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Abstract

Disease progression models are widely used to
inform the diagnosis and treatment of many
progressive diseases. However, a significant lim-
itation of existing models is that they do not ac-
count for health disparities that can bias the ob-
served data. To address this, we develop an in-
terpretable Bayesian disease progression model
that captures three key health disparities: cer-
tain patient populations may (1) start receiving
care only when their disease is more severe, (2)
experience faster disease progression even while
receiving care, or (3) receive follow-up care less
frequently conditional on disease severity. We
show theoretically and empirically that failing
to account for any of these disparities can re-
sult in biased estimates of severity (e.g., under-
estimating severity for disadvantaged groups).
On a dataset of heart failure patients, we show
that our model can identify groups that face
each type of health disparity, and that account-
ing for these disparities while inferring disease
severity meaningfully shifts which patients are
considered high-risk.

Data and Code Availability This paper uses
data from the NewYork-Presbyterian (NYP)/Weill
Cornell Medical Center’s electronic health record
(EHR) system, which is not publicly available. Code
for our model and all synthetic experiments can
be found at https://github.com/erica-chiang/
progression-disparities.
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1. Introduction

In many settings, observed data is used to model the
progression of a latent variable over time. Models
of human aging use a person’s physical and biolog-
ical characteristics to model progression of their la-
tent “biological age” (Pierson et al., 2019); models of
infrastructure deterioration use inspection results to
model progression of a system’s latent overall health
(Madanat et al., 1995); and disease progression mod-
els, which we focus on in this paper, use observed
symptoms to model progression of a patient’s latent
severity of a chronic disease (Wang et al., 2014). Dis-
ease progression models can help predict a patient’s
disease trajectory and thus personalize care, detect
diseases at earlier stages, and guide drug develop-
ment and clinical trial design (Mould et al., 2007;
Romero et al., 2015). They have been applied to a
wide variety of progressive diseases such as Parkin-
son’s disease (Post et al., 2005), Alzheimer’s disease
(Holford and Peace, 1992) and cancer (Gupta and
Bar-Joseph, 2008).

For the benefits of these models to apply to all
patients equitably, it is crucial that they accurately
describe progression for all patient populations. How-
ever, disease progression models have typically failed
to account for the fact that systemic disparities in the
healthcare process can bias the observed data that
they are trained on. For example, disparities have
been shown to arise along axes such as socioeconomic
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status (Weaver et al., 2010; Miller and Wherry, 2017),
race (Yearby, 2018), and proximity to care (Chan
et al., 2006; Reilly, 2021). Accounting for such dis-
parities is important because it can meaningfully shift
estimates of disease progression. For intuition, imag-
ine learning that a patient in the emergency room
traveled three hours to get there; if their symptoms
are ambiguous, this contextual information may in-
crease our estimate of how severe their underlying
condition is. Disease progression models have histor-
ically been unable to capture this type of context and,
as we show, this can lead to biased estimates of sever-
ity. To address this, we propose a method for learning
disease progression models that interpretably capture
three well-documented health disparities:

1. Disparities in initial severity. Certain pa-
tient groups may start receiving care only when
their disease is more severe (Hu et al., 2024).

2. Disparities in disease progression rate.
Certain patient groups may experience faster dis-
ease progression, even while receiving care (Dia-
mantidis et al., 2021).

3. Disparities in visit frequency. Certain pa-
tient groups may visit healthcare providers for
follow-up care less frequently, even at the same
disease severity (Nouri et al., 2023).

A core technical challenge we address is designing a
model that is flexible enough to capture all three dis-
parities but still identifiable. Identifiability is nec-
essary for accurate estimates of disparities and dis-
ease progression. As such, our key contributions are:
(1) we develop an interpretable Bayesian model of
disease progression that accounts for multiple types
of disparities but remains provably identifiable from
the observed data; (2) we prove and show empirically
that failing to account for any of these three dispari-
ties leads to biased estimates of severity; and (3) we
characterize fine-grained disparities in a heart failure
dataset. Our model reveals that non-white patients
have more severe heart failure and face multiple types
of health disparities: Black and Asian patients tend
to start receiving care at more severe stages of heart
failure than do White patients, and Black patients
see healthcare providers for heart failure 10% less
frequently than do White patients at the same dis-
ease severity level. Accounting for these disparities
meaningfully shifts our estimates of disease severity,
increasing the fraction of Black and Hispanic patients
identified as high-risk.

While we ground this work in healthcare, our
method for learning progression models that account
for disparities applies naturally to many other pro-
gression model settings where disparities are of inter-
est, including infrastructure deterioration (Madanat
et al., 1995) and human aging (Pierson et al., 2019).

2. Related Work

Disease progression modeling. Disease progres-
sion models have been developed for many chronic
diseases, including Parkinson’s disease (Post et al.,
2005), Alzheimer’s disease (Holford and Peace, 1992),
diabetes (Perveen et al., 2020), and cancer (Gupta
and Bar-Joseph, 2008). A key feature of the pro-
gression models we consider, common in the machine
learning literature, is that a latent severity Z; pro-
gresses over time and gives rise to a set of observed
symptoms X;. Models in this family include vari-
ants of hidden Markov models (HMMs) (Wang et al.,
2014; Liu et al., 2015; Alaa and Hu, 2017; Sukkar
et al., 2012; Jackson et al., 2003) and recurrent neural
networks (RNNs) (Choi et al., 2016b; Lipton et al.,
2017; Lim and van der Schaar, 2018; Choi et al.,
2016a; Ma et al., 2017; Kwon et al., 2019; Alaa and
van der Schaar, 2019). This existing literature has
not focused on modeling disparities; we extend it
by proposing a new approach to disease progression
modeling that can interpretably characterize and ac-
count for multiple types of health disparities.

Health disparities. Disparities have been docu-
mented in many parts of the healthcare process. Fac-
tors such as distance from hospitals (Reilly, 2021),
distrust of the healthcare system (LaVeist et al.,
2009), or lack of insurance (Venkatesh et al., 2019)
can result in underutilization of health services; bi-
ases in the judgements of healthcare providers can
lead minority groups to receive later screening (Lee
et al., 2021), fewer referrals (Landon et al., 2021),
or generally worse care (Schéfer et al., 2016); and is-
sues such as limited health literacy or trust can create
disparities in follow-through for appointments or the
effectiveness of at-home care (Davis, 1968; Brandon
et al., 2005).

The existing literature has shown that disparities
emerge along the three axes that we capture in this
paper: (1) how severe a patient’s disease becomes be-
fore they start to receive care (Chen et al., 2021; Igbal
et al., 2015; Hu et al., 2024); (2) how quickly their
latent severity progresses even while receiving care
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(Diamantidis et al., 2021; Suarez et al., 2018); and
(3) how likely they are to visit a healthcare provider
at a given severity level (Nouri et al., 2023). Our goal
is to show how accounting for disparities along all
three of these axes improves the severity estimates of
disease progression models, while also learning more
fine-grained descriptions of disparities.

Capturing disparities with machine learning.
We build upon a large body of past work that uses
machine learning as a tool to capture and address
health disparities, including models that estimate the
relative prevalence of underreported medical condi-
tions (Shanmugam et al., 2021), improve risk pre-
diction for patients with missing outcome data (Bal-
achandar et al., 2023), evaluate the impact of race
corrections in risk prediction (Zink et al., 2023), as-
sess disparate impacts of Al in healthcare (Chen
et al., 2019), and quantify disparities in the perfor-
mance of clinical prediction tasks (Zhang et al., 2020).
The closest work to our own is Chen et al. (2021),
which develops a clustering algorithm that accounts
for the fact that some patients do not come in (and
are therefore not observed) until later in their disease
progression. While their work addresses one form of
data bias that can arise due to health disparities, it
differs from our own in two ways: it does not specifi-
cally document or study health disparities, and it fo-
cuses on clustering patients as opposed to modeling
disease severity or progression. Our work proposes a
model for capturing three types of health disparities
in the disease progression setting in order to learn
precise descriptions of multiple disparities and make
severity estimates that exhibit less bias than existing
disease progression models.

3. Model

We build on a standard setup for disease progression
modeling, in which each patient has an underlying
latent disease severity Z; that progresses over time
and gives rise to a set of observed features X;.

We characterize each patient’s severity Z; € R at
time ¢ by their initial severity Zy at their first obser-
vation (which we denote as t = 0) and their rate of
progression R after that point:

Zi=Zo+R-t

If a patient visits a healthcare provider at time t, we
observe some recorded set of features X; € R? (e.g.,
lab results, imaging, symptoms). At any given visit,

@
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Figure 1: Disease progression generative model.
Plate diagram captures N patients over T timesteps.
Shaded nodes indicate observed features: demo-
graphics A®| visit indicator D{”, and symptoms
X, (only observed when Dgi) = 1). Unshaded
nodes indicate latent variables: a patient’s initial
severity Zo(i), rate of progression R, and severity
Z:% . Red arrows indicate dependencies capturing
health disparities.
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a clinician does not necessarily observe or record all
features—we model the features that are observed as
a noisy function of the patient’s latent severity Z;:

Xt = f(Zt) + &
€t NN(O,\I/)

where the diagonal covariance matrix ¥ € R4*4
parameterizes feature-specific noise (accounting for
both measurement error and variation in how the pa-
tient’s physical state can fluctuate day-to-day). In
our experiments, we specifically instantiate f as a
linear function f(Z;) = F - Z; + b, where F € R? is a
feature-specific scaling factor and b € R? is a feature-
specific intercept, but our approach extends to more
general parametric forms for f. We constrain the first
feature Fy > 0 using domain knowledge; this restric-
tion is necessary for identifiability because it restricts
the mapping between features and severity (Shapiro,
1985). We also observe a set of time values at which
a patient visits a healthcare provider; we encode this
with a binary indicator D; € {0,1} that is equal to 1
if a patient has a visit at time ¢ and 0 otherwise.

Capturing disparities. Our model captures the
three types of health disparities discussed in §2 by
allowing model parameters to vary as a function of a
patient’s demographic feature vector A. For exposi-
tional clarity, we describe a setup where A encodes a
single categorical label (e.g., a patient’s race group),
but our approach naturally extends to multiple cate-
gorical groupings or to continuous features.
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1. Disparities in initial severity. Underserved
patients may start receiving care only when their
disease is more severe. We capture this by learn-
ing group-specific distributions of Z, a patient’s
disease severity at their first visit. For one group
A = ag, we pin Zj to be drawn from a unit nor-
mal distribution; this is a standard and necessary
identifiability condition since it fixes the scale of
Z; (Shapiro, 1985). For other groups a, we model

a a 2
e (12057
(@) and ag? are learned group-specific

where p;
parameters.

2. Disparities in disease progression rate. Un-
derserved patients may experience faster disease
progression even while receiving care. We cap-
ture this by learning group-specific distributions
of disease progression rate R:

R~ N (ug‘)»ff%)z)
( (a)

where N}g ) and o  are learned group-specific
parameters for each group a.

3. Disparities in visit frequency. Under-
served patients may visit healthcare providers for
follow-up care less frequently at a given disease
severity. We capture this by modeling patient
visits as generated by an inhomogeneous Poisson
process, parameterized by a time-varying rate
parameter \; that depends on both Z; and A:

log(A\t) = By + Bz - Zt + ﬂ,(f)

where 3, and 3, are learned parameters for the

entire population and qua) is a learned group-
specific parameter for each group a (we pin

ﬁffo) = 0 for reference).

Overall, our model parameters (on which we place
weakly informative priors) are the parameters shared
across groups {F, b, ¥, By, BZ}, and the group-

specific parameters {u(zao), og?, ug), Jg), 55{1)}. We

learn posterior distributions over these parameters
from our observed data {Xt, Dt,A} using Hamilto-
nian Monte Carlo, a standard algorithm for Bayesian
inference (Betancourt, 2018), as implemented in Stan
(Carpenter et al., 2017). Figure 1 summarizes the
data generating process and Table 1 summarizes the
notation for our model.

Notation Meaning

X Observed features at time ¢

D, Binary visit indicator for time ¢
A Demographic features

Zy Disease severity at time ¢

Zy Initial severity

R Disease progression rate

F Severity-feature matrix

b Feature intercepts

\\ Feature covariance matrix

Hzys Tz, Group-specific mean and sd of Zj
Hp,Op Group-specific mean and sd of R
At Visit rate at time ¢

Bo Visit rate intercept

By Visit rate Z; coeflicient

Ba Visit rate A coefficient

Table 1: Summary of notation. Observed data are
listed above the double horizontal line.

Model discussion. Our model makes several com-
mon assumptions. First, we model event frequency
with a Poisson process; this is a common approach,
including in work that seeks to capture disparities in
event frequency (Liu et al., 2024; Kurashima et al.,
2018). Second, we model progression as linear over
time, a common approach for learning interpretable
characterizations of trajectories (Holford and Peace,
1992; Kimko, 2000; Pierson et al., 2019). Finally,
our assumption of a linear relationship between the
latent state Z; and feature values X; is also stan-
dard; for example, factor analysis makes this assump-
tion. While our linearity assumptions may limit our
model’s ability to capture some nuances of disease
progression, they allow the model to interpretably
capture progression trends over time; interpretabil-
ity is especially valuable in our setting, allowing us
to directly compare quantities like initial severity and
progression rate across patient subgroups.

4. Theoretical analysis

In this section, we prove two main theoretical results.
First, we show that our model is identifiable, a nec-
essary condition for its parameters to be estimated
from the observed data. Interpreting these parame-
ter estimates is what allows us to quantify disparities.
Second, we prove that failing to account for dispari-
ties produces biased estimates of severity. We sum-
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marize proof strategies in the main text and provide
formal proofs in Appendices A and B.

4.1. Identifiability

We show that our model is identifiable, meaning dif-
ferent sets of parameters yield different observed data
distributions (Bellman and Astrom, 1970), which is
necessary to correctly estimate model parameters
from the observed data. Learning a model of progres-
sion that is flexible enough to characterize multiple
disparities but still identifiable is a core challenge our
work addresses. In fact, if we added one more depen-
dence on A—in particular, adding an arrow from A to
X in Figure 1—the model would no longer be identifi-
able (without a shared interpretation across groups of
how features map to severity, it would be impossible
to identify disparities in disease progression).

Theorem 1 All model parameters are identified by
the observed data distribution P(Xy, Dy | A).

As mentioned in §3, the distribution of initial sever-
ity Zp is pinned to a unit normal for one demographic
group ag. This pinned distribution reduces the num-
ber of unknown latent parameters for group ag, al-
lowing us to show that {F,b, U} are identified by
P(X; | A = ap). Having identified these, we show
that the parameters {,u(Z‘?7 U(Z?, ,ugg), Ug)} are identi-
fied by P(X; | A = a) for all groups a. Finally, we
show that given the previously identified parameters,
{Bo, B} are identified by P(D; | A = ap) and {ﬁgl)}
is identified by P(D; | A = a) for all other groups a.
We provide a full proof in §A.1.

4.2. Bias in models that do not account for
disparities

Next we show that, when any of the health dispar-
ities we discuss are present, a model that does not
account for group-specific disparities will produce bi-
ased estimates of severity—i.e., E[Z; | X;, Dy #
E[Z; | X, Dy, A = a]. These theoretical results hold
whenever the model dependencies are encoded by the
graph in Figure 1, a more general assumption than
our full parametric model. For each proof, we ana-
lyze the effect of one disparity—e.g., for disparities
in initial severity, we assume that P(Z, | A) differs
across groups—while keeping other distributions con-
stant across groups. The results hold in the presence
of multiple disparities as long as the existing dispar-
ities disfavor or favor the same group, so as to not
cancel each other out in their effects.

To quantify disparities, we use the strict Monotone
Likelihood Ratio Property (MLRP) to reason about
the probability density functions of initial severity
and progression rate for certain groups, relative to
the overall population (Karlin and Rubin, 1956):

Definition 2 Two distributions characterized by
probability density functions f(x) and g(x) have the
strict monotone likelihood ratio property in x if 558

is a strictly increasing function of x.

Intuitively, this means that as some variable z (Z;
or R, in our case) gets larger, it is more likely to be
drawn from f than g. The MLRP is a widely-used
assumption across many settings (Gaebler and Goel,
2024; Anwar and Fang, 2006; Chemla and Hennessy,
2019); the normal, exponential, binomial, and Pois-
son families all have this property. For brevity, we say
“f(x) strictly MLRPs g(z)” to mean that f(z) and
g(z) satisty the strict MLRP in . We now prove for
each disparity that any model failing to account for
the disparity will produce biased estimates of sever-
ity.

Theorem 3 A model that does not take into ac-
count disparities in initial disease severity Zy will un-
derestimate the disease severity of groups with higher
initial severity and overestimate that of groups with
lower initial severity. Specifically, if P(Zy | A =
a) strictly MLRPs P(Zy) for some group a, then
E[Z: | X¢] < E[Z: | X¢, A = a]. Similarly, if P(Zy)
strictly MLRPs P(Zy | A = a) for some group a, then
E|Z: | Xi] > E[Z; | Xt, A =a).

We prove this by showing that P(Zy | X¢, A = a)
strictly MLRPs P(Zy | X:), which implies that E[Z; |
X, A=a] > E[Z; | X;]; §B.1 provides a full proof.

Theorem 4 Suppose disease severity progresses lin-
early at some rate R. A model that does not take into
account disparities in R will underestimate the dis-
ease severity of groups with higher progression rates
and overestimate that of groups with lower progres-
sion rates. Specifically, if P(R | A = a) strictly
MLRPs P(R) for some group a, then E[Z; | X;] <
E[Z; | Xt, A = a]. Similarly, if P(R) strictly MLRPs
P(R | A = a) for some group a, then E[Z; | X] >
]E[Zt | Xt,A = a].

We use a similar proof technique as for Theorem 3
and provide a full proof in §B.2.

Finally, we analyze disparities in visit frequency.
For this portion of the theoretical analysis, we con-
sider discrete, non-infinitesimal time intervals (with
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the i-th interval starting at time ¢;, where to = 0)
and whether or not a patient visited at any point dur-
ing each interval. We introduce a new random vari-
able E;, to indicate whether the patient has any visits
during the time interval starting at ¢; (i.e., whether
D; =1 for some t in [t;,t;11)). We show that con-
ditioned on Ej, the group with lower visit frequency
has higher expected severity at the beginning of the
interval.

Theorem 5 A model that does not take into ac-
count disparities in visit frequency conditional on dis-
ease severity will underestimate the disease sever-
ity of groups with lower wvisit frequency conditional
on severity and overestimate the disease severity
of groups with higher visit frequency conditional on
severity. Specifically, assume that P(Ey = 1| Z) is

strictly monotone increasing in Zy, lim P(E, =
Zi——00

1] %) =0, and ZhinooP(Et =1|2%2:) =1. Then
if some group a has a lower probability of visiting a
healthcare provider at any given severity level—that
is,P(Et:1|Zt:z,A:a):P(Et:1\Zt:
z —a(z)) for all z, where a(z) is a positive function
of z—then E[Z; | Et] < E[Z; | E, A = a]. Similarly,
sz(Etzl\Zt:z,A:a):P(Et:1|Zt=
z+ a(z)) for all z, where a(z) is a positive function
Of Z, then ]E[Zt | Et} > E[Zt | Et,A = CL].

We prove this by directly reasoning about the ex-
pected value of Z; when conditioning on group versus
not; we provide a full proof in §B.3.

Overall, these results convey the importance of ac-
counting for disparities in disease progression mod-
els: it is fundamentally not possible to make well-
calibrated estimates of severity without accounting
for group differences in initial severity, progression
rate, and visit frequency.

5. Synthetic experiments

In this section, we validate our model and theoret-
ical results in synthetic data simulations. We gen-
erate synthetic datasets according to the modeling
assumptions in §3 (with parameter values for each
dataset drawn randomly from each parameter’s prior
distribution). For each dataset, we generate simu-
lated data for two separate groups, differing in their
distributions of initial severity, progression rate, and
visit frequency (characterized by different Kzys PR
and 3,4, respectively).

5.1. Identifiability and Severity Estimation

We first verify Theorem 1 in simulations, showing
that when we fit our model on synthetic data, it accu-
rately recovers the true data-generating parameters.
We do this by examining the concordance between
the model’s estimated parameters and the true, la-
tent parameter values, a common approach in past
work (Chang et al., 2021; Pierson et al., 2019). We
find high correlation between the true parameters and
our model’s posterior mean estimates (mean Pear-
son’s r 0.96 across all parameters; median 0.99), and
good calibration (mean linear regression slope 1.0;
median 1.0 when fit without an intercept term). We
provide scatterplots of true versus estimated values
for all parameters in Appendix C. We also see that
our model’s mean severity estimates for each group
are highly correlated and well-calibrated with ground
truth, despite underlying differences in group severity
distributions and visit rates (Figure 2).
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Figure 2: Well-calibrated severity estimates.
Each dot shows the mean true vs. mean recovered
severity values for one group in a given simulation
trial. Groups depicted in red tend to be underserved
compared to groups depicted in blue. Our full model
produces accurate and well-calibrated severity esti-
mates (estimates lie near dotted y = z line).

5.2. Bias in models that do not account for
disparities

We now demonstrate in simulation that failing to ac-
count for disparities can lead to biased severity esti-
mates, consistent with Theorems 3, 4, and 5. In each
trial, we use the same data to fit four models: our full
model, which accounts for all disparities, plus three
ablated models that each fail to account for one of the
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disparities (initial severity, progression rate, visit fre-
quency). To characterize the resulting bias of failing
to account for each type of disparity, we compute the
average error in severity estimates (mean inferred es-
timate minus mean true severity) of each model, bro-
ken down by group. For each ablated model and trial,
we define the “underserved group” to be the one that
is underserved with respect to the specific disparity
that the model fails to capture. When evaluating our
full model, we define the “underserved group” to be
the one with higher initial severity.

As seen in Table 2, the models that do not ac-
count for disparities produce biased estimates: while
our full model achieves average error across all trials
of -0.02 for underserved patient groups and 0.01 for
other patient groups, the ablated models all have neg-
ative error for underserved patients (underestimated
severity) and positive error for other patients (overes-
timated severity). The ablated models also produce
severity estimates that are less correlated with true
severity.

6. Modeling health disparities in heart
failure progression

Finally, we fit our model on a real-world dataset of
heart failure patients in the NewYork-Presbyterian
hospital system. Heart failure is a progressive dis-
ease that affects many people, requires both spe-
cialty and preventive care (Colucci et al., 2020), and
has known health disparities (Lewsey and Breathett,
2021), making it a natural application setting for our
model. In §6.1 we summarize the dataset, and in
§6.2 we confirm that our model can learn meaningful
low-dimensional representations of disease severity by
evaluating its reconstruction and predictive perfor-
mance compared to standard baselines. In §6.3 we
present our main results: we interpret our model’s
learned parameters to provide precise descriptions of
health disparities in our setting, and we show that
(as our theory predicts) failing to account for these
disparities meaningfully shifts severity estimates.

6.1. Data

Our data comes from the NewYork-Presbyterian
(NYP)/Weill Cornell Medical Center’s electronic
health record (EHR) system from 2012-2020. We an-
alyze a cohort of N = 2,942 patients who (1) have a
specific subtype of heart failure (heart failure with re-
duced ejection fraction), to ensure our cohort can be

described by a single progression model, and (2) are
likely to receive most of their cardiology care in the
NYP system, to ensure we can reasonably estimate
when they receive care.

Observed feature data X; for each patient includes
four types of measurements: left ventricle ejection
fraction (LVEF), brain natriuretic peptide (BNP),
systolic blood pressure (SBP), and heart rate (HR).
LVEF and BNP have strong clinical associations with
heart failure severity (in terms of both underlying
physiological health and observed symptoms) (Mur-
phy et al., 2020). SBP and HR are less informative
(more prone to fluctuation and changes not related
to heart failure), but they are still expected to show
general trends over time as a patient’s heart failure
progresses. Since we must pin the sign of at least
one scaling factor F for identifiability, and decreasing
LVEF is strongly associated with increasing severity
in the heart failure subtype we study, we pin the sign
of the scaling factor between severity Z; and LVEF
values (Fiypr <0).

Measurements close in time are often from the same
hospital visit, so we combine measurements within
the same week (which has the additional benefits
of increasing the speed of model fitting and allow-
ing us to focus on capturing longer-term changes in
disease severity). Specifically, for each week, we av-
erage together all measurements of the same type
and treat any measurements as if they occurred at
the beginning of the week. We then capture dispar-
ities across four self-reported race/ethnicity groups:
White non-Hispanic patients, Black non-Hispanic pa-
tients, Hispanic patients, and Asian non-Hispanic pa-
tients (which we will hereby describe as White, Black,
Hispanic, and Asian subgroups). A full description of
our data processing can be found in Appendix D.

6.2. Model validation

We first confirm that our model accurately fits the
data: we verify that the model’s inferred parame-
ters are consistent with medical knowledge (§6.2.1)
and compare the model’s reconstruction and predic-
tive performance to standard baselines (§6.2.2). We
then show in §6.3, as our primary result, that our
model provides insight into disparities in disease pro-
gression.

6.2.1. CONSISTENCY WITH MEDICAL KNOWLEDGE

Figure 3 plots our model’s inferred parameters, all
of which are consistent with existing medical knowl-
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Model that fails to account for disparities in...

Full model Initial severity  Progression rate Visit frequency
Underserved group bias -0.02 -0.89 -0.04 -0.37
Non-underserved group bias 0.01 +1.02 +0.20 +0.33
Underserved group correlation 1.00 0.72 0.99 0.94
Non-underserved group correlation 1.00 0.73 0.90 0.97

Table 2: Failing to account for disparities produces biased estimates of severity Z;. We compare
severity estimates from our full model to three ablated models that each fail to account for one of the three
health disparities. While our full model produces accurate, well-calibrated severity estimates, each ablated
model underestimates severity for the underserved group and overestimates it for the other group. The
ablated model estimates are also less correlated with the true severity values.

edge.! Specifically, (1) the model correctly learns

that BNP and HR tend to increase with heart fail-
ure severity (Fpnps Fyr > 0), while SBP tends to
decrease (Fggp < 0) (Murphy et al., 2020); (2) the
model learns larger variance parameters for SBP and
HR values (¢), correctly inferring that these features
are less informative about heart failure progression
than BNP and LVEF (Murphy et al., 2020); and (3)
the model estimates that 5, > 0, meaning it learns
that patients with higher disease severity tend to see
healthcare providers more frequently, as expected.

6.2.2. RECONSTRUCTION AND PREDICTIVE
PERFORMANCE

We next evaluate the model’s ability to reconstruct
and predict patient features X;. Because the model
represents each patient visit in terms of a scalar sever-
ity Z;, we do not expect the model to perfectly recon-
struct or predict the multi-dimensional X;; rather, we
hope for predictions that correlate significantly with
X;. Consistent with this, when fit on 3 years of data
per patient, our model’s predicted feature values cor-
relate with true values both in- and out-of-sample.
As we would hope, the model best represents the fea-
tures that are known to be most informative about
heart failure progression—LVEF (r = 0.81 in-sample,
0.51 out-of-sample) and BNP (r = 0.62 in-
sample, r = 0.31 out-of-sample)—as opposed to the
less-informative features SBP (r = 0.42 in-sample,
r = 0.24 out-of-sample) and HR (r = 0.17 in-sample,

T =

1. For succinctness, Figure 3 plots only the model parameters
of primary interest for interpreting our model (omitting,
for example, estimated intercepts for each feature); a simi-
lar coefficient plot with all learned parameters is shown in
Figure S5.

Shared parameters
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Figure 3: Inferred model parameters with 95%
confidence intervals. Shared parameters (top) are
consistent with medical knowledge of heart failure
progression. Group-specific parameters (bottom) are
plotted as differences compared to White patients, so
confidence intervals that are non-overlapping with 0
(colored in purple) indicate significant racial/ethnic
differences in parameters.
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r = 0.03 out-of-sample); all p-values besides HR out-
of-sample < 0.001.

To provide a more detailed assessment of perfor-
mance, we evaluate our model’s ability to reconstruct
patient features X; in-sample and predict X; out-of-
sample, in comparison to seven standard baselines.
While predicting and reconstructing X; is not the
primary goal of our model, the model performs gen-
erally well relative to these baselines, validating its
ability to meaningfully represent the data.

All of the baselines are designed to reconstruct or
predict only the feature values X;; our model can also
predict the occurrence of patient visits (D;), but in
order to provide a direct comparison of reconstruction
and predictive performance, we compare only the fea-
ture prediction aspect of our model (so we do not fit
any models using D; data) in this subsection. We use
mean absolute percentage error (MAPE) to report a
normalized measure of error across features.

Reconstruction performance. We compare our
model’s reconstruction performance to that of two
standard dimensionality reduction baselines: princi-
pal component analysis (PCA) and factor analysis
(FA). We compare our model to two variants of each.
First, we compare our model to PCA and FA fit at
the wvisit level: one component per patient visit, anal-
ogous to our model’s Z;. Second, we compare our
model to PCA and FA fit at the patient level: two
components for each patient, to capture the trajec-
tory of feature values as we do with Zy and R. We
describe the implementation of these baselines with
more detail in Appendix E. Because both PCA and
FA require input vectors of consistent size, all models
are fit on feature values from the first three visits per
patient. Compared to all baselines, we achieve equiv-
alent or better reconstruction performance across all
features, and better performance on the more infor-
mative features (Table S1).

Predictive Performance. We also compare our
model’s predictive performance to that of three stan-
dard timeseries forecasting baselines: (1) a linear re-
gression for each patient and feature; (2) a quadratic
regression for each patient and feature; and (3) pre-
dicting values equal to those at the last timestep in
training data. For this comparison, all models are fit
on feature values from the first three years of data
per patient, and we evaluate predictive performance
on all remaining visits. While prediction is not the
primary goal of our model (and models with rela-
tively low predictive performance can still provide

useful insights on disparities (Pierson et al., 2021)),
these results serve as an additional validation of our
model’s ability to meaningfully represent the data.
Our model outperforms both linear regression and
quadratic regression on all features. Our model has
slightly higher MAPE than latest timestep, which is
a widely-used, strong baseline for pure predictive per-
formance (Hyndman, 2018); latest timestep does not,
however, provide any insight into disparities or even
patterns of progression over time (Table S2).

6.3. Analysis of disparities

We now discuss three main findings from fitting our
model on the heart failure data. We learn that (1)
Black patients tend to have higher disease severity
than White patients; (2) our model learns precise de-
scriptions of health disparities and finds that dispar-
ities of multiple types exist in our setting; and (3)
failing to account for the existing disparities mean-
ingfully shifts severity estimates for all racial/ethnic
groups. This analysis is descriptive and does not re-
quire evaluating held-out performance, so models are
fit on all available data.

Black patients have higher disease severity.
As seen in Figure 4, our model infers that Black pa-
tients have significantly higher disease severity than
White patients (p < 0.05, computed by cluster boot-
strapping at the patient-level; Hispanic and Asian pa-
tients also have higher inferred mean severity than
White patients, but the differences are not statisti-
cally significant).

Model parameters capture fine-grained dis-
parities. As seen in Figure 3 (bottom), our model
infers that Black and Asian patients have significantly
higher initial severity than do White patients (in-
ferred average initial severity p, for Black and Asian
patient groups is greater than for White patients by
0.22 and 0.27, respectively). To contextualize the
magnitude of these disparities, if all patients pro-
gressed at the average learned progression rate across
the entire population, Black patients’ first heart fail-
ure visit would occur 3.0 years later in their disease
progression than White patients’, and Asian patients’
first visit would occur 3.8 years later. We also ob-
serve that 3, for Black patients is significantly lower
than that of White patients, indicating that Black pa-
tients visit healthcare providers 10% less frequently
than White patients with the same disease severity.
We describe these calculations in Appendix F.
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Mean severity by group
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Figure 4: Accounting for disparities leads to
less biased severity estimates. We visualize the
improvement of our full model (blue) over one that
does not account for disparities but is otherwise the
same (yellow) in two ways. On the top, we show
each group’s average difference from the overall mean
severity, normalized by the overall standard deviation
of severity. On the bottom, we capture the portion
of each group that is identified as “high-risk” (top
quartile of disease severity).

Accounting for disparities increases estimated
severity for all non-white patient groups. We
compare severity estimates from our model to those
of an ablated model that does not account for dis-
parities (but is otherwise identical) and find that this
meaningfully shifts severity estimates (Figure 4 top):
while both models learn that non-white patients tend
to have higher severity, the ablated model produces
higher severity estimates for White patients and lower
estimates for other groups (p < 0.001 for all groups,
computed by cluster bootstrapping at the patient-
level). This is consistent with our theoretical results.

To highlight some implications of these shifted
severity estimates, we look at each model’s ranking
of patient severity values and profile of “high-risk”
visits: visits where inferred severity lies in the top
quartile (25%) of all visits. The ablated model is less
likely to rank Black or Hispanic patient visits as high
risk (Figure 4 bottom; p < 0.05, computed by cluster
bootstrapping at the patient-level), skewing the de-
mographics of the high-risk patient cohort away from
groups that we know to have higher disease severity.
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7. Discussion

In this paper, we formalize three specific types of
health disparities that bias observed health data: un-
derserved patients may (1) first receive care only
when their disease is more severe, (2) progress faster
even while receiving care, or (3) receive care less fre-
quently even at the same disease severity. We prove
that failing to account for any of these disparities
while learning disease progression can lead to biased
estimates of severity, and we develop a disease pro-
gression model to capture all three disparities while
provably retaining interpretability and identifiability.

Our model can be used to make less biased severity
estimates from patient health data and to learn fine-
grained descriptions of disparities in observational
health data. Using a real-world heart failure dataset,
we show that accounting for health disparities does
indeed meaningfully shift severity estimates (by in-
creasing the proportion of non-white patients identi-
fied as high-risk) and validate the model’s ability to
identify groups that face each type of health disparity.
We thus urge future work in disease progression mod-
eling to account for disparities in healthcare; we lay
a foundation for doing so by developing a method to
(1) make disease severity estimates that are accurate
across diverse populations of patients and (2) learn
interpretable estimates of distinct disparities that can
inform future public health interventions.

There are several natural directions for future
work. First, beyond heart failure, our approach could
be applied to many other progressive diseases, includ-
ing Parkinson’s (Post et al., 2005), Alzheimer’s (Hol-
ford and Peace, 1992), diabetes (Perveen et al., 2020),
and cancer (Gupta and Bar-Joseph, 2008), where it is
possible that disparities manifest differently. Future
work should similarly validate findings across multi-
ple sites to assess generalizability of findings. To im-
prove prediction and allow our model to more accu-
rately capture rich medical data sources, another in-
teresting technical direction is to extend our model to
use additional data modalities (e.g., medical images)
or more flexible progression models (e.g., non-linear
trajectories), while retaining its interpretability and
identifiability. Finally, our approach generalizes nat-
urally to progression model settings beyond health-
care where disparities are of interest, including in-
frastructure deterioration (Madanat et al., 1995) and
human aging (Pierson et al., 2019); these would be
interesting domains for future work.
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Appendix A. Proof of Identifiability

A.1. Proof of Theorem 1
Theorem 1 All model parameters are identified by the observed data distribution P(X;, Dy | A).

Proof We want to show that each unique set of parameter assignments leads to a different distribution over
the observed data. To do this, we divide our argument into four lemmas:

Lemma 6 Parameters F,b, U are identified by P(X: | A = ap).

Proof
We want to show that if two parameter sets {F,b, U} and {F b, \if} yield the same observed data
distribution P(Xy | A = ag), the parameter sets must be identical.

We first note that at ¢t = 0, we have Z;, = Zy ~ N(0, 1) for group ag. Then the mapping between

severity and features
XOZF'Zo+b+Et

€ ~ N(O, \IJ)
captures a factor analysis model with factor loading matrix F’ and diagonal covariance matrix ¥. At
t = 0, the feature distribution for group ag has the standard factor analysis distribution (Shapiro,

1985):
Xo~N(b, FFT + ).

Assuming the two sets of parameters map to distributions of Xy with the same mean, it must hold
that b = b. Thus, parameter b is identified by data distribution P(Xy | A = ag).

Further, the covariance matrix of X¢ induced by each set of parameters must be the same: F(F)T +
U = F(F)T 4+ . Element-wise equality of the covariance matrix gives us the following, where
subscripts ¢ refer to the i-th element of each parameter vector:

FFy = FFy Vi, j,i#j (1)
(F)? + W, = (F)? + ¥, (2)

Using the equality constraint (1) for multiple pairs of indices, we have that for all assignments of
distinct indices 1, j, k:

. _o F, F
(FiFj = FiFy) N(Fj By = FiFy) = — = FZ (3)
FiFi=Fily = = = F’; (4)

Together, equations 3 and 4 give us:

) F ~ -
—Z:TZ Fi2: Fi2 Fz: Fz
F=f — BP=(F = fi=o

where o € {—1,+41}. Since we have fixed Fy > 0 for all factor loading matrices F', the sign of « is
fixed: ~ -
Fo=aFy — a=1 = F,=F; Vie [O,d), (5)

meaning we have identified F.
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Lastly, using equations (2) and (5) we get F; = F; = ¥; = ¥;. We have now shown that if two
parameter sets induce the same distribution of X at time ¢t = 0, they must have the same exact
value assignments. Therefore F,b, ¥ are identified by P(X; | A = ayp). |

Lemma 7 Global parameters F, b,V and parameters ,u(ZO) U(ZQU), ,u% 7JR for each group a are identified by

P(X, | A).

Proof By Lemma 6, we know that F,b, ¥ are identified by (Xo | A = ap). We want to show

that for any group a, if two parameter sets {u%) U(ZO),MS;?),UR }and {fiy (a) ~g10)”uR ,O’R)} yield

the same observed data distribution P(X; | A = a), the parameter sets must be identical. In this
proof we consider an arbitrary group a and omit the (a) superscript for brevity.

We model the following:
Zo ~N (pg,, 0202)

RNN(MR70R2>
Zy=Zo+R-t = Zi~N(ug-t+pg,o5 t°+0z7)
Xy =F-Z;+ b+ €, where ¢, ~ N(0,9) (6)

We see that equation (6) captures a factor analysis model with factor loading matrix F' and diagonal
covariance matrix ¥, meaning

Xe ~ N+ Flug -t +pg,), Flog” - t2 + 05, 2)FT + W),

Recalling that Fy > 0, we first consider ¢ = 0, where Xo ~ N (b+ Fpy , F(oy ?)FT +¥). In order
for the two parameter sets to map to distributions of Xy with the same mean, it must be the case
that

b+ Fpg, =b+Flz, = iz, =z,

Further, for the two parameter sets to map to distributions with the same covariance matrix, it
must hold that
Floz)FT + U =F(6,*)FT+V = 0, =6y,

since we know o, .G, > 0. So we have identified p, and o, . We next consider any time ¢ # 0.
For the two parameter sets to map to distributions of X; with the same mean, given that we have
already shown 1, must equal /iy , it must hold that

b+ Fug-t+pg,) =b+F(ig-t+jiz) = kg = fig

For the two parameter sets to map to distributions with the same covariance matrix, given that we
have already shown o, must equal ¢ , it must hold that

Flog? 40, )FT + U =F(65° 2 +6,°)FT +V = oy =05
since o, 5z > 0. Thus we have shown that for any group a, group-specific values of pi 5 , 05, tig, op

are identified by P(X; | A = a).
|

Lemma 8 Global parameters 3y, 8, and the parameter ﬂff) for each group a are identified by P(Dy | A).
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Proof We want to show that if two parameter sets {5, 8, ﬂ(a)} and {BO, Bz, Bff)} yield the same
observed data distribution P(D; | A = a), the parameter sets must be identical. Unless otherwise
specified, we consider an arbitrary group a and omit the (a) superscript for brevity. We also assume
iy # 0, since in general the severity of a progressive disease should change over time and it does
not make sense to learn progression in the case that it does not.

Each event when a patient visits the hospital (D; = 1) is generated by an inhomogeneous Poisson
process parameterized by A;, where log(A\) = By + B, - Zi + B4-

In order for two data distributions to have identical P(D; | A = a) they must have identical
expected rates Ez, r[A]: Ez, r[A\:] is the expected rate of events (across the population) at time
t—if two distributions have a different expected rate of events at any time ¢, then P(D; | A = ay)
must differ at that point in time as well. Thus if two sets of parameters {53,, 8, 64} and {50, Bz,
B4} vield the same observed data distribution P(D; | A = a), they must also generate the same
observed values EZO [)\t] at all timesteps t. We finish the proof by showing that this holds only if

{50) 6Z7 BA} - {50’ BZa BA}

Ez,.ml\ / / A\ - P(Zo) - P(R) dZydR

By Lemma 7, we know that ji, ,0, , g, 0y are identified by P(X; | A). Then

_ 1 ox 7(20_/“20)2
Pl2o) = 2m(04,)? P( 2(04,)? >

1 (R — pg)?
P(R) = 2m(op)? P <_ 2(03)13 )

EZO,RP‘t] = eXp(f(ﬁO? 627 ﬂA7 t)) (7)

(52020)2

2
where (8, 8z, 84,1) = <(ﬂZ;R)> 2+ (Bzug)t + (ﬁo + 5

+ Bzuz, + ﬁA)

The expression in 7 must be equal for {3y, 8,, B4} and {0, BZ, BA} at all timesteps t. Since exp
is an injective function, this means that f(8y, 5, B84,t) = f(ﬂo, Bz, BA, t) for all t. By equality of
polynomials, each of the individual polynomial coefficients must be equal must be equal for this to
hold.

We first consider the case for group ag, since we pin B(a‘)) at 0 as a reference for all other groups.

Given that we have already identified u(Za o) O'(ZO ), ,uggo), g%a“)7

o, )? ~ Bro, )% - ~
<ﬁo+(ﬂz2ZO)+5Z,“ZO> = <50+(ﬂz2zo)+ﬂzﬂzg> = By = 0o

Now we return to our analysis of any arbitrary group a. Given that we have already identified
MZOa JZOa MR # Oa OR>

Bzig = BZ/J'R = Bz = BZ

o, )? ~ B0, )2 ~ ~ ~
(BO+(6Z2Z°) + Btz +BA> = (ﬁo+(ﬂz220)+ﬁzuzo +ﬂA> — Ba=Pa
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Thus we have shown that 3, 3, and Bff) for any group a are identified by P(D; | Z;, A).
|

By showing that each parameter of the model is uniquely recovered from the observed data, we have
proved that our model is identifiable.
|

Appendix B. Proofs of Bias

In this section, in order to capture the effect of failing to account for one disparity at a time, we consider the
setting where everything between two groups is the same except for disparity of focus. It is clear to see from
our analysis that these results hold even more generally—as long as all existing disparities disfavor or favor
the same group (e.g. a disadvantaged group with respect to one disparity is not advantaged with respect to
another, in which case the effects could cancel each other out), our proofs of bias will hold. Throughout our
proofs, we assume that all PDFs and conditional PDF's have positive support over their entire domain, and
that all PDFs are differentiable, a very reasonable assumption over our setting.

B.1. Theorem 3

Theorem 3 A model that does not take into account disparities in initial disease severity Zy will
underestimate the disease severity of groups with higher initial severity and overestimate that of groups
with lower initial severity. Specifically, if P(Zy | A = a) strictly MLRPs P(Zy) for some group a, then
E[Z, | Xi] < E[Z; | X¢, A = a]. Similarly, if P(Zy) strictly MLRPs P(Zy | A = a) for some group a, then
]E[Zt ‘ Xt] > E[Zt | Xt7A = a].

Proof We want to show that E[Z; | X;, A = a] > E[Z; | X;] when P(Zy | A = a) strictly MLRPs P(Zy).
We first show that P(Zy | X; = x, A = a) strictly MLRPs P(Z, | X;) with respect to Zy:

P(X¢|Zo,A=a)P(Zo|A=a)

0 (P(Zy|Xy,A=a)\ 0 P(X;|A=a)
om (" P ) = o | rr (Bayes Rule)
P(X¢)
: (Hoy
_ 9 P(Xi|A=a
A iz (Xy L A|Zy,R)
P(X¢)

_ P(X) 8 (P]A=a)
_P(Xt|A:a) 8Z0 P(Zo)
>0 (Disparity assumption)

Since MLRP implies first-order stochastic dominance (FOSD) (Klemens, 2007), this proves that P(Zy |
Xt, A = a) strictly FOSDs P(Zy | X;) and thus that E[Zy | X;, A = a] > E[Z; | X¢]. By linearity of
expectation,

ElZo | X¢,A=a]l +E[f(R,t) | Xy, A= a] > E[Zy | X¢] + E[f(R, 1) | X¢], VE=>0
— E[Zt | Xt7A = Cl] > E[Zt | Xt]
It is clear to see that this argument extends naturally to show that if a group tends to come in at earlier
disease stages than the rest of the population, that their severity will be overestimated: If there exists a

group a such that P(Zp) strictly MLRPs P(Z, | A = a) with respect to Zy and E[R | X;] > E[R | X;, A = a],
then we will see that E[Z; | Xy, A = a] < E[Z; | X;]. Hence any model that does not take into account
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demographic disparities in initial disease severity levels at a patient’s first visit will lead to biased estimates
of severity. |

B.2. Proof of Theorem 4

Theorem 4 Suppose disease severity progresses linearly at some rate R. A model that does not take into
account disparities in R will underestimate the disease severity of groups with higher progression rates and
overestimate that of groups with lower progression rates. Specifically, if P(R | A = a) strictly MLRPs P(R)
for some group a, then E[Z; | Xi] < E[Z; | X¢, A = a]. Similarly, if P(R) strictly MLRPs P(R| A =a) for
some group a, then E[Z; | Xi] > E[Z; | Xt, A = a.

R is a patient’s linear rate of progression, so we model a patient’s severity over time as Z; = f(R,t) + Zo,
where f is linearly increasing in R.

Proof We want to show that E[Z; | Xy, A = a] > E[Z; | X{] when P(R | A = a) strictly MLRPs P(R). We
first show that P(R | X¢, A = a) strictly MLRPs P(R | X;) with respect to R:

P(X|R,A=a)P(R|A=a)

0 (P(R|X;,A=a)\ 0 P(X:]A=a)
oR < P(R|X) ) OR| FXIRPZ=2) (Bayes Rule)
P(X¢)
g [ LEA=a)
_ P(X(|A=a)
P(Xe)

_ P(X) o (P(R|A=a)

T P(X,|A=a) OR P(R)

>0 (Disparity assumption)

Since MLRP implies FOSD (Klemens, 2007), this also implies that P(R | X;, A = a) strictly FOSDs
P(R| X;). It follows directly that E[R | X;, A = a] > E[R | X,]. By linearity of expectation,

E[f(R,t) + Zo | Xi, A= a] > E[f(R,t) + Zo | X4], VE>0
— E[Zt | Xt,A = (Z] > ]E[Zt ‘ Xt}

It is clear to see that this argument extends naturally to show that if a group tends to progress more
slowly than the rest of the population, that their severity will be overestimated: if there exists a group a
such that P(R) strictly MLRPs P(R | A = a) with respect to R and E[Z, | X¢] > E[Zy | X¢, A = @], then we
will see that E[Z; | X;, A = a] < E[Z; | X;]. Thus any model that does not take into account demographic
disparities in patient progression rates will lead to biased estimates of severity. |

B.3. Proof of Theorem 5

Theorem 5 A model that does not take into account disparities in wvisit frequency conditional on
disease severity will underestimate the disease severity of groups with lower visit frequency conditional on
severity and overestimate the disease severity of groups with higher visit frequency conditional on severity.
Specifically, assume that P(Ey = 1| Z;) is strictly monotone increasing in Zs, Ztl_i)m00 PE:=1|2Z:) =0,

and Zlim P(E, = 1| Zy) = 1. Then if some group a has a lower probability of visiting a healthcare
 —00

provider at any given severity level—that is, P(Ey = 1 | Zy = 2,A =a) = P(E; = 1| Zy = 2z — a(2))
for all z, where a(z) is a positive function of z—then E[Z; | Ey] < E[Z; | Ev,A = a]. Similarly, if
PE,=1|Zy=2A=a)=PE,=1|2Z, =z+a(z)) for all z, where a(z) is a positive function of z, then
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]E[Zt ‘ Et] > ]E[Zt | Et,A = CI,].

Proof Recall that for a given patient, E; corresponds to the event where some visit occurs during the
timestep starting at time ¢, and P(F; = 1 | Z; = z) indicates the probability that the patient visits during
the time period if their severity is z at the beginning of this time period. We will first show that, when there
is some positive a(z) for all z such that P(Ey = 1| Zy = z2,A=a) = P(E: =1 | Z; = z — a(z)), it holds
that E[Z; | E: =1, A = a] > E[Z; | E; = 1]. We will then show that this argument holds when conditioning
on By =0 as well—i.e., E[Z, | E, =0,A =a] > E[Z, | E; =0].

We first compute E[Z; | E; = 1]. Define p(z) .= P(Z; = z) and F(z) .= P(E; = 1| Z; = z). By Bayes’
rule we have:
p(z)F(2)
[ p(2)F(2) dz

By assumption, F'(z) is strictly monotone increasing in z, lim F(z) = 0, and lim F(z) = 1. These
Z——00 Z—r00

P(Zt:Z‘Etzl):

are the properties of a CDF, so we can write F(z) in terms of its corresponding PDF f(z): i.e., F(z) =
J7 . f(z)dx. This yields:

p(2) [7 flx) dw
2 pz) [C f(2) do dz

Then we can write the expectation E[Z; | By = 1] as:

P(Zt:Z|Et:].):

—0o0

> 7 p(2)f(@)z de dz
= 7 p(2)f(x) dz dz

Graphically, this corresponds to taking the expectation of z when points are sampled from the blue region
in Figure S1, where the probability of sampling each point is proportional to p(z)f(x).

Figure S1: We can calculate E[Z; | E; = 1] by taking the expectation over the blue region, with each point
having probability p(z) f(x).

We next consider E[Z; | Bt = 1, A = a], which yields an analogous expression. Define p,(z) := P(Z; = z |
A=a)and F,(2) =P(E;=1]| Z; = z, A= a). Since all groups have the same severity distribution, we see
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that p,(z) = p(z). Further, F,(z) = P(E; = 1| Z; = 2 — a(z)) = F(z — a(z)) by our disparity assumption.
By Bayes’ rule we have:

Pa(2)Fa(2)

f:)ooo pa(Z)Fa(Z) dz

_ MFG-a()
S p(2)F(z = a(2)) dz

P(Zt|Et:1,A:a):

As before, we write F'(z) in terms of its corresponding PDF f(z), yielding:

p(z) ff;oa(z) f(z) dx
I p(2) 7229 f(a) do dz

P(Zt|Et:1,A:CL):

Finally, we can write the expectation E[Z; | E, = 1, A = ] as:

oo
ElZ; | Et=1,A=aqa] = P(Zy|Er=1,A=a)z dz

o0

S Y p(e)f ()2 da dz
e ff;a(z)p(Z)f(x) dx dz

Now the region of z and = that we integrate over corresponds to the red region in Figure S2; the
crosshatched blue region corresponds to the region that we integrate over in our calculation of E[Z; | E} = 1]
but not in our calculation of E[Z; | E; = 1, A = a] (such that the solid blue region in Figure S1 is the
combination of the blue crosshatched and red regions in Figure S2). Note that visualization of the red region
assumes constant «(z), but the logical argument applies to any function a(z) > 0.

r=1z—a(z)

Figure S2: We can calculate E[Z; | E; = 1, A = a] by taking the expectation over the red region, with each
point having probability p(z)f(x). The crosshatched blue region provides a comparison to the integration
space for E[Z; | E; = 1].

We see that at each value of x, the blue crosshatched region adds strictly positive weight to lower values
of z; thus, the expectation of z over the blue crosshatched region plus red region must be lower than the
expectation of z over the red region itself. We therefore conclude that E[Z; | B, = 1] < E[Z; | B, =1, A = a].
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The reasoning when conditioning on E; = 0 is analogous. Since P(E; =0 | Z, = z) = 1 — F(z), we get
the following expressions:

D Ry I¢ z dx dz
E[Z | B, = 0] = f_;‘f fzooz;((z)f( z) o d
S S ay PR @)z da d2

S [y p(2) f (@) da dz

]E[Zt|Et:O7A:a]

Graphically, E[Z; | E; = 0] corresponds to taking the expectation of z when points are sampled from
the blue region in Figure S3, where the probability of sampling each point is proportional to p(z)f(z).
E[Z; | E; = 0, A = a] corresponds to taking the expectation over the blue plus crosshatched red regions.

r=2z—az)

Figure S3: We can calculate E[Z; | E; = 0] by taking the expectation over the blue region and E[Z; | E; =
0,A = a] by taking the expectation over the blue plus crosshatched red regions, with each point having

probability p(z)f(z).

We thus see that at each value of x, the red crosshatched region adds strictly positive weight to higher values
of z; thus, the expectation of z over the red crosshatched region plus blue region must be higher than the
expectation of z over the blue region itself. We therefore conclude that E[Z; | E, =0,A = a] > E[Z, | E; = 0].

It is clear to see that this argument extends naturally to show that if a group tends to come in more
frequently than the rest of the population, their severity will be overestimated: if for some group a there
is some positive «(z) for all z such that P(E; =1 | Z; = 2,A=a) = P(Ey = 1| Z; = 2+ «a(z)), it will
hold that E[Z; | Ey, A = a] < E[Z; | Et]. Hence any model that does not take into account demographic
disparities in visit frequency will lead to biased estimates of severity.

|

We finally show that our model’s specific parameterization of visit rate satisfies the properties we assume
and will, therefore, exhibit the bias we characterize in this Theorem. As described in §3, we model a patient’s

visit rate using an inhomogeneous Poisson process characterized by visit rate A\, = exp(8, + 5 - Z; + 654“));
for simplicity, we consider the two-group case and pin Bff) = 0 for one group; without loss of generality, we
assume that 51(5) < 0 (group a has a lower visit rate at the same severity). We show that when 8, > 0,
this parameterization satisfies each of the more general assumptions in Theorem 5—namely, P(F; = 1| Z;)
is strictly monotone increasing in Zy; lim P(E;=1|Z;) =0; lim P(E; =1]|Z;) = 1; and P(E; =
Zt——00 Zi—ro0
112 =2, A=a) = P(E, =1| Z = z— a(z))—and the theorem’s results thus apply to our specific
parameterization.
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P(E; = 1| Z;) is strictly monotone increasing in Z; because the rate A\; = exp(5, + 8, - Z+ + 5&1)) is
monotone increasing for 5, > 0. Further, s lim A(Z;) = 0, meaning the expected number of visits in
t——00

any discrete time period limits to 0 and the probability of an event in any [¢;,t;11) limits to 0; similarly,

Zlim A(Z;) = 00, meaning that the probability of an event in [t;,¢;41) limits to 1.
+ —00

Finally, we want to show that P(E; = 1| Z; = 2,A=a) = P(E; = 1| Zy = z — a(z)) for all z, where
a(z) is a positive function of z. For any z, let F(2) = P(E; =1 | Z; = 2, A = a); 0 < F,(2) < 1. Because
P(E; =1| Z; = z) is continuous in z and increases from 0 to 1, by the intermediate value theorem there must
exist some value z —a(z) for any z such that P(E} = 1| Z; = z—«(2)) = Fu(2) = P(Ey =1 | Z; = 2z, A = a).
Because ﬁff) <0,P(E;=1|Z=2,A=a)<P(E;=1|Z,=z). So a(z) must be positive, as desired.

Appendix C. Simulations

Our simulations show that, on synthetic data, our model accurately recovers true data-generating parameters,
learns severity estimates that are well-calibrated with ground truth, and produces less biased estimates of
severity than models that do not account for disparities. We describe the simulations in detail below, and
all associated code can be found at https://github.com/erica-chiang/progression-disparities.

Data generation. We generate synthetic datasets by drawing parameter values for each dataset from the
prior distributions assumed by our model. We generate simulated data for 1000 patients in each dataset, each
of whom is assigned to one of two demographic groups (50% chance of being from either group). Our model
priors are as follows (where the normal distribution is represented as N (u, o), and TN (i, 0, a) indicates a
normal distribution with a lower bound of a).

As described in the main text, we pin values p; =0, 0, =1, and 8, = 0 for one group, for identifiability.
Then for the non-pinned group:

Kz, NN(O?4)
UZO ~ TN(170.1,0)
Ba~N(0,2)

The remaining group-independent priors are:

tr ~N(1,4)
op ~ TN(0.1,0.4,0)
Fy ~ TN(1,1,0.5), to enforce positive constraint
Fy ~ N(0,2), for i > 0
b~ N(0,1)
¥ ~TN(5,1,0)
By ~ N(1.5,0.1)
B, ~ TN(0.5,0.1,0.1)

Parameter recovery. We fit our full model on 100 synthetic datasets and compare the true data-
generating values and recovered values of each parameter in our model. In Figure S4, we visualize the
recovery of each parameter by plotting true parameter values versus recovered posterior mean values, with
one dot per run.

Severity recovery. We also compare the latent severity values of each patient at each timepoint to the
recovered posterior mean values of severity for each patient. We examine the correlation between true and
recovered values across both groups.
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Appendix D. NewYork-Presbyterian (NYP) Heart Failure Data Processing

This study was conducted in accordance with Health Insurance Portability and Accountability Act (HIPAA)
guidelines and with Institutional Review Board (IRB) approval.

Cohort filtering. We analyze patients with heart failure with reduced ejection fraction (HFrEF) whom we
identify, following clinical guidance, by filtering the available NYP data for patients who have at least one
LVEF measurement below 50% and who have been recorded as receiving a diuretic prescription. To ensure
we have relatively complete records for each patient, we then filter for patients who are likely to receive
most of their cardiology care within the NYP system, by filtering for patients whose home zipcode is in
the New York metropolitan area and who have at least two LVEF or BNP records at least 6 months apart
within our data. Lastly, NYP switched electronic health record (EHR) systems, introducing inconsistencies
in record-keeping across sites and years; to ensure our records are consistently recorded, we analyze data
from Weill Cornell Medical Center, one of NYP’s two largest sites, between January 1, 2012 (the start of
reliable record-keeping) to October 2, 2020 (NYP Cornell’s transition to a new EHR). This ensures records
are consistently recorded in our data.

Feature processing. We convert pBNP to BNP with the conversion pBNP = 6.25 * BNP (Rorth et al.,
2020) and then log-transform BNP values to get one combined log,(BNP) feature (Hendricks et al., 2022).
We then normalize (z-score) all feature values so that each feature has mean 0 and variance 1. Because
patient blood pressure and heart rate are much more likely to be measured at hospital visits unrelated to
heart failure (while visiting another specialist in the NYP medical system), we limit patient observations to
visits where a patient had one measurement of at least one of LVEF and BNP.

We encode demographic categories by making A a one-hot encoding of race/ethnicity groups. Lastly, we
describe the time scale of our model. As mentioned in §6, we discretize time in 1-week bins; if a patient has
multiple measurements of one feature within a timestep, we average all measurements within that timestep.
Discretizing time in this way allows us to capture more long-term changes rather than acute changes in
patient status. We normalize time so that the total time range in our model is 0 to 1. The longest patient
trajectory in our data is 446 weeks (timesteps), so we normalize timestep values so that they range from 0
to 1; we therefore have fractional, discrete time values, each representing one week as 1/446 units of time.

Appendix E. Model Evaluation

Fitting model on real data. We fit our model on real data using weakly informative priors: py ~
N(0,1), oy ~ TN(1,1,0), and 3, ~ N(0,1) for the non-pinned groups; pup ~ N(0,1) and op ~
TN(1.5,1,0) for all groups; b ~ N(0,1); ¥ ~ TN(1,0.5,0); B, ~ N(2.5,1); 8, ~ N(0,1). For F, b,
and ¥, we set model priors using Factor Analysis: at ¢t = 0, we have Z, = Zy ~ N(0,1) for group ay,
meaning the mapping between severity and features

X0:F~Zo+b+€t

€¢ NN(O, \I/>

captures a factor analysis model with factor loading matrix F' and diagonal covariance matrix ¥. We run
factor analysis using feature measurements from the first timestep of all White patients (our ag group) and
use the estimates of F' from Factor Analysis as the mean of our priors on F. We define the variance of our
priors on F' to be 1, and we pin the sign of F1ygr to be negative for identifiability. Since we have no inherent
value scale for what F' values should be, Factor Analysis allows us to fit the model on more substantiated
priors for feature scaling factors.

We then fit the model and get the parameter estimates from 1000 samples. For any time ¢, we can
calculate an estimate of Z; and X; for each sample, based on the sample’s parameter estimates; we then take
the average over all samples to get a patient’s estimate of Z; and X;. In order to get actual feature value
estimates, we can linearly transform X; to undo the normalization for each feature and recover an estimate
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of each feature value at t. We can then use our model’s estimates of Z; and predicted feature values to
analyze and evaluate our model’s behavior.

Comparison to baselines. We filter out patients who do not have at least three visits (since several of the
baselines we fit require this many visits per patient, as we describe below), leaving a total of 1834 patients:
1118 White, 347 Black, 216 Hispanic, and 153 Asian patients.

To evaluate our model’s ability to reconstruct feature values, we compare our model to PCA and FA.
PCA and FA require consistent dimensionality of the input data, so we fit all models on the first three
visits for each patient. We train two variants of both PCA and FA: the first attempts to reconstruct patient
visits from a single latent dimension (analogous to Z in our model), taking as input the X; vector at one
visit (4 features total) and representing it with a single latent component. The second variant attempts to
reconstruct patient trajectories from two latent dimensions (analogous to Zp and R in our model), taking as
input a concatenated vector of features X; from the first three visits (12 features total) and representing it
with two latent components. We impute missing values as the overall mean of the data for both PCA and
FA, since these methods cannot naturally handle missing data.

To evaluate our model’s ability to predict future feature values, we compare our model to last time-step,
logistic regression, and quadratic regression. Unlike PCA and FA, these methods do not require consistent
dimensionality in the input data, so we fit the models to the first three years of observed data. Last-timestep
predicts all future feature values to be equal to the most recent feature value observed in the training
data for that patient; if there is no observed feature value, the baseline predicts the population mean.
Linear regression regresses values on time for each patient and each feature to predict future feature values.
For patients with fewer than 2 observations for a given feature value, we use the population mean for the
preceding or subsequent timestep. Quadratic regression follows a similar approach. Because linear regression
and quadratic regression can overfit the data and make unrealistic predictions, we clip their predicted feature
values to a range determined by that observed within the training data.

Ablated Model. We compare our full model to an ablated version of the model that does not account
for any of our three disparities. We do this by removing all group-specific parameters from the model, while
leaving everything else the same: we learn one value of 1 and o and exclude 8, from the model. Since
the distribution of Z; must be fixed for at least one group for identifiability (to fix the scale of Z;), the
distribution is pinned for all groups. Factor Analysis for model priors on F is also fit on all patients rather
than only on white patients.

Appendix F. Disparities Estimates

We first describe our calculations for §6.3 to estimate how much later Black and Asian patients start receiving
care for heart failure compared to White patients. Our model learns the following;:

H(Z}?]lack) _ ’LL(Z\;Vhite) +0.22
Asian White

The learned average rate of progression across all patients is 0.62. This means that Black patients come
in 0.22/0.62 = 0.35 units of time later in their disease progression than White patients, and Asian patients
come in 0.27/0.62 = 0.44 units of time later than White patients. Given that one unit of time is the longest
patient trajectory, 8.5 years, this leads us to 3.0 and 3.8 years for Black and Asian patients, respectively.

Next we describe our calculations to estimate how much less frequently Black patients visit the hospital
than White patients at the same disease severity. Our model learns that

51(4Black) _ E4Whitc) —0.11
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At the same disease severity Z;, Black patients will have a visit rate of

A =exp(By+ By Zi + ( gWhite) —0.11))

= eXp(ﬂO + By 2y + ﬁgWhite)) . eXp(—O.ll)
= (0.897 - exp(ﬂo + By Zy+ 6,(4White))

So at the same disease severity, we estimate that Black patients have a visit rate that is 90% that of a
White patient’s visit rate.
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Appendix G. Supplementary Figures and Tables
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Figure S4: Parameter recovery from fitting our model to synthetic data.
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Our model FAvisit PCAvisit FApatient PCApatient

MAPE: informative 20% 28% 23% 25% 21%
MAPE: all 16% 19% 17% 18% 16%

Table S1: Our model compared to standard baselines for reconstruction performance. We com-
pare to factor analysis and principal component analysis fit at the patient visit level (FAyigit, PCAvisit) and
at the trajectory level (FApatient; PCApagient). Models are fit on the first 3 visits from each patient and
evaluated on same data using mean absolute percentage error (MAPE). We report aggregate performance
for features that are more informative of heart failure progression (LVEF and BNP), along with performance
for all features (LVEF, BNP, systolic blood pressure, heart rate).

Our model Linear regression Quadratic regression Latest timestep

MAPE: informative 28% 39% 59% 22%
MAPE: all 21% 32% 49% 18%

Table S2: Our model compared to standard baselines for predictive performance. We compare to
linear regression, quadratic regression, and latest timestep prediction, each fit at the patient feature level.
Models are fit on data from the first 3 years of each patient’s disease trajectory and evaluated on visits after
3 years using mean absolute percentage error (MAPE). We report performance for features that are more
informative of heart failure progression (LVEF and BNP), along with performance for all features (LVEF,
BNP, systolic blood pressure, heart rate).
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All parameters
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Figure S5: All parameters learned from fitting model on heart failure cohort. Parameters of
primary interest for interpreting our model (a subset of the parameters shown here) are highlighted in
Figure 3.
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