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Abstract—We propose stochastic algorithms for solving
large scale nonsmooth convex composite minimization prob-
lems. They activate at each iteration blocks of randomly
selected proximity operators and achieve almost sure con-
vergence of the iterates to a solution without any regularity
assumptions. Numerical applications to data analysis prob-
lems are provided.

Index Terms—Convex optimization, data analysis, proxi-
mal splitting, stochastic algorithm.

[. INTRODUCTION

The objective of this paper is to propose stochastic
algorithms with convergence guarantees on the sequence
of iterates for solving the following general nonsmooth
composite minimization problem, which is ubiquitous in
signal processing, inverse problems, and machine learning
applications (see Section II-A for notation).

Problem 1 H is a separable real Hilbert space and f €
To(H). For every k € {1,...,p}, Gk is a separable real
Hilbert space, g € I'0(Gk), and Lx: H — Gy is linear and
bounded. It is assumed that Z = Argmin(f+ |_, gkoLk) #
. The task is to

p

. . . f L .
muilerauze (x) + kz:; gk (Lix)

(1)

Various deterministic proximal splitting methods are
available to solve Problem 1, most of which require the
activation of the proximity operators of the p+1 functions
f and (gk)i1<kgp at each iteration [3], [5]. Our specific
focus is on solving Problem 1 in instances when p is large,
which makes it necessary to activate only a small number
of proximity operators at each iteration. In this context,
we aim at designing efficient stochastic proximal splitting
algorithms with the following features:

F1: They guarantee the convergence of the sequence of
iterates to a solution to Problem 1 (not just objective
function convergence or ergodic convergence) with-
out any additional assumptions on the functions, the
linear operators, or the underlying spaces.
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F2: At each iteration, they activate only a block of ran-
domly selected proximity operators of (f,g1,...,gp).
At each iteration, more than one randomly selected
proximity operators of (f, g1, ...,g,) can be activated.
Knowledge of the norms of the linear operators is not

required.

F3:

F4.

There is a vast literature on random activation algorithms
in the special case of minimizing a sum of smooth func-
tions Y F_, gk in H = RN via so-called stochastic gradient
descent [8]. The minimization of > |_, g« when the func-
tions are Lipschitzian is considered in [7], [12], [13]; they
do not satisfy F1 and F3. In [6] the convergence anal-
ysis requires a strong convexity assumption, and finite-
dimensional spaces, which violates F1 and F4. On the
other hand, [9] addresses the constrained minimization of
a smooth function under regularity conditions in H = RN,
The work of [10], which employs the stochastic quasi-
Fejér framework of [4], considers special cases of (1)
and does not guarantee F1. The only random activation
frameworks that address Problem 1 in its generality and
guarantee F1 seem to be those of [11], which is based
on [4, Remark 5.10(iv)], and [2]. However, these primal-
dual renorming approaches do not satisfy F4 and [2] does
not satisfy F3. We propose three frameworks based on
results of [4] which lead to simple and efficient algorithms
for solving Problem 1 that satisfy the requirements F1-F4
above. These novel algorithms are presented in Section II
and applied to support vector machine and classification
problems in Section III.

II. PROPOSED ALGORITHMS

A. Notation

Throughout, H is a separable real Hilbert space with
identity operator Id, scalar product (-|-), and associated
norm || - ||. T'o(H) denotes the class of lower semicon-
tinuous convex functions f: H — ]—o0, +oo| such that
domf = {x € H | f(x) < 400} # @. Let C be a nonempty
closed convex subset of H. Then «c denotes the indicator
function of C and proj. the projection operator onto C.
Let f € I'o(H). The subdifferential of f at x € H is the set
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Of(x) = {ueH|(VzeH) (z—x|u)+f(x)<f(z)} and the
proximity operator of f is

prox;: H — H: x + argmin <f(z) + %Hx - z|2). (2)
zcH

We refer to [1] for background on convex analysis and
optimization. The underlying probability space is (2, F, P)
and By denotes the Borel o-algebra of H. An H-valued
random variable is a measurable mapping z: (Q,F) —
(H, By). The o-algebra generated by a family ® of random
variables is denoted by o(®). Given 2: & — Hand A C H,
we set [z € Al = {w € Q| z(w) € A}.

B. General framework

Our approach consists in embedding Problem 1 into
multivariate problems that have the following general
form studied in [4].

Problem 2 Let (Xi)i<icm and (Y)igks<r be families of
separable real Hilbert spaces with direct Hilbert sums X =
X1® - ®Xnand¥ =Y1®--®Y,. Foreveryi € {1,... m},
let fi € To(Xi) and, for every k € {1,...,r}, let hy € To(Yi),
and let Ly;: Xi = Yy be linear and bounded. It is assumed
that there exists u € X such that

(Vie{l,...,m})0€ofi(u)+> L <ahk (Z ijuj)> .
k=1 j=1

3)
The task is to

Inini&lize zm: fi(x) + zr: hi <zm: Lk;xi)
k=1 i=1

i=1

€]

and Z denotes the set of solutions. Further, the projection
operator onto the subspace

V:{(x,y)eXEBY ’ (Vke{l,...,r})yk:zm:Lkixi}
NG

is decomposed as projy: (x,y) — (Qj(X,¥))1<j<m+r, Where
foreveryie {l,....m}, Qi: X®Y — X and, for every
k € {1,...,I’}, Qm—l—k: X®Y = VY.

Theorem 3 [4, Corollary 5.5] Consider the setting of
Problem 2. Set D = {0,1}™*" \ {0}, let vy € ]0,+o0|,
let (An)nen be a sequence in 0, 2[ such that inf,eyAn > 0
and sup,eyAn < 2, let oy and zo be X-valued random
variables, let y, and wo be Y-valued random variables,
and let (e,)nen be identically distributed D-valued random
variables. Iterate
forn=0,1,...
fori=1,...,m
Tint+1 = Tin + Ei,n(Qi(zna 'wn) - xi,n)

Zin+1l = Zin T EinAn (PTOnyi(2£Ci,n+1 — Zin) — Tint+1)
fork=1,...,r
Yk,n+1 = Yk,n T Emtk,n (Qm+k(zn7 wn) - yk,n)
Wk, n4+1 = Wk,n +
L L 5m+k,n)\n (PI’Othk(ka,nH - wk,n) - yk,n-i—l)-

In addition, assume that the following are satisfied:
(i) For every n € N, o(en) and o(zj, wj)ogj<n are indepen-
dent.
(ii) For every je {1,...,m+r}, Plgjo =1] > 0.
Then (x,)nen converges weakly P-a.s. to a Z-valued random
variable.

Remark 4 The random variables ¢;,, and emk,n control
which components are updated.

We now present three frameworks for solving Prob-
lem 1 which are based on specializations of Theorem 3.
We define G =G; @ ---® G, and

W_{erGBG‘(Vke{l,...,p})ka_kal}. (6)

C. Framework 1

We start with the following reformulation of Problem 1.

Problem 5 Consider the setting of Problem 1. Set f; = f
and, for every i € {2,...,p+ 1}, fi = gi_1. Denote by x =
(X1,...,%p+1) a generic element in H® G. The task is to

p+1

minimize fi(xi) + ow (x).
xeEHBG Y

(7

We observe that Problem 5 is a special case of Problem 2
in which m = p+1,r =1, Xy = H, (Xi)ggigm =

(Gi—1)a2<i<ms Y1 = X, h1 = 1w, and, for every i €
{1,...,m}, Llii Xj — (Zl,...,Zm), where z; = 0 lfj 75 i,
and z; = x; if j = i. Altogether, Problem 1 is an instance of

Problem 2 and we apply Theorem 3 to solve it as follows.

Proposition 6 Consider the setting of Problem 1. Set D =
{0,1}P+2 {0}, let v € ]0, +o0], let (An)nen be a sequence
in ]0,2[ such that inf,eyAn > 0 and sup,enAn < 2, let
o, 20, Yo, and wy be H @& G-valued random variables,
and let (e,)nen be identically distributed D-valued random
variables. Set xo = x1,0 and iterate

forn=0,1,...

Tntl = Tn + El,n(%zl,n + %wl,n - xn)

Zin+1 = Z1,n + El,n}\n (proxyf (2$n+1 - Zl,n) - xn-i—l)
fork=1,....p

Tk+1,n+1 = Tkt+1,n T
EkJrl,n(%ZkJrl,n + %warl,n - IkJrl,n)
Zk+1,n+1 = Zk+1,n T
Ek+1,nAn (Proxygk (2$k+1,n+1 - Zk+1,n) - $k+1,n+1)
Ynt1 = Yn + 5p+2,n(%zn + %wn - yn)
dn = (Id + ZE:l Lt o Lk)_l (2y1,n+1 — Wi,n

+ ZEZI I—i(2yk+l7n+1 — ’U}k+17n))
Wint1 = Win + EP+2,n?\n(Qn - yl,nJrl)
fork=1,...,p

L |_ Wk+1,n+1 = Wkt1,n T 5p+2,n)\n(Lan - yk+1,n+1)'
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In addition, assume that the following are satisfied:
(D (ueH)0edf(u)+>r_, Li(dgk(Lku)).
(ii) For every n € N, o(e,) and o(zj, wj)ogj<n are indepen-
dent.
(iif) For every je {1,...,p+2}, Plgjo=1] > 0.
Then (zn)nen converges weakly P-a.s. to a Z-valued random
variable.

D. Framework 2

Here is an alternative reformulation of Problem 1.

Problem 7 Consider the setting of Problem 1 and let
(fi)i<i<p+1 be as in Problem 5. Let (Kk)i<kgr be separable
real Hilbert spaces, set K = @,_, Ky, and let

p+1

C:H@G—)K:xH(ZCk;XJ (8)
1<k<r

i=1
be linear and bounded with ker C = W. The task is to
p+1 p+1

inimi fi(xi Cixi |-
mingrgéze (xi) + kz:; L0} (; KiX ) ()]

i=1

We observe that Problem 7 is the special case of
Problem 2 in which m = p+ 1, X; = H, (Xi)2<icm =
(Gifl)ggigm, Y = K, for every k € {1,...,[‘}, hy = L{0}»
and, foreveryi € {1,...,m}, Ly = Cx. Thus, the subspace
V of (5) becomes

V= {(x,y) eXaY ‘ (Vke{l,...,r}) yk—iCkix;},

(0
which confirms that Problem 1 is an instance of Prob-
lem 7. In turn, we apply Theorem 3 to solve it as follows.

Proposition 8 Consider the setting of Problem 1. Let K and
C be as in Problem 7, set V be as in (10), and decompose
its projection operator as projy : X — (RjX)1<j<p+1+r, Where
Ri: HOGHK — H, (VI € {1, ceey p}) R1+i2 HeGEK — G,
and (Vk € {1,...,r}) Roy14x: HO G® K — K. Set D =
{0,1}PH1+7 {0}, let vy € |0, +00], let (An)nen be a sequence
in ]0,2[ such that inf,eyAn > 0 and sup,cyAn < 2, let g
and zo be H® G-valued random variables, let y, and w be
K-valued random variables, and let (e,)nen be identically
distributed D-valued random variables. Set xo = 1,0 and
iterate

forn=0,1,...

Tn41 = Tn + €10 (Rl(znu 'wn) - xn)

Zin+1 = Z1,n + El,n}\n (PTOny (2$n+1 - Zl,n) - xn-&—l)
fork=1,....p

Tk+1,n+1 = Tk+1,n T Ek+1,n (Rk-i-l (Zna wn) - xk—Q—l,n)
Zk+1,n+1 = Zk+1,n T

L 5k+l,n)\n (Pfoxygk (2$k+1,n+1 - Zk,n) - xk+1,n+1)
fork=1,...,r

Yk,n+1 = Yk,n T+ 5p+1+k,n(Rp+1+k(zna 'wn) - yk,n)

L Wk n+1 = Wk,n — 5p+1+k,n}\nyk,n+l-

In addition, assume that the following are satisfied:

(i) There exists u € kerC such that 0 € Of(u;) +
Z;:1 range Cj; and (Vj € {1,...,p}) 0 € Ogj(uj4+1) +
> k- range Cj.

(ii) For every n € N, o(ey) and o(zj, wj)ogj<n are indepen-
dent.

(iii) For every je {1,...,p+1+r}, Plgjo=1] > 0.

Then (x,)nen converges weakly P-a.s. to a Z-valued random
variable.

E. Framework 3

The third approach stems from the observation that
Problem 1 coincides with (4) for m =1, r = p, X; = H,
f1 = f, and (Vk S {17...7p}) Y = Gy, I—k,l = Ly,
and hy, = gx. We therefore derive from Theorem 3 the
following convergence result.

Proposition 9 Consider the setting of Problem 1. Set D =
{0,1}1P {0}, let v € ]0, +ool, let (An)nen be a sequence
in ]0,2[ such that inf,eny A > 0 and sup,cyAn < 2, let x
and zy be H-valued random variables, let y, and wq be
G-valued random variables, and let (e,)nen be identically
distributed D-valued random variables. Iterate

forn=0,1,...
g = (Id + 320, L o Li) =" (2n + 225, Liwin)
Tn41l = Tn + El,n(Qn - -:Cn)
Zn+1 = %n + 51,n7\n (PTOny (2In+1 - Zn) - -:CnJrl)
fork=1,....p

Yk,n+1 = Yk,n + €14k,n (Lan - yk,n)

Wik n+1 = Wk,n +

ElJrk,nAn (PTOXygk (2yk,n+1 - wk,n) - yk,nJrl) .

In addition, assume that the following are satisfied:

(D (ueH)0edf(u)+ > p_, Li(dgk(Lku)).
(ii) For every n € N, o(en) and o(zj, wj)ogj<n are indepen-
dent.
(iii) For every je {1,...,p+ 1}, Plgjo =1] > 0.

Then (zn)nen converges weakly P-a.s. to a Z-valued random
variable.

F. Examples

We provide some examples of operators arising in
Propositions 6, 8, and 9.

Example 10 In Proposition 8, set r = p, K = G, and, for

every k € {1,...,p} and everyic {1,...,p+ 1},
Le, ifi=1;
Chi = —Id, ifi=k+ 1; 1D

0, otherwise.
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Let x e H® G,y € G, and set q = (2ld + > p_ Lo

L)t (2x1 + Y op_; L (xks1 + yk)). Then, for every i €
{1,...,p+ 1}, Ri(x,y) is given by
q, ifi=1;
1 . .
§“FN+N_W%% if2<i<p+1;
1 . .
i(l-i—p—lq —Xi—p+Yi—p—1)7 ifp+2<i<2p+1.
(12)

The next examples focus on the special case of Prob-
lem 1 in which, for every k € {1,...,p}, Gk = H and
Ly = Id, that is,

P

minimize f(x) + Z gk (x).

(13)
xeH
k=1

Example 11 In Example 10, for every x € HP*! and every
y € HP,

(14)

1
2
q= p—|—2< X1+Z Xk+1+Yk))

Example 12 In Proposition 8, set C such that, for every

ke{l,...,p+1} and everyie {1,...,p+1},
_ET@ if k = i;
=14 "] (15)
——Id, ifk#i.
e ifk #£i

Then ker C is the subspace of all the Vectors x € HP*! such
that, foreveryie {1,...,p+1}, x = p+1 ZJPJrll x;. Hence,
for every i € {1,...,2p + 2}, x € HPT!, and y € HPT!,
Ri(x,y) is given by

xi + Vi 1 P+l
SEEA xi—vyj), ifi<p+1;
+1
Xi + Vi 1 : . .
— xi+yj), ifp+2<i<2p+2.
(16)

Example 13 In Propositions 6 and 9, (Id+>"p_, LioLy)™*
is just (p+ 1)~ tId.

Remark 14 On the one hand, the operator C in Ex-
ample 11 applied to x € HPT! couples, for every i €
{2,...,p+1}, x; with x;. On the other hand, in Example 12
the operator C applied to x € HP*! couples for every
i€ {1,...,p+1}, x with the average -~ Zp 1 Xj. Various
alternative coupling operators C can be con51dered to

enforce the condition x; = - -+ = Xp41.

III. NUMERICAL EXPERIMENTS

We present two experiments to compare the numerical
behavior of the algorithms presented in Section II. The
qualification condition (3) is satisfied in all cases.

A. Experiment 1: Overlapping group lasso regression

We address the overlapping group lasso regression
problem of [14]. Here H = RN and, for every k ¢
{1,...,p}, @ # Ik Cc {1,...,N} and

Lkl RN — Rcard Ik: X = (E»j)lgjgN — (E’j)jelk. (17)
Further, [ J}_, Ik = {1,...,N}. The goal is to
minimize —|A uﬁ+lﬁim.n (18)
= ||Ax — - x|,
x€RN 2 p k=1

where A € RMN b ¢ RM and o € ]0,+oo]. In the
experiment M = 1000, N = 3610, p = 40, and, as in
[14], « = 5/p%. The entries of A are i.i.d. samples from a
N(0,1) distribution, and the entries of b are i.i.d. samples
from a A/(100,100) distribution. Finally,

(vk e {1,...,p}) I = {90k — 89,...,90k + 10}.  (19)

We employ the three frameworks of Sections II-C-II-E
to solve (18), where Proposition 8 uses the operator C
defined in Example 10. In each case, y = p, the initial
points xo, zo, Yy, and wy are set to 0, and, for every
n € N, A, = 1.9. The random variable € activates a single
index in {1,...,p+2},{1,...,2p+1},and {1,...,p+1}
respectively, and the distribution is uniform. We display
in Fig. 1 the normalized error versus execution time.

—100

400 500 600

300

0 100 200
Fig. 1: Normalized error 20log(||z1,n — Tool|/[|Z1,0 — Too||)
(dB) versus execution time (s) in Experiment 1. Orange:
Framework 1. Blue: Framework 2 with Example 12.
Green: Framework 3. Dashed red: Algorithm of [11].

Dashed violet: Algorithm of [2].

B. Experiment 2: Classification using the hinge loss

We address a binary classification problem. The training
data set ((uk, &))1<k<p is in RN x {—1,1} and the goal is
to learn a linear classifier x € H = RN. For this purpose,
we solve the support vector machine model

. . . 2
ml)I(lelghlze \xH Z gk (x (20)
where « € |0, +o0[ and, for every k € {1,...,p},
gk: x — max{0,1 — & (x| uk)}- 2n
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—50} o

—100 I I I I

(0

Fig. 2: Normalized error 20log(||z1,n — Tool|/[|Z1,0 — Zoo||)
(dB) versus execution time (s) in Experiment 2. (a): Block
size 1 with 1 core. (b): Block size 8 with 8 cores. (c):
Block size 32 with 32 cores. Orange: Framework 1. Blue:
Framework 2 with Example 11. Magenta: Framework 2
with Example 12. Green: Framework 3. Dashed red:
Algorithm of [11]. Dashed violet in (a): Algorithm of [2].

In the experiment, N = 1000, « = 1, p = 500, and,
for every k € {1,...,p}, the entries of uyx are i.i.d.
samples from a A(100,10) distribution, and the entries
of &y are i.i.d. samples from a uniform distribution on
{—1,1}. We employ four methods to solve this problem:
Framework 1, Framework 2 using the operators C defined
in Example 11 and Example 12, and Framework 3. In
each case, y = 1, the initial points xo, zo, vy, and
wqo are set to 0 and, for every n € N, A, = 1.9. We
run three instances of the algorithms. In the first one,
the random variable €, activates one index uniformly
in {1,...,p+2}, {1,...,2p + 1}, {1,...,2p + 2}, and
{1,...,p + 1} respectively. In the second, the number of
activated indices is 8, and in the third it is 32. We display

in Fig. 2 the normalized error versus execution time for
each instances. The execution time is evaluated based on
the assumption that the computation corresponding to
each selected index is assigned a dedicated core and that
all the cores are working in parallel.

C. Discussion

As seen in Section I, the only comparable existing
algorithms are those of [2] and [11]. In Experiment 1
they display a fast initial behavior but then progress very
slowly compared to the proposed Frameworks 1-3. In
Experiment 2 they are consistently slower than Frame-
works 1-3. Note that the algorithm of [2] is just compared
in Fig. 2(a), where only one index is activated since it
does not satisfy F3. In terms of storage, Framework 1
stores 2p + 1 variables, Framework 2 stores p+r+ 1, and
Framework 3 stores p + 1. An advantage of Framework 2
is that in the last r activations no proximal calculations
are needed. In general, the execution time depends on the
computational load associated with the evaluation of the
proximity operators and the inversions. For instance, these
are cheaper in Experiment 2, which makes Framework 3
the fastest.
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