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Abstract—We propose stochastic algorithms for solving
large scale nonsmooth convex composite minimization prob-
lems. They activate at each iteration blocks of randomly
selected proximity operators and achieve almost sure con-
vergence of the iterates to a solution without any regularity
assumptions. Numerical applications to data analysis prob-
lems are provided.

Index Terms—Convex optimization, data analysis, proxi-
mal splitting, stochastic algorithm.

I. INTRODUCTION

The objective of this paper is to propose stochastic

algorithms with convergence guarantees on the sequence

of iterates for solving the following general nonsmooth
composite minimization problem, which is ubiquitous in

signal processing, inverse problems, and machine learning
applications (see Section II-A for notation).

Problem 1 H is a separable real Hilbert space and f ∈
Γ0(H). For every k ∈ {1, . . . , p}, Gk is a separable real

Hilbert space, gk ∈ Γ0(Gk), and Lk : H → Gk is linear and

bounded. It is assumed that Z = Argmin(f+
∑p

k=1
gk◦Lk) 6=

∅. The task is to

minimize
x∈H

f(x) +

p
∑

k=1

gk(Lkx). (1)

Various deterministic proximal splitting methods are

available to solve Problem 1, most of which require the
activation of the proximity operators of the p+1 functions

f and (gk)16k6p at each iteration [3], [5]. Our specific
focus is on solving Problem 1 in instances when p is large,

which makes it necessary to activate only a small number

of proximity operators at each iteration. In this context,
we aim at designing efficient stochastic proximal splitting

algorithms with the following features:

F1: They guarantee the convergence of the sequence of
iterates to a solution to Problem 1 (not just objective

function convergence or ergodic convergence) with-
out any additional assumptions on the functions, the

linear operators, or the underlying spaces.

This work was supported by the National Science Foundation under
grant CCF-2211123.

F2: At each iteration, they activate only a block of ran-
domly selected proximity operators of (f, g1, . . . , gp).

F3: At each iteration, more than one randomly selected

proximity operators of (f, g1, . . . , gp) can be activated.
F4: Knowledge of the norms of the linear operators is not

required.

There is a vast literature on random activation algorithms
in the special case of minimizing a sum of smooth func-

tions
∑p

k=1
gk in H = R

N via so-called stochastic gradient

descent [8]. The minimization of
∑p

k=1
gk when the func-

tions are Lipschitzian is considered in [7], [12], [13]; they

do not satisfy F1 and F3. In [6] the convergence anal-
ysis requires a strong convexity assumption, and finite-

dimensional spaces, which violates F1 and F4. On the

other hand, [9] addresses the constrained minimization of
a smooth function under regularity conditions in H = R

N.

The work of [10], which employs the stochastic quasi-

Fejér framework of [4], considers special cases of (1)
and does not guarantee F1. The only random activation

frameworks that address Problem 1 in its generality and
guarantee F1 seem to be those of [11], which is based

on [4, Remark 5.10(iv)], and [2]. However, these primal-

dual renorming approaches do not satisfy F4 and [2] does
not satisfy F3. We propose three frameworks based on

results of [4] which lead to simple and efficient algorithms

for solving Problem 1 that satisfy the requirements F1–F4
above. These novel algorithms are presented in Section II

and applied to support vector machine and classification
problems in Section III.

II. PROPOSED ALGORITHMS

A. Notation

Throughout, H is a separable real Hilbert space with

identity operator Id, scalar product 〈· | ·〉, and associated
norm ‖ · ‖. Γ0(H) denotes the class of lower semicon-

tinuous convex functions f : H → ]−∞,+∞] such that
dom f =

{

x ∈ H | f(x) < +∞
}

6= ∅. Let C be a nonempty

closed convex subset of H. Then ιC denotes the indicator

function of C and projC the projection operator onto C.
Let f ∈ Γ0(H). The subdifferential of f at x ∈ H is the set
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∂f(x) =
{

u ∈ H | (∀z ∈ H) 〈z− x | u〉+f(x)6 f(z)
}

and the

proximity operator of f is

proxf : H → H : x 7→ argmin
z∈H

(

f(z) +
1

2
‖x− z‖2

)

. (2)

We refer to [1] for background on convex analysis and
optimization. The underlying probability space is (Ω,F,P)
and BH denotes the Borel σ-algebra of H. An H-valued
random variable is a measurable mapping x : (Ω,F) →
(H,BH). The σ-algebra generated by a family Φ of random

variables is denoted by σ(Φ). Given x : Ω → H and A ⊂ H,
we set [x ∈ A] =

{

ω ∈ Ω | x(ω) ∈ A
}

.

B. General framework

Our approach consists in embedding Problem 1 into

multivariate problems that have the following general
form studied in [4].

Problem 2 Let (Xi)16i6m and (Yk)16k6r be families of

separable real Hilbert spaces with direct Hilbert sums X =
X1⊕· · ·⊕Xm and Y = Y1⊕· · ·⊕Yr. For every i ∈ {1, . . . ,m},

let fi ∈ Γ0(Xi) and, for every k ∈ {1, . . . , r}, let hk ∈ Γ0(Yk),
and let Lki : Xi → Yk be linear and bounded. It is assumed

that there exists u ∈ X such that

(∀i ∈ {1, . . . ,m}) 0 ∈ ∂fi(ui) +

r
∑

k=1

L∗ki

(

∂hk

( m
∑

j=1

Lkjuj

)

)

.

(3)
The task is to

minimize
x∈X

m
∑

i=1

fi(xi) +

r
∑

k=1

hk

( m
∑

i=1

Lkixi

)

(4)

and Z denotes the set of solutions. Further, the projection

operator onto the subspace

V =

{

(x, y) ∈ X⊕ Y

∣

∣

∣

∣

(∀k ∈ {1, . . . , r}) yk =
m
∑

i=1

Lkixi

}

(5)
is decomposed as projV : (x, y) 7→ (Qj(x, y))16j6m+r, where

for every i ∈ {1, . . . ,m}, Qi : X ⊕ Y → Xi and, for every

k ∈ {1, . . . , r}, Qm+k : X⊕ Y → Yk.

Theorem 3 [4, Corollary 5.5] Consider the setting of

Problem 2. Set D = {0, 1}m+r
r {0}, let γ ∈ ]0,+∞[,

let (λn)n∈N be a sequence in ]0, 2[ such that infn∈N λn > 0
and supn∈N

λn < 2, let x0 and z0 be X-valued random

variables, let y0 and w0 be Y-valued random variables,

and let (εn)n∈N be identically distributed D-valued random

variables. Iterate

for n = 0, 1, . . .


























for i = 1, . . . ,m
⌊

xi,n+1 = xi,n + εi,n
(

Qi(zn,wn)− xi,n

)

zi,n+1 = zi,n + εi,nλn
(

prox
γfi
(2xi,n+1 − zi,n)− xi,n+1

)

for k = 1, . . . , r








yk,n+1 = yk,n + εm+k,n

(

Qm+k(zn,wn)− yk,n
)

wk,n+1 = wk,n +
εm+k,nλn

(

prox
γhk

(2yk,n+1 − wk,n)− yk,n+1

)

.

In addition, assume that the following are satisfied:

(i) For every n ∈ N, σ(εn) and σ(zj,wj)06j6n are indepen-

dent.

(ii) For every j ∈ {1, . . . ,m+ r}, P[εj,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to a Z-valued random
variable.

Remark 4 The random variables εi,n and εm+k,n control

which components are updated.

We now present three frameworks for solving Prob-

lem 1 which are based on specializations of Theorem 3.
We define G = G1 ⊕ · · · ⊕ Gp and

W =

{

x ∈ H⊕ G

∣

∣

∣

∣

(∀k ∈ {1, . . . , p}) xk+1 = Lkx1

}

. (6)

C. Framework 1

We start with the following reformulation of Problem 1.

Problem 5 Consider the setting of Problem 1. Set f1 = f

and, for every i ∈ {2, . . . , p + 1}, fi = gi−1. Denote by x =
(x1, . . . , xp+1) a generic element in H⊕ G. The task is to

minimize
x∈H⊕G

p+1
∑

i=1

fi(xi) + ιW(x). (7)

We observe that Problem 5 is a special case of Problem 2
in which m = p + 1, r = 1, X1 = H, (Xi)26i6m =
(Gi−1)26i6m, Y1 = X, h1 = ιW, and, for every i ∈
{1, . . . ,m}, L1i : xi 7→ (z1, . . . , zm), where zj = 0 if j 6= i,

and zj = xi if j = i. Altogether, Problem 1 is an instance of

Problem 2 and we apply Theorem 3 to solve it as follows.

Proposition 6 Consider the setting of Problem 1. Set D =
{0, 1}p+2

r {0}, let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence

in ]0, 2[ such that infn∈N λn > 0 and supn∈N λn < 2, let

x0, z0, y0, and w0 be H ⊕ G-valued random variables,

and let (εn)n∈N be identically distributed D-valued random

variables. Set x0 = x1,0 and iterate

for n = 0, 1, . . .






















































xn+1 = xn + ε1,n
(

1

2
z1,n +

1

2
w1,n − xn

)

z1,n+1 = z1,n + ε1,nλn
(

prox
γf (2xn+1 − z1,n)− xn+1

)

for k = 1, . . . , p














xk+1,n+1 = xk+1,n +
εk+1,n

(

1

2
zk+1,n +

1

2
wk+1,n − xk+1,n

)

zk+1,n+1 = zk+1,n +

εk+1,nλn
(

prox
γgk

(2xk+1,n+1 − zk+1,n)− xk+1,n+1

)

yn+1 = yn + εp+2,n

(

1

2
zn +

1

2
wn − yn

)

qn = (Id+
∑p

k=1
L∗k ◦ Lk)

−1
(

2y1,n+1 − w1,n

+
∑p

k=1
L∗k(2yk+1,n+1 − wk+1,n)

)

w1,n+1 = w1,n + εp+2,nλn(qn − y1,n+1)
for k = 1, . . . , p
⌊

wk+1,n+1 = wk+1,n + εp+2,nλn(Lkqn − yk+1,n+1).
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In addition, assume that the following are satisfied:

(i) (∃ u ∈ H) 0 ∈ ∂f(u) +
∑p

k=1
L∗k(∂gk(Lku)).

(ii) For every n ∈ N, σ(εn) and σ(z j,wj)06j6n are indepen-

dent.

(iii) For every j ∈ {1, . . . , p+ 2}, P[εj,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to a Z-valued random

variable.

D. Framework 2

Here is an alternative reformulation of Problem 1.

Problem 7 Consider the setting of Problem 1 and let

(fi)16i6p+1 be as in Problem 5. Let (Kk)16k6r be separable

real Hilbert spaces, set K =
⊕r

k=1
Kk, and let

C : H⊕ G → K : x 7→

(

p+1
∑

i=1

Ckixi

)

16k6r

(8)

be linear and bounded with kerC = W. The task is to

minimize
x∈H⊕G

p+1
∑

i=1

fi(xi) +

r
∑

k=1

ι{0}

(

p+1
∑

i=1

Ckixi

)

. (9)

We observe that Problem 7 is the special case of
Problem 2 in which m = p + 1, X1 = H, (Xi)26i6m =
(Gi−1)26i6m, Y = K, for every k ∈ {1, . . . , r}, hk = ι{0},
and, for every i ∈ {1, . . . ,m}, Lki = Cki. Thus, the subspace

V of (5) becomes

V =

{

(x, y) ∈ X⊕ Y

∣

∣

∣

∣

(∀k ∈ {1, . . . , r}) yk =

p+1
∑

i=1

Ckixi

}

,

(10)

which confirms that Problem 1 is an instance of Prob-

lem 7. In turn, we apply Theorem 3 to solve it as follows.

Proposition 8 Consider the setting of Problem 1. Let K and

C be as in Problem 7, set V be as in (10), and decompose

its projection operator as projV : x 7→ (Rjx)16j6p+1+r, where

R1 : H⊕G⊕K → H, (∀i ∈ {1, . . . , p}) R1+i : H⊕G⊕K → Gi,

and (∀k ∈ {1, . . . , r}) Rp+1+k : H ⊕ G ⊕ K → Kk. Set D =
{0, 1}p+1+r

r{0}, let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence

in ]0, 2[ such that infn∈N λn > 0 and supn∈N λn < 2, let x0

and z0 be H⊕G-valued random variables, let y0 and w0 be
K-valued random variables, and let (εn)n∈N be identically

distributed D-valued random variables. Set x0 = x1,0 and

iterate

for n = 0, 1, . . .
































xn+1 = xn + ε1,n
(

R1(zn,wn)− xn

)

z1,n+1 = z1,n + ε1,nλn
(

prox
γf (2xn+1 − z1,n)− xn+1

)

for k = 1, . . . , p








xk+1,n+1 = xk+1,n + εk+1,n

(

Rk+1(zn,wn)− xk+1,n

)

zk+1,n+1 = zk+1,n+
εk+1,nλn

(

prox
γgk

(2xk+1,n+1 − zk,n)− xk+1,n+1

)

for k = 1, . . . , r
⌊

yk,n+1 = yk,n + εp+1+k,n

(

Rp+1+k(zn,wn)− yk,n
)

wk,n+1 = wk,n − εp+1+k,nλnyk,n+1.

In addition, assume that the following are satisfied:

(i) There exists u ∈ kerC such that 0 ∈ ∂f(u1) +
∑r

k=1
rangeC∗

k1 and (∀j ∈ {1, . . . , p}) 0 ∈ ∂gj(uj+1) +
∑r

k=1
rangeC∗

kj.

(ii) For every n ∈ N, σ(εn) and σ(zj,wj)06j6n are indepen-

dent.

(iii) For every j ∈ {1, . . . , p+ 1 + r}, P[εj,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to a Z-valued random

variable.

E. Framework 3

The third approach stems from the observation that

Problem 1 coincides with (4) for m = 1, r = p, X1 = H,

f1 = f, and (∀k ∈ {1, . . . , p}) Yk = Gk, Lk,1 = Lk,
and hk = gk. We therefore derive from Theorem 3 the

following convergence result.

Proposition 9 Consider the setting of Problem 1. Set D =
{0, 1}1+p

r {0}, let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence

in ]0, 2[ such that infn∈N λn > 0 and supn∈N λn < 2, let x0

and z0 be H-valued random variables, let y0 and w0 be

G-valued random variables, and let (εn)n∈N be identically

distributed D-valued random variables. Iterate

for n = 0, 1, . . .
























qn = (Id+
∑p

k=1
L∗k ◦ Lk)

−1
(

zn +
∑p

k=1
L∗kwk,n

)

xn+1 = xn + ε1,n(qn − xn)
zn+1 = zn + ε1,nλn

(

prox
γf (2xn+1 − zn)− xn+1

)

for k = 1, . . . , p








yk,n+1 = yk,n + ε1+k,n

(

Lkqn − yk,n
)

wk,n+1 = wk,n +
ε1+k,nλn

(

prox
γgk

(2yk,n+1 − wk,n)− yk,n+1

)

.

In addition, assume that the following are satisfied:

(i) (∃ u ∈ H) 0 ∈ ∂f(u) +
∑p

k=1
L∗k(∂gk(Lku)).

(ii) For every n ∈ N, σ(εn) and σ(zj,wj)06j6n are indepen-

dent.

(iii) For every j ∈ {1, . . . , p+ 1}, P[εj,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to a Z-valued random

variable.

F. Examples

We provide some examples of operators arising in

Propositions 6, 8, and 9.

Example 10 In Proposition 8, set r = p, K = G, and, for
every k ∈ {1, . . . , p} and every i ∈ {1, . . . , p+ 1},

Cki =











Lk, if i = 1;

−Id, if i = k+ 1;

0, otherwise.

(11)
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Let x ∈ H ⊕ G, y ∈ G, and set q = (2Id +
∑p

k=1
L∗k ◦

Lk)
−1(2x1 +

∑p
k=1

L∗k(xk+1 + yk)). Then, for every i ∈
{1, . . . , p+ 1}, Ri(x, y) is given by






















q, if i = 1;

1

2

(

Li−1q+ xi − yi−1

)

, if 2 6 i 6 p+ 1;

1

2

(

Li−p−1q− xi−p + yi−p−1

)

, if p+ 2 6 i 6 2p+ 1.

(12)

The next examples focus on the special case of Prob-
lem 1 in which, for every k ∈ {1, . . . , p}, Gk = H and

Lk = Id, that is,

minimize
x∈H

f(x) +

p
∑

k=1

gk(x). (13)

Example 11 In Example 10, for every x ∈ Hp+1 and every
y ∈ Hp,

q =
1

p+ 2

(

2x1 +

p
∑

k=1

(xk+1 + yk)

)

. (14)

Example 12 In Proposition 8, set C such that, for every

k ∈ {1, . . . , p+ 1} and every i ∈ {1, . . . , p+ 1},

Cki =











p

p+ 1
Id, if k = i;

−
1

p+ 1
Id, if k 6= i.

(15)

Then kerC is the subspace of all the vectors x ∈ Hp+1 such
that, for every i ∈ {1, . . . , p+1}, xi =

1

p+1

∑p+1

j=1
xj. Hence,

for every i ∈ {1, . . . , 2p + 2}, x ∈ Hp+1, and y ∈ Hp+1,

Ri(x, y) is given by


























xi + yi

2
+

1

2(p+ 1)

p+1
∑

j=1

(xj − yj), if i 6 p+ 1;

xi + yi

2
−

1

2(p+ 1)

p+1
∑

j=1

(xj + yj), if p+ 2 6 i 6 2p+ 2.

(16)

Example 13 In Propositions 6 and 9, (Id+
∑p

k=1
L∗k◦Lk)

−1

is just (p+ 1)−1Id.

Remark 14 On the one hand, the operator C in Ex-

ample 11 applied to x ∈ Hp+1 couples, for every i ∈
{2, . . . , p+1}, xi with x1. On the other hand, in Example 12
the operator C applied to x ∈ Hp+1 couples, for every

i ∈ {1, . . . , p+1}, xi with the average 1

p+1

∑p+1

j=1
xj. Various

alternative coupling operators C can be considered to

enforce the condition x1 = · · · = xp+1.

III. NUMERICAL EXPERIMENTS

We present two experiments to compare the numerical

behavior of the algorithms presented in Section II. The
qualification condition (3) is satisfied in all cases.

A. Experiment 1: Overlapping group lasso regression

We address the overlapping group lasso regression

problem of [14]. Here H = R
N and, for every k ∈

{1, . . . , p}, ∅ 6= Ik ⊂ {1, . . . ,N} and

Lk : R
N → R

card Ik : x = (ξj)16j6N 7→ (ξj)j∈Ik . (17)

Further,
⋃p

k=1
Ik = {1, . . . ,N}. The goal is to

minimize
x∈R

N

α

2
‖Ax− b‖2 +

1

p

p
∑

k=1

‖Lkx‖, (18)

where A ∈ R
M×N, b ∈ R

M, and α ∈ ]0,+∞[. In the

experiment M = 1000, N = 3610, p = 40, and, as in

[14], α = 5/p2. The entries of A are i.i.d. samples from a
N (0, 1) distribution, and the entries of b are i.i.d. samples

from a N (100, 100) distribution. Finally,

(∀k ∈ {1, . . . , p}) Ik = {90k− 89, . . . , 90k+ 10}. (19)

We employ the three frameworks of Sections II-C–II-E

to solve (18), where Proposition 8 uses the operator C

defined in Example 10. In each case, γ = p, the initial

points x0, z0, y0, and w0 are set to 0, and, for every

n ∈ N, λn = 1.9. The random variable ε0 activates a single
index in {1, . . . , p+2}, {1, . . . , 2p+1}, and {1, . . . , p+1}
respectively, and the distribution is uniform. We display

in Fig. 1 the normalized error versus execution time.

0 100 200 300 400 500 600
−100

−75

−50

−25

0

Fig. 1: Normalized error 20 log(‖x1,n − x∞‖/‖x1,0 − x∞‖)
(dB) versus execution time (s) in Experiment 1. Orange:
Framework 1. Blue: Framework 2 with Example 12.

Green: Framework 3. Dashed red: Algorithm of [11].

Dashed violet: Algorithm of [2].

B. Experiment 2: Classification using the hinge loss

We address a binary classification problem. The training

data set ((uk, ξk))16k6p is in R
N ×{−1, 1} and the goal is

to learn a linear classifier x ∈ H = R
N. For this purpose,

we solve the support vector machine model

minimize
x∈R

N

α

2
‖x‖2 +

1

p

p
∑

k=1

gk(x), (20)

where α ∈ ]0,+∞[ and, for every k ∈ {1, . . . , p},

gk : x 7→ max{0, 1− ξk〈x | uk〉}. (21)
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Fig. 2: Normalized error 20 log(‖x1,n − x∞‖/‖x1,0 − x∞‖)
(dB) versus execution time (s) in Experiment 2. (a): Block
size 1 with 1 core. (b): Block size 8 with 8 cores. (c):

Block size 32 with 32 cores. Orange: Framework 1. Blue:
Framework 2 with Example 11. Magenta: Framework 2

with Example 12. Green: Framework 3. Dashed red:

Algorithm of [11]. Dashed violet in (a): Algorithm of [2].

In the experiment, N = 1000, α = 1, p = 500, and,

for every k ∈ {1, . . . , p}, the entries of uk are i.i.d.
samples from a N (100, 10) distribution, and the entries

of ξk are i.i.d. samples from a uniform distribution on

{−1, 1}. We employ four methods to solve this problem:
Framework 1, Framework 2 using the operators C defined

in Example 11 and Example 12, and Framework 3. In

each case, γ = 1, the initial points x0, z0, y0, and
w0 are set to 0 and, for every n ∈ N, λn = 1.9. We

run three instances of the algorithms. In the first one,
the random variable εn activates one index uniformly

in {1, . . . , p + 2}, {1, . . . , 2p + 1}, {1, . . . , 2p + 2}, and

{1, . . . , p + 1} respectively. In the second, the number of
activated indices is 8, and in the third it is 32. We display

in Fig. 2 the normalized error versus execution time for

each instances. The execution time is evaluated based on
the assumption that the computation corresponding to

each selected index is assigned a dedicated core and that
all the cores are working in parallel.

C. Discussion

As seen in Section I, the only comparable existing
algorithms are those of [2] and [11]. In Experiment 1

they display a fast initial behavior but then progress very

slowly compared to the proposed Frameworks 1–3. In
Experiment 2 they are consistently slower than Frame-

works 1–3. Note that the algorithm of [2] is just compared
in Fig. 2(a), where only one index is activated since it

does not satisfy F3. In terms of storage, Framework 1

stores 2p+1 variables, Framework 2 stores p+ r+1, and
Framework 3 stores p+1. An advantage of Framework 2

is that in the last r activations no proximal calculations

are needed. In general, the execution time depends on the
computational load associated with the evaluation of the

proximity operators and the inversions. For instance, these
are cheaper in Experiment 2, which makes Framework 3

the fastest.
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