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Abstract—The adoption of digital systems in healthcare has
resulted in the accumulation of vast electronic health records
(EHRs), offering valuable data for machine learning methods to
predict patient health outcomes. However, single-visit records of
patients are often neglected in the training process due to the
lack of annotations of next-visit information, thereby limiting the
predictive and expressive power of machine learning models. In
this paper, we present a novel framework MPLite that utilizes
Multi-aspect Pretraining with Lab results through a light-weight
neural network to enhance medical concept representation and
predict future health outcomes of individuals. By incorporating
both structured medical data and additional information from lab
results, our approach fully leverages patient admission records.
We design a pretraining module that predicts medical codes based
on lab results, ensuring robust prediction by fusing multiple
aspects of features. Our experimental evaluation using both
MIMIC-III and MIMIC-1V datasets demonstrates improvements
over existing models in diagnosis prediction and heart failure
prediction tasks, achieving a higher weighted-F; and recall with
MPLite. This work reveals the potential of integrating diverse
aspects of data to advance predictive modeling in healthcare.

Index Terms—EHR, Lab Result, Diagnosis Prediction, Pre-
training, Heart Failure Prediction

I. INTRODUCTION

EHR datasets, such as MIMIC-III [1], provide compre-
hensive medical information, including vital signs, diagnoses,
medications, and lab results. These multi-aspect features are
valuable resources for predicting personalized health events,
such as diagnosis predictions. Meanwhile, deep learning tech-
nique have become a common approach for analyzing se-
quential data within healthcare [2]-[4]. However, many studies
often exclude patient examples with only single-visit records,
since these records lack labels for prediction tasks involving
future admissions. For instance, when training a supervised
machine learning model to predict diagnoses in the next
visit given previous visits in the MIMIC-III dataset, we need
the annotations/labels for the next visit. Therefore, temporal
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Fig. 1. Example of supervised training on patient-level admission records in
most predictive models

prediction models rely on patient data with at least two visits to
complete the training process. Single-visit records are not fully
utilized in training predictive models as shown in Figure 1.
However, multi-visit patients contribute to only a small portion
of the dataset. Among a total of 46,520 patients, only 16.20%
have multiple visits. The remaining 83.80% are single-visit
patients, which could also provide rich information for models
to learn useful patterns and make better predictions.

To fully utilize these single admission records in an EHR
dataset, there are two popular solutions to address this issue:
(1) Transformer models like G-BERT [5] leverage single-
admission data to design customized self-supervised tasks,
which typically treat medical concepts or admissions as
masked tokens and further enhance intermediate representa-
tion learning within the encoder framework. (2) Multi-aspect
learning [6], [7] incorporates diverse features, such as lab test
results or clinical notes, to enrich the representation learning
of medical concepts, which helps models better capture the
complexity and interrelationships inherent in medical data. The
former approach, although widely adopted by early studies [8],
[9], is susceptible to the order of medical codes and may not
be lightweight enough to function as a plug-and-play module.
In contrast, while the latter approach demands high-quality



and relevant additional medical concepts, it enables models to
learn collaborative representations, leading to more accurate
predictions with the addition of a lightweight module.

In this study, we leverage single admissions as auxiliary
training data to predict diagnoses and health risks, such
as heart failure. Recognizing the pivotal role that lab test
results play prior to training, we propose a novel framework,
MPLite, which is an additional plug-in-and-play module to
learn relationships between lab results and diagnoses through
a Multi-aspect Pretraining and “Lite” module. This framework
captures the underlying patterns and associations that are
present in both multiple-visit and single-visit data. We then
illustrate how incorporating this pre-trained knowledge can
significantly enhance the predictive capabilities of temporal
neural networks, particularly for forecasting health risks in
patients with multiple visits. By fine-tuning the pre-trained
subnetwork on two specific health risk prediction tasks, we
demonstrate the effective extraction of valuable insights from
abundant single-visit patient data. The pretraining module
underscore the advantages of pretraining on diverse medical
features beyond diagnoses concepts and highlights the broader
applicability of lab test data in predictive healthcare.

II. RELATED WORK

Deep learning models have been extensively applied to
electronic health records (EHR) to extract representations
of medical patterns, addressing various real-world healthcare
prediction tasks like diagnosis prediction.

A. CNN/RNN-based Models

Most early studies in this area can be categorized into two
main subcategories: (i) RNN-based models, where predictive
methods like GRU [10], RETAIN [11], and Timeline [12]
combine attention mechanisms and RNN for prediction. Other
models [2], [13], [14] leverage RNNs to handle time-series
data effectively; (ii) CNN-based models, such as Deepr [15]
and AdaCare [16], use convolution and pooling layers to pro-
cess features in EHR. However, these methods often overlook
relations among encoded medical concepts and other critical
aspects such as lab test results.

B. Graph/Transformer-based Models

Recently, there has been a trend towards using ontol-
ogy graphs to incorporate additional information related to
medical concepts in predictions such as GRAM [17], G-
Bert [5], GCT [7], Variationally Regularized GNN [18],
GraphCare [19], ME2Vec [20], RGNN [21]. However, most
existing works primarily rely on admission medical concepts
as features for various deep learning models. Meanwhile,
following the success of the transformer architecture, re-
searchers have quickly adopted it for EHR data. Encoder-
decoder structures offer the advantage of fully utilizing single-
visit data in the pretraining process by customizing proxy tasks
for different prediction tasks. Early studies, like G-Bert [5]
treat medical codes as tokens and incorporate hierarchical
domain knowledge along with diagnosis codes. Recent models

TABLE 1
NOTATIONS USED IN THIS PAPER
Notation Definition
S EHR dataset
P; ¢-th patient
C,D, L Sets of medical concepts, diagnosis codes, and
lab test codes
IC|,|D|,|L£] Cardinality of medical concepts, diagnoses,

and lab test codes
T; The number of visits for patient p;
x¢,xP,xF Multi-hot vector for the ¢-th visit of a patient

like HiTANet [22], Med-BERT [8], and Sherbet [23] have also
been trained to precisely identify patient information based
on various medical concepts. However, the pretraining phase
in most works cannot be easily separated into a plug-and-
play module, limiting its generalizability when transferring
pretraining information to new tasks or different structures.

C. Models with Mutli-Aspect Features

Beyond traditional medical concepts, such as condition,
medication, and treatment codes, researchers [9] also involve
additional information (e.g. demographic features and times-
tamps) in each admission record. To augment representation
from different modalities, both CGL [6] and MedGTX [24]
integrates disease-patient graphs and unstructured text from
clinical notes through encoder structures to demostrates the
importance of involving additional information other than
sequence of medical concepts. MiME [25] and GCT [7]
are preliminary tries to involve lab results as input features
to further optimize medical hidden representation. However,
these integrated models cannot work well in the absence
of corresponding records, and they always have complicated
preprocessing or fusion steps which cannot be generalized as
lightweight modules.

In this paper, we propose MPLite that allows different mod-
els to jointly learn representations of medical diagnosis codes
and lab results. Our framework provides a novel perspective
for integrating different features to achieve more accurate
predictions. The experimental results demonstrate a significant
improvement with the extensive pretraining module in predict-
ing health outcomes over several baselines, as confirmed by
confidence intervals obtained from repeated experiments.

III. PROPOSED METHOD

We begin by describing the notations and then introduce
our proposed framework, which includes a pretraining module
with lab results, along with instructions on how to seamlessly
integrate and utilize the module for downstream tasks.

A. General Notations

An EHR dataset S is a collection of patient admission
records of N patients { Py, P, ..., Py } € S in total. For admis-
sion records of each patient, the i-th patient can be represented
as a sequence of 7; admission records {X1, Xa, .., X7, } € p;
in chronological order, where 7; is the number of admissions
for the patient. The goal of our predefined prediction tasks is
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Fig. 2. Overview of the proposed MPLite Framework

to predict the label at the end of the sequence, y € {0,1}%,
which can be either a one-hot or multi-hot vector. We then
omit ¢ in the rest of the sections and explain our framework
using single patient to avoid misunderstanding.

Specifically, a single admission x; (¢t € {1}) can be also
represented as a multi-hot vector with dimensions correspond-
ing to the medical concepts C = {c1,ca,...,c|c|} Where |C|
is the total number of medical concepts. Each element in
the vector is a boolean value indicating the presence (1) or
absence (0) of the corresponding medical concept. Note that,
we consider both ITEM_ID from lab results and /CD-9 codes
from diagnoses as medical concepts in our experiment, thus
medical concepts might be either diagnosis codes x” within
vocabulary D € C or lab items codes x within vocabulary
L € C in single admission. As medical concepts depend on
problem formulation and real-world EHR data, procedures,
drugs, and some other medical concepts can also be considered
medical codes from a broader perspective. In the following
sections, we also use abstract symbols like MLP to denote
specific frameworks with mutable settings.

B. MPLite Framework

1) Multi-Aspect Pretraining: To fully leverage the EHR
data, it is essential to utilize records from single-admission
patients, who constitute the majority of the dataset. Since
these records lack labels for future admissions, our focus
is on learning the relationship between lab test results and
diagnoses from the current visit. A single-visit patient has only
one admission record, so we consider a single-visit patient
equivalent to a single visit in this part. We hypothesize that
additional aspects of features (e.g, lab tests) reflect important
information about a patient’s existing diagnoses. Thus, we

identify lab results as additional medical concepts for each
patient, considering that lab results are one of the most crucial
components in describing diagnoses results.

In terms of the pretraining step of Figure 2, we define a
novel proxy task that predicts the diagnoses shown in the
sequence of visits by historical lab results in the pretraining
step. As mentioned in the section III-A, diagnoses and lab
results sets are denoted by D and L respectively, and we
aim to decode the item code set from lab results x” into the
probability distribution y = P(x? |x) for each patient. Here
we use a multi-layer perceptron (MLP) for parametrization to
transform lab results to diagnoses of patients:

}A’ = U(MLP(X{/ | Psingle)) ()
y= a(MLP(Integrate({xtL}thl) | Pruiti)) )

Here Fingle, Pmuli denotes single-visit and multi-visit patients,
and o means the activation function. There are two main rea-
sons we chose MLP as the backbone model for the pretraining
module: (1) It directly predicts the probability distribution of
diagnosis codes efficiently, requiring minimal computational
resources. (2) It achieves competitive predictive performance
for the defined proxy task, even when compared to models
incorporating embedding or convolution modules. Moreover,
Integrate means we integrate the sequence of multiple
visit into a single vector, which can be aligned with the input
of single-visit patients as shown in equation 3.

T
Integrate({x-}7_ ) = \/ xF 3)
t=1

For the lab result data, we assume that lab results are all up-to-
date, and we considered single lab-test code c,(f) normal if it



has not been taken or was tested normal in the most recent test.
For each patient, given lab results prior to the (¢ + 1)-th visit
is xI € RI#l (|£] = 697 in MIMIC-III dataset). The defined
proxy task is a multi-label classification task. Given multi-hot
vector of lab results x~ € {0,1}*], we use the first dense
layer as encoder to get H-dimensional hidden representation
ht for each patient, and then we leverage the second dense
layer as decoder to convert such hidden representation as
diagnose classifier with output ¢. The pretraining dense layers
and corresponding loss function are defined as follows:

h’ = Encoder({x/}L_, | P) € R" “4)
y = Decoder(h?) = o(w;h*) € RIP! 3)
‘Cpatient = - [y IOg(y) + (1 - Y) log(l - }A’)] (6)

At the pretraining step, ¢ depends on the number of available
admission records for each patient, and we use binary cross
entropy as loss function through N single-visit patients. Note
that, such module is learnable within both single-visit and
multi-visit patients, and involved parameters are fixed after the
pretraining process. As a self-supervised learning problem, this
proxy task is not simply input reconstruction and will not be
affected by the order of medical concepts in a single visit. This
is also the main advantage compared to traditional transformer-
base models. The pretraining process does not have access to
the validation and test sets of the prediction model. Thus there
are no data leakage issues.

2) Integration and Inference: Now let us focus on how to
fuse both representations from a backbone prediction model
and the proposed pretraining module. Note that, subscript ¢
might be also involved in model in terms of the training
setting across different baseline. For example, some works
feed model by admission-level data, which means patient with
multiple visits can be fed consecutively into the model. For
the adaptation ability of our framework, we also transfer this
setting into the description of our framework.

Assuming we already have the final output o, € RICI
for prediction of the ¢-th admission before feeding into the
classifier of existing baselines, we can also retrieve lab results
vector X as the input of the pre-trained module. |C| is the
output dimension, which is also considered as the vocabulary
size. We keep the same format of input for x and get
hidden representation hX € R" in terms of patient’s lab
results through the pretrained encoder dense layer. We then
use a classifier with single dense layer to get prediction ¢, for
multiple prediction tasks after concatenating both patient-level
representations as shown in Figure 2. Finally, the integration
step and classifier are defined as follows, the output dimension
of classifier can be modified for various prediction tasks:

oy = Encoder({xtL}g;1 | Pruli) @)
o, = o | h{ € RII*" ®)
¥+ = Classifier(o}) € RIC! 9)

We can still remain the same loss function £ as the
one already defined in the backbone module. Through the

TABLE I
STATISTICS OF THE MIMIC-III DATASET
# patients in total 46,520
# patients with multiple visits 7,537
# patients with multiple visits utilized in experiments 7,493
# patients with single visit 38,983
# patients with single visit utilized in experiments 26,085
Avg. visits per patient in MIMIC-III 1.27
# Medical codes (disease) 4,880
# Items (lab results) 697

definition of inference part, we can easily plug in pretraining
module and optimize current model’s output by integrating lab
results for more precise prediction.

C. Downstream Tasks

The proposed framework can be adapted for various predic-
tion tasks. Consider a patient with 7'+ 1 admission records, we
can build one sample with admission history {x1,Xg, ..., X1}
for each patient. We perform two prediction tasks in our
experiments by the following definition:

(1) Diagnosis (DG) Prediction predicts the diagnosis re-
sult of the next admission given previous admission records.
Formally, we learn a function f : (x1,X2,...,Xt) = ¥[Xt41]
where t < T and y[x;41] € RIP! is a multi-hot vector where
|D| denotes the number of all diagnosis codes.

(2) Heart Failure (HF) Prediction predicts if heart failure
(i.e., ICD-9 prefixed code of 428) is diagnosed in the next
admission. Formally, we learn a function f : (x1,Xs, ..., X;) —
y[x¢41] where t < T and y[x¢41] € {0,1} is a binary label
indicating whether heart failure is diagnosed in the admission.

The binary cross-entropy (BCE) loss is used with a sigmoid
function to train the learning framework for both binary and
multi-label classifications tasks.

1V. EVALUATION
A. Dataset Description

To evaluate our proposed model, we focus on two pubic
and widely-used EHR datasets: MIMIC-III [26] and MIMIC-
IV [27]. Both datasets are derived from extensive de-identified
clinical data collected from patients admitted to Intensive
Care Units (ICUs). We employed a randomized approach
to divide both datasets into training, validation, and testing
segments. Specifically, MIMIC-III and MIMIC-IV datasets
were divided into 6000/493/1000 and 8000/1000/1000 for the
training, validation, and test sets, respectively.

Table II shows the basic statistics in MIMIC-III. Note that,
while there are 85,155 patients in MIMIC-IV with multiple
visits, we remove the patients with the overlapped time range
and then randomly sample 10,000 patients from MIMIC-IV
from 2013 to 2019 for training, which retains the same setting
as Chet [28]. Hence, the basic statistics of MIMIC-IV which
is omitted in paper might change for every runtime, since the
random sampling method is adopted to get the comparable
sample size of patients with MIMIC-III. We select patients
with multiple admission records (# of visits > 2) for the



TABLE III
PREDICTION RESULTS ON MIMIC-III AND MIMIC-IV FOR DIAGNOSIS AND HEART FAILURE PREDICTION. WE REPORT THE AVERAGE PERFORMANCE
(%) AND STANDARD DEVIATION (IN BRACKETS) OF EACH MODEL OVER 10 RUNS. “NO” IN THE PRETRAIN COLUMN MEANS THE ORIGINAL BASELINES,
AND “+MPLITE” MEANS THAT WE PLUG IN THE PRETRAINING MODULE INTO THE CORRESPONDING BASELINES

MIMIC-IIT MIMIC-IV
DG Prediction HF Prediction DG Prediction HF Prediction

Models Pretrain| w-F; R@10 R@20 AUC F. w-F1 R@10 R@20 AUC F.

GRU No  [17.82(0.43) 31.56(0.40) 33.64(0.38) 80.54(0.60) 68.93(0.53)19.550.45) 35.12(0.57) 37.91(0.54) 81.33(0.71) 69.31(0.56)
GRU +MPLite 1958(034) 3382(039) 3597(035) 8201(055) 7056(047) 2187(037) 3784(043) 4063(048) 8312(062) 7102(042)
DlpOlC No 1466(021> 2873(028) 2944(020) 8208(045) 7035(051) 1716(036) 3221(030) 3874(032) 8480(047) 6952(044)
Dlpole +MPLite 1827(030) 3091(037) 3297(029) 8356(053) 7153(046) 2063(033) 3812(036) 4075(041) 8567(056) 7102(050)
Deepr No 1168(017) 2647(015) 2753(012) 8136(039) 6954(049) 1858(031) 3679(029) 3945(021) 8361(050) 7046(053)
Deepr  wwpLie | 1843(0.28) 31.08(0.25) 33.22(0.30) 82.91(0.58) 71.12(0.42) | 19.75(0.32) 38.97(0.34) 41.11(0.38) 85.08(0.60) 71.55(0.47)
RETAIN  No |18.37(0.5) 32.12(0.35) 32.54(0.27) 83.21(0.43) 71.32(0.32)|23.11(0.4m 37.32(0.36) 40.15(0.41) 84.14(0.50) 71.23(0.38)
RETAIN wipric |20.42(0 55) 34.56(0.42) 36.87(0.30) 84.73(0.52) 72.9% (0 50) | 24.85(0.41) 39.68(0.35) 42.67(0.44) 85.82(0.51) 72.83(0.47)
Timeline No 20.46(0_39) 30.73(0,31) 34.83(0'28) 82.34(0'38) 7103(044) 2376(035) 3789(040) 40.87(0_34) 83.45(0,37) 72.30(0'39)
Timeline +MPLite 2264(030) 3289(029) 3694(038) 8392(049) 7298(036) 2438(033) 3972(036) 4284(040) 8498(050) 7354(033)
GRAM  No [20.78(0.19) 34.17(0.21) 35.46(0.20) 81.55(0.44) 68.78(0.46)|24.39(0.34) 3842(0.33) 41.62(0.51) 85.55(0.40) 69-82(0.4)
GRAM  wpLie |22.78(0.32) 35.96(0.35) 38.61(0.32) 83.22(0.54) 70.94(0.55)|25.93(0.31) 40.42(0.34) 43.68(0.57) 86.98(0.55) 71.06(0.52)
KAME  No [21.10(0.20) 29.97(0.23) 33.99(0.25) 82.88(0.46) 72.03(0.42)|25.01(0.20) 38.86(0.25) 42.12(0.30) 84.80(0.55) 72.34(0.43)
KAME +MPLite 2364(037) 3198(032) 3592(040) 8367(047) 7348(031) 2622(033) 4074(036) 4395(039) 8592(052) 7395(040)
CGL No  [|22.63(0.20) 33.64(0.33) 37.87(0.27) 84.19(0.54) 71.77(0.41)|25.T4(0.32) 39.23(0.37) 42.67(0.36) 87.91(0.44) 70.71(0.35)
COL  .wpLie |24.82(0.40) 35.68(0.25) 39.97(0.35) 85.82(0.43) 72.81(0.36)|26.97(0.35) 41.92(0.30) 44.61(0.41) 88.89(0.45) 72.52(0.30)
G-BERT ~ No [22.28(0.25) 35.62(0.20) 36.46(0.26) 81.50(0.35) 71.18(0.43)[25.12(0.50) 39-91(0.31) 43.25(0.28) 85.76(0.50) 72.88(0.4)
G-BERT .wprie |24.31(0.36) 37.14(0.30) 38.98(0.33) 82.99(0.56) 72.72(0.42)|27.58(0.35) 42.56(0.31) 44.62(0.30) 86.88(0.55) 74.12(0.47)
HiTANet No  |23.15(.25) 34.68(0.55) 35.97(0.51) 85.13(0.51) 73.15(0.30) |24.53(0.33) 3842(0.57) 41.89(0.20) 86.34(0.36) 71.35(0.40)
HiTANet wpLie |25.87(0.33) 36.91(0.36) 39.02(0.31) 86.74(0.47) T4.45(0.40)|26.91(0.30) 42.12(0.38) 43.94(0.33) 87.99(0.40) 72.85(0.42)

diagnosis prediction task and only consider patients without
missing diagnosis codes in all visits. For instance, among the
38,983 single-visit patients in MIMIC-III, we only consider
patients with previous lab results before their admission. We
conduct multiple experiments with uniform baseline hyperpa-
rameter sets, measuring average and standard deviation values.

B. Baselines

To check the improvement of MPLite for predictive models,
we select the following state-of-art methods as baselines:

¢ RNN/CNN-based models: GRU [10], Timeline [12], RE-
TAIN [11], Deepr [15], and Dipole [13].

¢ Graph-based models: GRAM [17], KAME [29], and
CGL [6].

o Transformer-based models: G-BERT [5], HiTANet [22].

Note that GRU uses multi-hot vectors of medical codes as
inputs, while other baselines use medical code embeddings.
For G-BERT, both pretraining and medication inputs is dis-
carded which requires extra information other than diagnose
features. Moreover, we remove the clinical notes parsing
module in CGL and the timestamp feature in HiTANet to
ensure the consistency of training data for all models. We also
do not consider MiME [25] and GCT [7] because of additional
requirement on input data and supported tasks.

C. Parameters Setting

The parameter settings used for pretraining module, we find
the optimal output dimension 200 of the first dense layer from
a search space of [100, 200] and set Drop-out rate as 0.4 in
the final classifier for fine-tuning and final prediction. For the
baseline GRU, the units of RNN module are all set as 128. For
other baselines, we do our best to follow the parameter setting
described in original papers. Different learning rate decay
schedulers with Adam optimizer are experimented, resulting
a decay learning rate from le — 2 to 1le — 5 between epochs.
Moreover, we set batch size as 64 and use 100 epochs for
training process. We conduct 10 repeated experiments for each
baseline model and the corresponding model with pretrained
lab results. All evaluation metrics are recorded and calculated
for each experiment, and we can then assess whether MPLite
can help model get more accurate prediction.

All programs are implemented using Python 3.10, Tensor-
flow 2.10, and Pytorch 2.3.1 with CUDA 12.3 on a machine
with two AMD EPYC 9254 24-Core Processors, 528GB
RAM, and four Nvidia L40S GPUs. !

D. Evaluation Metrics

Since among the 4880 and 6102 diseases we are predicting
in MIMIC-IIT and MIMIC-1V, the distribution of disease codes

'The source code of the MPLite model can be found at

https://github.com/EricY090/MPLite.



is very sparse and the occurrence for each disease is highly
imbalance, we adopt the weighted F1 score (w-F; [12]) and top
k recall (R@k [11]) for diagnosis predictions. In the context
of the weighted F; score, the contributions of individual
classes (diseases) are weighted based on their prevalence in our
dataset. Unlike traditional recall, Recall @k focuses on the ratio
of true positive samples among positive samples in the top k
predictions, and we set k values as 10 and 20 for evaluation
which is the same as other works. For heart failure predictions
in case study, we add the area under the ROC curve (AUC)
as binary classification metrics besides F; score, since label
distribution is imbalanced in MIMIC datasets.

E. Experimental results

1) Diagnosis Prediction: As demonstrated in Table III, both
the mean and standard deviation are reported across different
baselines within two datasets. The results indicate that the
integration of the proposed framework consistently enhances
the predictive performance of various baselines.

From the results on the MIMIC-III dataset, we observe
significant improvements in w-F; scores when the proposed
framework is applied. For example, GRU with MPLite im-
proves over the vanilla GRU by approximately +1.76 in w-
F;, +2.26 in R@10, and +2.33 in R@20. This trend is
consistent across other models such as Dipole, Deepr, and
RETAIN, demonstrating similar enhancements in w-F; and
recall metrics. Specifically, Dipole with MPLite achieves a
w-F; score improvement of +3.61, and an increase of +2.18
in R@10 and +3.53 in R@20, highlighting the efficacy of
pretraining with MPLite.

On the MIMIC-IV dataset, the improvement trends are simi-
lar. GRU shows an increase of +1.32 in w-F; and notable gains
of +2.72 in R@10 and +2.72 in R@20 with the pretraining
module. These results suggest that MPLite not only boosts
w-F; scores but also enhances recall rates, indicating better
model sensitivity in capturing relevant diagnostic information.

The consistent performance boost across both datasets un-
derscores the generalization capability of the proposed module.
The most likely reason for the improved performance is
that lab results typically include detailed physiological and
biochemical indicators, which directly reflect patients’ health
status, providing crucial information about disease conditions
and bodily functions for doctors to diagnose diseases.

2) Case Study - Heart Failure Prediction: Following the
results of diagnosis predcition, a research question arises:
Assuming different training tasks, where the final prediction
and the proxy task in the pretraining module are different, can
MPLite still improve the predictive performance of the baseline
models? Table III also shows the heart failure prediction results
in both MIMIC-III and MIMIC-IV. We observe that MPLite
still allows all involved baselines to achieve higher AUC and
F; scores. Therefore, we conclude that lab results can com-
plement other clinical information, contributing collectively to
precise prediction, which also demonstrates the generalization
ability of the proposed framework.

V. DISCUSSION AND CONCLUSION

In this paper, we present a flexible plug-in-and-play frame-
work called MPLite, which integrates lab results to enable
backbone models to collaboratively learn more precise repre-
sentations for patients. We conduct experiments on 2 widely-
used EHR datasets across 10 predictive baselines with different
architectures, demonstrating the effectiveness of the plug-in
pretraining module through significant improvements over the
original backbone models. Additionally, we performed a case
study on heart failure prediction to verify the generalization
ability of MPLite across various prediction tasks. All pre-
training experiments are based on lab results which can
be limited when such features are not available. While the
framework can be adapted to other input types, we believe
further extensive testing is necessary.

In the future, we plan to evaluate the effectiveness of the
pretraining model on more complex network architectures than
MLP and diverse health risk prediction tasks. For instance, we
can further refine proxy tasks to help model get rid of limita-
tion on laboratory input, which is also the common problem as
other baselines upon lab tests. Furthermore, an initial screening
process could be applied to single-visit patients to enhance
training quality by ensuring adequate diversity of single-visit
and multi-visit patients. Another potential direction for future
research is to incorporate more feature modalities such as
clinical notes into the pre-training process.
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