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Abstract—The adoption of digital systems in healthcare has
resulted in the accumulation of vast electronic health records
(EHRs), offering valuable data for machine learning methods to
predict patient health outcomes. However, single-visit records of
patients are often neglected in the training process due to the
lack of annotations of next-visit information, thereby limiting the
predictive and expressive power of machine learning models. In
this paper, we present a novel framework MPLite that utilizes
Multi-aspect Pretraining with Lab results through a light-weight
neural network to enhance medical concept representation and
predict future health outcomes of individuals. By incorporating
both structured medical data and additional information from lab
results, our approach fully leverages patient admission records.
We design a pretraining module that predicts medical codes based
on lab results, ensuring robust prediction by fusing multiple
aspects of features. Our experimental evaluation using both
MIMIC-III and MIMIC-IV datasets demonstrates improvements
over existing models in diagnosis prediction and heart failure
prediction tasks, achieving a higher weighted-F1 and recall with
MPLite. This work reveals the potential of integrating diverse
aspects of data to advance predictive modeling in healthcare.

Index Terms—EHR, Lab Result, Diagnosis Prediction, Pre-
training, Heart Failure Prediction

I. INTRODUCTION

EHR datasets, such as MIMIC-III [1], provide compre-

hensive medical information, including vital signs, diagnoses,

medications, and lab results. These multi-aspect features are

valuable resources for predicting personalized health events,

such as diagnosis predictions. Meanwhile, deep learning tech-

nique have become a common approach for analyzing se-

quential data within healthcare [2]–[4]. However, many studies

often exclude patient examples with only single-visit records,

since these records lack labels for prediction tasks involving

future admissions. For instance, when training a supervised

machine learning model to predict diagnoses in the next

visit given previous visits in the MIMIC-III dataset, we need

the annotations/labels for the next visit. Therefore, temporal
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Fig. 1. Example of supervised training on patient-level admission records in
most predictive models

prediction models rely on patient data with at least two visits to

complete the training process. Single-visit records are not fully

utilized in training predictive models as shown in Figure 1.

However, multi-visit patients contribute to only a small portion

of the dataset. Among a total of 46,520 patients, only 16.20%

have multiple visits. The remaining 83.80% are single-visit

patients, which could also provide rich information for models

to learn useful patterns and make better predictions.

To fully utilize these single admission records in an EHR

dataset, there are two popular solutions to address this issue:

(1) Transformer models like G-BERT [5] leverage single-

admission data to design customized self-supervised tasks,

which typically treat medical concepts or admissions as

masked tokens and further enhance intermediate representa-

tion learning within the encoder framework. (2) Multi-aspect

learning [6], [7] incorporates diverse features, such as lab test

results or clinical notes, to enrich the representation learning

of medical concepts, which helps models better capture the

complexity and interrelationships inherent in medical data. The

former approach, although widely adopted by early studies [8],

[9], is susceptible to the order of medical codes and may not

be lightweight enough to function as a plug-and-play module.

In contrast, while the latter approach demands high-quality



and relevant additional medical concepts, it enables models to

learn collaborative representations, leading to more accurate

predictions with the addition of a lightweight module.

In this study, we leverage single admissions as auxiliary

training data to predict diagnoses and health risks, such

as heart failure. Recognizing the pivotal role that lab test

results play prior to training, we propose a novel framework,

MPLite, which is an additional plug-in-and-play module to

learn relationships between lab results and diagnoses through

a Multi-aspect Pretraining and “Lite” module. This framework

captures the underlying patterns and associations that are

present in both multiple-visit and single-visit data. We then

illustrate how incorporating this pre-trained knowledge can

significantly enhance the predictive capabilities of temporal

neural networks, particularly for forecasting health risks in

patients with multiple visits. By fine-tuning the pre-trained

subnetwork on two specific health risk prediction tasks, we

demonstrate the effective extraction of valuable insights from

abundant single-visit patient data. The pretraining module

underscore the advantages of pretraining on diverse medical

features beyond diagnoses concepts and highlights the broader

applicability of lab test data in predictive healthcare.

II. RELATED WORK

Deep learning models have been extensively applied to

electronic health records (EHR) to extract representations

of medical patterns, addressing various real-world healthcare

prediction tasks like diagnosis prediction.

A. CNN/RNN-based Models

Most early studies in this area can be categorized into two

main subcategories: (i) RNN-based models, where predictive

methods like GRU [10], RETAIN [11], and Timeline [12]

combine attention mechanisms and RNN for prediction. Other

models [2], [13], [14] leverage RNNs to handle time-series

data effectively; (ii) CNN-based models, such as Deepr [15]

and AdaCare [16], use convolution and pooling layers to pro-

cess features in EHR. However, these methods often overlook

relations among encoded medical concepts and other critical

aspects such as lab test results.

B. Graph/Transformer-based Models

Recently, there has been a trend towards using ontol-

ogy graphs to incorporate additional information related to

medical concepts in predictions such as GRAM [17], G-

Bert [5], GCT [7], Variationally Regularized GNN [18],

GraphCare [19], ME2Vec [20], RGNN [21]. However, most

existing works primarily rely on admission medical concepts

as features for various deep learning models. Meanwhile,

following the success of the transformer architecture, re-

searchers have quickly adopted it for EHR data. Encoder-

decoder structures offer the advantage of fully utilizing single-

visit data in the pretraining process by customizing proxy tasks

for different prediction tasks. Early studies, like G-Bert [5]

treat medical codes as tokens and incorporate hierarchical

domain knowledge along with diagnosis codes. Recent models

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Definition

S EHR dataset
Pi i-th patient

C,D,L Sets of medical concepts, diagnosis codes, and
lab test codes

|C|, |D|, |L| Cardinality of medical concepts, diagnoses,
and lab test codes

Ti The number of visits for patient pi

xt,x
D

t ,xL

t Multi-hot vector for the t-th visit of a patient

like HiTANet [22], Med-BERT [8], and Sherbet [23] have also

been trained to precisely identify patient information based

on various medical concepts. However, the pretraining phase

in most works cannot be easily separated into a plug-and-

play module, limiting its generalizability when transferring

pretraining information to new tasks or different structures.

C. Models with Mutli-Aspect Features

Beyond traditional medical concepts, such as condition,

medication, and treatment codes, researchers [9] also involve

additional information (e.g. demographic features and times-

tamps) in each admission record. To augment representation

from different modalities, both CGL [6] and MedGTX [24]

integrates disease-patient graphs and unstructured text from

clinical notes through encoder structures to demostrates the

importance of involving additional information other than

sequence of medical concepts. MiME [25] and GCT [7]

are preliminary tries to involve lab results as input features

to further optimize medical hidden representation. However,

these integrated models cannot work well in the absence

of corresponding records, and they always have complicated

preprocessing or fusion steps which cannot be generalized as

lightweight modules.

In this paper, we propose MPLite that allows different mod-

els to jointly learn representations of medical diagnosis codes

and lab results. Our framework provides a novel perspective

for integrating different features to achieve more accurate

predictions. The experimental results demonstrate a significant

improvement with the extensive pretraining module in predict-

ing health outcomes over several baselines, as confirmed by

confidence intervals obtained from repeated experiments.

III. PROPOSED METHOD

We begin by describing the notations and then introduce

our proposed framework, which includes a pretraining module

with lab results, along with instructions on how to seamlessly

integrate and utilize the module for downstream tasks.

A. General Notations

An EHR dataset S is a collection of patient admission

records of N patients {P1, P2, ..., PN} ∈ S in total. For admis-

sion records of each patient, the i-th patient can be represented

as a sequence of Ti admission records {x1,x2, ..,xTi
} ∈ pi

in chronological order, where Ti is the number of admissions

for the patient. The goal of our predefined prediction tasks is
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Fig. 2. Overview of the proposed MPLite Framework

to predict the label at the end of the sequence, y ∈ {0, 1}s,

which can be either a one-hot or multi-hot vector. We then

omit i in the rest of the sections and explain our framework

using single patient to avoid misunderstanding.

Specifically, a single admission xt (t ∈ {1}) can be also

represented as a multi-hot vector with dimensions correspond-

ing to the medical concepts C = {c1, c2, ..., c|C|} where |C|
is the total number of medical concepts. Each element in

the vector is a boolean value indicating the presence (1) or

absence (0) of the corresponding medical concept. Note that,

we consider both ITEM ID from lab results and ICD-9 codes

from diagnoses as medical concepts in our experiment, thus

medical concepts might be either diagnosis codes xD
t

within

vocabulary D ∈ C or lab items codes xL
t

within vocabulary

L ∈ C in single admission. As medical concepts depend on

problem formulation and real-world EHR data, procedures,

drugs, and some other medical concepts can also be considered

medical codes from a broader perspective. In the following

sections, we also use abstract symbols like MLP to denote

specific frameworks with mutable settings.

B. MPLite Framework

1) Multi-Aspect Pretraining: To fully leverage the EHR

data, it is essential to utilize records from single-admission

patients, who constitute the majority of the dataset. Since

these records lack labels for future admissions, our focus

is on learning the relationship between lab test results and

diagnoses from the current visit. A single-visit patient has only

one admission record, so we consider a single-visit patient

equivalent to a single visit in this part. We hypothesize that

additional aspects of features (e.g, lab tests) reflect important

information about a patient’s existing diagnoses. Thus, we

identify lab results as additional medical concepts for each

patient, considering that lab results are one of the most crucial

components in describing diagnoses results.

In terms of the pretraining step of Figure 2, we define a

novel proxy task that predicts the diagnoses shown in the

sequence of visits by historical lab results in the pretraining

step. As mentioned in the section III-A, diagnoses and lab

results sets are denoted by D and L respectively, and we

aim to decode the item code set from lab results xL into the

probability distribution ŷ = P (xD|xL) for each patient. Here

we use a multi-layer perceptron (MLP) for parametrization to

transform lab results to diagnoses of patients:

ŷ = σ(MLP(xL

1 | Psingle)) (1)

ŷ = σ(MLP(Integrate({xL

t
}T
t=1) | Pmulti)) (2)

Here Psingle, Pmulti denotes single-visit and multi-visit patients,

and σ means the activation function. There are two main rea-

sons we chose MLP as the backbone model for the pretraining

module: (1) It directly predicts the probability distribution of

diagnosis codes efficiently, requiring minimal computational

resources. (2) It achieves competitive predictive performance

for the defined proxy task, even when compared to models

incorporating embedding or convolution modules. Moreover,

Integrate means we integrate the sequence of multiple

visit into a single vector, which can be aligned with the input

of single-visit patients as shown in equation 3.

Integrate({xL

t
}T
t=1) =

T∨

t=1

xL

t
(3)

For the lab result data, we assume that lab results are all up-to-

date, and we considered single lab-test code c
(L)
k

normal if it



has not been taken or was tested normal in the most recent test.

For each patient, given lab results prior to the (t+ 1)-th visit

is xL
t
∈ R

|L| (|L| = 697 in MIMIC-III dataset). The defined

proxy task is a multi-label classification task. Given multi-hot

vector of lab results xL
t

∈ {0, 1}|L|, we use the first dense

layer as encoder to get H-dimensional hidden representation

hL for each patient, and then we leverage the second dense

layer as decoder to convert such hidden representation as

diagnose classifier with output ŷ. The pretraining dense layers

and corresponding loss function are defined as follows:

hL = Encoder({xL

t
}T
t=1 | P ) ∈ R

h (4)

ŷ = Decoder(hL) = σ(wkh
L) ∈ R

|D| (5)

Lpatient = − [y log(ŷ) + (1− y) log(1− ŷ)] (6)

At the pretraining step, t depends on the number of available

admission records for each patient, and we use binary cross

entropy as loss function through N single-visit patients. Note

that, such module is learnable within both single-visit and

multi-visit patients, and involved parameters are fixed after the

pretraining process. As a self-supervised learning problem, this

proxy task is not simply input reconstruction and will not be

affected by the order of medical concepts in a single visit. This

is also the main advantage compared to traditional transformer-

base models. The pretraining process does not have access to

the validation and test sets of the prediction model. Thus there

are no data leakage issues.

2) Integration and Inference: Now let us focus on how to

fuse both representations from a backbone prediction model

and the proposed pretraining module. Note that, subscript t

might be also involved in model in terms of the training

setting across different baseline. For example, some works

feed model by admission-level data, which means patient with

multiple visits can be fed consecutively into the model. For

the adaptation ability of our framework, we also transfer this

setting into the description of our framework.

Assuming we already have the final output ot ∈ R
|C|

for prediction of the t-th admission before feeding into the

classifier of existing baselines, we can also retrieve lab results

vector xL
t

as the input of the pre-trained module. |C| is the

output dimension, which is also considered as the vocabulary

size. We keep the same format of input for xL
t

and get

hidden representation hL
t

∈ R
h in terms of patient’s lab

results through the pretrained encoder dense layer. We then

use a classifier with single dense layer to get prediction ŷt for

multiple prediction tasks after concatenating both patient-level

representations as shown in Figure 2. Finally, the integration

step and classifier are defined as follows, the output dimension

of classifier can be modified for various prediction tasks:

ot = Encoder({xL

t
}T
t=1 | Pmulti) (7)

o′
t
= ot ∥ h

L

t
∈ R

|C|+h (8)

ŷt = Classifier(o′
t
) ∈ R

|C| (9)

We can still remain the same loss function L as the

one already defined in the backbone module. Through the

TABLE II
STATISTICS OF THE MIMIC-III DATASET

# patients in total 46,520
# patients with multiple visits 7,537
# patients with multiple visits utilized in experiments 7,493
# patients with single visit 38,983
# patients with single visit utilized in experiments 26,085
Avg. visits per patient in MIMIC-III 1.27

# Medical codes (disease) 4,880
# Items (lab results) 697

definition of inference part, we can easily plug in pretraining

module and optimize current model’s output by integrating lab

results for more precise prediction.

C. Downstream Tasks

The proposed framework can be adapted for various predic-

tion tasks. Consider a patient with T+1 admission records, we

can build one sample with admission history {x1,x2, ...,xT }
for each patient. We perform two prediction tasks in our

experiments by the following definition:

(1) Diagnosis (DG) Prediction predicts the diagnosis re-

sult of the next admission given previous admission records.

Formally, we learn a function f : (x1,x2, ...,xt) → y[xt+1]
where t f T and y[xt+1] ∈ R

|D| is a multi-hot vector where

|D| denotes the number of all diagnosis codes.

(2) Heart Failure (HF) Prediction predicts if heart failure

(i.e., ICD-9 prefixed code of 428) is diagnosed in the next

admission. Formally, we learn a function f : (x1,x2, ...,xt) →
y[xt+1] where t f T and y[xt+1] ∈ {0, 1} is a binary label

indicating whether heart failure is diagnosed in the admission.

The binary cross-entropy (BCE) loss is used with a sigmoid

function to train the learning framework for both binary and

multi-label classifications tasks.

IV. EVALUATION

A. Dataset Description

To evaluate our proposed model, we focus on two pubic

and widely-used EHR datasets: MIMIC-III [26] and MIMIC-

IV [27]. Both datasets are derived from extensive de-identified

clinical data collected from patients admitted to Intensive

Care Units (ICUs). We employed a randomized approach

to divide both datasets into training, validation, and testing

segments. Specifically, MIMIC-III and MIMIC-IV datasets

were divided into 6000/493/1000 and 8000/1000/1000 for the

training, validation, and test sets, respectively.

Table II shows the basic statistics in MIMIC-III. Note that,

while there are 85,155 patients in MIMIC-IV with multiple

visits, we remove the patients with the overlapped time range

and then randomly sample 10,000 patients from MIMIC-IV

from 2013 to 2019 for training, which retains the same setting

as Chet [28]. Hence, the basic statistics of MIMIC-IV which

is omitted in paper might change for every runtime, since the

random sampling method is adopted to get the comparable

sample size of patients with MIMIC-III. We select patients

with multiple admission records (# of visits g 2) for the



TABLE III
PREDICTION RESULTS ON MIMIC-III AND MIMIC-IV FOR DIAGNOSIS AND HEART FAILURE PREDICTION. WE REPORT THE AVERAGE PERFORMANCE

(%) AND STANDARD DEVIATION (IN BRACKETS) OF EACH MODEL OVER 10 RUNS. “NO” IN THE PRETRAIN COLUMN MEANS THE ORIGINAL BASELINES,
AND “+MPLITE” MEANS THAT WE PLUG IN THE PRETRAINING MODULE INTO THE CORRESPONDING BASELINES

MIMIC-III MIMIC-IV
DG Prediction HF Prediction DG Prediction HF Prediction

Models Pretrain w-F1 R@10 R@20 AUC F1 w-F1 R@10 R@20 AUC F1

GRU No 17.82(0.43) 31.56(0.40) 33.64(0.38) 80.54(0.60) 68.93(0.53) 19.55(0.48) 35.12(0.57) 37.91(0.54) 81.33(0.71) 69.31(0.56)

GRU +MPLite 19.58(0.34) 33.82(0.39) 35.97(0.35) 82.01(0.55) 70.56(0.47) 21.87(0.37) 37.84(0.43) 40.63(0.48) 83.12(0.62) 71.02(0.42)

Dipole No 14.66(0.21) 28.73(0.28) 29.44(0.20) 82.08(0.45) 70.35(0.51) 17.16(0.36) 32.21(0.30) 38.74(0.32) 84.80(0.47) 69.52(0.44)

Dipole +MPLite 18.27(0.30) 30.91(0.37) 32.97(0.29) 83.56(0.53) 71.53(0.46) 20.63(0.33) 38.12(0.36) 40.75(0.41) 85.67(0.56) 71.02(0.50)

Deepr No 11.68(0.17) 26.47(0.15) 27.53(0.12) 81.36(0.39) 69.54(0.49) 18.58(0.31) 36.79(0.29) 39.45(0.21) 83.61(0.50) 70.46(0.53)

Deepr +MPLite 18.43(0.28) 31.08(0.25) 33.22(0.30) 82.91(0.58) 71.12(0.42) 19.75(0.32) 38.97(0.34) 41.11(0.38) 85.08(0.60) 71.55(0.47)

RETAIN No 18.37(0.28) 32.12(0.38) 32.54(0.27) 83.21(0.43) 71.32(0.32) 23.11(0.47) 37.32(0.36) 40.15(0.41) 84.14(0.34) 71.23(0.38)

RETAIN +MPLite 20.42(0.35) 34.56(0.42) 36.87(0.39) 84.73(0.52) 72.94(0.39) 24.85(0.41) 39.68(0.35) 42.67(0.44) 85.82(0.51) 72.83(0.47)

Timeline No 20.46(0.39) 30.73(0.31) 34.83(0.28) 82.34(0.38) 71.03(0.44) 23.76(0.35) 37.89(0.40) 40.87(0.34) 83.45(0.37) 72.30(0.39)

Timeline +MPLite 22.64(0.30) 32.89(0.29) 36.94(0.38) 83.92(0.49) 72.98(0.36) 24.38(0.33) 39.72(0.36) 42.84(0.40) 84.98(0.50) 73.54(0.33)

GRAM No 20.78(0.19) 34.17(0.21) 35.46(0.20) 81.55(0.44) 68.78(0.46) 24.39(0.34) 38.42(0.33) 41.62(0.31) 85.55(0.40) 69.82(0.48)

GRAM +MPLite 22.78(0.32) 35.96(0.35) 38.61(0.32) 83.22(0.54) 70.94(0.38) 25.93(0.31) 40.42(0.34) 43.68(0.37) 86.98(0.55) 71.06(0.52)

KAME No 21.10(0.20) 29.97(0.23) 33.99(0.25) 82.88(0.46) 72.03(0.42) 25.01(0.29) 38.86(0.28) 42.12(0.30) 84.80(0.35) 72.34(0.43)

KAME +MPLite 23.64(0.37) 31.98(0.32) 35.92(0.40) 83.67(0.47) 73.48(0.31) 26.22(0.33) 40.74(0.36) 43.95(0.39) 85.92(0.52) 73.95(0.40)

CGL No 22.63(0.29) 33.64(0.33) 37.87(0.27) 84.19(0.34) 71.77(0.41) 25.74(0.32) 39.23(0.37) 42.67(0.36) 87.91(0.44) 70.71(0.35)

CGL +MPLite 24.82(0.40) 35.68(0.28) 39.97(0.35) 85.82(0.43) 72.81(0.36) 26.97(0.38) 41.92(0.39) 44.61(0.41) 88.89(0.45) 72.52(0.39)

G-BERT No 22.28(0.25) 35.62(0.29) 36.46(0.26) 81.50(0.38) 71.18(0.43) 25.12(0.30) 39.91(0.31) 43.25(0.28) 85.76(0.50) 72.88(0.45)

G-BERT +MPLite 24.31(0.36) 37.14(0.30) 38.98(0.33) 82.99(0.56) 72.72(0.42) 27.58(0.35) 42.56(0.34) 44.62(0.39) 86.88(0.58) 74.12(0.47)

HiTANet No 23.15(0.28) 34.68(0.35) 35.97(0.31) 85.13(0.31) 73.15(0.39) 24.53(0.33) 38.42(0.37) 41.89(0.29) 86.34(0.36) 71.35(0.44)

HiTANet +MPLite 25.87(0.33) 36.91(0.36) 39.02(0.34) 86.74(0.47) 74.45(0.40) 26.91(0.30) 42.12(0.38) 43.94(0.33) 87.99(0.49) 72.85(0.42)

diagnosis prediction task and only consider patients without

missing diagnosis codes in all visits. For instance, among the

38,983 single-visit patients in MIMIC-III, we only consider

patients with previous lab results before their admission. We

conduct multiple experiments with uniform baseline hyperpa-

rameter sets, measuring average and standard deviation values.

B. Baselines

To check the improvement of MPLite for predictive models,

we select the following state-of-art methods as baselines:

• RNN/CNN-based models: GRU [10], Timeline [12], RE-

TAIN [11], Deepr [15], and Dipole [13].

• Graph-based models: GRAM [17], KAME [29], and

CGL [6].

• Transformer-based models: G-BERT [5], HiTANet [22].

Note that GRU uses multi-hot vectors of medical codes as

inputs, while other baselines use medical code embeddings.

For G-BERT, both pretraining and medication inputs is dis-

carded which requires extra information other than diagnose

features. Moreover, we remove the clinical notes parsing

module in CGL and the timestamp feature in HiTANet to

ensure the consistency of training data for all models. We also

do not consider MiME [25] and GCT [7] because of additional

requirement on input data and supported tasks.

C. Parameters Setting

The parameter settings used for pretraining module, we find

the optimal output dimension 200 of the first dense layer from

a search space of [100, 200] and set Drop-out rate as 0.4 in

the final classifier for fine-tuning and final prediction. For the

baseline GRU, the units of RNN module are all set as 128. For

other baselines, we do our best to follow the parameter setting

described in original papers. Different learning rate decay

schedulers with Adam optimizer are experimented, resulting

a decay learning rate from 1e− 2 to 1e− 5 between epochs.

Moreover, we set batch size as 64 and use 100 epochs for

training process. We conduct 10 repeated experiments for each

baseline model and the corresponding model with pretrained

lab results. All evaluation metrics are recorded and calculated

for each experiment, and we can then assess whether MPLite

can help model get more accurate prediction.

All programs are implemented using Python 3.10, Tensor-

flow 2.10, and Pytorch 2.3.1 with CUDA 12.3 on a machine

with two AMD EPYC 9254 24-Core Processors, 528GB

RAM, and four Nvidia L40S GPUs. 1

D. Evaluation Metrics

Since among the 4880 and 6102 diseases we are predicting

in MIMIC-III and MIMIC-IV, the distribution of disease codes

1The source code of the MPLite model can be found at
https://github.com/EricY090/MPLite.



is very sparse and the occurrence for each disease is highly

imbalance, we adopt the weighted F1 score (w-F1 [12]) and top

k recall (R@k [11]) for diagnosis predictions. In the context

of the weighted F1 score, the contributions of individual

classes (diseases) are weighted based on their prevalence in our

dataset. Unlike traditional recall, Recall@k focuses on the ratio

of true positive samples among positive samples in the top k

predictions, and we set k values as 10 and 20 for evaluation

which is the same as other works. For heart failure predictions

in case study, we add the area under the ROC curve (AUC)

as binary classification metrics besides F1 score, since label

distribution is imbalanced in MIMIC datasets.

E. Experimental results

1) Diagnosis Prediction: As demonstrated in Table III, both

the mean and standard deviation are reported across different

baselines within two datasets. The results indicate that the

integration of the proposed framework consistently enhances

the predictive performance of various baselines.

From the results on the MIMIC-III dataset, we observe

significant improvements in w-F1 scores when the proposed

framework is applied. For example, GRU with MPLite im-

proves over the vanilla GRU by approximately +1.76 in w-

F1, +2.26 in R@10, and +2.33 in R@20. This trend is

consistent across other models such as Dipole, Deepr, and

RETAIN, demonstrating similar enhancements in w-F1 and

recall metrics. Specifically, Dipole with MPLite achieves a

w-F1 score improvement of +3.61, and an increase of +2.18

in R@10 and +3.53 in R@20, highlighting the efficacy of

pretraining with MPLite.

On the MIMIC-IV dataset, the improvement trends are simi-

lar. GRU shows an increase of +1.32 in w-F1 and notable gains

of +2.72 in R@10 and +2.72 in R@20 with the pretraining

module. These results suggest that MPLite not only boosts

w-F1 scores but also enhances recall rates, indicating better

model sensitivity in capturing relevant diagnostic information.

The consistent performance boost across both datasets un-

derscores the generalization capability of the proposed module.

The most likely reason for the improved performance is

that lab results typically include detailed physiological and

biochemical indicators, which directly reflect patients’ health

status, providing crucial information about disease conditions

and bodily functions for doctors to diagnose diseases.

2) Case Study - Heart Failure Prediction: Following the

results of diagnosis predcition, a research question arises:

Assuming different training tasks, where the final prediction

and the proxy task in the pretraining module are different, can

MPLite still improve the predictive performance of the baseline

models? Table III also shows the heart failure prediction results

in both MIMIC-III and MIMIC-IV. We observe that MPLite

still allows all involved baselines to achieve higher AUC and

F1 scores. Therefore, we conclude that lab results can com-

plement other clinical information, contributing collectively to

precise prediction, which also demonstrates the generalization

ability of the proposed framework.

V. DISCUSSION AND CONCLUSION

In this paper, we present a flexible plug-in-and-play frame-

work called MPLite, which integrates lab results to enable

backbone models to collaboratively learn more precise repre-

sentations for patients. We conduct experiments on 2 widely-

used EHR datasets across 10 predictive baselines with different

architectures, demonstrating the effectiveness of the plug-in

pretraining module through significant improvements over the

original backbone models. Additionally, we performed a case

study on heart failure prediction to verify the generalization

ability of MPLite across various prediction tasks. All pre-

training experiments are based on lab results which can

be limited when such features are not available. While the

framework can be adapted to other input types, we believe

further extensive testing is necessary.

In the future, we plan to evaluate the effectiveness of the

pretraining model on more complex network architectures than

MLP and diverse health risk prediction tasks. For instance, we

can further refine proxy tasks to help model get rid of limita-

tion on laboratory input, which is also the common problem as

other baselines upon lab tests. Furthermore, an initial screening

process could be applied to single-visit patients to enhance

training quality by ensuring adequate diversity of single-visit

and multi-visit patients. Another potential direction for future

research is to incorporate more feature modalities such as

clinical notes into the pre-training process.
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