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Abstract
Constrained k-submodular maximization is a general frame-
work that captures many discrete optimization problems such
as ad allocation, influence maximization, personalized rec-
ommendation, and many others. In many of these applica-
tions, datasets are large or decisions need to be made in
an online manner, which motivates the development of effi-
cient streaming and online algorithms. In this work, we de-
velop single-pass streaming and online algorithms for con-
strained k-submodular maximization with both monotone
and general (possibly non-monotone) objectives subject to
cardinality and knapsack constraints. Our algorithms achieve
provable constant-factor approximation guarantees which im-
prove upon the state of the art in almost all settings. Moreover,
they achieve the fastest known running times and have opti-
mal space usage. We experimentally evaluate our algorithms
on instances for ad allocation and other applications, where
we observe that our algorithms are practical and scalable, and
construct solutions that are comparable in value even to of-
fline greedy algorithms.

1 Introduction
We develop algorithms for maximizing a k-submodular
function f subject to cardinality or knapsack constraints. k-
Submodular functions capture the property of diminishing
returns under an allocation of elements from a ground set
V to k parts. Specifically, we are trying to find k disjoint
subsets (S1, . . . , Sk) of V such that f(S1, . . . , Sk) is max-
imized. We consider constrained k-submodular maximiza-
tion where we enforce individual constraints for each part:
Each part a ∈ {1, . . . , k} has a specified budget na and we
are only allowed to allocate at most |Sa| ≤ na items.
k-Submodular functions model several important appli-

cations such as ad allocation. In this problem, ad impres-
sions arrive online and we have to allocate them immedi-
ately to one of k advertisers. At the same time, each adver-
tiser a ∈ {1, . . . , k} is willing to pay for at most na ad im-
pressions (Feldman et al. 2009). The advertising platform
makes an allocation to maximize advertiser satisfaction, for
which natural objectives such as user exposure show dimin-
ishing returns. Another important application is in person-
alized recommendation, which motivates the study of gen-
eral (possibly non-monotone) objectives. Mirzasoleiman,
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Badanidiyuru, and Karbasi (2016) show how to model a
recommender system through cut functions in dissimilarity
graphs, which are general k-submodular. Related tasks such
as document or image summarization (Lin and Bilmes 2011;
Gomes and Krause 2010) can be modeled through similar
objectives. Additional motivation on influence maximiza-
tion, sensor placement, and video summarization is given
in the works of Ohsaka and Yoshida (2015a) and Feldman,
Karbasi, and Kazemi (2018). These further applications also
motivate the study of more general packing constrains such
as knapsack, where items take up non-uniform space in the
budget constraints.

The datasets used in all of these applications are typically
large and even offline greedy algorithms are often impracti-
cal. This necessitates streaming algorithms which only make
one or multiple passes over the data and require little space.
Furthermore, applications such ad allocation require us to
make decisions online: Upon arrival, we need to immedi-
ately allocate a user to an advertiser without the chance of
re-allocating later. Algorithms that work simultaneously in
the online and streaming setting are therefore desirable and
well-studied (Ene and Nguyen 2022; Feldman et al. 2021).
We contribute to this line of work by designing algorithms
with improved approximation guarantees. We make further
progress with novel algorithms for more general settings.

Our Contributions and Techniques: Our key contribu-
tions for the online and streaming setting are:

1. We introduce a novel, general algorithm and analysis
framework. Algorithms in our framework are combinatorial
and very efficient, have optimal space and attain the best
known running time for our setting. Our framework does
not only allow us to improve upon prior results in a unified
way, but also handles much more general non-monotone ob-
jectives and budget constraints.

2. Our framework allows us to address settings that
were previously out of reach. For general (possibly non-
monotone) k-submodular maximization, we are the first to
obtain a constant-factor approximation, which was previ-
ously not even known in the offline setting (Xiao et al.
2022). We are also first to provide an algorithm for k-
submodular maximization subject to individual knapsack
constraints (here, items do not have uniform size in the bud-
get constraints), where prior work is restricted to a common
constraint (Pham et al. 2022; Ha, Pham, and Tran 2024).



Objective Reference Setting Approx. Time Space

monotone

(Ohsaka and Yoshida 2015b) offline 1
3

O(mkr) O(m)

(Ene and Nguyen 2022) online, streaming ≥ 1
4 O(mk) O(r)≈ 0.2953 as n→∞

Theorem 1 online, streaming ≥ 1
4 O(mk) O(r)(This paper) ≈ 0.3178 as n→∞

general
(Xiao et al. 2022) offline 1

4+maxa na
O(rmk) O(r)

Theorem 2 online, streaming ≥ 1
8 O(mk) O(r)(This paper) ≈ 0.1589 as n→∞

Table 1: Comparison of algorithms for k-submodular maximization with cardinality constraints. We let n = mina∈[k] na denote
the minimum budget, r =

∑
a∈[k] na the total budget, and m = |V |.

3. Our algorithms achieve provable constant factor ap-
proximation guarantees that improve upon the state of the
art for k-submodular maximization (cf. Table 1). Due to
their versatility, they also apply to the related and practically
relevant setting of submodular maximization with a parti-
tion matroid. Here, we improve upon the guarantee of Feld-
man, Karbasi, and Kazemi (2018) for general objectives and
close the gap to less efficient streaming algorithms (cf. Ta-
ble 4). We achieve this by introducing new techniques that
are suited for general (possibly non-monotone) objectives.

These contributions are in the context of individual con-
straints, which is what we discuss in the main body. Start-
ing with Ohsaka and Yoshida (2015a), there has been a
lot of work for a common constraint on the support, e.g.
|S1 ∪ S2 ∪ · · · ∪ Sk| ≤ n for a cardinality constraint Ha,
Pham, and Tran (2024); Yu et al. (2023); Wang and Zhou
(2021); Sakaue (2017); Nguyen and Thai (2020a). Such con-
straints cannot capture individual constraints. However, ap-
plying our framework to the common budget setting yields
efficient online and streaming algorithms, which we outline
in Section 3.3 and formally discuss in Appendix D.

Related Work: The main focus of our work is on individ-
ual constraints and we therefore discuss only work related to
this setting in the main body. However, our techniques also
apply to the setting with a common constraint, and we also
obtain further results for knapsack constraints. We discuss
this in Appendix D along the relevant related work.

Offline algorithms for k-submodular maximization. Most
results for k-submodular maximization are in the offline set-
ting. For monotone objectives, Ohsaka and Yoshida (2015a)
provide a greedy algorithm that achieves a 1

3 -approximation.
The only prior work on general k-submodular maximization
is due to Xiao et al. (2022) and in the offline setting. Their
greedy approach obtains a 1

4+maxa na
-approximation, which

decreases with the maximum budget.
Online and streaming algorithms for k-submodular max-

imization. We consider the challenging and practically rel-
evant online and streaming setting. The only work in this
space is due to Ene and Nguyen (2022) and applies only
to monotone objectives. For monotone objectives, our al-
gorithms achieve an improved approximation guarantee as
shown in Table 1. We give the first algorithm for general
objectives with constant-factor approximation guarantees.
Such a result was not even known in the offline setting.

Submodular maximization with a partition matroid. A
related and important setting is submodular maximization
with a partition matroid. Feldman et al. (2009) provide a
seminal online algorithm for linear objectives based on the
primal-dual approach. For general submodular objectives
under a matroid constraint, Feldman et al. (2022) give a
streaming algorithm based on the continuous extension of a
submodular function, whose evaluation is costly. Their algo-
rithm also maintains multiple solutions and is thus not suited
for the online setting. Our discrete algorithms achieve the
same guarantees when the minimum budget tends to infinity,
which is a necessary assumption for the online setting (Feld-
man et al. 2009). In the online setting, Feldman, Karbasi,
and Kazemi (2018) give a discrete algorithm for general ob-
jectives under p-matchoid constraints. Their algorithm sub-
samples items which is also a technique we employ, but we
obtain an improved approximation ratio.

2 Preliminaries
k-Submodular functions. We define a partial allocation
(k + 1)V as the set of all k-tuples (X1, . . . , Xk) of dis-
joint subsets Xa ⊆ V,Xa ∩ Xb = ∅ for all a, b ∈ [k]
where [k] := {1, 2, . . . , k}. For a k-tuple X ∈ (k + 1)V ,
we define the support supp(X) := X1 ∪ · · · ∪ Xk as
all allocated items. Given another k-tuple Y ∈ (k + 1)V ,
we define the intersection X u Y of two k-tuples through
(X u Y)a := Xa ∩ Ya for all a ∈ [k], and the union as
(X t Y)a := (Xa ∪ Ya) \ ⋃b6=a(Xb ∪ Yb). Given these
operations, we say f : (k + 1)V → R is k-submodular if

f(X) + f(Y) ≥ f(X uY) + f(X tY)

for all X,Y ∈ (k + 1)V . We define the marginal gain of
adding element t to part a of X as

∆t,af(X) := f ((X1, . . . , Xa ∪ {t}, . . . , Xk))− f(X).

We further write X � Y if Xa ⊆ Ya for all a ∈ [k] and
say f is monotone if f(X) ≤ f(Y) for all X � Y. To ob-
tain a notion of diminishing returns, we say that f is orthant
submodular if

∆t,af(X) ≥ ∆t,af(Y)

for all X � Y and t /∈ supp(Y). We say f is pairwise
monotone if for all t /∈ supp(X) and a 6= b,

∆t,af(X) + ∆t,bf(X) ≥ 0.



We know that f is k-submodular if and only if f is orthant
submodular and pairwise monotone (Ward and Zivný 2016).
A function is called submodular if it is 1-submodular.

Problem definition. In k-submodular maximization, we
are given a k-submodular function and budgets n1, . . . , nk

for every part. The goal is to find a solution that maximizes
f while allocating at most na items to every part a, and we
denote the optimum solution as S∗. More general knapsack
constraints and the setting with a common constraint are de-
fined in Appendix D.

We consider both problems in the (single-pass) streaming
model. Here, all items of V arrive in an arbitrary (possibly
adversarial) order and the task is to generate a solution at the
end of the stream, while using as little space as possible. Our
algorithms simultaneously apply to the online setting with
free disposal (Feldman et al. 2009). Here, items also arrive
one at a time, but we are required to maintain a single solu-
tion after each arrival. Additionally, we are only allowed to
add the arriving item to the solution or dispose (i.e. remove)
an item from the solution, but cannot re-allocate.

Examples of k-submodular functions. We now give ex-
amples of k-submodular functions that arise in the applica-
tions to ad allocation and recommender systems discussed in
the introduction and our experiments. The well-studied sub-
modular welfare problem is a special case of k-submodular
maximization. Here, the goal is to maximize the welfare
f (X) =

∑k
a=1 ha(Xa) where ha : 2V → R+ is the val-

uation for agent a ∈ [k]. If the ha’s are submodular then
f is orthant submodular and if they are monotone, then f
is monotone. Such instances appear for ad allocation where
advertiser satisfaction can be modeled through a function ha
that expresses, for example, the coverage of an ad campaign.
If ha = h where h is a submodular function that is symmet-
ric (i.e., h(X) = h(V \X) for allX ⊆ V ), then f is general
k-submodular (i.e., it is pairwise monotone and orthant sub-
modular). Such instances arise from graph cut functions in
applications such as recommender systems.

3 k-Submodular Maximization
In the following, we illustrate our framework on monotone
k-submodular maximization, as it is a fundamental setting
that allows us to convey the core ideas and novelties of our
algorithm and analysis. Section 3.1 contains an algorithm
description, intuition, and analysis overview. In Section 3.2,
we give a short overview of how additional novel ideas allow
us to adapt our framework to obtain the first constant fac-
tor approximation algorithm for general k-submodular max-
imization. Algorithms and analysis for both settings are de-
scribed in full detail in Appendix A. The algorithm and anal-
ysis framework that we develop in this section is general and
with some additional work applies to related settings, and we
outline these contributions in Section 3.3.

3.1 Monotone Objectives
Our algorithm for maximizing a monotone k-submodular
function is shown in Algorithm 1. As shown in Table 1,
this improves upon the approximation guarantee of Ene and
Nguyen (2022).

Algorithm 1 Monotone k-submodular maximization.
Parameters: coefficients {ga(i)}a∈[k],i∈[na]

Input: a monotone k-submodular function f and the bud-
gets {na}a∈[k]
S = (S1, . . . , Sk)← (∅, . . . , ∅)
βa ← 0 for all a ∈ [k]
for t = 1, 2, . . . , |V |:

let wt,a = ∆t,af (S) for all a ∈ [k]
let a = arg maxa∈[k] {wt,a − βa}
if wt,a − βa ≥ 0:

if |Sa| < na:
Sa ← Sa ∪ {t}

else:
let t′ = arg mini∈Sa

wi,a

Sa ← (Sa \ {t′}) ∪ {t}
let wa(i) be the i-th largest weight in {wt,a : t ∈ Sa}

and wa(i) = 0 for i > |Sa|
βa ←

∑na

i=1 wa(i)ga(i)
return S

The algorithm maintains thresholds βa that ensure high
gain and balance the allocation. On arrival of each item t,
we evaluate its marginal gains for each part a with respect
to the current solution S. We denote these marginal gains
as weights wt,a. The algorithm decides whether to allocate
the item and to which part using the discounted weights
wt,a − βa for all parts a ∈ [k]. The algorithm chooses the
part with largest discounted weight and allocates only if the
discounted weight is non-negative. Thus, βa acts as a thresh-
old that the weight of item t has to pass to be added to the
solution. A critical design consideration is how to set the
thresholds βa, and we set them to a carefully designed lin-
ear combination of the weights of currently allocated items
along the coefficients

ga(i) :=
ca
na

(
1 +

da
na

)i−1

for ca :=
1 + da(

1 + da

na

)na − 1

for all i ∈ [na] with constants da, which we will specify in
Theorem 1 according to the budget na. If the chosen part is
at capacity, we dispose of the item with lowest weight.

Intuition. Our basic design can be understood for linear
objectives, where the weights wt,a and the item values are
identical. Let us consider this setting first. Here, a natural
approach is a greedy allocation rule where the discounted
weight is the value of the new item minus the value of the
item that will be disposed (or 0 if no disposal is required). A
crucial downside is that the greedy scheme fails to balance
the allocation among the parts, which is necessary to defend
against future inputs. We illustrate this with an example in
Appendix A.2 due to Feldman et al. (2009). A solution is
to consider the allocation by discounting the value of a new
item by an exponential average over the values of all items
currently allocated to a part.

In the submodular setting, an important difficulty is that
the change in objective value when adding and disposing an
item is no longer fixed after we modify the current solution.
We therefore use the marginal gain wt,a when an item ar-



na 1 2 3 ≥ 4

da 1 1.0642 1.0893 1.1461
1

Qa
0.25 ≥ 0.2781 ≥ 0.2896 ≥ 0.3178

(
1− 0.7681

na

) Approximation guarantee mina
1

Qa

mina na ≤ 3 ≥ 4

approx ≥ 0.25 ≥ 0.3178
(
1− 0.7681

mina na

)
Table 2: Parameter choices and approximation guarantee for monotone k-submodular maximization. As shown in Equation
(3), Qa reflects the approximation ratio per part, and the overall approximation guarantee is thus given as mina

1
Qa

.

rives as a proxy for this gain or loss. To account for the fact
that the loss of disposing an item might be larger than the
proxy, we require new items to pass a higher threshold as
in the linear setting. As such, it no longer suffices to set the
thresholds βa as a weighted average. Instead, we require a
carefully-designed linear combination of the gains to set the
thresholds βa. The appropriate coefficients for each part a
are given through the functions ga(i) and we derive them
via a careful and novel analysis which we outline below.

Comparison to previous work. Our algorithm follows
a primal-dual design and keeps a threshold for each part.
Ene and Nguyen (2022) set thresholds depending on the
marginal gains of all previously allocated items, even those
that were already disposed. In contrast, we use a different
scheme for setting the thresholds using linear combinations
of the gains of only the items in the current solution. As
such, our approach is related to Feldman et al. (2009) with
the notable difference that we no longer use a convex com-
bination of the gains, which is crucial for submodular ob-
jectives as discussed above. Our analysis is another signifi-
cant departure from both prior works: The analysis of Feld-
man et al. (2009) strongly leverages the special structure of
linear functions and does not apply to submodular objec-
tives. Ene and Nguyen (2022) use a global analysis that is
tailored to their specific threshold update scheme. In con-
trast, we use a different approach for updating the thresholds
and analyze it via a novel local analysis outlined below. This
makes our approach general and flexible, and it allows us to
handle both monotone and non-monotone objectives as well
as more general packing constraints. It further allows us to
choose the coefficients that go into the thresholds, tailored
to the specific budget in each part. Hence, we obtain bet-
ter approximations in challenging settings when budgets are
imbalanced. This was not considered in previous works but
is important for applications such as ad allocation, which we
also showcase experimentally in Table 3.

As is common in works on submodular optimization, we
state the running time of our Algorithm 1 in terms of the
number of function evaluations. We can easily see that this
is O(|V | · k): we consider each item in V exactly once and
evaluate the k-submodular function k times per item. The al-
gorithm only stores a single feasible solution in memory, and
this dominates the space requirement. The space is therefore
optimal, and the running time is the best-known for algo-
rithms in our setting (Ene and Nguyen 2022). We obtain the
following approximation guarantee.

Theorem 1. We make the following choices for the param-
eters {da}a∈[k]. Let d = 1.1461, which is an approximate
solution to the equation ed − d − 2 = 0. We set da = d

if na > n0 := 3, and we set da as shown in Table 2 if
na ≤ n0. We obtain the approximation guarantees shown in
Table 2. Note that the approximation is at least 0.25 for any
minimum budget and it tends to ≥ 0.3178 as the minimum
budget tends to infinity.

Overview of the analysis. We now provide an analy-
sis overview for the approximation ratio of Algorithm 1. A
complete analysis is in Section A.2 of the appendix. Analy-
ses for other algorithms in this work follow the same proof
framework, but require further non-trivial modifications.

We denote with superscript (t) all quantities of the algo-
rithm at the end of iteration t. We denote all quantities at the
end of the stream without superscript. Let T (t)

a =
⋃t

i=1 S
(i)
a

be all items that were allocated to a in the first t iterations.
Lower bound on f(S). Our goal is to relate f(S) to the op-

timum f(S∗). However, comparing both is difficult as there
is no direct relationship between the allocation S created by
our algorithm and the optimum solution S∗. What we can
do is to relate both to marginal gains (weights) and thresh-
olds used in the algorithm, and then leverage the algorithm’s
structure to compare both. Using orthant submodularity, we
can construct the following lower bound on the value of the
solution S (Lemma 3):

f(S) ≥
∑
a

∑
t∈Sa

wt,a. (1)

Upper bound on f(S∗). An upper bound on the optimum
value is harder to obtain, since our marginal gains are with
respect to the current solution S(t), and it is unclear how
to relate this to the optimum. For submodular functions
(k = 1), a common approach is to upper bound f(S∗) by
f(S ∪ S∗) and analyze the latter via the marginal gains.
However, this strategy no longer works for k-submodular
functions since they are only defined on allocations where
each item appears in at most one part. We thus consider a
sequence of intermediate solutions O(t) that agree with T(t)

on items {1, . . . , t} and with S∗ on {t+ 1, . . . , |V |}, and
analyze the change in function value f(O(t−1)) − f(O(t))
for each iteration. With some additional care where we criti-
cally use the allocation choice of Algorithm 1, we obtain the
following guarantee (Lemma 4):

f(S∗) ≤
∑
a

(∑
t∈Ta

(
2wt,a − β(t−1)

a

)
+ naβa

)
. (2)

Due to Equations (1) and (2), we can compare terms on a
per-part basis for each a ∈ [k], and provide a bound Qa on
the ratio between the two such that∑

t∈Ta

(
2wt,a − β(t−1)

a

)
+ naβa ≤ Qa

∑
t∈Sa

wt,a. (3)



This gives us f(S∗) ≤ Qf(S) where we try to make Q :=
maxa∈[k]Qa as small as possible. Our analysis yields

Qa = (1 + da)
(

1 + 1
(1+da/na)

na−1

)
(4)

for parameters da, which we can optimize according to the
budgets as outlined below. First, however, we show how to
obtain the per-part approximation ratios Qa.

Deriving the approximation ratios Qa. Note that the LHS
of (3) has the weights {wt,a : t ∈ Ta} of all of the items ever
allocated to a (including discarded items) and the thresh-
olds. In contrast, the RHS of (3) has only the weights
{wt,a : t ∈ Sa} of the final solution. Thus we need to re-
late the weights of the discarded items and the thresholds to
the items in the final solution. To this end, we use a primal
potential tracking the lower bound (1) and a dual potential
tracking the upper bound (2):

Pt :=
∑

i∈S(t)
a

wi, Dt :=
∑

i∈T (t)
a

(
2wai − β(i−1)

a

)
+ naβ

(t)
a .

We interpret the dualDt as follows: 2wat−β(t−1)
a is the cost

of reallocating an item to the part chosen by the optimum
solution, and we use naβ

(t)
a to account for items in S∗a that

have not arrived yet by paying the current threshold β(t)
a for

each of them. Our analysis relates the change in the dual to
the change in the primal, in each iteration. If t /∈ Ta, we
experience no change in either primal nor dual. If t ∈ Ta,
the change is

Pt − Pt−1 = wt,a − min
i∈S(t−1)

a

wi,a,

Dt −Dt−1 = 2wt,a − β(t−1)
a + na

(
β(t)
a − β(t−1)

a

)
.

To relate the two, we use several properties maintained by
the algorithm: we only allocate the item if the discounted
gain is non-negative (i.e., wt,a ≥ β

(t−1)
a ) and our thresh-

old is a combination of the largest weights with exponential
coefficients. We can then upper bound the change in thresh-
olds β(t)

a − β(t−1)
a (Lemma 6) using only the weights of the

new item wt,a and the disposed item min
i∈S(t−1)

a
wi,a, with

appropriate coefficients. Setting ca appropriately makes the
two coefficients equal and gives us the desired comparison.
This agrees with the intuition that ca describes exactly how
much additional gain we require from new items in order to
account for the potential loss through the disposal, which is
expressed in the dual potential. This definition results in the
desired value of Qa as stated in Equation 4.

Setting parameters da. It remains to choose the parame-
ters da to optimize the approximation guarantee. In the large
budget case, we can approximate (1 +da/na)na ≈ exp(da)
which does not depend on the budget. Thus we can use the
same parameter d for all parts and set it to the value that
maximizes the approximation guarantee. In order to account
for all budgets, including very small ones, we analyze the er-
ror incurred from approximating (1 + da/na)na by exp(da)
(Lemma 7) and derive appropriate choices da tailored to the
budgets na. As a result, we can handle the challenging set-
ting where budgets can be very different, and obtain approx-
imations that improve with the budget.

3.2 Non-Monotone Objectives
The maximization of general (possibly non-monotone) k-
submodular functions is challenging even in the offline set-
ting, where prior work does not achieve constant-factor ap-
proximation guarantees (Xiao et al. 2022). In this section
we show how to use our framework along with funda-
mentally new techniques leveraging special properties of k-
submodular functions to obtain the first constant factor ap-
proximation guarantees for general objectives, even in the
more difficult online and streaming setting. The problem is
different from the monotone k-submodular case as adding
items with positive marginal gain may result in a decreased
objective at the end. However, the core difficulty lies in
the difference to non-monotone submodular maximization
(k = 1) as approaches for this setting, such as subsam-
pling and twice-greedy, do not have counterparts for non-
monotone k-submodular maximization. This difference be-
comes apparent when comparing a solution created by our
algorithm to the optimum solution: Even if the support of
both solutions is identical, our solution can still have a lower
objective due to misallocating items to the wrong parts.

Due to this difference, our approach is to consider the case
k = 1 and k ≥ 2 separately. For k = 1, we use our al-
gorithm for a partition matroid constraint (Section 3.3) and
thus consider only the case k ≥ 2 here. A key insight is that
if the maximum budget maxa na is not too large compared
to the total budget

∑
a na, we can use pairwise monotonic-

ity in a delicate adaptation of Algorithm 1. We thus consider
the regime when the maximum budget is not too large first.
From this, we then derive an algorithm for all budgets.

Algorithm for maxa na ≤ 1
2

∑
a na. A serious compli-

cation of Algorithm 1 for non-monotone objectives it that
we can no longer bound the difference in function value af-
ter re-allocating item t according to the optimum solution.
To hedge against the loss in objective due to misallocation,
we also need to take the thresholds of all other parts into
account (for more details, we refer the reader to the proof
of Lemma 9 in the appendix), so we make a modification
to the allocation: In each iteration t, we choose the part that
maximizes the following modified discounted gain:

a← arg max
a∈[k]

{
∆t,af(S(t−1))− β(t−1)

a − min
a′ 6=a

β
(t−1)
a′

}
.

The full pseudocode and analysis can be found in Appendix
B.1. We obtain:
Theorem 2. When setting the parameters {da}a∈[k] as in
Theorem 1, the modified algorithm achieves an approxima-
tion guarantee that is 1

2 of the approximation in Theorem 1.

Algorithm for All Budgets. If maxa na >
1
2

∑
a na, we

can still obtain a constant-factor approximation (in expec-
tation). Note that we either extract a lot of value from the
part with maximum budget, or we can decrease the maxi-
mum budget and still obtain a good fraction of the original
value. We mimic this idea by creating two solutions. For the
first solution, we only allocate to the part with maximum
budget while not exceeding the respective budget constraint.
For the second solution, we solve the original problem, but
reduce the budget of the maximum advertiser such that we
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Yahoo (k = 20)

Figure 1: Ad allocation on the iPinYou (two plots to the left) and Yahoo instance (two plots to the right). We report mean and
standard deviation over all days in the datasets, while varying a uniform budget na = n for all a ∈ [k]. Note that the online
algorithms using modified parameter choices coincide with offline greedy on the Yahoo instance. Also, all algorithms except
offline greedy use the same number of function evaluations. We indicate runs with the theoretical parameters (e.g. “Algorithm
1: Theory” is Algorithm 1 using the theoretically optimal parameters).

can again apply Theorem 2. We select the better of the two
solutions. This is only a streaming algorithm as we create
multiple solutions, but we can also obtain an online algo-
rithm by choosing a solution randomly. We defer a full de-
scription and analysis of this algorithm to Appendix B.2.

3.3 Additional Results
Our techniques can be applied in a unified way to obtain
further results in the following settings.

Submodular maximization with a partition matroid
(Appendix C). We close the gap between discrete and con-
tinuous methods which evaluate the multilinear extension
and are therefore inefficient in practice (cf. Table 4). As
Feldman, Karbasi, and Kazemi (2018), we subsample items
to obtain a discrete algorithm, but improve upon their ap-
proximation guarantees by carefully choosing the subsam-
pling probability in coordination with the coefficients ga(i).
Their algorithm also has the previously best approximation
guarantees for k = 1, and we even improve upon that.
k-Submodular maximization with knapsack con-

straints (Appendix D.2). We extend our approach using the
density ρt,a = ∆t,af(S)/ut,a in place of the marginal gain
∆t,af(S). An immediate problem of having items of any
size is that we are not able to fill up each constraint ex-
actly. To obtain an efficient discrete algorithm using optimal
space, we maintain an infeasible solution S̃ that overflows
by at most a single item per part. Our update rule for βa
becomes a careful generalization that accounts for irregular

item sizes and depends on S̃.
Common Constraints (Appendix D.3). Recall that for

a common constraint, we have only a single constraint on
the support, e.g. |S1 ∪ · · · ∪ Sk| ≤ n or a single knapsack
constraint. Our techniques also apply to this setting and we
obtain improved online algorithms.

4 Experiments
We show the practicality of our algorithms for k-submodular
maximization on instances for ad allocation, influence max-
imization, and max-cut, exemplifying the applications men-
tioned in the introduction. Further results are in Appendix E.
We demonstrate the performance of our algorithms, which
almost close the gap to offline greedy algorithms in func-
tion value while retaining the efficiency of online algorithms
such as the ones due to Ene and Nguyen (2022).

Instances. Here, we briefly discuss our experiments. We
defer a detailed description to Appendix E.

Ad Allocation. We consider the problem of allocating ad
impressions to k advertisers (Mehta 2013). Ad impressions
t ∈ V arrive online and must be allocated immediately to
advertisers a ∈ [k] with budget constraints |Sa| ≤ na. We
use data from the iPinYou ad exchange (Zhang, Yuan, and
Wang 2014) and a Yahoo dataset (Yahoo 2011). Our objec-
tive (total advertiser satisfaction) is a specific k-submodular
function which we detail in Appendix E. We also create an
imbalanced instance on the iPinYou data by sampling adver-
tiser budgets na uniformly from [10], with results in Table 3.
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Figure 2: Influence maximization with k topics (top) and max-k-cut on the Email instance (bottom). We vary a uniform budget
na = n for a ∈ [k] and report mean and standard deviation over 5 runs.

Algorithm Theory Modified
Algorithm 1 7499.13 ± 68.22 10236.05 ± 220.22

(Ene and Nguyen 2022) 5698.33 ± 88.57 9681.85 ± 152.87
Offline Greedy 10427.58 ± 214.04

Table 3: Ad allocation on the iPinYou instance with imbal-
anced budgets. We report mean and standard deviation over
7 days. We use theoretical and modified parameter choices.

Influence Maximization with k Topics and Sensor Place-
ment with k Measurements. We use the same experimen-
tal setup as Ene and Nguyen (2022) to create instances for
monotone k-submodular maximization. The results for in-
fluence maximization and sensor placement are in Figure 2
and Figure 3 of Appendix E, respectively.

Max-k-Cut: The max-k-cut problem asks, given a graph
G = (V,E) and cardinality constraints n1, . . . , nk to
find S ∈ (k + 1)V maximizing the total cut size de-
fined as f(S) :=

∑
a∈[k] δG(Sa) where δG(S) :=

|{{u, v} ∈ E : u ∈ S, v /∈ S}|. Note that f is a general k-
submodular function since we use a single submodular and
symmetric function for each part δG. Our results on the
Email network (Leskovec and Krevl 2014) are in Figure 2.

Algorithms. We use Algorithm 1 for the monotone in-
stance ad allocation and Algorithm 2 for the general instance
max-k-cut. We use two parameter choices for the online al-
gorithms: First, we set {da}a∈[k], {ca}a∈[k] to the optimal
theoretical choice as the minimizer of Qa in Lemma 5. Sec-
ond, we modify these parameters by reducing each ca to 1

4

of the the previous choice to make the algorithms less con-
servative. The problems we consider are NP-complete, so
instead of reporting the approximation ratio, we compare
our algorithms with the greedy algorithms of Ohsaka and
Yoshida (2015a) for monotone and Xiao et al. (2022) for
general objectives. Both greedy algorithms work in the of-
fline setting and access elements in arbitrary order, as op-
posed to the more constrained streaming and online setting
we consider. We implement both using lazy evaluations.
We also run the algorithm of Ene and Nguyen (2022) on
monotone instances. The theoretical and modified parame-
ter choices coincide with the ones used in their experiments.
Details about the machine we used are in Appendix E.

Discussion. Our algorithms with modified parameter
choices are able to match or even outperform the objective
value of offline greedy on the ad-allocation instances in Fig-
ure 1, with significantly less function evaluations. This is
surprising as greedy is an offline algorithm, therefore less re-
stricted than our streaming algorithms and thus expected to
perform better. The instances on influence maximization and
max-k-cut (Figure 2) are more challenging, but we still al-
most match the objective value of offline greedy with about
8% less in objective. In the settings where the algorithms of
Ene and Nguyen (2022) apply (i.e. the monotone instances
in Figures 1 and 2 (top)), we recover their strong practical
results. Table 3 shows that our algorithm also performs well
if budgets are imbalanced and comes close to offline greedy.
It outperforms the algorithm of Ene and Nguyen (2022) that
does not adapt to the individual budgets in each part.
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