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Abstract

Weak supervision (WS) is a popular approach for label-efficient learning, leveraging diverse sources of noisy

but inexpensive weak labels to automatically annotate training data. Despite its wide usage, WS and its practical

value are challenging to benchmark due to the many knobs in its setup, including: data sources, labeling functions

(LFs), aggregation techniques (called label models), and end model pipelines. Existing evaluation suites tend to

be limited, focusing on particular components or specialized use cases. Moreover, they often involve simplistic

benchmark tasks or de-facto LF sets that are suboptimally written, producing insights that may not generalize to

real-world settings. We address these limitations by introducing a new benchmark, BOXWRENCH,1 designed to

more accurately reflect real-world usages of WS. This benchmark features tasks with (1) higher class cardinality

and imbalance, (2) notable domain expertise requirements, and (3) opportunities to re-use LFs across parallel

multilingual corpora. For all tasks, LFs are written using a careful procedure aimed at mimicking real-world

settings. In contrast to existing WS benchmarks, we show that supervised learning requires substantial amounts

(1000+) of labeled examples to match WS in many settings.

1 Introduction

Weak supervision (WS) aims to address the labeled data bottleneck for supervised machine learning. It uses multiple

weak but inexpensive sources of signal and combines them into high-quality pseudolabels that can be used for

training downstream models [34, 35, 39]. These weak sources can be diverse, including but not limited to: heuristic

rules encoded into small programs, queries to knowledge bases, and pretrained models. Frameworks implementing

WS are hugely popular and are widely applied in industry [3, 36] and academic settings [12, 42].

WS frameworks typically have a simple three-stage approach. First, they formalize weak sources into labeling

functions (LFs). In contrast to manual labeling, these can be automatically applied to an entire unlabeled dataset.

Next, since LFs are inherently noisy and may conflict with one another, a label model (LM) is used to estimate the

quality of each source (typically without accessing ground truth labels) and then to aggregate their outputs into

high-quality pseudolabels. Finally, these pseudolabels can be used to train a downstream model. A vast literature

studies variations on this basic recipe, with diverse approaches to crafting LFs, creating LMs, and noise-aware

training of end-models [47].

For practitioners, a key question is when is WS useful? While it is natural to produce benchmarks that answer this,

surprisingly, there has been relatively little work doing so. One reason for this may be the overall complexity of WS

pipelines. The performance of a WS system varies with (1) the underlying task and data, (2) the LFs, (3) the choice

of LM, and (4) the choice of end model and training procedure. Several benchmarks predominantly focus on only

one of these. For example, WRENCH [46] focuses primarily on evaluating (3), the LM, while AutoWS-Bench-101

[37] focuses on (2), the LFs, and specifically, techniques for automatically generating model-based LFs.

Recently, Zhu et al. [49] tackle the goal of quantifying the value of WS. They argue that the benefits of WS

are often overestimated by showing that fine-tuning on only 50 ground-truth labels can achieve comparableÐor

betterÐresults than certain WS approaches for many benchmark datasets. They suggest that WS may not be

* Equal contribution
1The box wrench is the most ubiquitous and practical wrench.
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broadly useful, as obtaining 50 ªcleanº labels is rarely prohibitive, and data at this scale (or larger) may still be

needed for tuning or evaluation even when using WS.

In this work, we show that these findings result from the simplicity of existing datasets rather than the inherent

weakness of WS. In particular, we identify key issues with the current WS benchmarks that led to this result and

show that WS may be stronger than is thought in more realistic settings:

1. Benchmark datasets usually have too few classes, are balanced, or aren’t specialized enough to be

representative of real-world datasets.

2. WS depends on the quality of LFs, and LFs from current benchmarks can be improved.

3. Previous benchmarks do not capture the adaptability of LFs across task specification, a key practical

advantage of WS deployments compared to manual labeling.

We introduce a new benchmark, BOXWRENCH, that addresses these three challenges. It enables us to quantify

the practical advantages of WS in a wide range of settings. Our findings indicate that even simple WS approaches

often provide substantial value. We address the issues we identified by:

• Proposing new WS benchmarks based upon tasks that involve high-cardinality label spaces, imbalanced

classes, and/or require specific domain knowledge.

• Showing that by adhering to careful LFs design practices, we can write effective LFs for these tasks that can even

improve upon existing benchmark LFs.

• Using the MASSIVE dataset [10], we study simple but effective strategies for adapting existing LFs written for

English data to parallel versions of the task in other languages.

Our benchmark consists of five text-classification WS tasks that showcase the power of WS in a variety of

challenging real-world scenarios. For two of our tasks, we produce new LFs, while for one, we improve the existing

LFs from WRENCH [46]. The design of these LFs follows a rigorous procedure that we release as part of our

benchmark, acting as guidance for LF design and for WS benchmarking overall. We publicly release the code and

other assets for our study at https://github.com/jeffreywpli/stronger-than-you-think.

2 Background and Related Work

We provide a brief background on WS techniques and benchmarking efforts. We note that the term WS can be

overloaded, as it is also applied to other families of techniques that generally aim to learn from indirect or noisy

forms of supervision [32], particularly in computer vision [20, 28]. Here, we use WS to refer to approaches that fall

under programmatic WS [34, 47].

Weak Supervision. WS aggregates multiple imperfect label sources, each formalized as a labeling function (LF),

to synthesize labels for unlabeled data. Perhaps the most popular types of LFs are heuristics or rules obtained

from subject matter experts [33] encoded into programs. Other potential sources include knowledge-base queries,

pretrained models, and more [8, 16, 17, 21, 29]. Many works in WS focus on improving either how LFs are crafted

or how they are aggregated. For LF construction, variations such as learning small models on tiny amounts of data

[43], or using code-generating large language models to craft LFs have been proposed [15, 18, 19]. For aggregation,

the simplest technique is to perform a majority vote while other methods seek to infer (without using ground truth

labels) the accuracy of the LFs with a label model (LM) and thus perform a higher-quality aggregation [13, 33, 40].

Orthogonal to both directions, other works study more effective strategies for training end models on WS-generated

pseudo-labels [24, 45].

WS Benchmarks. Existing WS benchmarks typically focus on a particular component of a WS system or a par-

ticular use case. WRENCH [46] primarily benchmarks different label models and is therefore aimed at aggregation.

AutoWS-Bench-101 [37], in contrast, studies the effectiveness of automated LF construction techniques. Finally,

WALNUT [48] studies WS techniques in the context of natural language understanding. All of these benchmarks

are highly useful, but do not attempt to measure the value of WS techniques more broadly. A recent effort by Zhu

et al. [49] tackles this question and finds that in particular settings, WS may not be of great value. Specifically,

it suggests that only a small amount of labeled data is sufficient to train a supervised model to a level of quality

equivalent to that provided by WS. We are inspired by this work, studying whether we can obtain similar findings

across a broader range of realistic scenarios.
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3 Methodology and Datasets

We establish the goals, problem setting, datasets, and experimental setup used in BOXWRENCH.

3.1 Goals

The ultimate goal of BOXWRENCH is to bridge WS research and practice by introducing more realistic benchmarks

for WS. The first step towards such a goal is to gain a better understanding of the question: when is WS useful? To

do so, we first gather a suite of datasets that addresses two key areas in which current WS benchmarks fall short.

1. Benchmark datasets tend to be simplistic, exhibiting properties not representative of many real-world problems.

This includes having a small label space (often binary), balanced label distributions, and relying on general

rather than domain-specific knowledge.

2. Current WS benchmarks are used with de-facto LF sets that vary in quality. A poorly written LF set may also

result in a less realistic benchmark (e.g. if a task involves domain expertise but experts were not involved in

writing the LFs).

To address the first issue, we introduce WS tasks that directly target the aforementioned gaps: focusing on those with

greater class counts, class imbalance, and domain-specificity. To address the second issue, we place care into writing

higher-quality LFs for all datasets, including improving existing LFs. Using these datasets, we aim to measure how

many labeled examples are needed before supervised learning catches up to WS techniques. We formalize this

notion by plotting the performance curves of WS techniques and fully supervised learning (as functions of the

number of labels) and analyzing the crossover points where these curves intersect. To show that WS is effective,

the crossover point in which supervised learning surpasses WS should be sufficiently high, i.e., WS cannot be

matched by simply labeling a trivial amount of examples. Using crossover points to measure the effectiveness of

WS, we aim to establish a regime in which WS is practically useful on our suite of more challenging and realistic

datasets.

3.2 Problem Formulation

Let D ⊆ X × Y be our data distribution. We first sample an unlabeled training set with ntrain examples Xtrain =
[xi]

ntrain

i=1 , and a small labeled validation set of nval examples: Dval = [Xval, Yval] with Xval = [xi]
ntrain+nval

i=ntrain+1 and

Yval = [yi]
ntrain+nval

i=ntrain+1 with xi ∈ X and yi ∈ Y . We are interested in learning a function fθ : X → Y that minimizes

the expected risk R(fθ) = E(x,y)∼D[L(fθ(x), y)] where L is a loss function and θ are the model parameters. To

estimate R(fθ), we assume the existence of an i.i.d. test set Dtest, for which labels are also available. In the case of

WS, we assume that labels for Xtrain are provided by a set of labeling functions LFws = {λj}
m
j=1 where each LF,

λj : X → Y ∪ {−1} encodes some heuristic that labels or abstains (denoted by -1) on each input xi. Using a label

model LM that aggregates the LF votes, λi,j = λj(xi), we obtain ŷi = LM
(
[λi,j ]

m
j=1

)
, namely, the weak label for

xi. We construct the weak labels for the training set as Ŷtrain = [ŷi]
ntrain

i=1 . We then use DWS = [Xtrain, Ŷtrain] as the

weakly labeled training set, to train a model fθWS
.

Following Zhu et al. [49], we compare the performance fθWS
with two other models that train directly on the

validation labels: fθSUP
is the model trained only on Dval, which serves as a critical baseline for assessing the

usefulness of WS. fθCFT
is a model that results from using fθWS

as an initialization and further performs continuous

fine-tuning on Dval. Weak supervision is considered useful given Dval if the performance of either fθWS
or fθCFT

remains significantly higher than that of fθSUP
.

3.3 Datasets

Existing WS benchmarks often exhibit low class cardinality (under 5), highly balanced label distributions (i.e. near

uniform), and simplistic underlying tasks that do not require domain-specific knowledge. However, real-world tasks

often do not conform to these assumptions. Thus, to evaluate WS in realistic regimes, we propose a collection of

datasets2 with varying levels of class cardinality and imbalance, as well as requirements for domain expertise. We

describe each of the datasets used in BOXWRENCH, with their metadata shown in Table 1, and describe their LFs.

• Banking77 [5, 23] comprises online banking queries annotated with one of 77 user intents. It has 209 keyword-

based LFs.

2With the current exception of Amazon31, which was recently retracted, all of the datasets we use are publicly available and with proper

licenses (see Appendix B).
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Table 1: The datasets used in BOXWRENCH and their metadata. For MASSIVE, the dataset sizes are the amounts

per available language.

Dataset Class Train Valid Test

Banking77 77 9,003 1,000 3,080

ChemProt 10 12,600 1,607 1,607

Claude9 9 5,469 200 2057

MASSIVE{18, 60} 18, 60 11,564 3,305 1,651

Amazon31 31 131,781 5,805 17,402

• ChemProt [22] is a chemical relation classification dataset comprising 1,820 PubMed abstracts with chemical-

protein interactions annotated by domain experts. The dataset was studied in [2, 49]. Previous works on WS

created LFs for the dataset and showed the efficacy of WS in the dataset [45]. We push the boundaries of WS in

the dataset by modifying the LFs to incorporate the distance between the chemical and protein entities in the text,

among other minor modifications (see Appendix C and Appendix K).

• Claude93 is based on UNFAIR-ToS [7, 26], which includes 50 Terms of Service (ToS) from online platforms and

sentence-level annotations with 8 types of unfair contractual terms (potentially violating user rights according to

EU consumer law).4 LFs for this dataset were created by one of the authors of this work who is a law graduate

student.

• MASSIVE{18,60} [10, 23] is a corpus of human-to-voice assistant interactions, where the task is to predict one

of 60 fine-grained or 18 coarse-grained annotations of user intents. The corpus includes parallel versions across

52 different languages, where each example is present in each language. In our work, we explore reusing the

existing LFs written for the English variant of the 18-class prediction task to generalize to additional languages

and more fine-grained classes. For non-English variants of MASSIVE18, we apply English LFs by first translating

each example back to English using DeepL (see Fig. 2). For MASSIVE60, we leverage the original LFs from

MASSIVE18 to predict the superclass for each instance. To generalize from coarse to fine-grained predictions in

MASSIVE60, we randomly select a subclass corresponding to the predicted superclass from the original LFs.

• Amazon31 is built from the Amazon product reviews [1] dataset consisting of reviews and their categories.5 Due

to each class’s high overlap and conflict rate, we merged several labels and reduced the class cardinality to 31.

LF Design Pipeline. We randomly selected samples with clean labels from the training set to create a development

set for LFs. We use 250 examples as a development set for Amazon31, which is consistent with the development of

LFs for Banking77 and MASSIVE18 in [23]. For Claude9, the development set had 24 examples. We manually

inspected labeled examples in the development set, and identified patterns for each class. Then we create multiple

keyword-based, dictionary-based, and regular expression-based LFs for each class6. We calculated LF statistics

(which do not require label information) on the original training and validation sets, including coverage and LF

conflict ratios. To evaluate the final LFs, we calculate their accuracy scores on the original validation set.

3Claude9 is imbalanced, with 90%+ of data belonging to one class, so we evaluate using macro-averaged F1.
4Art.3 of Direct. 93/13, Unfair Terms in Consumer Contracts (http://data.europa.eu/eli/dir/1993/13/oj).
5This dataset has been taken down. We include it in experiments, but we will not release it in BOXWRENCH.
6We created the LFs ourselves and did not hire annotators.
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Learning Scenarios. We include the three types of learning scenarios that we compare: supervised learning, WS

learning, and CFT, all involving clean labels coming from only the validation set (as shown in Fig. 1). Notably, we

can successfully replicate the results of [49] with our setup on existing WS benchmarks, as shown in Appendix E.

• Supervised: We use clean labels from the validation set directly for fine-tuning an end model.

• Weakly Supervised: We aggregate all weak labels from the training data with an LM, then fine-tune an end

model using the training data with the aggregated labels. Generally in WS, such as in WRENCH, the clean

validation labels are used to guide hyperparameter search (for both the LM and end model). In our setup, we use

it for early stopping.

• Continuous-Fine-Tuning (CFT): We further fine-tune the models trained using only weak supervision on the

same set of clean validation labels.

Crossover Points. To measure the usefulness of WS, we plot the performances of the three aforementioned methods

for various amounts of clean validation data and inspect where their performance curves intersect. Specifically, the

crossover point that we care about is between the supervised method, which uses only clean labels, and the better of

WS and SFT, which make use of the weak labels.

4 Results and Analysis

In this section, we present our main results and analysis. In Section 4.1, we first investigate the crossover points

for our new datasets and compare them with existing ones. In Section 4.2, we show that crossover points can

be significantly increased when LFs are written more carefully. Section 4.3 showcases another dimension of the

usefulness of WS, as we demonstrate how LFs can be adapted in a multilingual setting. Finally, we study whether

different LMs perform better on our more challenging new tasks in 4.4.

4.1 Comparing crossover points between existing and new benchmarks

We first conducted a crossover point analysis for the existing datasets from WRENCH [46] in Fig. 3, extending the

results from [49]. We confirm that for most of these tasks, the crossover points between Supervised (green) and

CFT (blue) are quite small, less than 200 for four of six tasks. Notably, these four datasets all have considerably

smaller label cardinalities compared to most datasets in BOXWRENCH (see Appendix D). We also performed the

analysis on the named entity recognition datasets from WRENCH, with similar results (see Appendix H). Overall,

these experiments verify that existing benchmarks are often inadequate for capturing realistic scenarios where WS

holds significant utility over hand-labeling.

We then conducted the same experiments on our new datasets, and analyzed their crossover points in Fig. 4. For

both Amazon31 and Banking77, the crossover points are beyond 1,000 clean labels. For Claude9, the validation set

is smaller and even training on all available examples does not result in a crossover. Instead, the gap between the

CFT and supervised-only methods remains 5% higher.
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Table 2: Test accuracy (ChemPort, MASSIVE18)/F1 scores (Claude9) of supervised-only methods and CFT across

different proportions of clean data used, LMs, and datasets. First and second best results are Bolded and underlined.

Claude9 ChemProt7 MASSIVE18

6.25% Validation Size 12 100 127

+Majority vote 0.153±0.026 0.625±0.018 0.811±0.004

+DawidSkene 0.153±0.025 0.610±0.020 0.797±0.010

+Snorkel 0.132±0.022 0.617±0.012 0.811±0.007

+FlyingSquid 0.109±0.005 0.606±0.021 0.751±0.011

+Supervised Only 0.109±0.005 0.504±0.030 0.753±0.014

12.5% Validation Size 25 200 254

+Majority vote 0.175±0.020 0.685±0.010 0.845±0.006

+DawidSkene 0.184±0.022 0.654±0.024 0.836±0.004

+Snorkel 0.157±0.016 0.649±0.015 0.845±0.005

+FlyingSquid 0.124±0.014 0.640±0.015 0.818±0.009

+Supervised Only 0.123±0.015 0.585±0.022 0.820±0.013

25% Validation Size 50 401 508

+Majority vote 0.345±0.114 0.726±0.021 0.863±0.004

+DawidSkene 0.362±0.107 0.712±0.014 0.863±0.007

+Snorkel 0.303±0.090 0.711±0.016 0.859±0.002

+FlyingSquid 0.170±0.025 0.696±0.010 0.856±0.009

+Supervised Only 0.165±0.052 0.684±0.023 0.855±0.010

50% Validation Size 100 803 1016

+Majority vote 0.483±0.071 0.778±0.005 0.882±0.005

+DawidSkene 0.477±0.074 0.775±0.003 0.884±0.005

+Snorkel 0.462±0.065 0.767±0.009 0.885±0.005

+FlyingSquid 0.232±0.057 0.762±0.008 0.880±0.005

+Supervised Only 0.253±0.043 0.773±0.010 0.883±0.004

100% Validation Size 200 1607 2033

+Majority vote 0.582±0.036 0.820±0.004 0.899±0.002

+DawidSkene 0.572±0.038 0.820±0.005 0.893±0.002

+Snorkel 0.557±0.020 0.814±0.004 0.899±0.002

+FlyingSquid 0.352±0.037 0.813±0.006 0.894±0.005

+Supervised Only 0.347±0.020 0.816±0.007 0.898±0.003

Meanwhile, we see that L2En-LFs demonstrates promise of adapting the English LFs, leading to crossover points

of over 1000 in Chinese and Japanese, despite coming for ªfreeº (i.e., without writing additional LFs in the target

languages). It also achieves accuracy comparable to Oracle-LFs.

Finally, we also introduce a realistic setup in which even the amount of unlabeled data is limited for a rarer language,

Norwegian. Specifically, we assume only a 20% subset of the Norwegian version of the MASSIVE is available,

which we label using L2En-LFs. We then augment this data by translating the corresponding weakly labeled English

examples into Norwegian for the remaining 80%. As shown in Fig. 9, this leads to a crossover points of above

1500 for fine-tuning Norwegian BERT (NB-BERT-base) [30]. This showcases that for rarer languages, for which

foundation models may be less powerful and labels harder to obtain, adapting LFs can be of even larger value.

4.4 Label model ablations

In real-world applications, WS is typically integrated with different LMs to optimize performance. Several LMs are

frequently employed in WS frameworks, including Majority Vote, Dawid-Skene [8], Snorkel [35], and FlyingSquid

[13].

In our study, we conducted a comprehensive evaluation of WS using these LMs on our datasets. The performance

of each LM was systematically assessed to determine its effectiveness in various scenarios. Detailed results of this

evaluation are presented in Table 2, showcasing the comparative performance and highlighting the strengths of each

model (see Appendix F for the full table with Amazon31 and Banking77). For most of the new datasets, the CFT

7Here we use ChemProt with updated LFs.
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method outperforms the supervised-only method with a clear margin, especially in low-resource settings. Majority

Vote and Dawid-Skene performed the best among the label models tested.

5 Limitations

There are several limitations to this work. (1) We primarily focus on text classification tasks, which are more

common in practice; while other benchmarks such as WRENCH Zhang et al. [46] include both text classification

and sequence-tagging. Similar investigations and LF improvements would be valuable to study using our codebase

in future work. (2) In our experiments, we used BERT-based end models and relatively simple label models such

as Majority Vote, Dawid-Skene, Snorkel, COSINE, and ARS2. More recent end models and label models could

also be worth testing with our pipeline. (3) We did not thoroughly tune hyperparameters while training weakly

supervised models, following the setup from [49]. With more careful hyperparameter tuning, WS has the potential

to achieve better results. (4) The MASSIVE dataset has one-to-one correspondences across languages, while in

real-life scenarios, usage patterns and distribution shifts may exist across different languages, even on identical

tasks.

6 Conclusions

In this paper, we introduce BOXWRENCH, a benchmark that expands the evaluation of WS by addressing the

limitations of existing benchmarks. By incorporating high-class cardinality, imbalance, and the need for domain

expertise, BOXWRENCH better reflects real-world data and tasks. Our results show that on these more realistic

tasks, weak supervision demonstrates significant utility, particularly in scenarios where traditional labeling is

cost-prohibitive. We also show that careful LF design and adapting existing LFs in multilingual settings can

significantly enhance the applicability of WS across diverse contexts. BOXWRENCH sets a new standard for

evaluating WS, with publicly released datasets, benchmarks, and tools to advance WS research and its practical

deployment.
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A Broader Social Impact of WS Benchmarking

Our benchmark aims to provide a platform to evaluate WS methods on more realistic datasets. Methods with

successful performance are more likely to be useful in real applications, thus improving the effectiveness of WS and

reducing the potential costs for practitioners wishing to train ML models. Of course, a potential negative societal

impact is that if models are easier to train with WS, people with malicious intent can also train models at a relatively

lower cost, leading to potentially harmful impacts.

B Dataset Licenses

Our license is CC BY 4.0 license and otherwise inherits the licensing of original datasets.

• Banking77: CC-BY-4.0

https://huggingface.co/datasets/legacy-datasets/banking77

• ChemProt: Apache-2.0

https://github.com/JieyuZ2/wrench

• Claude9: CC-BY-4.0

https://huggingface.co/datasets/coastalcph/lex_glue

• MASSIVE18: CC-BY-4.0

https://huggingface.co/datasets/AmazonScience/massive

• Amazon31: No longer available publicly

https://huggingface.co/datasets/defunct-datasets/amazon_us_reviews
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C LF Improvements for Chemprot

We described the details of how we improved the LFs for the ChemProt dataset in this document. Further details

can be found in our codebase.

C.1 Original LFs

The original LFs have a coverage of 0.864 and precision of 0.551 on the covered data, with an accuracy of 0.4904

using Majority Vote and random tie-breaking (WRENCH reported their accuracy in this way). These statistics are

obtained from the test set.

We sampled a development set of size 250 from the training set, examined the definition of each label, and carefully

reviewed examples of each label to understand the characteristics of the dataset.

Example LFs are shown below, with the full set found at lable_function/chemprot.

# chemprot functions examples:

#0

@labeling_function()

def lf_amino_acid(x):

return 0 if ’amino acid’ in x.text.lower() else ABSTAIN

...

#19

## Cofactor

@labeling_function()

def lf_cofactor(x):

return 7 if ’cofactor’ in x.text.lower() else ABSTAIN

...

C.2 LF Improvement Details

We first started by adding space around or before the keywords in some LFs: ªactivatº, ªincreasº, ªreducº, ªantagonº,

ªtransportº, ªcatalyzº, ªproducº, and ªnotº. This is because for keywords such as ªnotº, they might be triggered by

words like ªnotableº.

We also removed LFs with low accuracy on the development set. For example, we removed the function

lf_induce, as the word "induce" is too general.

Additionally, we developed a utility function, chemprot_enhanced, to extend the ChemProt dataframe in

WRENCH format with two more columns: entity1_index and entity2_index. We improved our LFs to

utilize these indices to check whether certain words occur between or near the two entities.

After these improvements, on the development set, our coverage dropped to 0.828, but the accuracy for covered

data increased to 0.5942. Accuracy with Majority Vote and random tie-breaking rose to 0.508.
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E Reproducing results from Zhu et al. [49].

Here, we show how using our codebase, we can successfully reproduce the results from Zhu et al. [49].

Dataset N Implementation Supervised Weakly Supervised CFT

AGNEWS

50 Zhu et al. [49] 0.880 0.872 0.882

5 Zhu et al. [49] 0.770 0.840 0.841

50 Ours 0.875 ± 0.007 0.859 ± 0.010 0.871 ± 0.017

5 Ours 0.769 ± 0.040 0.863 ± 0.009 0.820 ± 0.030

Yelp

50 Zhu et al. [49] 0.950 0.820 0.910

5 Zhu et al. [49] 0.740 0.760 0.840

50 Ours 0.947 ± 0.006 0.868 ± 0.043 0.943 ± 0.075

5 Ours 0.767 ± 0.056 0.843 ± 0.072 0.915 ± 0.014

IMDb

50 Zhu et al. [49] 0.880 0.818 0.864

5 Zhu et al. [49] 0.705 0.795 0.797

50 Ours 0.868 ± 0.030 0.846 ± 0.023 0.889 ± 0.007

5 Ours 0.630 ± 0.064 0.819 ± 0.027 0.794 ± 0.054

TREC

50 Zhu et al. [49] 0.930 0.680 0.940

5 Zhu et al. [49] 0.630 0.640 0.840

50 Ours 0.911 ± 0.014 0.678 ± 0.097 0.910 ± 0.013

5 Ours 0.603 ± 0.046 0.662 ± 0.036 0.815 ± 0.040

ChemProt

50 Zhu et al. [49] 0.720 0.550 0.730

5 Zhu et al. [49] 0.420 0.510 0.590

50 Ours 0.707 ± 0.0163 0.583 ± 0.012 0.737 ± 0.0069

5 Ours 0.420 ± 0.023 0.518 ± 0.030 0.573 ± 0.027

SemEval

50 Zhu et al. [49] 0.862 0.820 0.910

5 Zhu et al. [49] 0.720 0.760 0.840

50 Ours 0.855 ± 0.0037 0.837 ± 0.016 0.916 ± 0.077

5 Ours 0.747 ± 0.021 0.836 ± 0.006 0.868 ± 0.006

F Extended Table for Section 4.4

Table 4 extends the results in Section 4.4, showing additional results for Amazon31 and Banking77.

Table 4: Additional test accuracy for Amazon31 and Banking77. Best results are Bolded.

6.25% Validation 12.5% Validation 25% Validation 50% Validation 100% Validation

Banking77

+Majority vote 0.565±0.026 0.667±0.015 0.752±0.015 0.822±0.010 0.865±0.002

+Supervised Only 0.236±0.016 0.378±0.020 0.571±0.018 0.752±0.004 0.849±0.007

Amazon31

+Majority vote 0.685±0.005 0.710±0.007 0.743±0.003 0.771±0.003 0.792±0.002

+Supervised Only 0.660±0.008 0.700±0.006 0.736±0.003 0.767±0.003 0.790±0.001

G MASSIVE60 and Using English for Augmentation

This section contains the results for MASSIVE60 (Fig. 8), as well as an exploratory approach for leveraging

non-English data as additional weak supervision for improving performance on MASSIVE-En. Section 4.3 (Fig. 9).

MASSIVE60, with our straightforward methodology, demonstrates a crossover point exceeding 500, highlighting

its potential for the application of WS techniques.
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Table 5: Accuracy and F1 scores for different datasets and methods with varying validation sizes (VS). Best results

are bolded.

6.25% VS 12.5% VS 25% VS 50% VS 100% VS

Amazon31

+CFT (Accuracy) 0.685 0.711 0.742 0.769 0.791

+Supervised Only (Accuracy) 0.660 0.701 0.736 0.766 0.790

+CFT (F1_micro) 0.685 0.711 0.742 0.769 0.791

+Supervised Only (F1_micro) 0.660 0.701 0.736 0.766 0.790

+CFT (F1_macro) 0.683 0.710 0.741 0.768 0.791

+Supervised Only (F1_macro) 0.659 0.702 0.736 0.766 0.790

+CFT (F1_weighted) 0.682 0.709 0.740 0.767 0.790

+Supervised Only (F1_weighted) 0.658 0.701 0.735 0.765 0.789

Banking77

+CFT (Accuracy) 0.551 0.676 0.751 0.820 0.866

+Supervised Only (Accuracy) 0.234 0.378 0.567 0.753 0.846

+CFT (F1_micro) 0.551 0.676 0.751 0.820 0.866

+Supervised Only (F1_micro) 0.234 0.378 0.567 0.753 0.846

+CFT (F1_macro) 0.497 0.650 0.742 0.818 0.865

+Supervised Only (F1_macro) 0.167 0.318 0.530 0.745 0.844

+CFT (F1_weighted) 0.497 0.650 0.742 0.818 0.865

+Supervised Only (F1_weighted) 0.167 0.318 0.530 0.745 0.844

Claude9

+CFT (Accuracy) 0.904 0.906 0.906 0.914 0.914

+Supervised Only (Accuracy) 0.907 0.908 0.906 0.911 0.913

+CFT (F1_micro) 0.904 0.906 0.906 0.914 0.914

+Supervised Only (F1_micro) 0.907 0.908 0.906 0.911 0.913

+CFT (F1_macro) 0.149 0.177 0.351 0.493 0.558

+Supervised Only (F1_macro) 0.110 0.120 0.173 0.256 0.349

+CFT (F1_weighted) 0.874 0.877 0.895 0.910 0.916

+Supervised Only (F1_weighted) 0.864 0.866 0.870 0.884 0.900

ChemProt

+CFT (Accuracy) 0.637 0.681 0.724 0.776 0.819

+Supervised Only (Accuracy) 0.595 0.606 0.605 0.614 0.613

+CFT (F1_micro) 0.637 0.681 0.724 0.776 0.819

+Supervised Only (F1_micro) 0.595 0.606 0.605 0.614 0.613

+CFT (F1_macro) 0.453 0.523 0.572 0.640 0.710

+Supervised Only (F1_macro) 0.405 0.410 0.412 0.409 0.412

+CFT (F1_weighted) 0.623 0.669 0.715 0.770 0.816

+Supervised Only (F1_weighted) 0.573 0.581 0.581 0.587 0.586

M Miscellaneous

M.1 Links to datasets & metadata

We noted that all the datasets that we used are based on previously publicly published datasets. The license and

links are mentioned in Appendix B. In addition to the original link for the datasets mentioned in Appendix B. We

also provide our own usage of the datasets on GoogleDrive.
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