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Abstract

Federated learning (FL) has emerged as a widely
adopted training paradigm for privacy-preserving
machine learning. While the SGD-based FL algo-
rithms have demonstrated considerable success in
the past, there is a growing trend towards adopting
adaptive federated optimization methods, partic-
ularly for training large-scale models. However,
the conventional synchronous aggregation design
poses a significant challenge to the practical de-
ployment of those adaptive federated optimization
methods, particularly in the presence of straggler
clients. To fill this research gap, this paper in-
troduces federated adaptive asynchronous opti-
mization, named FADAS, a novel method that
incorporates asynchronous updates into adaptive
federated optimization with provable guarantees.
To further enhance the efficiency and resilience
of our proposed method in scenarios with signifi-
cant asynchronous delays, we also extend FADAS
with a delay-adaptive learning adjustment strat-
egy. We rigorously establish the convergence rate
of the proposed algorithms and empirical results
demonstrate the superior performance of FADAS
over other asynchronous FL baselines.

1. Introduction

In recent years, federated learning (FL) (McMahan et al.,
2017) has drawn increasing attention as an efficient privacy-
preserving distributed machine learning paradigm. An FL
framework consists of a central server and numerous clients,
where clients collaboratively train a global model without
sharing their private data. FL entails each client conducting
multiple local iterations, while the central server periodically
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aggregates these local updates into the global model. Follow-
ing the original design of the FedAvg algorithm (McMahan
et al., 2017), a large number of stochastic gradient descent
(SGD)-based FL methods have emerged, aiming to improve
the performance or efficiency of FedAvg (Karimireddy et al.,
2020; Acar et al., 2021; Wang et al., 2020b).

In addition to the successes of SGD-based algorithms in
enhancing the efficiency of FL, the adoption of adaptive
optimization techniques is becoming increasingly preva-
lent in FL. Adaptive optimization techniques such as Adam
(Kingma & Ba, 2015) and AdamW (Loshchilov & Hutter,
2017) have proven their advantages over SGD in effectively
training or fine-tuning large-scale models like BERT (De-
vlin et al., 2018), ViT (Dosovitskiy et al., 2021), and Llama
(Touvron et al., 2023). This progress has encouraged the
incorporation of adaptive optimization into the FL settings,
taking advantage of their ability to navigate update direc-
tions and dynamically adjust learning rates. For example,
FedAdam (Reddi et al., 2021) and FedAMS (Wang et al.,
2022b) employ global adaptive optimization after the server
aggregates local model updates. Moreover, strategies such
as FedLALR (Sun et al., 2023a), FedLADA (Sun et al.,
2023b), and FAFED (Wu et al., 2023) replace SGD with the
Adam optimizer for the local training phase, exemplifying
the utility of local adaptive optimizations in FL.

However, existing methods in adaptive FL still rely on tra-
ditional synchronous aggregation approaches, where the
server must wait for all participating clients to complete
their local training before global updates. This reliance
presents a significant challenge to the practical implementa-
tion of adaptive FL. methodologies, as the server is required
to wait until slower clients, which may have limited compu-
tation or communication capabilities. While asynchronous
FL strategies such as FedBuff (Nguyen et al., 2022) and
FedAsync (Xie et al., 2019) have been investigated to im-
prove the scalability and to study the impact of client de-
lays on the convergence of SGD-based FL algorithms, the
specific implications of asynchronous delays on nonlinear
adaptive gradient operations are not completely understood.
This motivates us to explore the following question:

Can we develop an asynchronous method for adaptive feder-
ated optimization (with provable guarantees) that enhances
training efficiency and is resilient to asynchronous delays?
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In this paper, we propose FADAS, Federated ADaptive
ASynchronous optimization, to address this challenge.
FADAS introduces asynchronous updates within the adap-
tive federated optimization framework and integrates a
delay-adaptive mechanism for adjusting the learning rate
adaptively in response to burst delays. We summarize our
contributions as follows:

* We propose FADAS, a novel adaptive federated opti-
mization method that extends traditional adpative fed-
erated optimization support asynchronous client updates.
We prove that FADAS achieves a convergence rate of
o( \/TIW 4 Dmaxfeve ) wrt. the number of global commu-
nication rounds 7" and the number of accumulated updates
M, with bounded worst-case delay, denoted by 7,4, and
the average of the maximum delay over all the rounds,

denoted by Ty.

* To further reduce the dependency on the worst-case delay
term Thmax in the convergence rate, we extend FADAS
with a delay-adaptive learning rate adjustment strategy.
Our theoretical results demonstrate that the inclusion of
a delay-adaptive learning rate effectively diminishes the
dependency on 7,,,« in the convergence rate.

* We conduct experiments across various asynchronous de-
lay settings in both vision and language modeling tasks.
Our results indicate that the proposed FADAS, whether
or not including the delay-adaptive learning rate, outper-
forms other asynchronous FL baselines. In particular, the
delay-adaptive FADAS demonstrates significant advan-
tages in scenarios with large worst-case delays. Moreover,
our experimental results on simulating the wall-clock
training time underscores the efficiency of our proposed
FADAS approach.

2. Related Work

Federated learning. FL, as introduced by McMahan et al.
(2017), has become a pivotal framework for collaboratively
training machine learning models on edge devices while
keeping local data private. Following the initial FedAvg
algorithm, several works studied the theoretical analysis and
empirical performance of it (Lin et al., 2018; Stich, 2018; Li
et al., 2019a; Karimireddy et al., 2020; Wang & Joshi, 2021;
Yang et al., 2021), and a range of works aim to improve
FedAvg from different perspectives, such as reducing the
impact of data heterogeneity (Karimireddy et al., 2020; Acar
et al., 2021; Wang et al., 2020b), saving the communica-
tion overhead (Reisizadeh et al., 2020; Jhunjhunwala et al.,
2021), and adjusting the parameter aggregation procedure
(Tan et al., 2022; Wang & Ji, 2023).

Adaptive FL optimizations and adaptive updates. Be-
sides traditional SGD-based methods, there is a line of
works focusing on adaptive updates in FL. A local adaptive

FL method with momentum-based variance-reduced gradi-
ent was used in FAFED (Wu et al., 2023). Li et al. (2023)
proposed a framework for local adaptive gradient methods
in FedDA. FedLALR (Sun et al., 2023a) uses local adap-
tive optimization in FL with local historical gradients and
periodically synchronized learning rates. FedLADA (Sun
et al., 2023b) is an efficient local adaptive FL method with
a locally amended technique. Jin et al. (2022) developed
novel adaptive FL optimization methods from the perspec-
tive of dynamics of ordinary differential equations. More-
over, Reddi et al. (2021) introduced FedAdagrad, FedAdam
and FedYogi, and Wang et al. (2022b) proposed FedAMS
for global adaptive FL optimizations. Several works of
global adaptive learning rate (Jhunjhunwala et al., 2023)
and adaptation in aggregation weights (Tan et al., 2022;
Wang & Ji, 2023) are also related to adaptive learning rate
adjustment.

Asynchronous SGD and asynchronous FL. There have
been extensive studies over the years about asynchronous
optimization techniques, including asynchronous SGD and
its various adaptations. For example, Hogwild (Niu et al.,
2011) includes an applicable lock-free, coordinate-wise
asynchronous method and has been widely used in multi-
thread computation. A body of works focuses on the theoret-
ical analysis and explorations of asynchronous SGD (Mania
etal., 2017; Nguyen et al., 2018; Stich et al., 2021; Leblond
et al., 2018; Glasgow & Wootters, 2022) and discusses the
gradient delay in the convergence rate (Avdiukhin & Ka-
siviswanathan, 2021; Mishchenko et al., 2022; Koloskova
et al., 2022; Wu et al., 2022). Within federated learn-
ing, innovative asynchronous aggregation algorithms like
FedAsync (Xie et al., 2019) allow the server to update
the global model once a client finishes local training, and
FedBuff (Nguyen et al., 2022) introduces a buffered aggre-
gation approach. There are also many works focusing on
algorithms based on FedBuff with theoretical and/or empiri-
cal analysis (Toghani & Uribe, 2022; Ortega & Jafarkhani,
2023; Wang et al., 2023), and other aspects of asynchronous
FL (Chen et al., 2020b; Yang et al., 2022; Bornstein et al.,
2023). Although adaptive FL and asynchronous FL have
achieved the success of training large machine learning mod-
els with desirable numerical performance, the exploration
of asynchronous updates in the context of adaptive FL has
not been well-studied yet. In this paper, we start with the
asynchronous update framework in adaptive FL and further
integrate delay-adaptive learning rate scheduling into it.

3. Preliminaries

Federated learning. A general FL framework considers a
distributed optimization problem across N clients:

1 & 1<
min f(x) := N ZFZ(:D) =~ ZE&ND,. [Fi(z;&)], (1)

xR
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where & € R? is the model parameter with d dimensions,
F;(x) is the loss function corresponding to client i, D;
is the local data distribution on client ¢. The objective
in Eq. (1) can be interpreted as setting p; = % for all
clients in another commonly used objective function in FL,
ie, f(x) = Y, piBe,np,[Fi(a; &) with p; > 0 and
vazl p; = 1. FedAvg (McMabhan et al., 2017) is a typical
synchronous FL algorithm to solve Eq. 1, where in the ¢-th
global round, each participating client 7 performs local SGD
updates as follows:

T o1 =Ty — MV Fi(xg;8) and 2y g = (2)

where 7); is the learning rate. After several local steps (e.g.,
K steps of local training), the server performs a global
averaging step after receiving all the updates from assigned
clients in Sy, i.e., s 1 = ﬁ Yies, Thi

Adaptive optimization and its application to FL. Sev-
eral adaptive optimizers have been proposed to improve the
convergence of SGD, such as Adagrad (Duchi et al., 2011),
RMSProp (Tieleman et al., 2012), Adam (Kingma & Ba,
2015) and its variant AMSGrad (Reddi et al., 2018). In
general machine learning optimization, Adam effectively
inherits the benefits of both momentum and RMSProp opti-
mizers, leading to better empirical performance in practical
applications.

Reddi et al. (2021) first introduced adaptive federated opti-
mization, which applies the adaptive optimizers during the
global aggregation steps in FL. Fed AMSGrad (Tong et al.,
2020) and FedAMS (Wang et al., 2022b) further adjust
the effective global learning rate in adaptive FL. Specifi-
cally, FedAdam and FedAMS take the idea of viewing the
difference of local updates AP = ﬁ Dics, AP =
ISiltI Yies, (®} x — @) as a pseudo-gradient, and applies
the Adam or AMSGrad optimizer when updating global
model x; 1 using AP, ie.,

my = fimy_q + (1 — B1)APY™,
vy = Bovy_1 + (1 — Bo) AP™ © AP™,

Ty =X + nL (FedAdam),

Jor+e

Uy = max(V;_1,V;), Ty = Ty + nLe (FedAMS),

Vo +

where ©® denotes the element-wise product for two vectors,
and for vectors ¢,y € RY, \/z, /y, max(x, y) denote the
element-wise square root, division, and maximum operation
of the vectors.

Asynchronous updates in FL. In asynchronous FL, clients
train the model asynchronously and update it to the server
once it finishes several steps of local training. FedBuff
(Nguyen et al., 2022) has improved the global update steps
with the concept of buffer based on the initial FedAsync

baseline (Xie et al., 2019). In FedBuff, it requires the frame-
work maintain a given number (referred to as the concur-
rency M. ) of clients that are actively local training. At the
t-th global round, after the client ¢ finishes local training, it
sends its local update Af = @) _ , — @, to the server,
where ¢ — 7 is the global round where client ¢ starts local
training and 0 < 7 < t. The server simultaneously accu-
mulates the model update A to the global update direction
A; + A, + Al and sends the latest global model to a
randomly selected client who is idle. When the number of
accumulated updates reaches the given buffer size of M, the
server updates the global model with the averaging A, /M.
Meanwhile, clients who have not finished their local training
will continue their training based on the previously received
global model, and are not affected by the global model up-
dates on the server. During the training, the framework
always maintains a fixed number (M,) of clients who are
conducting local training. This is achieved by having the
server randomly sample an idle client for training each time
a client completes its local training and sends its update to
the server.

Discussion about synchronous and asynchronous meth-
ods. Synchronous FL typically offers consistency and sta-
bility, i.e., all client updates are based on the same global
model, and this consistency may lead to a more stable and
predictable learning process. However, when there exist
one or a few clients that are much slower than the majority
of clients, which often happens in large-scale systems, syn-
chronous FL can be inefficient since every client needs to
wait for the slowest client before progressing with the next
round of training. Asynchronous FL is more efficient when
clients have system heterogeneity such as diverse computa-
tional capabilities or communication bandwidth. In FL, if
the delay among clients is relatively uniform, synchronous
FL tends to be more stable and efficient. Overall, the choice
between synchronous and asynchronous FL hinges on spe-
cific needs and system characteristics. Synchronous FL
is ideal in homogeneous systems, while asynchronous FL
is advantageous in heterogeneous systems with potential
straggler clients.

4. Proposed Method: FADAS

Although adaptive FL methods achieve promising conver-
gence and generalization performance theoretically and em-
pirically, the existing adaptive FL methods are restricted
to synchronous settings, as the server needs to wait for all
the assigned clients to finish their local updates for aggre-
gation and then update the global model. However, those
synchronous adaptive FL algorithms are susceptible to the
presence of stragglers, where slower clients with insufficient
computation or communication speed impede the progress
of the global update.
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To improve the efficiency and resiliency of adaptive FL
in the presence of stragglers, we introduce FADAS, a
Federated ADaptive ASynchronous optimization method.
Similar to FedAdam and FedAMS, the proposed FADAS
algorithm takes the model update difference from clients as
a pseudo-gradient and it updates the global model follow-
ing an Adam-like update scheme. Algorithm 1 summarizes
the details. FADAS keeps the local asynchronous training
scheme as FedBuff and maintains the concept of concur-
rency and buffer size for flexible control of the number of
active clients and the frequency of global model update. In
FADAS, after the server aggregates to obtain model update
difference A, it finds an adaptive update direction, whose
components are computed based on the AMSGrad optimizer
(Reddi et al., 2018) as follows:

my = fimy_q1 + (1 — 51)Ay,
vy = Povi_1 + (1 — B2) A © Ay, 3)
’l/]\t = max(ﬁt,l,'vt).

In general, FADAS enables clients to conduct local train-
ing in their own pace, and the server aggregates the asyn-
chronous updates for global adaptive updates. It improves
the training efficiency and scalability of over synchronous
adaptive FL while inheriting the advantage of adaptive opti-
mizer of reducing oscillations and stabilizing the optimiza-
tion process.

Although FADAS applies asynchronous local training for
adaptive FL, the global adaptive optimizer adjusts the global
update direction only based on local updates but without
considering the impact of asynchronous delay. Intuitively,
a large asynchronous delay from a client means that this
model update is made based on an outdated global model.
This may lead to a negative effect on the convergence, and
later we also verify this intuition in the theoretical analysis.
This inspires us to apply a delay-adaptive learning rate ad-
justment to improve the resiliency of FADAS to stragglers
with large delays. Specifically, we let the server track the
delay for every received model update and adopt a delay-
adaptive learning rate. We highlight the delay-adaptive steps
in Algorithm 1 and those steps are executed with almost no
extra overhead.

Delay tracking. In general, the server manages the de-
lay record for each client through straightforward time-
stamping. For example, the server records the global update
round ¢’ when it broadcasts the current global model x; to
client 7, the client conducts local training with ;. When
the server receives the first A}; from client ¢ at round ¢t > ¢/,
the gradient delay for A%, whichis 7} = ¢ — ¢, is updated
and recorded on the server.

Delay-adaptive learning rate. Assume that for each global
update round ¢, clients in the set M, ( |[M;| = M) send
updates to the server. The received model updates at global

Algorithm 1 FADAS (with delay adaptation )

Input: local learning rate 7;, global learning rate 1,
adaptive optimization parameters /31, 32, €, server
concurrency M., buffer size M, delay threshold 7, ;

1: Initialize model x4, initialize Ay = 0, my = 0, vy =
0, m = 0 and sample a set of M with size M, active
clients to run local SGD updates.

2: repeat

3. ifreceive client update then

4: Server accumulates update from client 7: A;
A+ Aland setm < m+ 1

5: Sample another client j from available clients

6: Send the current model x; to client 5, and run local
SGD updates on client j

7 end if

8: if m = M then

9: Ay %

10: Update my, v, 0; by (3)

11: if delay-adaptive then

12: Set 7, to be delay-adaptive based on Eq. (4)

13: else

14: N =1

15: end if

16: Update global model x;1 = x; + mﬁ

17: Setm 0, Ay41 < 0,t—t+1

18:  endif

19: until convergence

round ¢ have a maximum delay 7% defined as 7/*%* :=
max{7},i € M;}. Suppose we set up a delay threshold 7,
we can define a delay-adaptive learning rate as:

n if 7 <7,
=9 . 1 e max “
min | 7, s if 7% > 7.

Intuitively, this design implies that we need to turn the
learning rates down for the model update A; with larger
current-step delays. Specifically, if the current-step max-
imum delay 7;"®* is larger than a given threshold 7., we
scale down the learning rates for this step in proportional to
1/7/#= (also capped by a constant learning rate 7) to avoid
that the high-latency update worsens the convergence.

Comparison with FedAsync (Xie et al., 2019). FedAsync
(Xie et al., 2019) also studies delay-adaptive weighted av-
eraging during global model updates. In FedAsync, after
the server receives a local model x,,y, it updates o, based
onx; = (1 — at)@s—1 + QEnew, and FedAsync includes a
hinge strategy of a; which is similar to our delay-adaptive
strategy in Eq. (4). However, unlike FedAsync, where the
server updates the global model immediately upon receiv-
ing a new update from a client, FADAS updates the global
model less frequently. In FADAS, the server accumulates
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M local updates before a global update. Moreover, the
convergence analysis in FedAsync did not consider their
delay adaptation procedure, while we provide a convergence
analysis incorporating the effect of delay adaptation in the
next section.

5. Theoretical Analysis

In this section, we delve into the theoretical analysis of
our proposed FADAS algorithm. We first introduce some
common assumptions required for the analysis. Subse-
quently, we present the analysis in two parts: one focus-
ing on FADAS without delay adaptation, as discussed in
Section 5.1, and the other on the delay-adaptive FADAS in
Section 5.2.

Assumption 5.1 (Smoothness). Each objective function on
the i-th worker F;(x) is L-smooth, i.e., V&,y € R9,

IVEi(xz) = VFi(y)|| < Lllz —yl|.

Assumption 5.2 (Bounded Variance). Each stochastic gra-
dient is unbiased and has a bounded local variance, i.e., for
all , i € [N], we have E[||VF;(x; &) — VFi(x)|?] < o2,
and the loss function on each worker has a global variance
bound, & S, [VFi(z) — Vf(z)|? < o2.

Assumption 5.1 and 5.2 are standard assumptions in feder-
ated non-convex optimization literature (Li et al., 2019b;
Yang et al., 2021; Reddi et al., 2021; Wang et al., 2022b;
Wang & Ji, 2023). The global variance upper bound of ag
in Assumption 5.2 measures the data heterogeneity across
clients, and a global variance of 0’3 = (O indicates a uniform
data distribution across clients.

Assumption 5.3 (Bounded Gradient). Each loss function
on the i-th worker F; () has G-bounded stochastic gradient
on {3 norm, i.e., for all £, we have ||V F;(x; &) < G.

Assumption 5.3 is necessary for adaptive gradient algo-
rithms for both general (Kingma & Ba, 2015; Chen et al.,
2020a), distributed (Wang et al., 2022a) and federated adap-
tive optimization (Reddi et al., 2021; Wang et al., 2022b;
Sun et al., 2023b). This is because the effective global
learning rate for adaptive gradient methods is ﬁ, and

we need a lower bound for H ¢6ﬁ+e H to guarantee that the
t

effective learning rate does not vanish to zero.

Assumption 5.4 (Bounded Delay of Gradient Computation).
Let 7/ represent the delay for global round ¢ and client
i which is applied in Algorithm 1. The delay 7/ is the
difference between the current global round ¢ and the global
round at which client ¢ started to compute the gradient. We
assume that the maximum gradient delay (worst-case delay)
is bounded, i.e., Tmax = maxer] [N {74} < 0.

Assumption 5.4 is common in analyzing asynchronous and
anarchic FL algorithms which incorporate the gradient de-

lays into their algorithm design (Koloskova et al., 2022;
Yang et al., 2021; Nguyen et al., 2022; Toghani & Uribe,
2022; Wang et al., 2023).

Assumption 5.5 (Uniform Arrivals of Gradient Computa-
tion). Let the set M, (with size M) include clients that
transmit their local updates to the server in global round t.
We assume that the clients’ update arrivals are uniformly
distributed, i.e., from a theoretical perspective, the M clients
in M, are randomly sampled without replacement from all
clients [N] according to a uniform distribution’.

Assumption 5.5 is also discussed in Anarchic FL (Yang
et al., 2022), which has been utilized to analyze the AFA-CD
algorithm proposed therein.

5.1. Convergence Rate of FADAS

For expository convenience, in the following, we provide
the theoretical convergence analysis of FADAS under the
case of 51 = 0. The theoretical analysis and the proof for
the general case of 0 < 3; < 1 are provided in Appendix A.
We define the average of the maximum delay over time as
Tavg = 7 23:1 mex = 1 Zthl max;e(n) {7/} which is
useful in our analysis.

Theorem 5.6. Under Assumptions 5.1-5.5, let T rep-
resent the total number of global rounds, K be the
number of local SGD training steps and M be the
number of the accumulated updates (buffer size) in
each round. If the learning rate 1 and n; satisfies nm; <

: 2 M(N-1) \/ e M(N—-1)
Tin { T80CG N(N—M)Tmax KL 12, /Co N(M—1)78,, KL }’ s
——Y° ___ then the global iterates {z}1_, of Algo-

V/360C G Tmax KL’
rithm 1 satisfy

1 & )
7 ;E[I\Vf(wt)ll ]

ACe 20CamE K L2 (02 + 6K o2)
- g KT €
N |:8CG7727712KL2TangmaX N 12CG77771L]
Me3 Me2

N-—-M
: {02 + T (1507 K2L?(0® + 6K o) + 3Ka§]},
®)

where F = f(x1) — fu, fo = ming f(x) > —oo and
Ca=nKG+e

Corollary 5.7. If we choose the global learning rate 1 =

O(VM) and n; = @(%) in Theorem 5.6,

then for sufficiently large T, the global iterates {x}}—_,
!This assumption is only used for theoretical analysis. Our

experiments that show the advantage of FADAS empirically do
not rely on this assumption.
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of Algorithm 1 satisfy

d VFo  Fo,

Z IV £ (20)[1?) +

pot VTKM VTM
-FTmamevg)

Lz ]-' FG L

T T M T
Remark 5.8. Corollary 5.7 suggests that given sufficiently
large T and relatively small worst-case delay Tyax, the

proposed FADAS (without delay-adaptive learning rate)
achieves a convergence rate of O ( J%W) w.rt. T and M.

(6)

Comparison to asynchronous FL methods. Compared
with the analysis for FedBuff in Nguyen et al. (2022) and
Toghani & Uribe (2022), our analysis for FADAS obtains
a relaxed dependency on the worst-case gradient delay
Tmax> and FADAS achieves a slightly better rate on non-

dominant term than O(— + T‘?“Ta") obtained in Toghani
& Uribe (2022). Moreover, Wang et al. (2023) also stud-
ied the convergence for FedBuff with relaxed requirements
for Tmax, and our FADAS achieves a similar convergence
of O(\/ﬁ 4 Imaxfes) ag in Wang et al. (2023). It is

worthwhile to mention that recently CA2FL (Wang et al.,
2023) improves the convergence of asynchronous FL under
heterogeneous data distributions, while the improvement
is obtained by using the cached variable on the server for
global update calibration.

Note that when 7., in Eq. (6) is large, particularly in cases
where Tax > \/%, then ™22 becomes the dominant
term in the convergence rate. This implies that a large worst-
case delay Thax may lead to a worse convergence rate. In
the next subsection, we demonstrate that the delay-adaptive
learning rate strategy can relieve this problem and enhance

FADAS with better resilience to large worst-case delays.

5.2. Convergence Rate of Delay-adaptive FADAS

In the following, we provide the convergence analysis for
delay-adaptive FADAS with 8; = 0. To get started, we first
define the median of the maximum delay over all communi-
cation rounds [T]:

Tmedian = medlan{q—max Ténax, “77_,;11;1)(}. (7)

The definition of Tyedian implies that the number of global
update rounds that have a maximum delay greater than
Tmedian 1 l€ss than half of the total number of global up-
dates T'. With this definition, we present the following theo-
rem characterizing the convergence rate of delay-adaptive
FADAS.

Theorem 5.9. Under Assumptions 5.1-5.5, let T be the
total number of global rounds, K be the number of local
SGD training steps and M be the number of the buffer size

in each round. If the learning rate n and n; satisfies nm; <

min{ eM(N-1) eSM(N-1) } <
600G N(N—M)mmax KL’ 12, /CoN(M—1)73,, KL =
Ve VM i

T360Cor——KL and n < T then the global iterates

{x:}1_, of Algorithm I satisfy

ZmE IV (@0)|I?]
Zt 17+
4Cq QOanlzKLQ(UQ + 6Ko'§)
- KT €
8CaP KL TTavg 5 | 8Can*nf KL*TTayg
35T g 3T
Me Zt:1 Ui \/Me Zt:l ui
N M 27272 9 4CenmL
N [15 K?L?(o? +6K0)+3K0g]+T62
N -M
. {02 + N1 [15n2K2L%(0? + 6KO’§) + 3Kg§]}7
(3)

where F = f(x1) —
Co=nKG+e

Corollary 5.10. Ifwe pick T, = Tmedian, the global learn-

ing rate n = O(VM/7.) and n, = 9(%)

then for sufficiently large T, the global iterates {x;}1_, of
Algorithm 1 satisfy

fur fo = ming f(x) > —oo and

! VFa \/fag
S nEv sl < o ST 4 T

FGr.  FTavg F(r2 + TeTave) >
+ + :
TVM T T

Remark 5.11. Corollary 5.10 suggests that with sufficiently

large T', delay-adaptive FADAS also achieves a convergence
1

rate of O( \/W) w.r.t. T and M.

Remark 5.12. Compared to the convergence rate in Corol-
lary 5.7, the convergence rate in Corollary 5.10 does not
rely on the (possibly large) worst-case delay 7y,,x. In cases
Wwhere 7. = Tmedian = Tavg <K Tmax, Corollary 5.10 relaxes
the requirement from T ax tO Tmedian fOr achieving the de-
sired convergence rate. Since Tiedian describes the median
of 7/°* = max;¢[n1{7{} in each round ¢, the convergence
rate in Corollary 5.10 is less sensitive to stragglers who may
cause a large worst-case delay in the system.

©))

6. Experiments

We explore the performance of our proposed FADAS
algorithm through experiments on vision and language
tasks, using the CIFAR-10/100 (Krizhevsky et al., 2009)
datasets with ResNet-18 model (He et al., 2016) for vi-
sion tasks, and applying the pre-trained BERT base model
(Devlin et al., 2018) for fine-tuning several datasets from
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the GLUE benchmark dataset (Wang et al., 2018) for lan-
guage tasks. We compare our proposed FADAS algorithm
against asynchronous FL baselines, such as FedBuff (with-
out differential privacy) (Nguyen et al., 2022) and FedAsync
(Xie et al., 2019), a synchronous SGD-based FL base-
line FedAvg (McMabhan et al., 2017), and a synchronous
adaptive FL baseline FedAMS (Wang et al., 2022b). We
summarize some crucial implementation details in the fol-
lowing, and we leave some additional results and exper-
iment details to Appendix D. Our code can be found at
https://github.com/yujiaw98/FADAS.

Overview of vision tasks’ implementation. We set up
a total of 100 clients for the mild delay scenario, in which
the concurrency M. = 20 and the buffer size M = 10 by
default. We also set up a total of 50 clients for the large
worst-case delay scenario, with M, = 25 and M = 5 cor-
respondingly. For both settings, we partition the data on
clients based on the Dirichlet distribution following Wang
et al. (2020a;b), and the parameter « used in Dirichlet sam-
pling determines the degree of data heterogeneity. We apply
two levels of data heterogeneity with « = 0.1 and o = 0.3.
Each client conducts two local epochs of training, and the
mini-batch size is 50 for each client. The local optimizer for
all methods is SGD with weight decay 10~%, and we grid
search the global and local learning rates individually for
each method.

Overview of language tasks’ implementation. Con-
sidering the total number of data samples in the language
classification datasets, we set up a total of 10 clients, parti-
tion the data on clients based on the labels, and we apply a
heterogeneity level of o = 0.6. Each client conducts one
local epoch and the mini-batch size is 32 for each client.
The local optimizer for all methods is SGD with weight de-
cay 10, and we grid search the global and local learning
rates individually for each method. We set the concurrency
M. = 5 and buffer size M = 3 by default. We employ
the widely-used low-rank adaptation method, LoRA (Hu
et al., 2021), as a parameter-efficient fine-tuning strategy
for our language classification tasks. This involves freez-
ing the original pre-trained weight matrix Wy € R%** and
fine-tuning AW through low-rank decomposition, where
W = Wy + arra AW = Wy + aporaBA, B € Rdxr,
and A € R"™**, and we adopt r = 1 and oy sra = 8 in our
experiments.

Overview of delay simulation. In our experiments, we
simulate the asynchronous environment as follows. Initially,
we partition clients into three categories, including Small,
Medium, and Large delay, at the start of training and tag
them with a label reflective of their delay magnitude. This
partitioning was executed via a Dirichlet sampling process
controlled by the parameter . A smaller v value corre-
sponds to a higher proportion of clients experiencing large

delays. Unless otherwise specified in subsequent experi-
ments, we set v = 1. To mimic actual wall-clock running
times within each delay category, we apply uniform sam-
pling at each round for each client. We adopt the following
uniform distributions to simulate wall-clock running time
for both the large worst-case delay and mild delay settings
as shown in Table 1.

6.1. Results on Vision Tasks

Large worst-case delay. Under this setting, we simulate
the wall-clock running time by letting a small proportion
of clients have more significant delays than other clients.
Tables 2 and 3 show the overall performance of training
the ResNet-18 model on CIFAR-10 and CIFAR-100, re-
spectively. The results show that FADAS, especially with a
delay-adaptive learning rate, offers significant advantages
in terms of test accuracy. Compared to FedAsync and
FedBuff, both FADAS methods achieve higher accuracy,
and FADAS with delay-adaptive learning rates is shown to
be more stable during the learning process with lower stan-
dard derivation. In these experiments, we conduct a total of
T = 500 global communication rounds, and the maximum
delay mnax = 127, which even more than a quarter of the
total number of global communication rounds. Notably, as
seen in Tables 2 and 3, FedAsync shows severely fluctuating
in test accuracy, suggesting that it may be less reliable in
situations with large worst-case delays.

Table 1. Overview for wall-clock delay simulation (in units of 10
seconds).

Delay Small Medium Large
Large worst-case  U(1,2) U(3,5) U (50, 80)
Mild U(1,2) U35  U(5,8)

Mild delay. Under this setting, we simulate the wall-clock
running time for clients by assuming that all clients can
finish their local training within a comparable duration (see
Table 1). Tables 4 and 5 show the overall performance of
training the ResNet-18 model on CIFAR-10 and CIFAR-100
under mild delay. The results highlight that both FADAS
and its delay-adaptive variant achieve superior test accuracy
than FedAsync and FedBuff.

6.2. Results on Language Tasks

The performance for fine-tuning the BERT base model
on three GLUE benchmark datasets, RTE, MRPC, and
SST-2, under mild delay conditions are shown in Table
6, which illustrates that FADAS and its delay-adaptive coun-
terpart consistently outperform the results of FedAsync
and FedBuff across the three datasets. FedAsync achieves
good performance in SST-2 but is less satisfactory in RTE
and MRPC, and FedBuff presents an overall lower accu-
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Table 2. The test accuracy on training ResNet-18 model on CIFAR-
10 dataset with two data heterogeneity levels in a large worst-case
delay scenario for 500 communication rounds. We report the
average accuracy and standard derivation over the last 5 rounds,
and we abbreviate delay-adaptive FADAS to FADAS, in this and
subsequent tables.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.
FedAsync | 5092 +5.03 753 +6.18
FedBuff 38.68 £8.16 51.32 +4.43
FADAS 7204+£094 7327 +1.37
FADASq, | 73.96 +=3.54 79.68 &+ 2.14

Table 3. The test accuracy on training ResNet-18 model on CIFAR-
100 dataset with two data heterogeneity levels in a large worst-case
delay scenario for 500 communication rounds.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.
FedAsync | 46.51 £4.76  38.55 +7.36
FedBuff 13.04 £5.5 18.63 £5.13
FADAS 47.84 £0.59 53.64 £0.52
FADAS 4, 50.31+1.0 57.18 +0.31

racy with larger standard derivation compared with FADAS.
The delay-adaptive FADAS shows parity with the standard
FADAS algorithm under mild delays. Moreover, FADAS
achieves significant accuracy improvements on RTE and
MRPC datasets against the SGD-based asynchronous FL
baselines, further demonstrating the intuition of developing
the FADAS method.

Running time speedup. Table 7 demonstrates the effi-
ciency of FADAS and its delay-adaptive variant by compar-
ing their performance with two synchronous FL. methods
in reaching the target validation accuracy across different
dataset. Notably, FADAS consistently outperforms FedAvg
and FedAMS in terms of wall-clock running time, requiring
significantly fewer time units to reach the desired accu-
racy levels. In vision classification tasks such as CIFAR-
10 and CIFAR-100, the standard FADAS shows a signifi-
cant reduction in training time, achieving 8 x speedup than
FedAvg and more than 2.5 x speedup than FedAMS. The
delay-adaptive FADAS shows similar results as the stan-
dard version. For language classification tasks, FADAS
also improves the training time compared with FedAMS
and FedAvg. These results highlight the scalability and
efficiency of FADAS, especially when considering the com-
putational constraints in practical FL environments.

6.3. Ablation studies

Sensitivity of delay adaptive learning rates. Figure 1 (a)
exhibits the ablation study for different delay threshold 7,
for the delay-adaptive FADAS under the scenario of large

Table 4. The test accuracy on training ResNet-18 model on CIFAR-
10 dataset with two data heterogeneity levels under mild delay
scenario.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.
FedAsync | 42.48 +4.93 71.76 4+ 3.85
FedBuff 7215 +£2.71 79.82 +£3.25
FADAS 77.68 +2.32 82.93 + 0.81
FADASq, | 78.93 +0.83 83.91 £ 0.54

Table 5. The test accuracy on training ResNet-18 model on CIFAR-
100 dataset with two data heterogeneity levels under mild delay
scenario.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.
FedAsync | 4526 £7.04 5341 +8.94
FedBuff 5370 £ 1.13  56.26 + 1.64
FADAS 57.37 £ 047 61.22 +0.31
FADASq, | 57.21 £ 045 60.34 £ 0.42

worst-case delays. Following Eq. (4), 7. provides a thresh-
old so that we reduce the learning rate if there exists a client
with extremely large delay. The experiment compares the
accuracy of three thresholds 7. = 1,4,8,10, and 7, = 4
shows very similar test accuracy as 7. = 10. The result
in Figure 1 (a) shows that using 7. = 8 obtains a slightly
better result than using 7. = 1, 7. = 4, and 7. = 10. It is
interesting that in this large worst-case delays setting, we
observe the average of the maximum delay 7.,z = 10.89,
the median of the maximum delay 7Tiedian = 6.0, and max-
imum delay during training is Tyax = 127, which shows
Tmedian ~ Tavg < Tmax, confirming the practicality of our
analysis as discussed in Remark 5.12. Together with the
theoretical and experimental results, we find that the optimal
choice of 7, may depend on the actual delay during training.

Ablation for concurrency M, and buffer size M. Fig-
ure 1 (b) presents the test accuracy of both the standard
and delay-adaptive FADAS for different concurrency levels
M., given the same buffer size M = 5. The delay-adaptive
FADAS achieves higher accuracy than FADAS when con-
currency M. = 15 and M. = 25, and the delay-adaptive
version has worse accuracy at larger concurrency M. = 35.

Table 6. The test accuracy on parameter-efficient fine-tuning BERT
base model on three datasets from GLUE benchmark with hetero-
geneous data partitioned and mild delay.

RTE MRPC SST-2
Method Acc. & std. Acc. & std. Acc. & std.
FedAsync | 49.46 +2.66 69.71 +1.02 90.02 £ 0.79
FedBuff 61.61 2490 76.80+6.05 7837 £4.86
FADAS 6426 £2.30 83.33+£1.20 90.76 + 0.26
FADASq, | 65.10 £2.40 83.09 +1.71 90.05 £ 1.80
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Table 7. Training/fine-tuning time simulation (in units of 10 seconds) to reach target test accuracy on the server under mild delay scenarios.

For each dataset, the concurrency M. is fixed for fair comparison.

| Acc. | FedAvg FedAMS FADAS FADASu,
CIFAR-10 75% | 2257.7 648.7 228.0 237.5
CIFAR-100 | 50% | 1806.3 546.9 209.8 209.8
RTE 63% 921.9 412.4 376.2 436.9
MRPC 80% | 1018.1 424.0 368.3 370.1
SST-2 90% - 495.2 73.8 57.2

Figure 1 (c) presents an ablation study on buffer size for our
proposed FADAS algorithm. It compares the performance
of buffer sizes from M = 3,5, 10 with their delay-adaptive
counterparts over total client updates, i.e., the number of
times the server receives updates from clients. It shows that
with the same number of client trips, increasing the buffer
size M tends to achieve higher accuracy. This is also due
to the design of the concurrency-buffer size framework, as
increasing the buffer size moves closer to traditional syn-
chronous FL algorithms, i.e., clients are more likely to get
up-to-date with the server. We also provide the comparison
w.r.t. global communication round in Figure 1 (d). Fig-

o o o o o
R

Test Accuracy

—— M =15 (da)
M, =25 (da)
— M, =35 (da)

0 100 200 300 300 500 [ 100 200 300 300 500
#Rounds #Rounds

(a) Ablation on 7. (b) Ablation on concurrency

R

°
>
>

°

°
kS

=

—_ =3
M=5

— M=10

— M=3(da)

°

Test Accuracy
Test Accuracy

— M=3(da)
M=5 (da)
— M=10(da)

°

M=5 (da)
— M=10(da)

°

0 500 1500

1000 2000
#Client Updates

2500 [ 100 200 300 200 500
#Rounds

(c) Ablation on buffer size (d) Ablation on buffer size

°
°
>

Test Accuracy
s o o

b
Test Accuracy
s o o

~—_

0.2 —— FADAS(M=3)
FADAS(M = 5)
0.1 —— FADAS(M =10)

—— FADAS,(M=3)
FADAS55(M = 5)
—— FADAS (M =10)

°

0 100 200 300 400 500 0 100 200 300 400 500
Time (in units of 10 seconds) Time (in units of 10 seconds)

(e) Run time for FADAS (f) Run time for FADAS,

Figure 1. Several ablation studies based on training ResNet-18
model on CIFAR-10 data under large worst-case delay setting.

ure 1 (d) shows that as the buffer size M increases, i.e., the
number of clients contributing to one step of global update
increases, the test accuracy also increases.

Moreover, we simulate the running time (similar to the
setting for Table 7) for different buffer sizes M to investi-
gate the time efficiency for adopting different buffer sizes.
Figure 1 (e) and (f) show the run time for FADAS and
delay-adaptive FADAS. They reveal that a smaller buffer
size (M = 3) may have less training time to achieve a target
accuracy, e.g., 70%. These results demonstrate that using
smaller buffer sizes may yield higher accuracy in the early
stage of training. In conjunction with the results shown in
Figure 1 (c) and (d), we think there is a trade-off between
the time of reaching some initial target accuracy (that is
slightly lower than the final accuracy) and the final accuracy
with regard to the buffer size. A larger buffer size M may
yield improved final accuracy at convergence, but it also
means that the server needs to wait for slower clients and
there are less frequent updates of the global model, so the
training speed at initial rounds can be slower.

7. Conclusion

In this paper, we propose FADAS, a novel asynchronous
FL method that addresses the challenges of asynchronous
updates in adaptive federated optimization. Based on the
standard FADAS, we further integrate delay-adaptive learn-
ing rates to enhance the resiliency to stragglers with large
delays. We theoretically establish the convergence rate
for both standard and delay-adaptive FADAS under non-
convex stochastic settings. Our theoretical analysis indi-
cates that the delay-adaptive algorithm substantially reduces
the impact of severe worst-case delays on the convergence
rate. Empirical evaluations across multiple tasks affirm
that FADAS outperforms existing asynchronous FL meth-
ods and offers improved training efficiency compared to
synchronous adaptive FL. methods.
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A. Convergence analysis for adaptive asynchronous FL

Proof of Theorem 5.6. Here we directly start with general 8; > 0 cases. Following several previous works studied
centralized and federated adaptive methods (Chen et al., 2018; Wang et al., 2022b), we adopt an auxiliary Lyapunov
sequence z;, and assume x( = @1, then for each ¢t > 1, we have

b1 1 B1
= _ 10
= wt+1—ﬁ1( ~®e-1) = 1—ﬂ1 1—ﬂ1w (10)
For the difference between z; 1 and z;, we have
Zt41 — 2t = i(mt-&-l - -’Bt) - b (mt - -'Bt—l)
1—-p 1—-p
_ 1 o my B o ™my_q
1-81 "Vo+e 1-p1 Vi1 +e
1 1 B1 my_q
1-5 7 Ut+€[1 =1+ 1)Ad 1—-p1 7 Vi1t €
Ay B1 ( n Ui )
= — — . — - —= my_q, (11)
77\/’Uf,+e 1-5 VU t+ € Vi_1+€ =t

where Ay = —5 >0\, Ek 0 gz ik = — 15 D iem, k 0 ' VF (a T, 13 €) and M be the set that include client
send the local updates to the server at global round ¢.

From Assumption 5.1, f is L-smooth, taking the total expectation over all previous round, 0, 1, ...,¢ — 1 on the auxiliary
sequence zt,

Elf(ze41) — f(21)]
= E[f(ztﬂ)] - f(zt)]

< E[(V£(20), 2001 — 2] + 2 Ellzi1 — =l

= E|:<Vf($t)v77\/$t+€>:| —E[<Vf(zt)v 1 flﬁl .77(\/’[/1\7:-{-6 N f,t_ll + €>mt1>}
Iz
]

1 1 1 >
— my_
H’\/ +e 1—ﬁ1<m+e v te)

I3
EK(W() V(@) ﬂ (12)
Zi) — T)), N— )
t t 77\/1Tt+€
Iy
Bounding /; Denote a sequence A, = — % Zk 0 9 ik = — & e 25;01 VFi(z!__ ;). where{ ~ D;.
For I, there is l
I =m9E|(V
L <f(wt) f+e>
- A, >
—E[{ V (), =t
K < fla) Vo, +e/ ]
[/ Vf(x:) «
=nE < f( t),AmLmKVf(wt)—mKVf(wt)ﬂ
L\ VV: €

anEH‘ }ff;))lﬂ 2} + E|:<31th(+) At+mKVf(th)>]
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oal(5 2 S g )]
f+€ t‘rk:’l )

1€[N]

Vf(x:)
(Vo + €)1/2

= —nm KE H‘

where the second equality holds due to the characteristic of uniform arrivals (see Assumption 5.4), thus E(A;) = A;. The
last inequality holds by the definition of A, and the fact of the objective function f(z) = +; Zfil F;(x). By the fact of
(a,b) = 3[|lal|* + [|b]|* — ||a — b]|?], for second term in (13), we have

(S S 5 )

i€[N] k=0 i€[N]
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¥l et -]
VU +€)/? 2N?K ‘/>+6 i i€[N] k=0 o o
2
nm
vt = E e ]

where the second equality holds by E[g! __, ,] = E[VF;(z!__, ,)]. Then for the second term in Eq. (14) , we have

]

2]7\77211( [H \FJre 1/2 Z Z (VE(@;_ 4, k) — VEi(x))

2
M |: Z Z
. Vri -]
2 T
2NEKe zE[N] k=0
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S Ne { IV Fi(2:) = VE (@) 1)l + E[|VF(®_r) = VEi(z)_ )|°]
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d 7
<2 (2Bl g )+ £y ] 15)
i€[N] k=0

where the second inequality holds by Va, || >0, a;[|> <n Y7, ||a;|% and the last inequality holds by Assumption 5.1.
For the second term in Eq. (15), following by Lemma C.5, there is
]

< 5K} (a +6K0)) + 30K/ E[|V f () |1%). (16)

gt Tim

By — 2o ) [

For the first term in Eq. (15), since by Va,, || Y1, a;||* <n >, ||lai||?, there is

t—1

E <w5+1 - 335
:tf'rz

t—1 t—1
Ef| H
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2
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then by decomposing stochastic noise,

Ellz: — 2,

7727'ti — 2
s:tfrf'f
n2ri -1 s K— 2
DS E{ESH(lﬂl)Zﬁf Z Z LVE@ ) VEE ) ]
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2 ()2 Kn? 5, 2’1 n; - : ’
R vl e S a-p) Zﬁs W XM: > VE@ || (18)
s=t—r} jeMy k=0

where the first inequality holds by decomposing the momentum m, ie., m, = (1 — pB1)> 0 _, B “A, = (1 —
B1) Y one1 BT 57 e, St mg’__; - The second inequality holds by ||a + b||*> < 2||a|* + 2||b||* and the fact of
E[-]] = E[], and the third inequality holds by (1—61)> 161 “<1.

| < L|j«|| and Cc = mKG + €, plugging Eq. (14), Eq. (15) and Eq. (16) to

]

KIL? PP KLY , 1 .
+m]l€[5Knl2(a2+6Kor ) + 30K 22 Z IV f (o) ]] + 262 =5 ()2

Following Lemma C.2, %||:c|| < ||
(13), we have
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where the first inequality holds by (a, b) < ||al|||b|| and L-smoothness of f,i.e., |V f(z:) — Vf(x:)| < L||zt — ]|, and

by the definition of z;, there is z; — x; = 1—16 ':“*1+ . The second inequality holds by Lemma C.2.
1 Vi_1+€
2}

} , (20)
1

Bounding /3

1 1 1 )
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where the first inequality follows by Cauchy-Schwarz inequality, i.e., Va;, | Y1, a;]|> <n i, ||a;]|?, and the second
one holds by Lemma C.2.

Bounding I,
1= [{(V1(20) - V(e 2 )
<E[Iv5(=) - =
< 21z - el = ||
<l 2n ] el
STL Ll + LEE{A), @

where the second inequality holds by Assumption 5.1 (the L-smoothness of f), and the third inequality holds by the
definition of z; and the inequality ||al|||b]| < %|lal|* + 3[|b]|>.

Merging pieces. Therefore, by merging pieces together, we have

E[f(ze4+1) — f(2ze)] = E[1 + 2 + I3 + 14]

nnK 7777 N K-1 2
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Denote a few sequences: Gt = > vy, Zi:ol VFj(mi i) and Vp =
i,

above inequality, we have

E[f(zt+1) - f(Zt)}
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l 1 i
< - TRVl - g || 35 3 VAl

then re-write and organize the

1 1
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Summing over t = 1 to T', we have
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we have the following for term Ay,
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AO T N;;(Tg) S WJ TangmaxT- (26)
By Lemma C.6, we have the following for term A,
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For term As, then re-organizing it we have
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where the first inequality in Eq. (29) holds due to: 1) Tt < Tmaz and 2) for a positive sequence a, Zt 1 ZS t—ri (11—
B B < Tmax (1= B1) Sy S B % < Tanax Yoy @i In details,
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The second inequality in Eq. (29) hold by the fact of 3°,_, 4 > | E[[|V F@,_)IP] < Tomax ST LE[|V £ (20)]]).
Similar, for term A4, we have '
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5 I}
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With the term of Ay to A4, by Lemma C.3 and Lemma C.4, we have the following for Eq. (25),
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If the learning rates satisfy 7; < é;K% and
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For 8 = 0, with the definition of 7 = f(z;) — min, f(x), we have the following bound
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This concludes the proof. O
Proof of Corollary 5.7. From Eq. (38), we have the following bound
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Reorganizing Eq. (39), particularly merging the stochastic variance and the global variance, we get
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This concludes the proof for Corollary 5.7. O

B. Convergence analysis for delay adaptive asynchronous FL
Proof of Theorem 5.9. For the proof of delay adaptive, for proof convenience, we conduct analysis under the case that

B1 = 0. From Assumption 5.1, f is L-smooth, then taking conditional expectation at time ¢ on the auxiliary sequence x,
we have
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where second equation holds by E[g! _, ,] = E[VF(x!__ )], for the second term in Eq. (45), we have
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where the first second inequality holds by Va;, || >0, ;][> <n > i, |
5.1. For the second term in Eq. (46), following by Lemma C.5, there is
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2 and the last inequality holds by Assumption
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For the first term in Eq. (46), we have
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then by decomposing stochastic noise, we have
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where the second inequality holds by ||a + b||?> < 2||a||? + 2||b||?. The second inequality holds by Assumption 5.2, i.e.,

the zero-mean and the independency of stochastic noise. The last inequality in Eq. (49) holds due to the following: with
adaptive learning rates

n if 7% < 7,
n = { . L ! (50)
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thus we have n; < 7 in the last inequality in Eq. (49). Then for I3, following Lemma C.2 C—lc lz|| < ||
nem K 11 1 o=
I < — !l 21 !l E L Fi
<~ BE BNV - g B |y 3 3 Ve

Ce = nKG + €, we have
2
il
1

{5[(7,?(02 +6Kag) + 30K 0 S E[IV(@rs)
i=1

o 2
Z ZVFj(wi_rif,k) }

=

n Utﬂzfﬂ

t—1
Qntnl KIL? 1 9
+ M2e3 ZTt Z 5B

N
o | 2P KPL2 1
|+~ Z

—t—r} JEM, k=0
(S
Bounding /5
771:2[/ ? n; L 2
I < Z=E[||A 52
=l || 2| ] < Lrenad, 52)
where the first inequality follows by Cauchy-Schwarz inequality.
Merging pieces. Therefore, by merging pieces together, we have
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For term As, note that with n < ‘/T—Jv, we have the adaptive learning rates

4 max
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n
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which implies that 7, < 1 and 7, < min{ = s } Moreover, recall that 7" = max;e {7} }, for each i, we have
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For term A, similar to the proof of non-delay adaptive FADAS, by ns < 1, 7/ < Tmax and ZtT:l Zi 1 ;i @s <
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By Lemma C.3 and Lemma C.4, we have the following for Eq. (55),
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This concludes the proof. O

Proof of Corollary 5.10. Since the delay adaptive learning rate satisfy, 7, < n, and when 7, = Tyedian, there is Zle N >
Dt 2 % (since there are at least half of the iterations with the delay smaller than 7,). Recalling that Cq = K G+,

then
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Reorganizing Eq. (66), particularly merging the stochastic variance and the global variance, then we have
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We again generalize terms with smaller 7" dependency orders, then we have
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reorganizing and then obtain the rate of convergence in Eq. (9).
O

C. Supporting Lemmas

Lemma C.1 (Lemma for momentum term in the update rule). The first order momentum terms my in Algorithm 1 hold the
Sfollowing relationship w.r.t. model difference A;:

T
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~

Proof. By the updating rule, we have
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This concludes the proof. O

Lemma C.2. Under Assumptions 5.3, we have ||V f(x)|| <

2K2G? and
0] < nf K2G2.

Proof. Since f has G-bounded stochastic gradients, for any  and &, there is ||V f(z, &)|| < G, thus it implies

IVi@)|| = [BeVf(, &)l < Eel|[ VS (2, Il < G.
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For each model difference A! on client i, A! satisfies,

i i _ i
Al =@ — T =—1 E 9t k>

therefore,
K-1
8 = |- 3 gk < e
k=0
for the global model difference Ay,
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Thus we can obtain the bound for momentum m; and variance vy,
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This concludes the proof. O
. . I 1
Lemma C.3. For the variance difference sequence V; = NG o e have

ZIMII1<7 ZHVzHQ, : (74)

Proof. The proof of Lemma C.3 is exactly the same as the proof of Lemma C.2 in Wang et al. (2022b). O

Lemma Cd4. Recall the sequence A; = ﬁzie/\m Ai_Tq; = MZZE/\,{, Zk 0 g,f kT
g t

—E Y iem, 2(;01 VFz‘(fBi,T;ypf) and M be the set that include client send the local updates to the server at
global round t. The global model difference A satisfies
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Proof. The proof of Lemma C.3 is similar to the proof of Lemma C.6 in (Wang et al., 2022b). O

Lemma C.5. (This lemma follows from Lemma 3 in FedAdam (Reddi et al., 2021). For local learning rate which satisfying
n < ﬁ, the local model difference after k (Vk € {0,1, ..., K — 1}) steps local updates satisfies

~ ZE . = @*] < 5K (07 + 6K 07) + 30K nfE[||V f ()] (75)

Proof. The proof of Lemma C.5 is similar to the proof of Lemma 3 in Reddi et al. (2021). O
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Lemma C.6. If assuming that the clzents partlczpatzon distributions are simulated as independently uniform distribution,
then the sequence G s = Z]EM Zk o VF (x’ . k) has the following upper bound,
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Proof. We begin with the proof similar to the partial participation with sampling without replacement,
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D. Additional Experiments

Tables 8 and 9 present results computed over experiments with 3 different random seeds. Tables 8 and 9 compare the
performance of various federated learning methods, on the test accuracy of the ResNet-18 model across CIFAR-10 and
CIFAR-100 datasets with heterogeneous data distributions. It is observed that the delay-adaptive FADAS (abbreviated as
delay-adaptive FADAS) consistently outperforms the other methods. The consistency of FADAS performance under large
worst-case delay settings indicates its reliability and potential for practical applications in federated learning environments
with diverse and asynchronous model updates.

D.1. Additional Results

Table 8. The test accuracy on training ResNet-18 model on CIFAR-10 dataset with two data heterogeneity levels in a large worst-case
delay scenario for 500 communication rounds. We abbreviate delay-adaptive FADAS to FADAS, in this and subsequent tables. We
conduct experiments on three seeds, and we report the average accuracy and standard derivation.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync | 50.29 £6.86 59.75 £ 13.40
FedBuff 4492 £526 46.94 +0.99
FADAS 70.57 £2.04 7597 +£2.64
FADASqy, | 72.64 £1.00 80.26 + 0.68

Table 9. The test accuracy on training ResNet-18 model on CIFAR-100 dataset with two data heterogeneity levels in a large worst-case
delay scenario for 500 communication rounds. We conduct experiments on three seeds, and we report the average accuracy and standard
derivation.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync | 46.25 £4.33 43.22 +10.75
FedBuff 1597 £2.44 2858 £4.74
FADAS 4785+0.69 52.80+1.15
FADASy, | 51.55+1.03 56.01 +0.95

D.2. Implementation Details

Details of applying adaptive learning rate. During our experiments, we found that choosing a relatively small global
learning rate 7 yields better results for adaptive FL. methods (hyper-parameter details can be found in the following). To
scale the learning rate down for the model update with larger delays, we directly scale down the learning rate for this step to
n/T"**, which is shown in (77),

_ if 7 < 7, 7
= min {n, Tmimx} if 708X > 7,
t

Hyper-parameter Settings. We conduct detailed hyper-parameter searches to find the best hyper-parameter for each
baseline. We grid the local learning rate n; from {0.001,0.003,0.01,0.03,0.1}, and global learning rate n = 1 for
SGD-based method. We grid the local learning rate 7; from {0.003,0.01,0.03,0.1} and global learning rate n from
{0.0001, 0.0003, 0.001, 0.003} for adaptive method. For the global adaptive optimizer, we set 5; = 0.9, ;1 = 0.99, and we
set e = 1078, Table 10 summarizes the hyper-parameter details in our experiments.
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Table 10. Hyper-parameters details for vision tasks.

CIFAR-10 (mild delay)

FedAsync  FedBuff FADAS FADAS .
Models & Dir(cr) m noom N m n m n
ResNet-18 & Dir(0.1) | 0.003 1 0.03 1 0.1 0.0003 0.1 0.001
ResNet-18 & Dir(0.3) | 001 1 0.03 1 0.1 0.0003 0.1 0.001
CIFAR-100 (mild delay)
FedAsync  FedBuff FADAS FADAS.
Models & Dir(cx) m noom n o m n m n
ResNet-18 & Dir(0.1) | 001 1 0.03 1 0.1 0.0003 0.1 0.001
ResNet-18 & Dir(0.3) | 001 1 0.03 1 0.1 0.0003 0.1 0.001
CIFAR-10 (large worst-case delay)
FedAsync  FedBuff FADAS FADAS.
Models & Dir(c) m noomonom n m n
ResNet-18 & Dir(0.1) | 0.003 1 0.03 1 0.1 0.0001 0.1 0.001
ResNet-18 & Dir(0.3) | 0.003 1 0.03 1 0.1 0.0001 0.1 0.001
CIFAR-100 (large worst-case delay)
FedAsync  FedBuff FADAS FADAS .
Models & Dir(«) m n m nom n m n
ResNet-18 & Dir(0.1) | 0.003 1 0.03 1 0.1 0.0001 0.1 0.001
ResNet-18 & Dir(0.3) | 0.001 1 0.03 1 0.1 0.0001 0.1 0.001
Table 11. Hyper-parameters details for language tasks.
FedAsync  FedBuff FADAS FADAS
Datasets m n m n m n m n
RTE 001 1 001 1 001 0005 001 001
MRPC 0001 1 001 1 001 0001 001 0.002
SST-2 0001 1 0001 1 01 0.0005 0.1 0.001
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