos = orig.data_offset;

5 // Retrieve the shape parameters:

6 int lattice_0_0 = orig.shape.lattice [0][0];

7 int lattice_0_1 = orig.shape.lattice [0][1];

8 int lattice_1_0 = orig.shape.lattice [1][0];

9 int lattice_1_1 = orig.shape.lattice [1][1];

10 // Compute the lattice increment for the inner loop:

11 int offset_idx_i = lattice_1_0 * shape.stride [1];

12 int offset_idx_j = lattice_1_1 * shape.stride [1];

13 // Loop nest scanning coordinates:

14 for (int i = shape.start [0]; i <= shape.end [0]; i += shape.stride [0]) {

15 idx_i = orig.coordinates [0] + i * lattice_0_0

16 + lattice_1_0 * shape.start [1] + orig.shape.lattice [0][2];

17 idx_j = orig.coordinates [1] + i * lattice_0_1

18 + lattice_1_1 * shape.start [1] + orig.shape.lattice [1][2];

19 for (int j = shape.start [1]; j <= shape.end [1]; j += shape.stride [1]) {

20 // Computation -specific part:

21 y[idx_i] += data_vector[a_data_pos] * x[idx_j];

22 // Increment lattice offset:

23 idx_i += offset_idx_i;

24 idx_j += offset_idx_j;

25 a_data_pos += 1;

26 } }

We remark that, for any computation that requires a single traversal of the sparse matrix without
any speci�c ordering constraint, this generic executor can be used and an inlinable function/macro
can be called for the computation-speci�c part that captures the speci�c point-wise computation to
be performed, using idx_i, idx_j and a_data_pos.

3.2 Performance Considerations
To improve performance, we rely on the C/C++ compiler’s optimization of the executor code. To
enable analysis and optimization of these strided loops, specializing the code for di�erent values of
the loop strides and lattices explicitly in the executor provides su�cient information at compile-
time to enable their auto-vectorization. We exemplify below one such specialization for a 1D shape
representing a dense vertical vector of coordinates:

1 // Specialized 1D shape #0: lattice [0] = 1,

2 // lattice [1] = 0, lattice [2] = 0, stride [0] = 1,

3 // start [0] = 0, arbitrary end [0] supported.

4 int idx_i = orig.coordinates [0];

5 int idx_j = orig.coordinates [1];

6 for (int i = 0; i <= shape.end [0]; i += 1) {

7 // Computation -specific part:

8 y[idx_i] += data_vector[a_data_pos] * x[idx_j];

9 // Increment lattice offset:

10 idx_i += 1;

11 a_data_pos += 1;

12 }
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We have specialized 1D and 2D shapes, for dense and strided horizontal, vertical, and diagonal
shapes. A unique int hash key, identifying the specialized case in the code, is associated to each
shape described in the dictionary. Then a simple switch statement on this key is implemented in
the executor, calling the specialized version when available and defaulting to the generic shape
executors as described above otherwise. Unambiguously, versioning and semi-manual SIMD vec-
torization bypassing compilers’ cost models shall be deployed for improved performance of these
generic executors. In this paper, we limit to explicitly versioning a handful of shapes, using auto-
vectorization by GCC. Tuning the performance of these generic executors for a particular hardware
target is outside the scope of the present paper, as we focus instead on evaluating the performance of
mostly the simplest loop forms needed for correct UZP executors, a sort of base-case performance
scenario to expose the limitations of UZP.

3.3 Data-Specific versus Generic Executors
Generic executors bring convenience by separating the data from the code it is executed on,
allowing their independent optimizations, and may still enable powerful automatic optimizations
by compilers as they are implemented using regular a�ne loop nests. However, specialized sparsity-
speci�c code, e.g., where data and code are folded in the same binary program and both data-speci�c
and machine-speci�c SIMD instructions are generated [22] are still expected to provide a signi�cant
performance advantage. In particular, MACVETH performs across-loop optimizations for SIMD
such as packing small yet independent reductions in the same vector to improve vector occupancy
in the presence of loops with small trip counts.

We illustrate this with Fig. 3, which plots the single-core performance in GFLOPS of MACVETH
and UZP for a set of 229 SuiteSparse matrices described in Sec. 5. Note that, while for 96% of
matrices MACVETH improves performance over MKL, the generic executor improves for only 61%
of them. This remains a respectable improvement, motivating the use of UZP and generic executors
even if they are vastly unoptimized. Yet it also displays the merits of sparsity-speci�c specialized
code generation on top of UZP.
Analyzing with hardware counters, from a vectorization point of view in data-speci�c codes

90% of the FLOPs in the experimental dataset are executed using AVX2 operations (i.e., 256-bit
vectors), vs. only 34% in the generic executor, itself automatically vectorized by GCC. This means a
2.5x increase in the number of FLOP instructions issued by the generic executor program, reducing
e�ciency. Together with other overheads, including a 4.2x increase in the number of memory
accesses, as well as a 116x increase in the branch instruction count, this adds up to a net 5.8x
increase in the total number of instructions executed. This ultimately o�sets the 725x decrease in
instruction cache misses vs. MACVETH, resulting in an overall lower performance.

4 Conversion to UZP and Tuning
4.1 Building UZP from a Sparse Structure
We have implemented Polyhedrator using Rust, a new tool to quickly mine for speci�c polyhedral
shapes in a trace of nonzero coordinates. In contrast to prior work [2], the shape of the polyhedra
used to compress nzc is not discovered by the mining algorithm itself, but instead are pre-de�ned
(by the user or a tool) prior to reconstruction, and are input to our mining tool. This enables
a predictable and fast reconstruction time, while tuners are deployed afterwards to build more
complex and larger shapes as feasible, as explained in Sec. 4.3.
The worst-case complexity is $ (B ⇥ ==I) where B is the number of prototype shapes we look

for, in the set of nnz. That is, the user provides the set of polyhedral patterns {?1, . . . , ?=} to be
mined, which may contain any Z-polyhedra description of any dimensionality, speci�ed through
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Fig. 3. UZP Generic Executor versus MACVETH performance

its domain, strides, and lattices. A list of nonzero coordinates {21, . . . , 2<} describing the sparsity
structure (e.g., from an existing CSR representation) is then repeatedly scanned. This mining
boils down to checking, for each 28 and for each pattern ? 9 in the search set, whether ? 9 exists
in the structure when using 28 as origin. Given that choosing 28 inside a given pattern precludes
its inclusion in a di�erent one, this approach does not guarantee to �nd the reconstruction that
minimizes the number of origins, exhaustive search may be needed to reach optimality. Instead
we perform the search in a greedy pattern-�rst fashion, in which all nonzeros in the matrix are
checked as starting points for each ? 9 in order. In this mode, a point 28 will never be chosen into a
pattern ? 9 if it belongs inside another pattern ?: ,: < 9 .

We also support a “hierarchical reconstruction” mode. In this case, the input to the tool is already
a UZP representation. It is scanned for instances of the same shapes, and the origins obtained
are then mined again against the prototype shapes. Alternatively, we may employ the TRE ap-
proach [33, 34] to look for grouping origins, using more general and complex polyhedral shapes. By
applying hierarchical reconstruction, low-dimensional pieces are fused together, achieving higher
compression. Generic executors can specialize execution strategies for hierarchically reconstructed
pieces, applying optimizations such as, e.g., register tiling. Exploring this angle is left as future
work.

4.2 Experiments Building UZP
We generated UZP �les for the 229 matrices in the experimental set described in Sec. 5, using a list
of 664 1-dimensional vertical, horizontal, and diagonal patterns with di�erent strides. This set of
shapes is excessively large compared to what is required, in that we again display a form of worst-case
time when a very high amount of di�erent shapes is evaluated. In practice, using smaller shapes
and tuners as described below to merge into larger shapes would achieve the same result but reduce
UZP generation time accordingly.
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Fig. 4a displays this generation time. Mining time grows mostly linearly with the number of
nonzeros, given the number of shapes is a constant here (664); however, as points get incorporated,
the set of origins to consider is constant or decreases with iterations. Our implementation achieves
a throughput of about 90K nonzeros per second using a single CPU core. Note that parallelizing the
conversion process and tiling are simple accelerations; however, we have not implemented them.
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Fig. 4. Le�: UZP generation time. Right: speedup of locality-tuned UZP vs. randomly-sorted origins.

4.3 Tuning UZP
Obviously, the UZP representation generated is directly dependent on the list of prototype shapes
being mined for. One can extensively change the list of simple shapes with varying strides, as
described above. But another category of tuning can be easily deployed on UZP, by design, and in a
manner independent from the optimization of the generic executors. We use two di�erent tuners
in our experiments in Sec. 5, described in the subsections below.

4.3.1 Merging Shapes. This tuner merges together contiguous small shapes into a larger shape,
and works in conjunction with the prototype shapes list used for the initial mining. For example,
assume the sparse matrix is in fact a dense diagonal matrix. We may mine for diagonals blocks
of 4 consecutive elements only, to reduce the number of shapes mined, which leads to =/4 such
origins in the UZP produced. Then, a merging tuner inspects the origins using the same identical
shape, and creates a single, larger polyhedral shape that captures contiguous repetitions of this
shape. Here a single origin is found, now applied to a polyhedral shape of = points instead of 4.
This approach complements hierarchical reconstruction, and can speed up reconstruction overall,
by only initially mining for small-sized template shapes and aggregating them in larger shapes in a
second step, instead of mining for di�erent scalings of the same shape.
We implemented this tuner, and it is deployed in all experiments reported in Sec. 5. Alg. 1

displays the skeleton of this tuner. Note that this algorithm can create multiple shapes with the
same polyhedral description; for simplicity, it adds these (possibly redundant) shapes temporarily
to the dictionary, a �nal normalization pass implements the removal of redundant shapes and
adjusts the origins accordingly instead.

4.3.2 Reordering Origins for Data Locality. The order of the pieces in a UZP �le can signi�cantly
impact spatial and temporal data locality, as well as branch (mis)prediction in the generic executors.
We have implemented a tuner that reorders the origins in an SpMV �le, favoring grouping shapes
by locality along the G vector in SpMV computations, and compared the obtained results against a
random ordering of origins in Fig. 4b.
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Algorithm 1 Aggregation of shapes in input UZP �le
1: $ := Origins(*/%8=)
2: ⇡ := Dictionary(*/%8=)
3: for each B in ⇡ do do
4: Æ$B := extractOriginsWithShapeId($ , B)
5: Æ$B := reverseLexicographicSort( Æ$B )
6: LastMatchedOrig := Æ$B [1] // �rst element of Æ$B

7: NewShape := s
8: for i in 2..| Æ$B | do do
9: orig := Æ$B [8]
10: %>;~ := ZPolyhedralUnion(NewShape(LastMatchedOrig), s(orig))
11: if Poly.Lattice == s.Lattice then // Merge to a larger shape with same lattice
12: NewShape := ExtractParametricShape(Poly)
13: AddToSet(MergedOrigs, orig)
14: else// Cannot merge further, reset
15: AddToDictionary(⇡ , NewShape)
16: LastMatchedOrig := orig
17: NewShape := s
18: end if
19: end for
20: end for
21: NewOrigins := $ -"4A643$A86B
22: RemoveDuplicatesInDictAndUpdateOrigins(⇡ , NewOrigins)
23: return UZP(⇡ , NewOrigins)

This tuner only alters the order of origins, and amounts to implementing a lexicographic sorting
of the origins following the ( 9, 8) order, to ensure maximal spatial/temporal locality for the G vector
but at the expense of locality along the ~ vector. The data vector is reordered accordingly, to
follow the new order for origins and ensuring perfect spatial locality along the sparse matrix data.
This tuner is deployed in all the experiments reported in Sec. 5. Note that it is easy to build a
more advanced tuner that would preserve data locality along G and ~ by simply implementing a
“tiled” scheduling order for the origins (instead of a column-�rst ordering) while ensuring footprint
constraints for the subset of G and ~ elements touched by a tile.

4.4 From UZP to CSR
To maintain interoperability with existing applications, it is critical to be able to quickly convert
UZP to other traditional formats. Indeed, while UZP construction can be constrained to preserve
the ordering of the data vector, for seamless integration in a full application using, e.g., CSR, it can
also be reordered in UZP and/or split between di�erent data segments in UZP. Our tool integrates
this conversion back to CSR. In our experiments, the longest conversion time is 1.04 seconds, across
the entire experimental set, for matrix Mazaheri/bundle_adj containing 20M nonzeros.

5 Experimental Results
We experiment on the 229 matrices selected by Horro et al. [22] by sieving the matrices below 20M
nonzeros in SuiteSparse [16] using a similar technique to the one employed by Augustine et al. [2].
Note that the complexity of our UZP generator is mostly linear in the number of nonzeros, and
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Fig. 5. Sieve of the 2, 754 SuiteSparse matrices below 20M nonzeros. Selected matrices are marked with ‘X’s.

UZP generation time is displayed in Fig. 4a above. The full open-source UZP tools1 used in this
paper are available on Zenodo [30, 31].
Matrices are classi�ed according to the decile they belong to in terms of number of nonzeros

and percentage of them that is captured in polyhedral patterns. This process yields 100 categories,
and inside each category k-means clustering is used to select representative matrices. The number
of representatives per cluster is selected so that the probability density of the sample matches the
original one. Fig. 5 displays this selection process.
In this section, we focus on the analysis of the experimental performance of SpMV, executed

on double-precision �oating-point data. Experiments were run on an Intel Core i9 12900K with
128 GiB of RAM. All runs were repeated 10 times; we report the best performance achieved for each
experiment after removing outliers, identi�ed as measurements that deviate more than 3f from the
mean. The CPU frequency was �xed at the nominal base of 3.2 GHz to prevent thermal constraints
from introducing experimental variability. Both the data and code segments were allocated 2 MiB
hugepages for all the experimental versions. Codes were compiled using GCC 11.4.0. In all cases
we introduce -O2 -ffast-math -ftree-vectorize -floop-unroll-and-jam -march=native.
The PolyBench [29] testing harness was used for performance measurements. Prefetching of the
text segment [2] was included in the linking process for data-speci�c codes. Using the same basic
setup and running on the 16 logical P-cores of this processor, Intel Linpack reports an average
raw performance of 364.2 GFLOPS, with a peak of 499.6 GFLOPS. The memory-bound Intel HPCG
benchmark reports a peak single-threaded performance for SpMV computations of 5.5 GFLOPS.

We experimented with six di�erent versions of the SpMV computation: 1) a vanilla CSR version
shown in Listing 1; 2) MKL version 2024.1.0 using function mkl_sparse_s_mv(); 3) the same MKL
version but using BCSR encoding through mkl_sparse_convert_bsr(); 4) our generic executor

1UZP: https://github.com/UDC-GAC/uzp-sparse-format
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described in Sec. 3, labeled UZP GenEx; 5) a CSR5 SpMV kernel [26]; and 6) the publicly available
GitHub source for the partially-strided codelets approach [8, 9].

In UZP �les, pieces are aggregated as described in Sec. 4.3 and sorted to exploit locality over the
dense vector in the computation during an inexpensive inspection phase. Similarly, for MKL experi-
ments, the inspector-executor capabilities are employed by invoking the mkl_sparse_optimize()
function outside the timed kernel. Symmetric matrices are expanded to their full size in all cases.

1 #pragma omp for private(j) nowait

2 for(i = 0; i < N; ++i)

3 for(j = row_ptr[i]; j < row_ptr[i+1]; ++j)

4 y[i] += A[j] * x[col_idx[j]];

Listing 1. CSR executor for SpMV. OpenMP is disabled for single-threaded experiments.

5.1 Single-Threaded Performance
The performance of these kernels under cold cache, single-threaded conditions is shown in Figs. 6
and 8. For these experiments, the SpMV kernel is executed exactly once after loading the data
and �ushing the caches, highlighting raw performance. UZP GenEx achieves the best overall
performance, with an average of 2.29 GFLOPS across the entire experimental set (CSR: 1.63, CSR5:
1.39, MKL: 1.83). While the performance of both CSR and CSR5 remains consistently below that of
UZP, MKL starts closing the gap for matrices above 500K nonzeros. Investigating the data carefully,
we observe that the probability for GenEx to improve over MKL is driven by the percentage of
unincorporated points, and whether few shapes are needed to capture the majority of incorporated
points. Speci�cally, looking only at matrices with more than 10K nonzeros, the probability for MKL
to outperform GenEx for matrices with more than 20% unincorporated points is 72%, where for
matrices with less than 10% unincorporated points the situation is reversed.
As for MKL-BCSR and PSC, we single them out as they do not produce results on the full

experimental set. Averages are restricted to the corresponding set of valid experiments for each
kernel. The MKL-BCSR implementation requires the block size to be a multiple of both the number
of rows and columns of the matrix. If the two are co-primes, no feasible block size selection exists.
For each matrix, we selected all feasible block sizes between 2 and 32, and show the one which
obtains the best raw performance in Fig. 6. Results are obtained for 187 matrices, with an average
performance on this subset of 1.75 GFLOPS (MKL: 1.89, UZP: 2.37). MKL-BCSR outperforms both
UZP and MKL for a total of 30 matrices, on which the average number of spurious computation
overhead (i.e., computations on explicit zeros introduced by BCSR) is kept below the 2x limit
(average: 1.91x). The average MKL-BCSR performance on this subset is 2.91 GFLOPS (MKL: 2.02,
UZP: 1.98). For the remaining 157 matrices, MKL-BCSR introduces on average 5.27x spurious FLOPs
overhead, achieving an average performance of 1.52 GFLOPS (MKL: 1.86, UZP: 2.44).

Regarding PSC, we modify the source code to normalize the experimental setup by introducing
the PolyBench/C harness. We reproduce the cold cache environment in our tests: the matrix is read,
the cache is �ushed, and a single repetition of the SpMV kernel is run. Symmetric matrices are
expanded for fair comparison with all other kernel versions in our setup. This approach produces
results for a total of 166 matrices2, obtaining an average performance of 1.71 GFLOPS (MKL: 1.97,
UZP: 2.49). The main driver of performance is how well the sparsity structure of a matrix conforms
to the prede�ned codelet shapes. PSC performs better than both MKL and UZP GenEx for 16
matrices, for which PSC emits only 2.15 instructions per FLOP (MKL: 2.43, UZP: 2.52) for an average
performance of 3.51 GFLOPS (MKL: 2.64, UZP: 2.75). For the remaining 150 matrices it emits 22.83
2We suspect possible incompatibilities with some MTX formats on the SuiteSparse website.
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(a) MKL
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(b) UZP GenEx
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(c) Vanilla CSR
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(d) CSR5 AVX2
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(e) MKL-BCSR
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(f) PSC

Fig. 6. Performance (GFLOPS) of double-precision, cold cache kernels. MKL-BCSR in Fig. 6e shows the best
performance for all block sizes between 2 and 32.

instructions per FLOP (MKL: 14.20, UZP: 5.03) for an average performance of 1.52 GFLOPS (MKL:
1.90, UZP: 2.46).

We draw generic performance considerations by carefully analyzing selected performance
counters. The reasons for the superior performance of UZP GenEx with respect to MKL are
essentially a better memory performance, as well as a more e�cient vectorization. On the memory
performance side, UZP incurs 0.29/0.016 misses per FLOP at the L2/L3 levels (MKL: 0.45/0.031,
MKL-BCSR:0.65/0.072). As for vectorization, MKL uses on-the-�y zero-�lling when traversing the
sparse structure for emitting the operations, whereas GenEx employs the statically-provided UZP
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information. As a result, MKL executes 19% more FLOPs than strictly required to compute the
SpMV across the experimental set, precisely 1.38 billion FLOPs emitted vs 1.13 billion useful FLOPs.
GenEx emits a much tighter 1.16 billion FLOPs.

On their side, CSR, CSR5, and PSC also present degraded memory behavior with respect to that of
UZP GenEx in terms of L2/L3 misses per FLOP (CSR: 0.33/0.021, CSR5: 0.30/0.017, PSC: 0.52/0.023),
and execute approximately 1.5x more instructions than UZP GenEx and MKL. All the FLOPs in
the CSR kernel are scalar, whereas CSR5 emits almost exclusively 256-bit AVX2 instructions for a
grand total of 1.44 billion FLOPs (a 27% excess).

The plot on Fig. 7a shows the joint distribution of the performance obtained for UZP GenEx vs.
MKL. There are two main insights from this �gure. The �rst one is that, as detailed in the previous
paragraphs, the joint distribution is skewed towards the bottom of the diagonal line splitting the
�gure, i.e., the GenEx version performs better in general than the MKL one. The second has to
do with the maximal performance obtained by each kernel. We developed the single-threaded
roo�ine of this machine, and found the DRAM bandwidth to be 37.6 GB/s. Taking this into account,
a double-precision two-stream computation with no memory reuse performing two FLOPs per
iteration, which approximates the SpMV kernel in Listing 1, would be theoretically limited to
3.8 GFLOPS (37.6 GB/s multiplied by the arithmetic intensity of 2/20 FLOPs/B). However, if we
approximate the read of x[:] as a scalar, assuming an input matrix with a single dense column, this
peak could be increased to 9.4 GFLOPS. According to this calculation, the maximum performance
obtainable by a single-threaded SpMV kernel should lie somewhere between 3.8 and 9.4 GFLOPS,
depending on the matrix sparsity structure, the computation schedule, and the sparse storage
format. We observe maximum performances of 4.86 GFLOPS for MKL and 9.21 GFLOPS for UZP
GenEx. The latter represents 97% of peak performance. The remaining subplots in Fig. 7 show the
joint performance distributions of other kernels w.r.t. UZP GenEx.
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(g) UZP vs MACVETH
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(h) UZP vs DSCG

Fig. 7. Joint performance (GFLOPS) plots of di�erent kernel versions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 232. Publication date: June 2025.



Modular Construction and Optimization of the UZP Sparse Format for SpMV on CPUs 232:17

5.1.1 Single-Precision Kernels. We repeated these experiments for single-precision �oating point
inputs, except for CSR5 and PSC, whose implementations are not compatible with �oats. We
observe the same trends as for double-precision computations: UZP GenEx achieves the best overall
performance, with an average of 2.93 GFLOPS (CSR: 1.73, MKL: 2.19, MKL-BCSR: 2.05). Using
single-precision inputs the L2/L3 misses per FLOP experiment a reduction across all kernels (UZP:
0.25/0.008, CSR: 0.28/0.014, MKL: 0.42/0.020, MKL-BCSR: 0.46/0.033). The number of FLOPs issued by
both approaches also grows, to 1.39 and 1.54 billion, respectively, for GenEx and MKL. This signals a
less e�cient utilization of the available vector lanes when their numbers increase. Other execution
parameters remain qualitatively similar to the double-precision case. Selected performance plots
are shown in Fig. 8.
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(c) MKL

Fig. 8. Performance (GFLOPS) of single-precision, cold cache kernels.

Repeating the same reasoning on attainable peak performance as above, we now obtain a peak
range between 6.3 and 18.8 GFLOPS, derived from the change in arithmetic intensity due to the
new datatype sizes. In this case, the maximum observed performances increase to 8.47 and 15.87
GFLOPS for MKL and GenEx, respectively. The joint performance plot for this case is shown in
Fig. 7e.

5.1.2 Hot Cache Se�ing. We executed the SpMV kernels in a hot cache, double-precision setting,
repeating the sparse multiplication 100 times for each matrix while varying the input vectors
and without �ushing the cache in between each repetition. This con�guration is similar to, e.g.,
neural network inference. UZP GenEx remains the best performing approach on average, achieving
3.37 GFLOPS (CSR: 2.13, CSR5: 2.02, MKL: 3.32, PSC: 2.583). We observe the same trends as for cold
cache experiments in terms of L2/L3 misses per FLOP, which appears to indicate that all approaches
bene�t from the cache in a similar way. In this case, the maximum performance obtained by UZP
GenEx increases to 12.79 GFLOPS (CSR: 3.09, CSR5: 4.88, MKL: 7.88 GFLOPS). The joint performance
plot for this case is shown in Fig. 7f.

5.1.3 Data-Specific Codes. As detailed in Sec. 3.3, generating highly-specialized data-speci�c and
hardware-speci�c kernels has the potential to provide signi�cant performance advantages, by
�ne-tuning the code to the speci�c characterics of both data and hardware. Fig. 7g shows the joint
plot of the performance of GenEx vs MACVETH. This experiment uses a single-precision, cold cache
setting, as the MACVETH compiler by Horro et al. [22] is not compatible with double-precision
data. For completeness, experimentation was also conducted for the original data-speci�c codes as
generated by Augustine et al. [2], i.e., data-speci�c codes compiled using GCC directly, without
MACVETH optimization. This version, referred to below as DSCG, never outperforms MACVETH
in our experimental set.
3For the subset of matrices for which PSC produces results, the GFLOP count is: UZP: 3.59, MKL: 3.54, CSR: 2.26, CSR5: 2.16.
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The MACVETH-optimized data-speci�c codes have a clear performance advantage over other
kernels, achieving an average of 3.67 GFLOPS (GenEx: 2.93, MKL: 2.19, DSCG: 1.72). The fundamental
driver of performance in this case is a 5.8x reduction in the number of instructions executed (3.7x
fewer microoperations). This is due to the fully linear nature of MACVETH codes, which have been
fully unrolled (no loops exist in the code) and then aggressively vectorized using AVX2 primitives
speci�cally designed for the target machine. However, the clear disadvantage is the explosion of
code sizes: while the generic executor binary is only 80 KiB, MACVETH binaries for the largest
matrices in the experimental set have sizes in the order of hundreds of MiB. This imposes high
pressures both on the memory subsystem, featuring a 1.5x increase in the number of L3 misses, and
on the processor front-end, which routinely becomes the performance bottleneck. As a result, even
if this approach presents the best average performance, it achieves a more limited peak performance
of 10.58 GFLOPS (UZP GenEx: 15.87). Joint plots of both MACVETH and DSCG vs UZP are shown
in Fig. 7.

5.2 Parallel Scaling
We experiment with double-precision, cold cache parallel workloads for the main four generic
executors: UZP GenEx, MKL, CSR5, and PSC. For MKL, we linked against the threaded version of
the MKL library. For the UZP generic executor, we parallelize the loop dispatching each piece of the
sparse matrix using a parallel for OpenMP pragma, using static scheduling. Note that in this
section, the results using 1-thread do not directly correspond to the single-threaded experiments
in the previous section. These have been re-run explicitly using 1-threaded OpenMP versions, to
account for the basic thread creation and management overhead.

Figure 9 presents the obtained scaling data, restricted to matrices above 100K nonzeros to improve
readability (smaller matrices achieve very small speedups and clutter the plot). UZP GenEx retains
the best average parallel performances of 3.94 and 6.46 GFLOPS, respectively (MKL: 3.73 and 5.53,
CSR5: 2.94 and 6.06, PSC: 3.97 and 5.18), with peak performances of 11.61 and 29.19 GFLOPS (MKL:
7.33 and 12.13, CSR5: 6.48 and 17.72, PSC: 8.94 and 13.69).

5.3 Performance Distribution
We complement our analysis by observing the relationship between the existence of diagonals in
the matrix and the associated performance and compression achieved. Indeed, numerous matrices
in SuiteSparse contain one or more diagonals. To better observe the e�ectiveness of UZP and Intel
MKL, we compute a “diagonal” metric for each of the 229 sparse matrices as the ratio between the
number of nonzeros in a diagonal divided by the total number of nonzeros. That is, a value of 1
gives a purely diagonal matrix, a value of 0 means no point along any diagonal occurs. For fast
sampling of this metric, we limit to searching for pairs of points along a diagonal orientation, with
a stride of 5. While more re�ned metrics can be designed, this simple criterion already provides
insightful data shown below.
Fig. 10a displays the count of matrices as a function of the “diagonality” metric, split into ten

ranges. We see that the dataset contains 67 matrices with at least 90% of points along the diagonal
(last bar on the right), out of which 42 have more than 50K nonzeros, and 25 less than 50K. We
also display the minimum, average, and maximum GFLOPS achieved in single-threaded, double-
precision, cold cache setting for each cluster. On the left (black) is the Intel MKL performance, and
on the right (red) is the GenEx performance. We observe that the raw performance mostly follows
diagonality, with the maximum average performance for both MKL and GenEx reached for the
highest diagonality.
Fig. 10b displays the compression ratio of UZP vs. CSR (a value below 1 means the footprint of

the �nal �le in UZP is smaller than the CSR one), as a function of the “diagonality” metric. We
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(d) PSC

Fig. 9. Scaling plots for cold cache executions with two and eight threads for matrices above 100K nonzeros.
The plots show single-threaded (X axes) vs multi-threaded (Y axes) performance in GFLOPS. The solid lines
show the linear regression models of the scaling. The do�ed lines show the reference 2x/8x scalings.
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Fig. 10. Performance (le�) and compression rates (right) as a function of matrix diagonality.
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typically achieve good compression for more diagonal-based matrices, in particular for the larger
ones, but compression can also be achieved over the entire spectrum.
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Fig. 11. Diagonality versus number of nonzeros.

Finally, Fig. 11 displays diagonality versus
number of nonzeros (x-axis), showing a lack of
correlation between both in the studied dataset,
as dominantly diagonal matrices are occurring
over the full range of matrix sizes.
To further study the performance distribu-

tion, we trained simple decision trees to predict
the expected GFLOPS or potential to compress
versus CSR. The dominant features for the de-
cision are the number of nonzeros, the diago-
nality, and, as a second-order discriminant, the
average number of nonzeros per row.

5.4 UZP File Size Analysis
Finally, Fig. 12 shows a breakdown of �le sizes into the proportion of its three main components:
size of UZP metadata, size of the CSR/COO metadata if any, and size of the double-precision data
values for the non-zero elements, which total to 100% of a UZP �le (1.00 of the total �le size). We
also display the overhead that would be incurred by storing all unincorporated points as 1-point
polyhedral shapes, instead of using a CSR/COO fragment for them, as bars above 1. That is, a value
of 1.25 means 25% additional space would be needed to store the matrix without using CSR/COO
encoding for unincorporated points. Except for the smaller matrices, the (incompressible) data
values represent the largest proportion of the �les. On aggregate, the UZP metadata takes up 17.5%
of the total dataset storage size, compared to 9.9% for the CSR/COO fragment metadata and 72.6%
for the data themselves.
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Fig. 12. Breakdown of the storage size of UZP files

We remark that UZP tuners geared towards minimizing the size of the metadata, along with
using more general Z-polyhedra shapes during the reconstruction process can further reduce the
UZP �le sizes, Fig. 12 displays the exact UZP �les we evaluated for performance in this section.
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6 Related Work
Saltz et al. [35] proposed runtime techniques for distributed memory parallelization of irregular
applications [28, 35, 37]. These were augmented with compiler approaches that automatically
generated parallel code [1, 15, 44]. Ravishankar et al. [32] exploit runtime regularity to produce
polyhedrally-optimizable executor code in speci�c cases. Sukumaran-Rajam and Clauss [41] also
detect runtime regularity using linear interpolation and regression models, selecting optimizations
in a speculative fashion. Cheshmi et al. [12] develop an inspection technique to fuse two sparse
kernels, generating parallel code optimized for locality and load balance.
The Sparse Polyhedral Framework [24, 39, 42] employed uninterpreted function symbols to

(over-)approximate an irregular computation into a polyhedral one, which is ideal for generating
I/E code at compile time. The same advantages and limitations occur: the generated code will be
valid for any input sparse matrix, but will not exploit opportunities to customize the program for a
speci�c matrix.
Sympiler [10, 11] is an I/E compiler that inspects the sparsity structure of an input to generate

ad-hoc executor code. Indirection arrays are not completely removed, and may appear in loop
bounds and access functions. The TACO compiler [14, 23] is a framework for generating optimized
(sparse) tensor computations, supporting a large variety of sparse input formats and, in particular,
composing di�erent sparse formats and generating the associated executor programs.
Augustine et al. [2] proposed DSCG, and approach that mines for regularity in the sparsity

structure of a matrix by computing the polyhedral shapes that capture the nzc, eventually generating
data-speci�c codes that remove the use of indirection arrays. This approach exploitsZ-polyhedra to
represent non-zero coordinates, and rely on the compiler auto-vectorization capabilites to optimize
the matrix-speci�c executor �le generated. Horro et al. [22] leveraged DSCG by developing a custom
local rescheduling and advanced SIMD synthesis approach, including the fusion of independent
reductions. MACVETH provides systematic performance improvements over DSCG, however these
approaches lack the modularity and �exibility o�ered by UZP: one must compile the executor code
for each target sparse matrix, leading to binaries which can have a size proportional to their nnz.
In contrast, UZP develops generic executors whose size are independent of the nnz, and store the
information about the polyhedral sets used to represent a given sparse structure in a separate �le,
which itself can be tuned and communicated easily.

Herholz et al. [20] unroll the computation into a graph that is then optimized to remove redundant
computations and regroup expressions to take advantage of the hardware.Wilkinson et al. [47]
apply unroll-and-jam followed by data compression to speci�c sparsity structures, enabling register
tiling of SpMM computations. These techniques also leverage (a limited set of)Z-polyhedral shapes
to encode the computations.

Partially-Strided Codelets (PSC) have been proposed to e�ciently execute sparse computations
on multi-core CPUs [9]. PSC are also polyhedral shapes, albeit much more restricted than those
considered by, e.g., Augustine et al. [2]. These can therefore also be represented in UZP. PSC focuses
on a small number of possible codelets for which an e�cient implementation is available (e.g., from
existing libraries or via manual generation) and deploys a partitioning approach at inspection time
to map nzc to these codelets, easing locality load-balancing for parallel computations. In contrast,
UZP provides a �exible format to represent nearly arbitrary polyhedral shapes to encode a sparse
structure, and provides a modular and decoupled approach to reconstruction, tuning (e.g., to favor
locality or storage size compression) and execution. PSC [9] is tuned towards e�ciently executing
large sparse matrices on multi-core CPUs using a small number of prede�ned shapes, while in this
work we prioritized scaling the reconstruction to a large number of candidate shapes, and tuning
for smaller matrices (less than 20M nnz) and cold-cache / single-core situations. Indeed, UZP GenEx
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currently outperforms PSC for about 76% of matrices tested in single-core, cold-cache con�guration.
Future work includes the development of tuners for other objectives, such as to improve scalability
of multi-core execution and further improve data locality for additional performance.
While CSR remains the most common sparse storage format, many works have improved over

its shortcomings, in particular to tune the storage format to speci�c computations. For example,
Vuduc [45] presented an automated system for generating e�cient implementations of SpMV on
CPUs, while Williams et al. [49] moved toward multi-core platforms with the implementation
of parallel SpMV kernels. For GPUs, Bell and Garland [4] implemented sparse matrix formats in
CUDA and proposed the HYB approach (hybrid of ELL and COO).
Block-based formats [6, 13] such as BCSR, BELLPACK, or CSB are similar to UZP in that they

exploit regularity. By design, blocks represent contiguous sets of coordinates, including storage for
explicit zeros. Often the block size is constant for the entire matrix structure. Our approach does not
have any of these restrictions. DCSR, RPCSR, and DCSC [7, 48] compress the index information to
reduce the bandwidth consumed by the sparse computation. CVR [50] is a format focused on SpMV,
simultaneously processing multiple rows within the input matrix. AlphaSparse [17] optimizes
SpMV for GPUs, creating custom storage formats for a given sparsity structure. Note that many of
these formats can also be represented in UZP.

7 Conclusion
We presented UZP, the Union of Z-Polyhedra sparse format, and the associated tools to build UZP
and compute with it. By proposing a modular approach to code generation, separating out the
analysis of the sparse structure, tuning the representation for compression, and code generation
strategies for, e.g., SpMV on CPUs, we removed several key limitations of monolithic prior works,
and enable future research on the various components of this �ow individually. UZP is a �exible
format that encodes the sparsity structure as a union of integer polyhedra, each intersected with an
a�ne lattice. It carries the bene�ts of using unions of dense computations to implement a sparse
computation, while facilitating the generation of specialized sparsity-speci�c codes for improved
performance. UZP seamlessly models strided dense sub-regions, subsuming other sparse formats.

In this work, we speci�cally targeted SpMV computations on multi-core CPUs, evaluating against
a variety of formats and a highly-optimized matrix-speci�c SIMD code generation approach. Future
work includes the development of advanced target-speci�c tuning strategies for CPUs, including
fusion of small shapes for better SIMD occupancy, and a lightweight generic executor generator
for sparse linear algebra expressions using UZP.
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