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Abstract—In variational signal processing and machine
learning problems, loss functions and linear operators are
typically aggregated as an average of composite terms. We
propose an alternative formulation using proximal comix-
tures, an operation that combines functions and linear
operators in such a way that the proximity operator of
the resulting function is computable explicitly. The benefits
of comixture formulations are illustrated through image
recovery and machine learning applications.

Index Terms—proximal comixture, convex optimization,
signal recovery.

[. INTRODUCTION

Various data analysis problems in signal processing and
machine learning can be condensed into the minimization
of an aggregation of loss functions that model individually
desired properties of the ideal solution in a Hilbert space
‘H. These properties typically result from prior knowledge
and the observation of data. To be more specific, let us
state our assumptions on the variational models to be
discussed (see Section II for notation).

Assumption 1 7 is a real Hilbert space with scalar prod-
uct (-|-) and associated norm || - ||, f € T'o(#), and, for
every k € {1,...,p}, G is a real Hilbert space, g €
To(Gk), and Li: H — Gy is a bounded linear operator
such that (without loss of generality) ||Lx|| < 1. Further,
the coefficients (ay)1<k<p € ]0,1]" satisfy > 7 _, ax = 1.

The most prevalent optimization framework used in
data analysis problems is the following, in which the
objective is to minimize the sum of a function f and p
composite functions aggregated via a standard averaging
operation (see [6], [11], [13] and the references therein).

Problem 2 Under Assumption 1, the task is to

p
minimize f(x) + > arge(Li). (1)

k=1
While simple from a modeling viewpoint, the above
averaging process brings some challenge on the numerical
side. Indeed, since the proximity operator of the com-
posite average has no closed form expression, solving
Problem 2 requires splitting p + 1 terms, which typically
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leads to algorithms that are slower and necessitate more
memory storage than those that would split less terms.
In addition, the aggregation model of Problem 2 may not
be robust to perturbations. For instance, let us consider
the special case when f = 0 and each gy, is the indicator
function of a nonempty closed convex set Dy C G. This
reduces (1) to the convex feasibility problem

find x € # such that (Vk € {1,...,p}) Lyx € Dy. (2)

If the sets (Dy)i1<r<p OF the operators (Lj)i<k<p are not
specified exactly, no solution may exist [4], [8].

The objective of the present paper is to propose the
use of a new aggregation process, called the proximal
comixture, to combine the functions (gx)i<x<p and the
linear operators (Ly)1<k<p. This operation, introduced in
[9], further studied in [3], and applied for the first time
in the present paper, can be viewed as a generalization of
the proximal average [1], [2], which corresponds to the
special case in which, for every k € {1,...,p}, Gx = H
and L, = Id. In this specific context, the benefits of
using proximal averages in lieu of standard averages has
been documented in several studies, e.g., [14], [17],
[19], [21]. We shall show that, more generally, solv-
ing minimization problems involving proximal comixtures
instead of the composite averages of Problem 2 may
yield notable modeling and computational advantages.
For instance, as discussed above, the computation of the
proximity operator of the standard average in (1) is not
tractable and solving Problem 2 requires sophisticated
splitting techniques. By contrast, the proximity operator
of the comixture will be shown to be computable explicitly
in terms of the individual proximity operators of the
functions (gx)1<k<p- As a result, Problem 2 can be solved
by splitting only two terms, namely f and the proximal
comixture.

The remainder of the paper is organized as follows. Sec-
tion II provides the necessary mathematical background
and notation. Section III is devoted to proximal comix-
tures and their main properties. The proximal comixture
minimization problem is introduced in Section IV. Finally,
numerical experiments are presented in Section V.

II. MATHEMATICAL BACKGROUND AND NOTATION

Our notation follows [1], where one will find the neces-
sary background. We denote by I'g(#) the class of lower
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semicontinuous convex functions f: H — ]—oo,+o0]
which are proper, i.e., dom f = {z € H | f(z) < 400} #
@. Let C C H. Then 1 denotes the indicator function of C'
and d¢ the distance function to the set C. Let f € T'o(H).
The conjugate of f is the function f* € I'o(H) defined by

f*:H—>]—oo,+oo]:u'—>51€1?;_)[(<x|u)—f(:v)) 3)

and the subdifferential of f at x € H is the set
of (@) ={ueH|(Vz e H) (z—z|u)+f(z)< f(2)}. 4

Now let 23, = ||-]|?/2 be the normalized quadratic kernel
of H. The Moreau envelope of f is

fDQH:H—HR:xHig?f{(f(z)—i—a@ﬂ(x—z)) (5)

and the proximity operator of f is

prox;: H — H: x arzgergl{in (f(2) + 2u(z—=2)). (©)

The Huber function with parameter p € ]0, +00] is

P
plfl—? if [§] > p;

hp: R = R: |€|2 .
o if €] < p.

(7)

ITI. PROXIMAL COMIXTURES

Proximal comixtures were introduced in [9] and further
investigated in [3] as a new operation that combines
functions and linear operators.

Definition 3 Suppose that Assumption 1 is in force. The
proximal comixture of (gx)i<r<p and (Li)igr<y 1S

. p * *
M(Lk, gk)1<k<p = <<Zak(gkﬂa@gk)oLk> _QH> -

k=1

Let us recall from [9] some key properties of proximal
comixtures, in particular the fact that their proximity
operator can be computed explicitly.

Proposition 4 Suppose that Assumption 1 is in force and
set h = M(Ly, gr)1<k<p- Then the following hold:
@ heTo(H)
(i) prox, =1Id—3"7_; axLj o (Id —prox,, ) o L.
(iii) Argmin h = Argmin) 7_, ax(9x 0 2g, ) o Ly.

Let us provide a few illustrations of Definition 3, start-
ing with the extreme case when it happens to coincide
with the standard composite average.

Example 5 Suppose that Assumption 1 is in force and let
G be the standard product vector space Gy x - - - X G, with
generic element y = (yx)i<k<p, and equipped with the
scalar product (y,v) — Y »_, cx(yk|vi). Suppose that
L:H — G: z+— (Lgx)i<kgp satisfies Lo L™ = Id. Then

*

M(Lk, gk )1<k<p = D peq Gk © L.

Example 6 Suppose that Assumption 1 is in force and
that, for every k € {1,...,p}, G = H and L; = Id. Then
it follows from results of [9] that Definition 3 reduces to
the proximal average of (gi)1<k<p, Namely,

* p *
M(Id, gk)1<k<p = (Z ax(g; DQQQ) - 2% (®
k=1
This construct has been studied in [1], [2] and applied
to data analysis problems in [14], [17], [19], [21].

Example 7 Suppose that Assumption 1 is in force, that
f =0, and that, for every k € {1,...,p}, gx = tp,, Where
Dy, is a nonempty closed convex subset of Gy. In this case
(1) reduces to (2), while Definition 3 yields

. 1 p * *
M(LkaLDk)lgkgp: <<§ ZadeDk OLk) —QH) .
k=1

By Proposition 4(iii), the set of minimizers of (9) coin-
cides with that of the function z — Y7)_, axd}, (Liz),
which has been used in least-squares relaxation of incon-
sistent feasibility problems [4], [8]. This robust behavior
can be established for more general settings beyond con-
vex feasibility [9].

9

Example 8 Let {V,£} be an undirected graph, where
V = {1,...,M} is the set of nodes and £ is the set of
edges. For every edge (i,j) € &, let G;; be a real Hilbert
space, let «;; € ]0,1], let L;;: H — G;; be linear and
bounded with ||L;;|| < 1, and let ¢;; € T'¢(G;;). Suppose
that Z(i,j)eg ai; = 1. In the spirit of existing graph
regularizers, one can consider the abstract loss function

E @;;j9ij © Lij,

(i,9)€€

(10)

which is based on a standard composite average. The
corresponding proximal comixture is

M(Lij, 9ij) i, j)ee (an
which, by Proposition 4(ii), has an explicit proximity oper-
ator. The setting of [15] in the context of feature selection
utilizes (10) with H = RY and, for every (i,j) € &,
gij = RN, Lij = Id, and Gij : (51)1<1<N — |€z — €J| By
contrast, [21] applied implicitly the comixture (11) in the
form of the proximal average (8) in this specific scenario.
More generally, (11) can be considered as an alternative
to (10) as a graph-based regularizer.

IV. THE PROXIMAL COMIXTURE MINIMIZATION PROBLEM
We consider the following alternative to Problem 2.

Problem 9 Under Assumption 1, the task is to

minimize f(x)+(h7l(Lk, k) (@), (12)

zEH

assuming that a solution exists.
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Since, by virtue of Proposition 4(ii), the proximity oper-
ator of the second term is explicit, two direct algorithms
can be devised for solving (12): the Douglas—Rachford
algorithm [1, Section 28.3] in general, and the forward-
backward algorithm [1, Section 28.5] if f is smooth.

Proposition 10 (Douglas-Rachford) In Problem 9, sup-
pose that 0 € range (0f +9(M(Lk, gk)1<k<p))- Let (An)nen

be a sequence in ]0,2[ such that ), . An(2 — ) = 400,
let yo € H, and iterate
forn=0,1,...
p
Ty = Yn + Z o Lj; (prox,, (Lkyn) — Liyn) (13)

k=1
Zn = proxf(2a:n — Yn)
Yn+1 = Yn + An(Zn - In)

Then (z,,)nen converges weakly to a solution to Problem 9.
Proposition 11 (Forward-backward) In Problem 9, sup-

pose that f is differentiable on H with a p-Lipschitzian
gradient, where 3 €0, 2], let zy € H, and iterate

forn=0,1,...
Yn :xn_vf(xn)

p
Tn+1 = Yn + ZakLl: (proxg,c (kan) - kan)
k=1

(14)

Then (x,,)nen converges weakly to a solution to Problem 9.

Let us add that, as shown in [5], inertia can be added
in Proposition 11 to obtain optimal rates of convergence
for the values of the objective in (12). To solve Problem 2,
we shall use the Condat-Vii algorithm [12], [20]. Unlike
(13) and (14), which split two functions and store two
variables, it splits p+ 1 functions and stores p+ 1 variables
at each iteration. The same holds true for other algorithms
for solving Problem 2 [6], [11], [13].

Proposition 12 In Problem 2, suppose that 0 €
range (Of+> 8 _, ayL}odgroLy). Let T and o be in )0, +o0]
and, for every k € {1,...,p}, let v}, € Gi. Suppose that
oY r_ |ILk]|? < 1, let xo € H, and iterate

forn=0,1,...
Yn =Tpn — T Zzzl Livg .,
Tn41 = PTOX, ¢Yn
Zn = 2Tp41 — Ty,
forevery k€ {1,...,p}
L Wk = Vj; , +0Lkzn
Vg1 = Whn — aproxakgk/g(wkyn/a).

(15)

Then (x,,)nen converges weakly to a solution to Problem 2.

V. APPLICATIONS

Since the algorithms have essentially the same compu-
tational load per iteration, we compare them in terms of
error versus iteration number. The results of the three
experiments conducted below consistently support the
fact that the proximal comixture models lead to reliable
solutions and faster algorithms which, in addition, are
much less demanding in terms of memory requirements.

A. Experiment 1: Multiview image reconstruction from par-
tial diffraction data

We consider the problem of reconstructing the image
7 € C =[0,255]V (N = 2562) of Fig. 1(a) from a partial
observation of its diffraction over some frequency range
R, possibly with measurement errors [18]. To exploit
this information we use the soft constraint penalty dg
associated with the set

E={zeR" | (VkeR) (k) =T(k)}, (16)

where 7 denotes the two-dimensional discrete Fourier
transform of x. The set R contains the frequencies in
{0,...,15}2 as well as those resulting from the symmetry
properties of the discrete Fourier transform. In addition,
two blurred noisy observations of T are available, namely
(see Fig. 1(b)—(c)) z1 = I4T + w1 and 2o = LoT + wo.
Here, L; and L, model convolutional blurs with constant
kernels of size 3 x 11 and of 7 x 5, respectively, and w;
and wo are Gaussian white noise realizations. The blurred
image-to-noise ratios are 30.1 dB and 34.6 dB.

Problem 13 In Problem 2, set f =1, p=4, a1 = as =
3/8, a3 =as=1/8, g1 =bpoll- =z, g2=h0| - =2,
gs = dE, L3 = Id, gs = \/gH . ||1, and L4 = D/\/g, where
p = 300, b, is defined in (7), and D: RV — RV x RY
models finite differences. The task is to

I 3
minimize 20, (| L1z — 21]) + $by(| Lo — z2]) +

§e(@) + (VBILal). (7)

Problem 14 In Problem 9, define f, p, (ar)i<k<ps
(9% )1<k<p, and (Ly)i<k<p as in Problem 13, and replace
(17) by

miniergize (M(Lk,gk)lgkgp)(,f). (18)

We apply Propositions 12 and 10 to Problems 13 and
14, respectively, with all initial vectors set to 0. The
parameters used in Propositions 12 are o = 1/(1.153) and

7 =1/8, where 8 = /31 _, | Li||2, as these values gave
faster converge of the algorithm. The restored images
are shown in Fig. 2, while Fig. 3 illustrates the faster
convergence of the proximal comixture model compared
to the standard composite average.
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Fig. 1: (a) Original image Z. (b) Degraded image z;.
(c) Degraded image zo.

(b)

Fig. 2: (a) Image restored by Problem 13/Proposition 12.
(b) Image restored by Problem 14/Proposition 10.
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Fig. 3: Normalized error 20 logo(||zn — Zsoll/||T0 — Zool|)
(dB) versus iteration count in Experiment V-A.

B. Experiment 2: Image reconstruction from phase

This numerical example addresses a phase recovery
problem considered in [10]. The goal is to recover the

image 7 € C = [0,255]Y (N = 5122) from the observation
of its Fourier phase § = /T [16]. The original image 7 is
shown in Fig. 4(a). The problem is modeled as a convex
feasibility problem with the following constraint sets.

« Phase: Olz{xeRN|4£:9}v.

o Mean pixel value: C; = {z € RY | (z|1) =n}.

« Upper bound on the norm of the gradient: Dx/v/8 €
C3, where C3 = {y € RV x RV | ||ly|l2 < p} and D is
defined as in Problem 13.

« Proximity to the reference image z of Fig. 4(b): Cy =
{z e RN | ||x — z||2 < ¢}. The image z is a blurred
and noise corrupted version of Z, which is further
degraded by saturation (the pixel values beyond 130
are clipped to 130) and the addition of a local high
intensity noise on a rectangular area around the right
eye.

Because of inaccuracies in the values 6, 7, p, and &, this
problem is inconsistent and it is relaxed as follows.

Problem 15 In Problem 2, set f = (¢, p =4, a1 = as =
az =g = 1/4, g1 = by, ode,, L1 =1d, go = b, o dc,,
Ly =1d, g3 = b,, odc,, Ly = D/V/8, g4 = b,, odc,, and
Ly = Id, where pP1 = P2 = pP3 = 3000, P4 = 5000, and [’)p
is defined in (7). The task is to

.. 1 1
minimize b, (de, () + 7002 (dey () +
ihps (dCS (L3$)) + %bm (dC4 (LL')) (19)

Problem 16 In Problem 9, define f, p, (ar)i<k<ps
(9x)1<k<p and (Ly)i<k<p as in Problem 15, and replace
(19) by

minimize (M(Lk, gk)lgkgp) (). (20)

(b)
Fig. 4: (a) Original image 7. (b) Reference image z.

We apply Propositions 12 and 10 to Problems 15 and
16, respectively, with all initial vectors set to 0. The
parameters used in Propositions 12 are o = 1/(1.153) and

T=1/8, where 8 = />"y_, || Li|?, as these values gave
faster convergence of the algorithm. The restored images
are shown in Fig. 5, while Fig. 6 illustrates the faster
convergence of the proximal comixture model compared
to the standard composite average.
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Fig. 5: (a) Image restored by Problem 15/Proposition 12.
(b) Image restored by Problem 16/Proposition 10.
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Fig. 6: Normalized error 20 logo(||2n — Zooll/||T0 — Zool|)
(dB) versus iteration count in Experiment V-B.

C. Experiment 3: Overlapping group lasso

We consider the following instance of Problem 2.

Problem 17 The task is to solve the overlapping group
lasso problem [7]

p

miwneinlg}vize %HA:E —z|? + ; ol Lrzl, Q1)
where p = 50, N = 2255, M = 2000, A € RMx*N
is normalized so that [|A|| < 1, T = (£;)1<j<n, Where
£ = (=1) exp(—(j — 1)/50), z = AT + w, where w is
a realization of a Gaussian noise with zero mean and
unit variance, and, for every k € {1,...,p}, Ly: z —
(Ea5(k—1)+15- - »Ea5(k—1)+50) and o = 1/p.

Problem 18 In Problem 17, replace (21) by
o1 y
minimize Az —b]* + (M(Ly, |- [)1<kep ) (2). (22)
rcR 2

While the methods converge to similar solutions, Fig. 7
shows that the proximal comixture approach yields faster
convergence than that of the standard composite average.
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