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Abstract
Federated learning (FL) has emerged as a widely
adopted training paradigm for privacy-preserving
machine learning. While the SGD-based FL algo-
rithms have demonstrated considerable success in
the past, there is a growing trend towards adopting
adaptive federated optimization methods, partic-
ularly for training large-scale models. However,
the conventional synchronous aggregation design
poses a significant challenge to the practical de-
ployment of those adaptive federated optimization
methods, particularly in the presence of straggler
clients. To fill this research gap, this paper in-
troduces federated adaptive asynchronous opti-
mization, named FADAS, a novel method that
incorporates asynchronous updates into adaptive
federated optimization with provable guarantees.
To further enhance the efficiency and resilience
of our proposed method in scenarios with signifi-
cant asynchronous delays, we also extend FADAS
with a delay-adaptive learning adjustment strat-
egy. We rigorously establish the convergence rate
of the proposed algorithms and empirical results
demonstrate the superior performance of FADAS
over other asynchronous FL baselines.

1. Introduction
In recent years, federated learning (FL) (McMahan et al.,
2017) has drawn increasing attention as an efficient privacy-
preserving distributed machine learning paradigm. An FL
framework consists of a central server and numerous clients,
where clients collaboratively train a global model without
sharing their private data. FL entails each client conducting
multiple local iterations, while the central server periodically
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aggregates these local updates into the global model. Follow-
ing the original design of the FedAvg algorithm (McMahan
et al., 2017), a large number of stochastic gradient descent
(SGD)-based FL methods have emerged, aiming to improve
the performance or efficiency of FedAvg (Karimireddy et al.,
2020; Acar et al., 2021; Wang et al., 2020b).

In addition to the successes of SGD-based algorithms in
enhancing the efficiency of FL, the adoption of adaptive
optimization techniques is becoming increasingly preva-
lent in FL. Adaptive optimization techniques such as Adam
(Kingma & Ba, 2015) and AdamW (Loshchilov & Hutter,
2017) have proven their advantages over SGD in effectively
training or fine-tuning large-scale models like BERT (De-
vlin et al., 2018), ViT (Dosovitskiy et al., 2021), and Llama
(Touvron et al., 2023). This progress has encouraged the
incorporation of adaptive optimization into the FL settings,
taking advantage of their ability to navigate update direc-
tions and dynamically adjust learning rates. For example,
FedAdam (Reddi et al., 2021) and FedAMS (Wang et al.,
2022b) employ global adaptive optimization after the server
aggregates local model updates. Moreover, strategies such
as FedLALR (Sun et al., 2023a), FedLADA (Sun et al.,
2023b), and FAFED (Wu et al., 2023) replace SGD with the
Adam optimizer for the local training phase, exemplifying
the utility of local adaptive optimizations in FL.

However, existing methods in adaptive FL still rely on tra-
ditional synchronous aggregation approaches, where the
server must wait for all participating clients to complete
their local training before global updates. This reliance
presents a significant challenge to the practical implementa-
tion of adaptive FL methodologies, as the server is required
to wait until slower clients, which may have limited compu-
tation or communication capabilities. While asynchronous
FL strategies such as FedBuff (Nguyen et al., 2022) and
FedAsync (Xie et al., 2019) have been investigated to im-
prove the scalability and to study the impact of client de-
lays on the convergence of SGD-based FL algorithms, the
specific implications of asynchronous delays on nonlinear
adaptive gradient operations are not completely understood.
This motivates us to explore the following question:

Can we develop an asynchronous method for adaptive feder-

ated optimization (with provable guarantees) that enhances

training efficiency and is resilient to asynchronous delays?
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In this paper, we propose FADAS, Federated ADaptive
ASynchronous optimization, to address this challenge.
FADAS introduces asynchronous updates within the adap-
tive federated optimization framework and integrates a
delay-adaptive mechanism for adjusting the learning rate
adaptively in response to burst delays. We summarize our
contributions as follows:

• We propose FADAS, a novel adaptive federated opti-
mization method that extends traditional adpative fed-
erated optimization support asynchronous client updates.
We prove that FADAS achieves a convergence rate of
O
(

1→
TM

+ ωmaxωavg
T

)
w.r.t. the number of global commu-

nication rounds T and the number of accumulated updates
M , with bounded worst-case delay, denoted by ωmax, and
the average of the maximum delay over all the rounds,
denoted by ωavg.

• To further reduce the dependency on the worst-case delay
term ωmax in the convergence rate, we extend FADAS
with a delay-adaptive learning rate adjustment strategy.
Our theoretical results demonstrate that the inclusion of
a delay-adaptive learning rate effectively diminishes the
dependency on ωmax in the convergence rate.

• We conduct experiments across various asynchronous de-
lay settings in both vision and language modeling tasks.
Our results indicate that the proposed FADAS, whether
or not including the delay-adaptive learning rate, outper-
forms other asynchronous FL baselines. In particular, the
delay-adaptive FADAS demonstrates significant advan-
tages in scenarios with large worst-case delays. Moreover,
our experimental results on simulating the wall-clock
training time underscores the efficiency of our proposed
FADAS approach.

2. Related Work
Federated learning. FL, as introduced by McMahan et al.
(2017), has become a pivotal framework for collaboratively
training machine learning models on edge devices while
keeping local data private. Following the initial FedAvg
algorithm, several works studied the theoretical analysis and
empirical performance of it (Lin et al., 2018; Stich, 2018; Li
et al., 2019a; Karimireddy et al., 2020; Wang & Joshi, 2021;
Yang et al., 2021), and a range of works aim to improve
FedAvg from different perspectives, such as reducing the
impact of data heterogeneity (Karimireddy et al., 2020; Acar
et al., 2021; Wang et al., 2020b), saving the communica-
tion overhead (Reisizadeh et al., 2020; Jhunjhunwala et al.,
2021), and adjusting the parameter aggregation procedure
(Tan et al., 2022; Wang & Ji, 2023).

Adaptive FL optimizations and adaptive updates. Be-
sides traditional SGD-based methods, there is a line of
works focusing on adaptive updates in FL. A local adaptive

FL method with momentum-based variance-reduced gradi-
ent was used in FAFED (Wu et al., 2023). Li et al. (2023)
proposed a framework for local adaptive gradient methods
in FedDA. FedLALR (Sun et al., 2023a) uses local adap-
tive optimization in FL with local historical gradients and
periodically synchronized learning rates. FedLADA (Sun
et al., 2023b) is an efficient local adaptive FL method with
a locally amended technique. Jin et al. (2022) developed
novel adaptive FL optimization methods from the perspec-
tive of dynamics of ordinary differential equations. More-
over, Reddi et al. (2021) introduced FedAdagrad, FedAdam
and FedYogi, and Wang et al. (2022b) proposed FedAMS
for global adaptive FL optimizations. Several works of
global adaptive learning rate (Jhunjhunwala et al., 2023)
and adaptation in aggregation weights (Tan et al., 2022;
Wang & Ji, 2023) are also related to adaptive learning rate
adjustment.

Asynchronous SGD and asynchronous FL. There have
been extensive studies over the years about asynchronous
optimization techniques, including asynchronous SGD and
its various adaptations. For example, Hogwild (Niu et al.,
2011) includes an applicable lock-free, coordinate-wise
asynchronous method and has been widely used in multi-
thread computation. A body of works focuses on the theoret-
ical analysis and explorations of asynchronous SGD (Mania
et al., 2017; Nguyen et al., 2018; Stich et al., 2021; Leblond
et al., 2018; Glasgow & Wootters, 2022) and discusses the
gradient delay in the convergence rate (Avdiukhin & Ka-
siviswanathan, 2021; Mishchenko et al., 2022; Koloskova
et al., 2022; Wu et al., 2022). Within federated learn-
ing, innovative asynchronous aggregation algorithms like
FedAsync (Xie et al., 2019) allow the server to update
the global model once a client finishes local training, and
FedBuff (Nguyen et al., 2022) introduces a buffered aggre-
gation approach. There are also many works focusing on
algorithms based on FedBuff with theoretical and/or empiri-
cal analysis (Toghani & Uribe, 2022; Ortega & Jafarkhani,
2023; Wang et al., 2023), and other aspects of asynchronous
FL (Chen et al., 2020b; Yang et al., 2022; Bornstein et al.,
2023). Although adaptive FL and asynchronous FL have
achieved the success of training large machine learning mod-
els with desirable numerical performance, the exploration
of asynchronous updates in the context of adaptive FL has
not been well-studied yet. In this paper, we start with the
asynchronous update framework in adaptive FL and further
integrate delay-adaptive learning rate scheduling into it.

3. Preliminaries
Federated learning. A general FL framework considers a
distributed optimization problem across N clients:

min
x→Rd

f(x) :=
1
N

N∑

i=1

Fi(x) =
1
N

N∑

i=1

Eωi↑Di [Fi(x; ωi)], (1)
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where x → Rd is the model parameter with d dimensions,
Fi(x) is the loss function corresponding to client i, Di

is the local data distribution on client i. The objective
in Eq. (1) can be interpreted as setting pi = 1

N for all
clients in another commonly used objective function in FL,
i.e., f(x) =

∑N
i=1 piEεi↑Di [Fi(x; εi)] with pi ↑ 0 and∑N

i=1 pi = 1. FedAvg (McMahan et al., 2017) is a typical
synchronous FL algorithm to solve Eq. 1, where in the t-th
global round, each participating client i performs local SGD
updates as follows:

xi
t,k+1 = xi

t,k ↓ ϑl↔Fi(x
i
t,k; ε) and xi

t,0 = xt (2)

where ϑl is the learning rate. After several local steps (e.g.,
K steps of local training), the server performs a global
averaging step after receiving all the updates from assigned
clients in St, i.e., xt+1 = 1

|St|
∑

i↓St
xi
t,K .

Adaptive optimization and its application to FL. Sev-
eral adaptive optimizers have been proposed to improve the
convergence of SGD, such as Adagrad (Duchi et al., 2011),
RMSProp (Tieleman et al., 2012), Adam (Kingma & Ba,
2015) and its variant AMSGrad (Reddi et al., 2018). In
general machine learning optimization, Adam effectively
inherits the benefits of both momentum and RMSProp opti-
mizers, leading to better empirical performance in practical
applications.

Reddi et al. (2021) first introduced adaptive federated opti-
mization, which applies the adaptive optimizers during the
global aggregation steps in FL. FedAMSGrad (Tong et al.,
2020) and FedAMS (Wang et al., 2022b) further adjust
the effective global learning rate in adaptive FL. Specifi-
cally, FedAdam and FedAMS take the idea of viewing the
difference of local updates !sync

t = 1
|St|

∑
i↓St

!i,sync
t =

1
|St|

∑
i↓St

(xi
t,K ↓ xt) as a pseudo-gradient, and applies

the Adam or AMSGrad optimizer when updating global
model xt+1 using !sync

t , i.e.,

mt = ϖ1mt↔1 + (1↓ ϖ1)!
sync
t ,

vt = ϖ2vt↔1 + (1↓ ϖ2)!
sync
t ↗!sync

t ,

xt+1 = xt + ϑ
mt

↘
vt + ϱ

(FedAdam),

v̂t = max(v̂t↔1,vt),xt+1 = xt + ϑ
mt

↘
v̂t + ϱ

(FedAMS),

where ↗ denotes the element-wise product for two vectors,
and for vectors x,y → Rd,

↘
x,x/y, max(x,y) denote the

element-wise square root, division, and maximum operation
of the vectors.

Asynchronous updates in FL. In asynchronous FL, clients
train the model asynchronously and update it to the server
once it finishes several steps of local training. FedBuff
(Nguyen et al., 2022) has improved the global update steps
with the concept of buffer based on the initial FedAsync

baseline (Xie et al., 2019). In FedBuff, it requires the frame-
work maintain a given number (referred to as the concur-
rency Mc) of clients that are actively local training. At the
t-th global round, after the client i finishes local training, it
sends its local update !i

t = xi
t↔ω,K ↓ xt↔ω to the server,

where t ↓ ω is the global round where client i starts local
training and 0 ≃ ω ≃ t. The server simultaneously accu-
mulates the model update !i

t to the global update direction
!t ⇐ !t + !i

t, and sends the latest global model to a
randomly selected client who is idle. When the number of
accumulated updates reaches the given buffer size of M , the
server updates the global model with the averaging !t/M .
Meanwhile, clients who have not finished their local training
will continue their training based on the previously received
global model, and are not affected by the global model up-
dates on the server. During the training, the framework
always maintains a fixed number (Mc) of clients who are
conducting local training. This is achieved by having the
server randomly sample an idle client for training each time
a client completes its local training and sends its update to
the server.

Discussion about synchronous and asynchronous meth-
ods. Synchronous FL typically offers consistency and sta-
bility, i.e., all client updates are based on the same global
model, and this consistency may lead to a more stable and
predictable learning process. However, when there exist
one or a few clients that are much slower than the majority
of clients, which often happens in large-scale systems, syn-
chronous FL can be inefficient since every client needs to
wait for the slowest client before progressing with the next
round of training. Asynchronous FL is more efficient when
clients have system heterogeneity such as diverse computa-
tional capabilities or communication bandwidth. In FL, if
the delay among clients is relatively uniform, synchronous
FL tends to be more stable and efficient. Overall, the choice
between synchronous and asynchronous FL hinges on spe-
cific needs and system characteristics. Synchronous FL
is ideal in homogeneous systems, while asynchronous FL
is advantageous in heterogeneous systems with potential
straggler clients.

4. Proposed Method: FADAS
Although adaptive FL methods achieve promising conver-
gence and generalization performance theoretically and em-
pirically, the existing adaptive FL methods are restricted
to synchronous settings, as the server needs to wait for all
the assigned clients to finish their local updates for aggre-
gation and then update the global model. However, those
synchronous adaptive FL algorithms are susceptible to the
presence of stragglers, where slower clients with insufficient
computation or communication speed impede the progress
of the global update.
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To improve the efficiency and resiliency of adaptive FL
in the presence of stragglers, we introduce FADAS, a
Federated ADaptive ASynchronous optimization method.
Similar to FedAdam and FedAMS, the proposed FADAS
algorithm takes the model update difference from clients as
a pseudo-gradient and it updates the global model follow-
ing an Adam-like update scheme. Algorithm 1 summarizes
the details. FADAS keeps the local asynchronous training
scheme as FedBuff and maintains the concept of concur-
rency and buffer size for flexible control of the number of
active clients and the frequency of global model update. In
FADAS, after the server aggregates to obtain model update
difference !t, it finds an adaptive update direction, whose
components are computed based on the AMSGrad optimizer
(Reddi et al., 2018) as follows:






mt = ϖ1mt↔1 + (1↓ ϖ1)!t,

vt = ϖ2vt↔1 + (1↓ ϖ2)!t ↗!t,

v̂t = max(v̂t↔1,vt).

(3)

In general, FADAS enables clients to conduct local train-
ing in their own pace, and the server aggregates the asyn-
chronous updates for global adaptive updates. It improves
the training efficiency and scalability of over synchronous
adaptive FL while inheriting the advantage of adaptive opti-
mizer of reducing oscillations and stabilizing the optimiza-
tion process.

Although FADAS applies asynchronous local training for
adaptive FL, the global adaptive optimizer adjusts the global
update direction only based on local updates but without
considering the impact of asynchronous delay. Intuitively,
a large asynchronous delay from a client means that this
model update is made based on an outdated global model.
This may lead to a negative effect on the convergence, and
later we also verify this intuition in the theoretical analysis.
This inspires us to apply a delay-adaptive learning rate ad-
justment to improve the resiliency of FADAS to stragglers
with large delays. Specifically, we let the server track the
delay for every received model update and adopt a delay-
adaptive learning rate. We highlight the delay-adaptive steps
in Algorithm 1 and those steps are executed with almost no
extra overhead.

Delay tracking. In general, the server manages the de-
lay record for each client through straightforward time-
stamping. For example, the server records the global update
round t↗ when it broadcasts the current global model xt→ to
client i, the client conducts local training with xt→ . When
the server receives the first !i

t from client i at round t ↑ t↗,
the gradient delay for !i

t, which is ω it = t↓ t↗, is updated
and recorded on the server.

Delay-adaptive learning rate. Assume that for each global
update round t, clients in the set Mt ( |Mt| = M ) send
updates to the server. The received model updates at global

Algorithm 1 FADAS (with delay adaptation )

Input: local learning rate ϑl, global learning rate ϑ,
adaptive optimization parameters ϖ1,ϖ2, ϱ, server
concurrency Mc, buffer size M , delay threshold ωc ;

1: Initialize model x1, initialize !1 = 0, m0 = 0,v0 =
0, m = 0 and sample a set of M0 with size Mc active
clients to run local SGD updates.

2: repeat
3: if receive client update then
4: Server accumulates update from client i: !t ⇐

!t +!i
t and set m ⇐ m+ 1

5: Sample another client j from available clients
6: Send the current model xt to client j, and run local

SGD updates on client j
7: end if
8: if m = M then
9: !t ⇐

!t
M

10: Update mt, vt, v̂t by (3)
11: if delay-adaptive then
12: Set ϑt to be delay-adaptive based on Eq. (4)
13: else
14: ϑt = ϑ
15: end if
16: Update global model xt+1 = xt + ϑt

mt→
v̂t+ϑ

17: Set m ⇐ 0, !t+1 ⇐ 0, t ⇐ t+ 1
18: end if
19: until convergence

round t have a maximum delay ωmax
t defined as ωmax

t :=
max{ω it , i → Mt}. Suppose we set up a delay threshold ωc,
we can define a delay-adaptive learning rate as:

ϑt =

{
ϑ if ωmax

t ≃ ωc,

min
{
ϑ, 1

ωmax
t

}
if ωmax

t > ωc.
(4)

Intuitively, this design implies that we need to turn the
learning rates down for the model update !t with larger
current-step delays. Specifically, if the current-step max-
imum delay ωmax

t is larger than a given threshold ωc, we
scale down the learning rates for this step in proportional to
1/ωmax

t (also capped by a constant learning rate ϑ) to avoid
that the high-latency update worsens the convergence.

Comparison with FedAsync (Xie et al., 2019). FedAsync
(Xie et al., 2019) also studies delay-adaptive weighted av-
eraging during global model updates. In FedAsync, after
the server receives a local model xnew, it updates xt based
on xt = (1↓ ςt)xt↔1 + ςtxnew, and FedAsync includes a
hinge strategy of ςt which is similar to our delay-adaptive
strategy in Eq. (4). However, unlike FedAsync, where the
server updates the global model immediately upon receiv-
ing a new update from a client, FADAS updates the global
model less frequently. In FADAS, the server accumulates
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M local updates before a global update. Moreover, the
convergence analysis in FedAsync did not consider their
delay adaptation procedure, while we provide a convergence
analysis incorporating the effect of delay adaptation in the
next section.

5. Theoretical Analysis
In this section, we delve into the theoretical analysis of
our proposed FADAS algorithm. We first introduce some
common assumptions required for the analysis. Subse-
quently, we present the analysis in two parts: one focus-
ing on FADAS without delay adaptation, as discussed in
Section 5.1, and the other on the delay-adaptive FADAS in
Section 5.2.
Assumption 5.1 (Smoothness). Each objective function on
the i-th worker Fi(x) is L-smooth, i.e., ⇒x,y → Rd,

⇑↔Fi(x)↓↔Fi(y)⇑ ≃ L⇑x↓ y⇑.

Assumption 5.2 (Bounded Variance). Each stochastic gra-
dient is unbiased and has a bounded local variance, i.e., for
all x, i → [N ], we have E

[
⇑↔Fi(x; ε)↓↔Fi(x)⇑2

]
≃ φ2,

and the loss function on each worker has a global variance
bound, 1

N

∑N
i=1 ⇑↔Fi(x)↓↔f(x)⇑2 ≃ φ2

g .

Assumption 5.1 and 5.2 are standard assumptions in feder-
ated non-convex optimization literature (Li et al., 2019b;
Yang et al., 2021; Reddi et al., 2021; Wang et al., 2022b;
Wang & Ji, 2023). The global variance upper bound of φ2

g

in Assumption 5.2 measures the data heterogeneity across
clients, and a global variance of φ2

g = 0 indicates a uniform
data distribution across clients.
Assumption 5.3 (Bounded Gradient). Each loss function
on the i-th worker Fi(x) has G-bounded stochastic gradient
on ↼2 norm, i.e., for all ε, we have ⇑↔Fi(x; ε)⇑ ≃ G.

Assumption 5.3 is necessary for adaptive gradient algo-
rithms for both general (Kingma & Ba, 2015; Chen et al.,
2020a), distributed (Wang et al., 2022a) and federated adap-
tive optimization (Reddi et al., 2021; Wang et al., 2022b;
Sun et al., 2023b). This is because the effective global
learning rate for adaptive gradient methods is ϖ→

v̂t+ϑ
, and

we need a lower bound for
∥∥ ϖ→

v̂t+ϑ

∥∥ to guarantee that the
effective learning rate does not vanish to zero.
Assumption 5.4 (Bounded Delay of Gradient Computation).
Let ω it represent the delay for global round t and client
i which is applied in Algorithm 1. The delay ω it is the
difference between the current global round t and the global
round at which client i started to compute the gradient. We
assume that the maximum gradient delay (worst-case delay)
is bounded, i.e., ωmax = maxt↓[T ],i↓[N ]{ω

i
t} < ⇓.

Assumption 5.4 is common in analyzing asynchronous and
anarchic FL algorithms which incorporate the gradient de-

lays into their algorithm design (Koloskova et al., 2022;
Yang et al., 2021; Nguyen et al., 2022; Toghani & Uribe,
2022; Wang et al., 2023).
Assumption 5.5 (Uniform Arrivals of Gradient Computa-
tion). Let the set Mt (with size M ) include clients that
transmit their local updates to the server in global round t.
We assume that the clients’ update arrivals are uniformly
distributed, i.e., from a theoretical perspective, the M clients
in Mt are randomly sampled without replacement from all
clients [N ] according to a uniform distribution1.

Assumption 5.5 is also discussed in Anarchic FL (Yang
et al., 2022), which has been utilized to analyze the AFA-CD
algorithm proposed therein.

5.1. Convergence Rate of FADAS

For expository convenience, in the following, we provide
the theoretical convergence analysis of FADAS under the
case of ϖ1 = 0. The theoretical analysis and the proof for
the general case of 0 ≃ ϖ1 < 1 are provided in Appendix A.
We define the average of the maximum delay over time as
ωavg = 1

T

∑T
t=1 ω

max
t = 1

T

∑T
t=1 maxi↓[N ]{ω

i
t} which is

useful in our analysis.
Theorem 5.6. Under Assumptions 5.1–5.5, let T rep-

resent the total number of global rounds, K be the

number of local SGD training steps and M be the

number of the accumulated updates (buffer size) in

each round. If the learning rate ϑ and ϑl satisfies ϑϑl ≃

min
{

ϑ2M(N↔1)
180CGN(N↔M)ωmaxKL ,

↘
ϑ3M(N↔1)

12
↘

CGN(M↔1)ω3
maxKL

}
, ϑl ≃

→
ϑ→

360CGωmaxKL
, then the global iterates {xt}

T
t=1 of Algo-

rithm 1 satisfy

1

T

T∑

t=1

E[⇑↔f(xt)⇑
2]

≃
4CG

ϑϑlKT
F +

20CGϑ2l KL2(φ2 + 6Kφ2
g)

ϱ

+


8CGϑ2ϑ2l KL2ωavgωmax

Mϱ3
+

12CGϑϑlL

Mϱ2



·


φ2 +

N ↓M

N ↓ 1
[15ϑ2l K

2L2(φ2 + 6Kφ2
g) + 3Kφ2

g ]


,

(5)

where F = f(x1) ↓ f↘, f↘ = minx f(x) > ↓⇓ and

CG = ϑlKG+ ϱ.

Corollary 5.7. If we choose the global learning rate ϑ =

!(
↘
M) and ϑl = !

 →
F↘

TK(ϱ2+Kϱ2
g)


in Theorem 5.6,

then for sufficiently large T , the global iterates {xt}
T
t=1

1This assumption is only used for theoretical analysis. Our
experiments that show the advantage of FADAS empirically do
not rely on this assumption.
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of Algorithm 1 satisfy

1

T

T∑

t=1

E[⇑↔f(xt)⇑
2] ≃ O

 ↘
Fφ

↘
TKM

+

↘
Fφg

↘
TM

+
F

T
+

FG

T
↘
M

+
Fωmaxωavg

T


, (6)

Remark 5.8. Corollary 5.7 suggests that given sufficiently
large T and relatively small worst-case delay ωmax, the
proposed FADAS (without delay-adaptive learning rate)
achieves a convergence rate of O

(
1→
TM

)
w.r.t. T and M .

Comparison to asynchronous FL methods. Compared
with the analysis for FedBuff in Nguyen et al. (2022) and
Toghani & Uribe (2022), our analysis for FADAS obtains
a relaxed dependency on the worst-case gradient delay
ωmax, and FADAS achieves a slightly better rate on non-
dominant term than O

(
1→
T
+ ω2

max
T

)
obtained in Toghani

& Uribe (2022). Moreover, Wang et al. (2023) also stud-
ied the convergence for FedBuff with relaxed requirements
for ωmax, and our FADAS achieves a similar convergence
of O

(
1→
TM

+ ωmaxωavg
T

)
as in Wang et al. (2023). It is

worthwhile to mention that recently CA2FL (Wang et al.,
2023) improves the convergence of asynchronous FL under
heterogeneous data distributions, while the improvement
is obtained by using the cached variable on the server for
global update calibration.

Note that when ωmax in Eq. (6) is large, particularly in cases
where ωmax ↑

→
T→
M

, then ωmaxωavg
T becomes the dominant

term in the convergence rate. This implies that a large worst-
case delay ωmax may lead to a worse convergence rate. In
the next subsection, we demonstrate that the delay-adaptive
learning rate strategy can relieve this problem and enhance
FADAS with better resilience to large worst-case delays.

5.2. Convergence Rate of Delay-adaptive FADAS

In the following, we provide the convergence analysis for
delay-adaptive FADAS with ϖ1 = 0. To get started, we first
define the median of the maximum delay over all communi-
cation rounds [T ]:

ωmedian = median{ωmax
1 , ωmax

2 , ..., ωmax
T }. (7)

The definition of ωmedian implies that the number of global
update rounds that have a maximum delay greater than
ωmedian is less than half of the total number of global up-
dates T . With this definition, we present the following theo-
rem characterizing the convergence rate of delay-adaptive
FADAS.

Theorem 5.9. Under Assumptions 5.1–5.5, let T be the

total number of global rounds, K be the number of local

SGD training steps and M be the number of the buffer size

in each round. If the learning rate ϑ and ϑl satisfies ϑϑl ≃

min
{

ϑ2M(N↔1)
60CGN(N↔M)ωmaxKL ,

↘
ϑ3M(N↔1)

12
↘

CGN(M↔1)ω3
maxKL

}
, ϑl ≃

→
ϑ→

360CGωmaxKL
and ϑ ≃

→
M
ωc

, then the global iterates

{xt}
T
t=1 of Algorithm 1 satisfy

1
∑T

t=1 ϑt

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2]

≃
4CG

ϑϑlKT
F +

20CGϑ2l KL2(φ2 + 6Kφ2
g)

ϱ

+
8CGϑ3ϑ2l KL2T ωavg

Mϱ3
∑T

t=1 ϑt
φ2 +

8CGϑ2ϑ2l KL2T ωavg
↘
Mϱ3

∑T
t=1 ϑt

·
N ↓M

N ↓ 1
[15ϑ2l K

2L2(φ2 + 6Kφ2
g) + 3Kφ2

g ] +
4CGϑϑlL

Mϱ2

·


φ2 +

N ↓M

N ↓ 1
[15ϑ2l K

2L2(φ2 + 6Kφ2
g) + 3Kφ2

g ]


,

(8)

where F = f(x1) ↓ f↘, f↘ = minx f(x) > ↓⇓ and

CG = ϑlKG+ ϱ.

Corollary 5.10. If we pick ωc = ωmedian, the global learn-

ing rate ϑ = !(
↘
M/ωc) and ϑl = !

(
ωc

→
F↘

TK(ϱ2+Kϱ2
g)

)
,

then for sufficiently large T , the global iterates {xt}
T
t=1 of

Algorithm 1 satisfy

1
∑T

t=1 ϑt

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2] ≃ O

 ↘
Fφ

↘
TKM

+

↘
Fφg

↘
TM

+
FGωc

T
↘
M

+
Fωavg
T

+
F(ω2c + ωcωavg)

T


. (9)

Remark 5.11. Corollary 5.10 suggests that with sufficiently
large T , delay-adaptive FADAS also achieves a convergence
rate of O

(
1→
TM

)
w.r.t. T and M .

Remark 5.12. Compared to the convergence rate in Corol-
lary 5.7, the convergence rate in Corollary 5.10 does not
rely on the (possibly large) worst-case delay ωmax. In cases
where ωc = ωmedian ⇔ ωavg ↖ ωmax, Corollary 5.10 relaxes
the requirement from ωmax to ωmedian for achieving the de-
sired convergence rate. Since ωmedian describes the median
of ωmax

t = maxi↓[N ]{ω
i
t} in each round t, the convergence

rate in Corollary 5.10 is less sensitive to stragglers who may
cause a large worst-case delay in the system.

6. Experiments
We explore the performance of our proposed FADAS
algorithm through experiments on vision and language
tasks, using the CIFAR-10/100 (Krizhevsky et al., 2009)
datasets with ResNet-18 model (He et al., 2016) for vi-
sion tasks, and applying the pre-trained BERT base model
(Devlin et al., 2018) for fine-tuning several datasets from
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the GLUE benchmark dataset (Wang et al., 2018) for lan-
guage tasks. We compare our proposed FADAS algorithm
against asynchronous FL baselines, such as FedBuff (with-
out differential privacy) (Nguyen et al., 2022) and FedAsync
(Xie et al., 2019), a synchronous SGD-based FL base-
line FedAvg (McMahan et al., 2017), and a synchronous
adaptive FL baseline FedAMS (Wang et al., 2022b). We
summarize some crucial implementation details in the fol-
lowing, and we leave some additional results and exper-
iment details to Appendix D. Our code can be found at
https://github.com/yujiaw98/FADAS.

Overview of vision tasks’ implementation. We set up
a total of 100 clients for the mild delay scenario, in which
the concurrency Mc = 20 and the buffer size M = 10 by
default. We also set up a total of 50 clients for the large

worst-case delay scenario, with Mc = 25 and M = 5 cor-
respondingly. For both settings, we partition the data on
clients based on the Dirichlet distribution following Wang
et al. (2020a;b), and the parameter ς used in Dirichlet sam-
pling determines the degree of data heterogeneity. We apply
two levels of data heterogeneity with ς = 0.1 and ς = 0.3.
Each client conducts two local epochs of training, and the
mini-batch size is 50 for each client. The local optimizer for
all methods is SGD with weight decay 10↔4, and we grid
search the global and local learning rates individually for
each method.

Overview of language tasks’ implementation. Con-
sidering the total number of data samples in the language
classification datasets, we set up a total of 10 clients, parti-
tion the data on clients based on the labels, and we apply a
heterogeneity level of ς = 0.6. Each client conducts one
local epoch and the mini-batch size is 32 for each client.
The local optimizer for all methods is SGD with weight de-
cay 10↔4, and we grid search the global and local learning
rates individually for each method. We set the concurrency
Mc = 5 and buffer size M = 3 by default. We employ
the widely-used low-rank adaptation method, LoRA (Hu
et al., 2021), as a parameter-efficient fine-tuning strategy
for our language classification tasks. This involves freez-
ing the original pre-trained weight matrix W0 → Rd≃k and
fine-tuning ”W through low-rank decomposition, where
W = W0 + ςLoRA”W = W0 + ςLoRABA, B → Rd≃r,
and A → Rr≃k, and we adopt r = 1 and ςLoRA = 8 in our
experiments.

Overview of delay simulation. In our experiments, we
simulate the asynchronous environment as follows. Initially,
we partition clients into three categories, including Small,
Medium, and Large delay, at the start of training and tag
them with a label reflective of their delay magnitude. This
partitioning was executed via a Dirichlet sampling process
controlled by the parameter ↽. A smaller ↽ value corre-
sponds to a higher proportion of clients experiencing large

delays. Unless otherwise specified in subsequent experi-
ments, we set ↽ = 1. To mimic actual wall-clock running
times within each delay category, we apply uniform sam-
pling at each round for each client. We adopt the following
uniform distributions to simulate wall-clock running time
for both the large worst-case delay and mild delay settings
as shown in Table 1.

6.1. Results on Vision Tasks

Large worst-case delay. Under this setting, we simulate
the wall-clock running time by letting a small proportion
of clients have more significant delays than other clients.
Tables 2 and 3 show the overall performance of training
the ResNet-18 model on CIFAR-10 and CIFAR-100, re-
spectively. The results show that FADAS, especially with a
delay-adaptive learning rate, offers significant advantages
in terms of test accuracy. Compared to FedAsync and
FedBuff, both FADAS methods achieve higher accuracy,
and FADAS with delay-adaptive learning rates is shown to
be more stable during the learning process with lower stan-
dard derivation. In these experiments, we conduct a total of
T = 500 global communication rounds, and the maximum
delay ωmax = 127, which even more than a quarter of the
total number of global communication rounds. Notably, as
seen in Tables 2 and 3, FedAsync shows severely fluctuating
in test accuracy, suggesting that it may be less reliable in
situations with large worst-case delays.

Table 1. Overview for wall-clock delay simulation (in units of 10
seconds).

Delay Small Medium Large

Large worst-case U(1, 2) U(3, 5) U(50, 80)
Mild U(1, 2) U(3, 5) U(5, 8)

Mild delay. Under this setting, we simulate the wall-clock
running time for clients by assuming that all clients can
finish their local training within a comparable duration (see
Table 1). Tables 4 and 5 show the overall performance of
training the ResNet-18 model on CIFAR-10 and CIFAR-100
under mild delay. The results highlight that both FADAS
and its delay-adaptive variant achieve superior test accuracy
than FedAsync and FedBuff.

6.2. Results on Language Tasks

The performance for fine-tuning the BERT base model
on three GLUE benchmark datasets, RTE, MRPC, and
SST-2, under mild delay conditions are shown in Table
6, which illustrates that FADAS and its delay-adaptive coun-
terpart consistently outperform the results of FedAsync
and FedBuff across the three datasets. FedAsync achieves
good performance in SST-2 but is less satisfactory in RTE
and MRPC, and FedBuff presents an overall lower accu-
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Table 2. The test accuracy on training ResNet-18 model on CIFAR-
10 dataset with two data heterogeneity levels in a large worst-case

delay scenario for 500 communication rounds. We report the
average accuracy and standard derivation over the last 5 rounds,
and we abbreviate delay-adaptive FADAS to FADASda in this and
subsequent tables.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 50.92 ± 5.03 75.3 ± 6.18
FedBuff 38.68 ± 8.16 51.32 ± 4.43
FADAS 72.0 ± 0.94 73.27 ± 1.37
FADASda 73.96 ± 3.54 79.68 ± 2.14

Table 3. The test accuracy on training ResNet-18 model on CIFAR-
100 dataset with two data heterogeneity levels in a large worst-case

delay scenario for 500 communication rounds.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 46.51 ± 4.76 38.55 ± 7.36
FedBuff 13.04 ± 5.5 18.63 ± 5.13
FADAS 47.84 ± 0.59 53.64 ± 0.52
FADASda 50.31 ± 1.0 57.18 ± 0.31

racy with larger standard derivation compared with FADAS.
The delay-adaptive FADAS shows parity with the standard
FADAS algorithm under mild delays. Moreover, FADAS
achieves significant accuracy improvements on RTE and
MRPC datasets against the SGD-based asynchronous FL
baselines, further demonstrating the intuition of developing
the FADAS method.

Running time speedup. Table 7 demonstrates the effi-
ciency of FADAS and its delay-adaptive variant by compar-
ing their performance with two synchronous FL methods
in reaching the target validation accuracy across different
dataset. Notably, FADAS consistently outperforms FedAvg
and FedAMS in terms of wall-clock running time, requiring
significantly fewer time units to reach the desired accu-
racy levels. In vision classification tasks such as CIFAR-
10 and CIFAR-100, the standard FADAS shows a signifi-
cant reduction in training time, achieving 8 ↙ speedup than
FedAvg and more than 2.5 ↙ speedup than FedAMS. The
delay-adaptive FADAS shows similar results as the stan-
dard version. For language classification tasks, FADAS
also improves the training time compared with FedAMS
and FedAvg. These results highlight the scalability and
efficiency of FADAS, especially when considering the com-
putational constraints in practical FL environments.

6.3. Ablation studies

Sensitivity of delay adaptive learning rates. Figure 1 (a)
exhibits the ablation study for different delay threshold ωc
for the delay-adaptive FADAS under the scenario of large

Table 4. The test accuracy on training ResNet-18 model on CIFAR-
10 dataset with two data heterogeneity levels under mild delay

scenario.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 42.48 ± 4.93 71.76 ± 3.85
FedBuff 72.15 ± 2.71 79.82 ± 3.25
FADAS 77.68 ± 2.32 82.93 ± 0.81
FADASda 78.93 ± 0.83 83.91 ± 0.54

Table 5. The test accuracy on training ResNet-18 model on CIFAR-
100 dataset with two data heterogeneity levels under mild delay

scenario.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 45.26 ± 7.04 53.41 ± 8.94
FedBuff 53.70 ± 1.13 56.26 ± 1.64
FADAS 57.37 ± 0.47 61.22 ± 0.31
FADASda 57.21 ± 0.45 60.34 ± 0.42

worst-case delays. Following Eq. (4), ωc provides a thresh-
old so that we reduce the learning rate if there exists a client
with extremely large delay. The experiment compares the
accuracy of three thresholds ωc = 1, 4, 8, 10, and ωc = 4
shows very similar test accuracy as ωc = 10. The result
in Figure 1 (a) shows that using ωc = 8 obtains a slightly
better result than using ωc = 1, ωc = 4, and ωc = 10. It is
interesting that in this large worst-case delays setting, we
observe the average of the maximum delay ωavg = 10.89,
the median of the maximum delay ωmedian = 6.0, and max-
imum delay during training is ωmax = 127, which shows
ωmedian ⇔ ωavg ↖ ωmax, confirming the practicality of our
analysis as discussed in Remark 5.12. Together with the
theoretical and experimental results, we find that the optimal
choice of ωc may depend on the actual delay during training.

Ablation for concurrency Mc and buffer size M . Fig-
ure 1 (b) presents the test accuracy of both the standard
and delay-adaptive FADAS for different concurrency levels
Mc, given the same buffer size M = 5. The delay-adaptive
FADAS achieves higher accuracy than FADAS when con-
currency Mc = 15 and Mc = 25, and the delay-adaptive
version has worse accuracy at larger concurrency Mc = 35.

Table 6. The test accuracy on parameter-efficient fine-tuning BERT
base model on three datasets from GLUE benchmark with hetero-
geneous data partitioned and mild delay.

RTE MRPC SST-2
Method Acc. & std. Acc. & std. Acc. & std.

FedAsync 49.46 ± 2.66 69.71 ± 1.02 90.02 ± 0.79
FedBuff 61.61 ± 4.90 76.80 ± 6.05 78.37 ± 4.86
FADAS 64.26 ± 2.30 83.33 ± 1.20 90.76 ± 0.26
FADASda 65.10 ± 2.40 83.09 ± 1.71 90.05 ± 1.80
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Table 7. Training/fine-tuning time simulation (in units of 10 seconds) to reach target test accuracy on the server under mild delay scenarios.
For each dataset, the concurrency Mc is fixed for fair comparison.

Acc. FedAvg FedAMS FADAS FADASda

CIFAR-10 75% 2257.7 648.7 228.0 237.5
CIFAR-100 50% 1806.3 546.9 209.8 209.8
RTE 63% 921.9 412.4 376.2 436.9
MRPC 80% 1018.1 424.0 368.3 370.1
SST-2 90% - 495.2 73.8 57.2

Figure 1 (c) presents an ablation study on buffer size for our
proposed FADAS algorithm. It compares the performance
of buffer sizes from M = 3, 5, 10 with their delay-adaptive
counterparts over total client updates, i.e., the number of
times the server receives updates from clients. It shows that
with the same number of client trips, increasing the buffer
size M tends to achieve higher accuracy. This is also due
to the design of the concurrency-buffer size framework, as
increasing the buffer size moves closer to traditional syn-
chronous FL algorithms, i.e., clients are more likely to get
up-to-date with the server. We also provide the comparison
w.r.t. global communication round in Figure 1 (d). Fig-

(a) Ablation on εc (b) Ablation on concurrency

(c) Ablation on buffer size (d) Ablation on buffer size

(e) Run time for FADAS (f) Run time for FADASda

Figure 1. Several ablation studies based on training ResNet-18
model on CIFAR-10 data under large worst-case delay setting.

ure 1 (d) shows that as the buffer size M increases, i.e., the
number of clients contributing to one step of global update
increases, the test accuracy also increases.

Moreover, we simulate the running time (similar to the
setting for Table 7) for different buffer sizes M to investi-
gate the time efficiency for adopting different buffer sizes.
Figure 1 (e) and (f) show the run time for FADAS and
delay-adaptive FADAS. They reveal that a smaller buffer
size (M = 3) may have less training time to achieve a target
accuracy, e.g., 70%. These results demonstrate that using
smaller buffer sizes may yield higher accuracy in the early
stage of training. In conjunction with the results shown in
Figure 1 (c) and (d), we think there is a trade-off between
the time of reaching some initial target accuracy (that is
slightly lower than the final accuracy) and the final accuracy
with regard to the buffer size. A larger buffer size M may
yield improved final accuracy at convergence, but it also
means that the server needs to wait for slower clients and
there are less frequent updates of the global model, so the
training speed at initial rounds can be slower.

7. Conclusion
In this paper, we propose FADAS, a novel asynchronous
FL method that addresses the challenges of asynchronous
updates in adaptive federated optimization. Based on the
standard FADAS, we further integrate delay-adaptive learn-
ing rates to enhance the resiliency to stragglers with large
delays. We theoretically establish the convergence rate
for both standard and delay-adaptive FADAS under non-
convex stochastic settings. Our theoretical analysis indi-
cates that the delay-adaptive algorithm substantially reduces
the impact of severe worst-case delays on the convergence
rate. Empirical evaluations across multiple tasks affirm
that FADAS outperforms existing asynchronous FL meth-
ods and offers improved training efficiency compared to
synchronous adaptive FL methods.
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A. Convergence analysis for adaptive asynchronous FL
Proof of Theorem 5.6. Here we directly start with general ϖ1 ↑ 0 cases. Following several previous works studied
centralized and federated adaptive methods (Chen et al., 2018; Wang et al., 2022b), we adopt an auxiliary Lyapunov
sequence zt, and assume x0 = x1, then for each t ↑ 1, we have

zt = xt +
ϖ1

1↓ ϖ1
(xt ↓ xt↔1) =

1

1↓ ϖ1
xt ↓

ϖ1

1↓ ϖ1
xt↔1. (10)

For the difference between zt+1 and zt, we have

zt+1 ↓ zt =
1

1↓ ϖ1
(xt+1 ↓ xt)↓

ϖ1

1↓ ϖ1
(xt ↓ xt↔1)

=
1

1↓ ϖ1
· ϑ

mt
↘
v̂t + ϱ

↓
ϖ1

1↓ ϖ1
· ϑ

mt↔1
v̂t↔1 + ϱ

=
1

1↓ ϖ1
· ϑ

1
↘
v̂t + ϱ

[ϖ1mt↔1 + (1↓ ϖ1)!t]↓
ϖ1

1↓ ϖ1
· ϑ

mt↔1
v̂t↔1 + ϱ

= ϑ
!t

↘
v̂t + ϱ

↓
ϖ1

1↓ ϖ1
·


ϑ

↘
v̂t + ϱ

↓
ϑ

v̂t↔1 + ϱ


mt↔1, (11)

where !t = ↓
ϖl

M

∑
i↓Mt

∑K↔1
k=0 gi

t↔ω i
t ,k

= ↓
ϖl

M

∑
i↓Mt

∑K↔1
k=0 ↔Fi(xi

t↔ω i
t ,k

; ε) and Mt be the set that include client
send the local updates to the server at global round t.

From Assumption 5.1, f is L-smooth, taking the total expectation over all previous round, 0, 1, ..., t↓ 1 on the auxiliary
sequence zt,

E[f(zt+1)↓ f(zt)]

= E[f(zt+1)]↓ f(zt)]

≃ E[∝↔f(zt), zt+1 ↓ zt′] +
L

2
E[⇑zt+1 ↓ zt⇑

2]

= E


↔f(xt), ϑ
!t

↘
v̂t + ϱ



  
I1

↓E


↔f(zt),
ϖ1

1↓ ϖ1
· ϑ


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1



  
I2

+
ϑ2L

2
E
∥∥∥∥

!t
↘
v̂t + ϱ

↓
ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1

∥∥∥∥
2

  
I3

+ E


(↔f(zt)↓↔f(xt)), ϑ
!t

↘
v̂t + ϱ



  
I4

. (12)

Bounding I1 Denote a sequence !̄t = ↓
ϖl

N

∑
i↓[N ]

∑K↔1
k=0 gi

t↔ω i
t ,k

= ↓
ϖl

N

∑
i↓[N ]

∑K↔1
k=0 ↔Fi(xi

t↔ω i
t ,k

; ε), where ε ∞ Di.
For I1, there is

I1 = ϑE


↔f(xt),
!t

↘
v̂t + ϱ



= ϑE


↔f(xt),
!̄t

↘
v̂t + ϱ



= ϑE


↔f(xt)
↘
v̂t + ϱ

, !̄t + ϑlK↔f(xt)↓ ϑlK↔f(xt)



= ↓ϑϑlKE
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+ ϑE


↔f(xt)
↘
v̂t + ϱ

, !̄t + ϑlK↔f(xt)


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= ↓ϑϑlKE
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+ ϑE


↔f(xt)
↘
v̂t + ϱ

,↓
ϑl
N

∑

i↓[N ]

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
; εi) +

ϑlK

N

∑

i↓[N ]

↔Fi(xt)


, (13)

where the second equality holds due to the characteristic of uniform arrivals (see Assumption 5.4), thus E(!t) = !̄t. The
last inequality holds by the definition of !̄t and the fact of the objective function f(x) = 1

N

∑N
i=1 Fi(x). By the fact of

∝a, b′ = 1
2 [⇑a⇑

2 + ⇑b⇑2 ↓ ⇑a↓ b⇑2], for second term in (13), we have

ϑE


↔f(xt)
↘
v̂t + ϱ

,↓
ϑl
N

∑

i↓[N ]

K↔1∑

k=0

gi
t↔ω i

t ,k
+

ϑlK

N

∑

i↓[N ]

↔Fi(xt)



= ϑE
 ↘

ϑlK

(
↘
v̂t + ϱ)1/2

↔f(xt),↓

↘
ϑlK

(
↘
v̂t + ϱ)1/2

1

NK

∑

i↓[N ]

K↔1∑

k=0

(gi
t↔ω i

t ,k
↓↔Fi(xt))



= ϑE
 ↘

ϑlK

(
↘
v̂t + ϱ)1/2

↔f(xt),↓

↘
ϑlK

(
↘
v̂t + ϱ)1/2

1

NK

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))



=
ϑϑlK

2
E
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+
ϑϑl

2N2K
E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2

↓
ϑϑl

2N2K
E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (14)

where the second equality holds by E[gi
t↔ω i

t ,k
] = E[↔Fi(xi

t↔ω i
t ,k

)]. Then for the second term in Eq. (14) , we have

ϑϑl
2N2K

E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2

≃
ϑϑl

2N2Kϱ
E
∥∥∥∥

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2

≃
ϑϑl
2Nϱ

∑

i↓[N ]

K↔1∑

k=0

E[⇑↔Fi(xt)↓↔Fi(x
i
t↔ω i

t ,k
)⇑2]

≃
ϑϑl
Nϱ

∑

i↓[N ]

K↔1∑

k=0


E[⇑↔Fi(xt)↓↔Fi(xt↔ω i

t
)⇑2] + E[⇑↔Fi(xt↔ω i

t
)↓↔Fi(x

i
t↔ω i

t ,k
)⇑2]



≃
ϑϑl
Nϱ

∑

i↓[N ]

K↔1∑

k=0


L2E[⇑xt ↓ xt↔ω i

t
⇑
2] + L2E[⇑xt↔ω i

t
↓ xi

t↔ω i
t ,k

⇑
2]


, (15)

where the second inequality holds by ⇒ai, ⇑
∑n

i=1 ai⇑
2
≃ n

∑n
i=1 ⇑ai⇑

2, and the last inequality holds by Assumption 5.1.
For the second term in Eq. (15), following by Lemma C.5, there is

E[⇑xt↔ω i
t
↓ xi

t↔ω i
t ,k

⇑
2] = E

∥∥∥∥
k↔1∑

m=0

ϑlg
i
t↔ω i

t ,m

∥∥∥∥
2

≃ 5Kϑ2l (φ
2 + 6Kφ2

g) + 30K2ϑ2l E[⇑↔f(xt↔ω i
t
)⇑2]. (16)

For the first term in Eq. (15), since by ⇒ai, ⇑
∑n

i=1 ai⇑
2
≃ n

∑n
i=1 ⇑ai⇑

2, there is

E[⇑xt ↓ xt↔ω i
t
⇑
2] = E

∥∥∥∥
t↔1∑

s=t↔ω i
t

(xs+1 ↓ xs)

∥∥∥∥
2

≃ ω it

t↔1∑

s=t↔ω i
t

E[⇑xs+1 ↓ xs⇑
2] ≃ ω it

t↔1∑

s=t↔ω i
t

E
∥∥∥∥ϑ

ms
↘
v̂s + ϱ

∥∥∥∥
2
, (17)

14



FADAS: Towards Federated Adaptive Asynchronous Optimization

then by decomposing stochastic noise,

E[⇑xt ↓ xt↔ω i
t
⇑
2]

≃
ϑ2ω it
ϱ2

t↔1∑

s=t↔ω i
t

E[Es⇑ms⇑
2]]

=
ϑ2ω it
ϱ2

t↔1∑

s=t↔ω i
t

E

Es

∥∥∥∥(1↓ ϖ1)
s∑

u=1

ϖs↔u
1

1

M

∑

j↓Mu

K↔1∑

k=0

ϑl[g
j

u↔ωj
u,k

↓↔Fj(x
j

u↔ωj
u,k

) +↔Fj(x
j

u↔ωj
u,k

)]

∥∥∥∥
2

≃
2ϑ2ω it
ϱ2

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1

Kϑ2l
M

φ2 +
2ϑ2ω it
ϱ2

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1

ϑ2l
M2

E
∥∥∥∥

∑

j↓Mu

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2

≃
2ϑ2(ω it )

2

ϱ2
Kϑ2l
M

φ2 +
2ϑ2ω it
ϱ2

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1

ϑ2l
M2

E
∥∥∥∥

∑

j↓Mu

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2
, (18)

where the first inequality holds by decomposing the momentum ms, i.e., ms = (1 ↓ ϖ1)
∑s

u=1 ϖ
s↔u
1 !u = (1 ↓

ϖ1)
∑s

u=1 ϖ
s↔u
1

1
M

∑
j↓Mu

∑K↔1
k=0 ϑlg

j

u↔ωj
u,k

. The second inequality holds by ⇑a+ b⇑2 ≃ 2⇑a⇑2 + 2⇑b⇑2 and the fact of

E[·]] = E[·], and the third inequality holds by (1↓ ϖ1)
∑s

u=1 ϖ
s↔u
1 ≃ 1.

Following Lemma C.2, 1
CG

⇑x⇑ ≃
∥∥ x→

v̂t+ϑ

∥∥ ≃
1
ϑ ⇑x⇑ and CG = ϑlKG+ ϱ, plugging Eq. (14), Eq. (15) and Eq. (16) to

(13), we have

E[I1] ≃↓
ϑϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
ϑϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑ3l ϑ
3K2L2

Mϱ3
φ2 1

N

N∑

i=1

(ω it )
2

+
2ϑ3l ϑ

3KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 E

∥∥∥∥
∑

j↓Mu

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2
. (19)

Bounding I2

I2 = ↓E


↔f(zt),
ϖ1

1↓ ϖ1
· ϑ


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1



= ↓ϑE


↔f(zt)↓↔f(xt) +↔f(xt),
ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1



≃ ϑE

⇑↔f(xt)⇑

∥∥∥∥
ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1

∥∥∥∥



+ ϑ2LE
∥∥∥∥

ϖ1

1↓ ϖ1

mt↔1
v̂t↔1 + ϱ

∥∥∥∥ ·

∥∥∥∥
ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1

∥∥∥∥



≃
ϖ1

1↓ ϖ1
ϑlϑKG2E

∥∥∥∥
1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
1


+

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2l ϑ

2K2G2LE
∥∥∥∥

1
↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
1


, (20)

where the first inequality holds by ∝a, b′ ≃ ⇑a⇑⇑b⇑ and L-smoothness of f , i.e., ⇑↔f(zt)↓↔f(xt)⇑ ≃ L⇑zt ↓ xt⇑, and
by the definition of zt, there is zt ↓ xt =

ς1

1↔ς1

mt↑1↘
v̂t↑1+ϑ

. The second inequality holds by Lemma C.2.

Bounding I3

I3 =
ϑ2L

2
E
∥∥∥∥

!t
↘
v̂t + ϱ

↓
ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1

∥∥∥∥
2
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≃ ϑ2LE
∥∥∥∥

!t
↘
v̂t + ϱ

∥∥∥∥
2

+ ϑ2LE
∥∥∥∥

ϖ1

1↓ ϖ1


1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ


mt↔1

∥∥∥∥
2

≃ ϑ2LE
∥∥∥∥

!t
↘
v̂t + ϱ

∥∥∥∥
2

+ ϑ2L
ϖ2
1

(1↓ ϖ1)2
ϑ2l K

2G2E
∥∥∥∥

1
↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
2

≃
ϑ2L

ϱ2
E[⇑!t⇑

2] + ϑ2L
ϖ2
1

(1↓ ϖ1)2
ϑ2l K

2G2E
∥∥∥∥

1
↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
2
, (21)

where the first inequality follows by Cauchy-Schwarz inequality, i.e., ⇒ai, ⇑
∑n

i=1 ai⇑
2
≃ n

∑n
i=1 ⇑ai⇑

2, and the second
one holds by Lemma C.2.

Bounding I4

I4 = E


(↔f(zt)↓↔f(xt)), ϑ
!t

↘
v̂t + ϱ



≃ E

⇑↔f(zt)↓↔f(xt)⇑

∥∥∥∥ϑ
!t

↘
v̂t + ϱ

∥∥∥∥



≃ LE

⇑zt ↓ xt⇑

∥∥∥∥ϑ
!t

↘
v̂t + ϱ

∥∥∥∥



≃
ϑ2L

2
E
∥∥∥∥

ϖ1

1↓ ϖ1

mt
↘
v̂t + ϱ

∥∥∥∥
2

+
ϑ2L

2
E
∥∥∥∥

!t
↘
v̂t + ϱ

∥∥∥∥
2

≃
ϑ2L

2ϱ2
ϖ2
1

(1↓ ϖ1)2
E[⇑mt⇑

2] +
ϑ2L

2ϱ2
E[⇑!t⇑

2], (22)

where the second inequality holds by Assumption 5.1 (the L-smoothness of f ), and the third inequality holds by the
definition of zt and the inequality ⇑a⇑⇑b⇑ ≃

1
2⇑a⇑

2 + 1
2⇑b⇑

2.

Merging pieces. Therefore, by merging pieces together, we have

E[f(zt+1)↓ f(zt)] = E[I1 + I2 + I3 + I4]

≃↓
ϑϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
ϑϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑ3ϑ3l K
2L2

Mϱ3
φ2 1

N

N∑

i=1

(ω it )
2

+
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 E

∥∥∥∥
∑

j↓Mu

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2

+
ϖ1

1↓ ϖ1
ϑϑlKG2E

∥∥∥∥
1

↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
1


+

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2ϑ2l K

2G2LE
∥∥∥∥

1
↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
1



+
ϑ2L

ϱ2
E[⇑!t⇑

2] +
ϖ2
1

(1↓ ϖ1)2
ϑ2ϑ2l K

2G2LE
∥∥∥∥

1
↘
v̂t + ϱ

↓
1

v̂t↔1 + ϱ

∥∥∥∥
2

+
ϑ2L

2ϱ2
ϖ2
1

(1↓ ϖ1)2
E[⇑mt⇑

2] +
ϑ2L

2ϱ2
E[⇑!t⇑

2]. (23)

Denote a few sequences: Gt =
∑

j↓Mt

∑K↔1
k=0 ↔Fj(x

j

t↔ωj
t ,k

) and Vt =
1→
v̂t+ϑ

↓
1↘

v̂t↑1+ϑ
, then re-write and organize the

above inequality, we have

E[f(zt+1)↓ f(zt)]

≃↓
ϑϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
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+
ϑϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑ3ϑ3l K
2L2

Mϱ3
φ2 1

N

N∑

i=1

(ω it )
2

+
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 E[⇑Gu⇑

2]

+
ϖ1

1↓ ϖ1
ϑϑlKG2E[⇑Vt⇑1] +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2ϑ2l K

2G2LE[⇑Vt⇑1] +
ϖ2
1

(1↓ ϖ1)2
ϑ2ϑ2l K

2G2LE[⇑Vt⇑
2]

+
3ϑ2L

2ϱ2
E[⇑!t⇑

2] +
ϑ2L

2ϱ2
ϖ2
1

(1↓ ϖ1)2
E[⇑mt⇑

2]. (24)

Summing over t = 1 to T , we have

E[f(zT+1)↓ f(z1)]

≃↓
ϑϑlK

2CG

T∑

t=1

E[⇑↔f(xt)⇑
2] +

ϑϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

T∑

t=1

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]



+
2ϑ3ϑ3l K

2L2

Mϱ3
φ2 1

N

N∑

i=1

T∑

t=1

(ω it )
2

  
A0

+
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 E[⇑Gu⇑

2]

  
A1

+


ϖ1

1↓ ϖ1
ϑϑlKG2 +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2ϑ2l K

2G2L

 T∑

t=1

E[⇑Vt⇑1] +
ϖ2
1

(1↓ ϖ1)2
ϑ2ϑ2l K

2G2L
T∑

t=1

E[⇑Vt⇑
2]

+
3ϑ2L

2ϱ2

T∑

t=1

E[⇑!t⇑
2] +

ϑ2L

2ϱ2
ϖ2
1

(1↓ ϖ1)2

T∑

t=1

E[⇑mt⇑
2]

↓
ϑl

2KCG

T∑

t=1

E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (25)

we have the following for term A0,

A0 =
2ϑ3ϑ3l K

2L2

Mϱ3
φ2 1

N

N∑

i=1

T∑

t=1

(ω it )
2
≃

2ϑ3ϑ3l K
2L2

Mϱ3
φ2ωavgωmaxT. (26)

By Lemma C.6, we have the following for term A1,

A1 =
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 E[⇑Gu⇑

2]

=
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1


3M(N ↓M)

N ↓ 1

·


5K3L2ϑ2l (φ

2 + 6Kφ2
g) + (30K4L2ϑ2l +K2)

1

N

N∑

j=1

E[⇑↔f(xu↔ωj
u
)⇑2] +K2φ2

g



+
M(M ↓ 1)

N(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2

=
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1


3M(N ↓M)

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]



  
A2
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+
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1


3M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)

1

N

N∑

j=1

E[⇑↔f(xu↔ωj
u
)⇑2]



  
A3

+
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1


M(M ↓ 1)

N(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

u↔ωj
u,k

)

∥∥∥∥
2

  
A4

= A2 +A3 +A4. (27)

For term A2, then re-organizing it we have

A2 ≃
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

(ω it )
2


3M(N ↓M)

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]



≃
ϑ3ϑ3l KL2

M2ϱ3


6M(N ↓M)

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]


T ωavgωmax. (28)

For term A3, we have

A3 ≃
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1


3M(N ↓M)

N ↓ 1
· (30K4L2ϑ2l +K2)

1

N

N∑

j=1

E[⇑↔f(xu↔ωj
u
)⇑2]



≃
ϑ3ϑ3l KL2

M2ϱ3
ω2max

T∑

t=1


6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)

1

N

N∑

j=1

E[⇑↔f(xt↔ωj
t
)⇑2]



≃
ϑ3ϑ3l KL2

M2ϱ3
ω3max

6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)

T∑

t=1

E[⇑↔f(xt)⇑
2], (29)

where the first inequality in Eq. (29) holds due to: 1) ω it ≃ ωmax and 2) for a positive sequence at,
∑T

t=1

∑t↔1
s=t↔ω i

t
(1 ↓

ϖ1)
∑s

u=1 ϖ
s↔u
1 au ≃ ωmax(1↓ ϖ1)

∑T
t=1

∑t
u=1 ϖ

t↔u
1 au ≃ ωmax

∑T
t=1 at. In details,

T∑

t=1

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1 au

=
T∑

t=1

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)(ϖ
s↔1
1 a1 + ϖs↔2

1 a2 + · · ·+ ϖ0
1as)

=
T∑

t=1

(1↓ ϖ1)

 t↔1∑

s=t↔ω i
t

ϖs↔1
1 a1 +

t↔1∑

s=t↔ω i
t

ϖs↔2
1 a2 + · · ·+

t↔1∑

s=t↔ω i
t

ϖ0
1as



≃ ωmax

T∑

t=1

(1↓ ϖ1)
t∑

u=1

ϖt↔u
1 au

≃ ωmax

T∑

t=1

at. (30)

The second inequality in Eq. (29) hold by the fact of
∑T

t=1
1
N

∑N
j=1 E[⇑↔f(xt↔ωj

t
)⇑2] ≃ ωmax

∑T
t=1 E[⇑↔f(xt)⇑2].

Similar, for term A4, we have

A4 =
2ϑ3ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ω it

t↔1∑

s=t↔ω i
t

(1↓ ϖ1)
s∑

u=1

ϖs↔u
1

M(M ↓ 1)

N(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

t↔ωj
t ,k

)

∥∥∥∥
2
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≃
ϑ3ϑ3l KL2

M2ϱ3
ω2max

2M(M ↓ 1)

N(N ↓ 1)

T∑

t=1

E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

t↔ωj
t ,k

)

∥∥∥∥
2

, (31)

With the term of A0 to A4, by Lemma C.3 and Lemma C.4, we have the following for Eq. (25),

E[f(zT+1)↓ f(z1)]

≃↓
ϑϑlK

2CG

T∑

t=1

E[⇑↔f(xt)⇑
2] +

ϑϑlKL2

ϱ


5Kϑ2l T (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

T∑

t=1

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]



+
2ϑ3ϑ3l K

2L2ωavgωmaxT

Mϱ3
φ2 +

ϑ3ϑ3l KL2

M2ϱ3
ω3max

6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)

T∑

t=1

E[⇑↔f(xt)⇑
2]

+
ϑ3ϑ3l KL2

M2ϱ3
·
6M(N ↓M)

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ] · T ωavgωmax

+


ϖ1

1↓ ϖ1
ϑϑlKG2 +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2ϑ2l K

2G2L


d

ϱ
+

ϖ2
1

(1↓ ϖ1)2
ϑ2ϑ2l K

2G2L
d

ϱ2

+


3ϑ2L

2ϱ2
+

ϑ2L

2ϱ2
ϖ2
1

(1↓ ϖ1)2

 T∑

t=1


2ϑ2l K

M
φ2 +

2ϑ2l (N ↓M)

NM(N ↓ 1)


15NK3L2ϑ2l (φ

2 + 6Kφ2
g) + (90K4L2ϑ2l + 3K2)

·

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2] + 3NK2φ2

g


+

2ϑ2l (M ↓ 1)

NM(N ↓ 1)
E
∥∥∥∥

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
2ϑ3ϑ3l KL2

M2ϱ3
ω2max

M(M ↓ 1)

N(N ↓ 1)

T∑

t=1

E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

t↔ωj
t ,k

)

∥∥∥∥
2

↓
ϑϑl

2KN2CG

T∑

t=1

E
∥∥∥∥

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (32)

thus

E[f(zT+1)↓ f(z1)]

≃↓
ϑϑlK

2CG

T∑

t=1

E[⇑↔f(xt)⇑
2] +

ϑϑlKL2

ϱ


5Kϑ2l T (φ

2 + 6Kφ2
g) + 30K2ϑ2l ωmax

T∑

t=1

E[⇑↔f(xt)⇑
2]



+
2ϑ3ϑ3l K

2L2ωavgωmaxT

Mϱ3
φ2 +

ϑ3ϑ3l KL2

M2ϱ3
ω3max

6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)

T∑

t=1

E[⇑↔f(xt)⇑
2]

+
ϑ3ϑ3l KL2

M2ϱ3
6M(N ↓M)

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ] · T ωavgωmax

+


ϖ1

1↓ ϖ1
ϑϑlKG2 +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑ2ϑ2l K

2G2L


d

ϱ
+

ϖ2
1

(1↓ ϖ1)2
ϑ2ϑ2l K

2G2L
d

ϱ2

+


3ϑ2L

ϱ2
+

ϑ2L

ϱ2
ϖ2
1

(1↓ ϖ1)2

 T∑

t=1


Kϑ2l
M

φ2 +
ϑ2l (N ↓M)

NM(N ↓ 1)


15NK3L2ϑ2l (φ

2 + 6Kφ2
g) + 3NK2φ2

g



+


3ϑ2L

ϱ2
+

ϑ2L

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑ2l (N ↓M)

M(N ↓ 1)
(90K4L2ϑ2l + 3K2)Nωmax

T∑

t=1

E[⇑↔f(xt)⇑
2]

+


3ϑ2L

ϱ2
+

ϑ2L

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑ2l (M ↓ 1)

NM(N ↓ 1)
+

2ϑ3ϑ3l KL2

M2ϱ3
ω2max

M(M ↓ 1)

N(N ↓ 1)
↓

ϑϑl
2KN2CG



·

T∑

t=1

E
∥∥∥∥

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
. (33)
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If the learning rates satisfy ϑl ≃
1

8KL and

ϑϑl ≃
ϱ2M(N ↓ 1)

4CGN(M ↓ 1)KL


3 +

ϖ2
1

(1↓ ϖ1)2

↔1

, ϑϑl ≃


ϱ3M(N ↓ 1)

8CGN(M ↓ 1)

1

Lωmax
,

ϑl ≃

↘
ϱ

↘
360CGωmaxKL

, ϑϑl ≃
ϱ2M(N ↓ 1)

60CGN(N ↓M)KLωmax


3 +

ϖ2
1

(1↓ ϖ1)2

↔1

,

ϑϑl ≃


ϱ3M(N ↓ 1)

12

CGN(M ↓ 1)ω3maxKL

, (34)

then we have

3ϑ2L

ϱ2
+

ϑ2L

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑ2l (M ↓ 1)

NM(N ↓ 1)
+

2ϑ3ϑ3l KL2

M2ϱ3
ω2max

M(M ↓ 1)

N(N ↓ 1)
↓

ϑϑl
2KN2CG

≃ 0

ϑϑlKL2

ϱ
30K2ϑ2l ωmax +


3ϑ2L

ϱ2
+

ϑ2L

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑ2l (N ↓M)

M(N ↓ 1)
(90K4L2ϑ2l + 3K2)Nωmax

+
ϑ3ϑ3l KL2

M2ϱ3
ω3max

6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2) ≃

ϑϑlK

4CG
. (35)

Thus Eq. (33) becomes
∑T

t=1 E[⇑↔f(xt)⇑2]

T
≃

4CG

ϑϑlKT
[f(z1)↓ E[f(zT+1)]] + 20CGϱ

↔1L2Kϑ2l (φ
2 + 6Kφ2

g) +
8CGϑ2ϑ2l KL2ωavgωmax

Mϱ3
φ2

+
24CGϑ2ϑ2l L

2ωavgωmax

Mϱ3
N ↓M

N ↓ 1
· [5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]

+


ϖ1

1↓ ϖ1
G2 +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑϑlKG2L


4CGd

T ϱ
+

ϖ2
1

(1↓ ϖ1)2
ϑϑlKG2L

4CGd

T ϱ2

+ 4CG


3ϑL

ϱ2
+

ϑL

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑl
M

φ2 +
ϑl(N ↓M)

M(N ↓ 1)
[15K2L2ϑ2l (φ

2 + 6Kφ2
g) + 3Kφ2

g ]


.

(36)

With CG = ϑlKG+ ϱ, Eq. (36) becomes
∑T

t=1 E[⇑↔f(xt)⇑2]

T

≃
4(ϑlKG+ ϱ)

ϑϑlKT
[f(z1)↓ E[f(zt+1)]] + 20(ϑlKG+ ϱ)ϱ↔1L2Kϑ2l (φ

2 + 6Kφ2
g)

+
8(ϑlKG+ ϱ)ϑ2ϑ2l KL2ωavgωmax

Mϱ3
φ2 +

24(ϑlKG+ ϱ)ϑ2ϑ2l L
2ωavgωmax

Mϱ3
N ↓M

N ↓ 1

· [5K3L2ϑ2l (φ
2 + 6Kφ2

g) +K2φ2
g ]

+


ϖ1

1↓ ϖ1
G2 +

ϖ2
1

(1↓ ϖ1)2ϱ
ϑϑlKG2L


4(ϑlKG+ ϱ)d

T ϱ
+

ϖ2
1

(1↓ ϖ1)2
ϑϑlKG2L

4(ϑlKG+ ϱ)d

T ϱ2

+ 4(ϑlKG+ ϱ)


3ϑL

ϱ2
+

ϑL

ϱ2
ϖ2
1

(1↓ ϖ1)2


ϑl
M

φ2 +
ϑl(N ↓M)

M(N ↓ 1)
[15K2L2ϑ2l (φ

2 + 6Kφ2
g) + 3Kφ2

g ]


. (37)

For ϖ1 = 0, with the definition of F = f(x1)↓minx f(x), we have the following bound
∑T

t=1 E[⇑↔f(xt)⇑2]

T

≃
4(ϑlKG+ ϱ)

ϑϑlKT
[f(z1)↓ E[f(zt+1)]] + 20(ϑlKG+ ϱ)ϱ↔1L2Kϑ2l (φ

2 + 6Kφ2
g)

+
8(ϑlKG+ ϱ)ϑ2ϑ2l KL2ωavgωmax

Mϱ3
φ2 +

24(ϑlKG+ ϱ)ϑ2ϑ2l KL2ωavgωmax

Mϱ3
N ↓M

N ↓ 1
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· [5ϑ2l K
2L2(φ2 + 6Kφ2

g) +Kφ2
g ]

+ 12(ϑlKG+ ϱ)
ϑL

ϱ2


ϑl
M

φ2 +
ϑl(N ↓M)

M(N ↓ 1)
[15ϑ2l K

2L2(φ2 + 6Kφ2
g) + 3Kφ2

g ]


. (38)

This concludes the proof.

Proof of Corollary 5.7. From Eq. (38), we have the following bound
∑T

t=1 E[⇑↔f(xt)⇑2]

T

= O


(ϑlKG+ ϱ)

ϑϑlKT
F + (ϑlKG+ ϱ)

ϑ2l KL2(φ2 +Kφ2
g)

ϱ

+
(ϑlKG+ ϱ)ϑ2ϑ2l KL2ωavgωmax

Mϱ3
φ2 +

(ϑlKG+ ϱ)ϑ2ϑ2l L
2ωavgωmax

Mϱ3
N ↓M

N ↓ 1
[K3L2ϑ2l (φ

2 +Kφ2
g) +K2φ2

g ]

+ (ϑlKG+ ϱ)
ϑϑlL

Mϱ2


φ2 +

N ↓M

N ↓ 1
Kφ2

g


+ (ϑlKG+ ϱ)

ϑϑlKL

Mϱ2
N ↓M

N ↓ 1
[ϑ2l KL2(φ2 +Kφ2

g)]


. (39)

Reorganizing Eq. (39), particularly merging the stochastic variance and the global variance, we get
∑T

t=1 E[⇑↔f(xt)⇑2]

T

= O


(ϑlKG+ ϱ)

ϑϑlKT
F + (ϑlKG+ ϱ)

ϑ2l KL2

ϱ
(φ2 +Kφ2

g)

+ (ϑlKG+ ϱ)
ϑ2ϑ2l KL2

Mϱ3


ωavgωmaxφ

2 +
N ↓M

N ↓ 1
ωavgωmaxKφ2

g



+
(ϑlKG+ ϱ)ϑ2ϑ4l K

3L4ωavgωmax

Mϱ3
N ↓M

N ↓ 1
(φ2 +Kφ2

g)

+ (ϑlKG+ ϱ)
ϑϑlL

Mϱ2


φ2 +

N ↓M

N ↓ 1
Kφ2

g


+ (ϑlKG+ ϱ)

ϑϑ3l K
2L3

Mϱ2
N ↓M

N ↓ 1
(φ2 +Kφ2

g)


. (40)

By choosing ϑ = !(
↘
M) and ϑl = !

( →
F↘

TK(ϱ2+Kϱ2
g)L

)
, which implies ϑϑl = !

( →
FM↘

TK(ϱ2+Kϱ2
g)L

)
, and ϑlKG =

!
( →

FKG↘
T (ϱ2+Kϱ2

g)L

)
,

∑T
t=1 E[⇑↔f(xt)⇑2]

T

= O


FG

T
↘
M

+
ϱ

F(φ2 +Kφ2

g)L
↘
TKM

+

 ↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FL

T ϱ

+

 ↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FLωavgωmax

T ϱ3
+

N ↓M

N ↓ 1

FLωavgωmax

T ϱ3



+

 ↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ

 ↘
FLφ

↘
TKM

+
N ↓M

N ↓ 1

↘
FLφg
↘
TM


+

C1

T 3/2
+

C2

T 2


. (41)

We again generalize terms with smaller T dependency orders, then we have
∑T

t=1 E[⇑↔f(xt)⇑2]

T

= O


FG

T
↘
M

+
ϱ
↘
FLφ

↘
TKM

+
ϱ
↘
FLφg

↘
TM

+
FL

T
+

FLωavgωmax

T ϱ2
+

N ↓M

N ↓ 1

FLωavgωmax

T ϱ2
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+
FG

T
↘
M

+
ϱ
↘
FLφ

↘
TKM

+
N ↓M

N ↓ 1

FG

T
↘
M

+
N ↓M

N ↓ 1

ϱ
↘
FLφg

↘
TM

+
C1

T 3/2
+

C2

T 2



= O

 ↘
Fφ

↘
TKM

+

↘
Fφg

↘
TM

+
F

T
+

FG

T
↘
M

+
Fωmaxωavg

T


. (42)

This concludes the proof for Corollary 5.7.

B. Convergence analysis for delay adaptive asynchronous FL
Proof of Theorem 5.9. For the proof of delay adaptive, for proof convenience, we conduct analysis under the case that
ϖ1 = 0. From Assumption 5.1, f is L-smooth, then taking conditional expectation at time t on the auxiliary sequence xt,
we have

E[f(xt+1)↓ f(xt)]

= E[f(xt+1)↓ f(xt)]

≃ E[∝↔f(xt),xt+1 ↓ xt′] +
L

2
E[⇑xt+1 ↓ xt⇑

2]

= E


↔f(xt), ϑt
!t

↘
v̂t + ϱ



  
I1

+
ϑ2tL

2
E
∥∥∥∥

!t
↘
v̂t + ϱ

∥∥∥∥
2

  
I2

. (43)

Bounding I1 We have

I1 = ϑtE


↔f(xt),
!t

↘
v̂t + ϱ



= ϑtE


↔f(xt),
!̄t

↘
v̂t + ϱ



= ϑtE


↔f(xt)
↘
v̂t + ϱ

, !̄t + ϑlK↔f(xt)↓ ϑlK↔f(xt)



= ↓ϑtϑlKE
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+ ϑtE


↔f(xt)
↘
v̂t + ϱ

, !̄t + ϑlK↔f(xt)



= ↓ϑtϑlKE
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+ ϑtE


↔f(xt)
↘
v̂t + ϱ

,↓
1

N

∑

i↓[N ]

K↔1∑

k=0

ϑlg
i
t↔ω i

t ,k
+

ϑlK

N

∑

i↓[N ]

↔Fi(xt)


, (44)

where !̄t = ↓
1
N

∑
i↓[N ]

∑K↔1
k=0 ϑlgi

t↔ω i
t ,k

. For the inner product term in (44), by the fact of ∝a, b′ = 1
2 [⇑a⇑

2 + ⇑b⇑2 ↓

⇑a↓ b⇑2], we have

ϑtE


↔f(xt)
↘
v̂t + ϱ

,↓
1

N

∑

i↓[N ]

K↔1∑

k=0

ϑlg
i
t↔ω i

t ,k
+

ϑlK

N

∑

i↓[N ]

↔Fi(xt)



= ϑtE
 ↘

ϑlK

(
↘
v̂t + ϱ)1/2

↔f(xt),↓

↘
ϑlK

(
↘
v̂t + ϱ)1/2

1

NK

∑

i↓[N ]

K↔1∑

k=0

(gi
t↔ω i

t ,k
↓↔Fi(xt))



= ϑtE
 ↘

ϑlK

(
↘
v̂t + ϱ)1/2

↔f(xt),↓

↘
ϑlK

(
↘
v̂t + ϱ)1/2

1

NK

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))



=
ϑtϑlK

2
E
∥∥∥∥

↔f(xt)

(
↘
v̂t + ϱ)1/2

∥∥∥∥
2

+
ϑtϑl

2N2K
E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2
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↓
ϑtϑl

2N2K
E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (45)

where second equation holds by E[gi
t↔ω i

t ,k
] = E[↔F (xi

t↔ω i
t ,k

)], for the second term in Eq. (45), we have

ϑtϑl
2N2K

E
∥∥∥∥

1

(
↘
v̂t + ϱ)1/2

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2

≃
ϑtϑl

2N2Kϱ
E
∥∥∥∥

∑

i↓[N ]

K↔1∑

k=0

(↔Fi(x
i
t↔ω i

t ,k
)↓↔Fi(xt))

∥∥∥∥
2

≃
ϑtϑl
2Nϱ

∑

i↓[N ]

K↔1∑

k=0

E[⇑↔Fi(xt)↓↔Fi(x
i
t↔ω i

t ,k
)⇑2]

≃
ϑtϑl
Nϱ

∑

i↓[N ]

K↔1∑

k=0


E[⇑↔Fi(xt)↓↔Fi(xt↔ω i

t
)⇑2] + E[⇑↔Fi(xt↔ω i

t
)↓↔Fi(x

i
t↔ω i

t ,k
)⇑2]



≃
ϑtϑl
Nϱ

∑

i↓[N ]

K↔1∑

k=0


L2E[⇑xt ↓ xt↔ω i

t
⇑
2] + L2E[⇑xt↔ω i

t
↓ xi

t↔ω i
t ,k

⇑
2]


. (46)

where the first second inequality holds by ⇒ai, ⇑
∑n

i=1 ai⇑
2
≃ n

∑n
i=1 ⇑ai⇑

2, and the last inequality holds by Assumption
5.1. For the second term in Eq. (46), following by Lemma C.5, there is

E[⇑xt↔ω i
t
↓ xi

t↔ω i
t ,k

⇑
2] = E

∥∥∥∥
k↔1∑

m=0

ϑlg
i
t↔ω i

t ,m

∥∥∥∥
2

≃ 5Kϑ2l (φ
2 + 6Kφ2

g) + 30K2ϑ2l E[⇑↔f(xt↔ω i
t
)⇑2]. (47)

For the first term in Eq. (46), we have

E[⇑xt ↓ xt↔ω i
t
⇑
2] = E

∥∥∥∥
t↔1∑

s=t↔ω i
t

(xs+1 ↓ xs)

∥∥∥∥
2

= E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
!s

↘
v̂s + ϱ

∥∥∥∥
2

≃
1

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs!s

∥∥∥∥
2

=
1

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
1

M

∑

j↓Ms

!j
s

∥∥∥∥
2

=
1

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
1

M

∑

j↓Ms

K↔1∑

k=0

ϑlg
j

s↔ωj
s ,k

∥∥∥∥
2
, (48)

then by decomposing stochastic noise, we have

E[⇑xt ↓ xt↔ω i
t
⇑
2]

≃
1

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
1

M

∑

j↓Ms

K↔1∑

k=0

ϑl[g
j

s↔ωj
s ,k

↓↔Fj(x
j

s↔ωj
s ,k

) +↔Fj(x
j

s↔ωj
s ,k

)]

∥∥∥∥
2

≃
2

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
1

M

∑

j↓Ms

K↔1∑

k=0

ϑl[g
j

s↔ωj
s ,k

↓↔Fj(x
j

s↔ωj
s ,k

)]

∥∥∥∥
2
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+
2

ϱ2
E
∥∥∥∥

t↔1∑

s=t↔ω i
t

ϑs
1

M

∑

j↓Ms

K↔1∑

k=0

ϑl↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

≃
2

ϱ2

t↔1∑

s=t↔ω i
t

ϑ2s
Kϑ2l
M

φ2 +
2ω it
ϱ2

t↔1∑

s=t↔ω i
t

ϑ2s
ϑ2l
M2

E
∥∥∥∥

∑

j↓Ms

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

≃
2

ϱ2
ω itϑ

2Kϑ2l
M

φ2 +
2ω it
ϱ2

t↔1∑

s=t↔ω i
t

ϑ2s
ϑ2l
M2

E
∥∥∥∥

∑

j↓Ms

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2
, (49)

where the second inequality holds by ⇑a+ b⇑2 ≃ 2⇑a⇑2 + 2⇑b⇑2. The second inequality holds by Assumption 5.2, i.e.,
the zero-mean and the independency of stochastic noise. The last inequality in Eq. (49) holds due to the following: with
adaptive learning rates

ϑt =

{
ϑ if ωmax

t ≃ ωc,

min{ϑ, 1
ωmax
t

} if ωmax
t > ωc,

(50)

thus we have ϑs ≃ ϑ in the last inequality in Eq. (49). Then for I1, following Lemma C.2 1
CG

⇑x⇑ ≃
∥∥ x→

v̂t+ϑ

∥∥ ≃
1
ϑ ⇑x⇑ and

CG = ϑlKG+ ϱ, we have

I1 ≃ ↓
ϑtϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑtϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
ϑtϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑtϑ2ϑ3l K
2L2

Mϱ3
1

N

N∑

i=1

ω itφ
2

+
2ϑtϑ3l KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

ϑ2sE
∥∥∥∥

∑

j↓Ms

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2
.

(51)

Bounding I2

I2 =
ϑ2tL

2
E
∥∥∥∥

!t
↘
v̂t + ϱ

∥∥∥∥
2

≃
ϑ2tL

2ϱ2
E[⇑!t⇑

2], (52)

where the first inequality follows by Cauchy-Schwarz inequality.

Merging pieces. Therefore, by merging pieces together, we have

E[f(xt+1)↓ f(xt)] = I1 + I2

≃↓
ϑtϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑtϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
ϑtϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑtϑ2ϑ3l K
2L2

Mϱ3
1

N

N∑

i=1

ω itφ
2

+
2ϑtϑ3l KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

ϑ2sE
∥∥∥∥

∑

j↓Ms

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

+
ϑ2tL

2ϱ2
E[⇑!t⇑

2]. (53)

Denote a sequences Gs =
∑

j↓Ms

∑K↔1
k=0 ↔Fj(x

j

t↔ωj
s ,k

), then re-write and organize the above inequality, we have

E[f(xt+1)↓ f(xt)]
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≃↓
ϑtϑlK

2CG
E[⇑↔f(xt)⇑

2]↓
ϑtϑl

2KCG
E
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

+
ϑtϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g) + 30K2ϑ2l

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]


+

2ϑtϑ2ϑ3l K
2L2

Mϱ3
1

N

N∑

i=1

ω itφ
2

+
2ϑtϑ3l KL2

M2ϱ3
1

N

N∑

i=1

ω it

t↔1∑

s=t↔ω i
t

ϑ2sE[⇑Gs⇑
2] +

ϑ2tL

2ϱ2
E[⇑!t⇑

2]. (54)

Summing over t = 1 to T , we have

E[f(xT+1)↓ f(x1)]

≃↓
ϑlK

2CG

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2] +

ϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g)

T∑

t=1

ϑt + 30K2ϑ2l
1

N

T∑

t=1

N∑

i=1

ϑtE[⇑↔f(xt↔ω i
t
)⇑2]



+
2ϑ2ϑ3l K

2L2

Mϱ3
φ2

T∑

t=1

1

N

N∑

i=1

ω itϑt +
2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2sE[⇑Gs⇑
2] +

L

2ϱ2

T∑

t=1

ϑ2tE[⇑!t⇑
2]

↓
ϑl

2KCG

T∑

t=1

ϑtE
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2

≃↓
ϑlK

2CG

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2] +

ϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g)

T∑

t=1

ϑt + 30K2ϑ2l
1

N

T∑

t=1

N∑

i=1

ϑtE[⇑↔f(xt↔ω i
t
)⇑2]



+
2ϑ3ϑ3l K

2L2

Mϱ3
φ2T ωavg +

2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2sE[⇑Gs⇑
2]

  
A1

+
L

2ϱ2

T∑

t=1

ϑ2tE[⇑!t⇑
2]

↓
ϑl

2KCG

T∑

t=1

ϑtE
∥∥∥∥

1

N

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (55)

where the second inequality holds by ϑt ≃ ϑ. We have the following for term A1,

2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

t↔1∑

s=t↔ω i
t

ϑ2sE[⇑Gs⇑
2]

=
2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
3M(N ↓M)

N ↓ 1

·


5K3L2ϑ2l (φ

2 + 6Kφ2
g) + (30K4L2ϑ2l +K2)E[⇑↔f(xs↔ωj

s
)⇑2] +K2φ2

g



+
2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
M(M ↓ 1)

n(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

=
ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
6M(N ↓M)

N ↓ 1


5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g



  
A2

+
ϑ3l KL

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)E[⇑↔f(xs↔ωj

s
)⇑2]

  
A3
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+
2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
M(M ↓ 1)

N(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

  
A4

= A2 +A3 +A4. (56)

For term A2, note that with ϑ ≃

→
M
ωc

, we have the adaptive learning rates

ϑt =

{
ϑ if ωmax

t ≃ ωc,

min{ϑ, 1
ωmax
t

} if ωmax
t > ωc,

(57)

which implies that ϑt ≃ ϑ and ϑt ≃ min{ 1
ωmax
t

,
→
M
ωc

}. Moreover, recall that ωmax
t = maxi↓[N ]{ω

i
t}, for each i, we have

ϑtω it ≃

→
M ·ω i

t
max(ωmax

t ,ωc)
≃

↘
M . by the fact of ϑtω it ≃

↘
M , 1

N

∑N
i=1

∑T
t=1 ω

i
t ≃ T ωavg and ϑs ≃ ϑ, we have

A2 ≃
ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t · ω

i
tϑ

2
·
6M(N ↓M)

N ↓ 1


5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g



≃
ϑ3l KL2

Mϱ3
1

N

N∑

i=1

T∑

t=1

↘

M · ω itϑ
2
·
N ↓M

N ↓ 1


5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g



≃
ϑ2ϑ3l KL2

↘
Mϱ3

N ↓M

N ↓ 1


5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g


T ωavg. (58)

For term A3, since ϑs ≃ ϑ, and consider ω it ≃ ωmax and
∑T

t=1

∑t↔1
s=t↔ω i

t
as ≃ ωmax

∑T
t=1 at, we have

A3 ≃
ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)E[⇑↔f(xs↔ωj

s
)⇑2]

≃
ϑ2ϑ3l KL

M2ϱ3
6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)ω3max

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2]. (59)

For term A4, similar to the proof of non-delay adaptive FADAS, by ϑs ≃ ϑ, ω it ≃ ωmax and
∑T

t=1

∑t↔1
s=t↔ω i

t
as ≃

ωmax
∑T

t=1 at, there is

A4 =
2ϑ3l KL2

M2ϱ3
1

N

N∑

i=1

T∑

t=1

ϑtω
i
t

t↔1∑

s=t↔ω i
t

ϑ2s ·
M(M ↓ 1)

N(N ↓ 1)
E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

≃
2ϑ2ϑ3l KL2

M2ϱ3
M(M ↓ 1)

N(N ↓ 1)
ωmax

T∑

t=1

ϑt

t↔1∑

s=t↔ω i
t

E
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

s↔ωj
s ,k

)

∥∥∥∥
2

≃
2ϑ2ϑ3l KL2

M2ϱ3
M(M ↓ 1)

N(N ↓ 1)
ω2max

T∑

t=1

ϑtE
∥∥∥∥

N∑

j=1

K↔1∑

k=0

↔Fj(x
j

t↔ωj
t ,k

)

∥∥∥∥
2

. (60)

By Lemma C.3 and Lemma C.4, we have the following for Eq. (55),

E[f(xT+1)↓ f(x1)]

≃↓
ϑlK

2CG

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2] +

ϑlKL2

ϱ


5Kϑ2l (φ

2 + 6Kφ2
g)

T∑

t=1

ϑt + 30K2ϑ2l
1

N

T∑

t=1

N∑

i=1

ϑtE[⇑↔f(xt↔ω i
t
)⇑2]



+
2ϑ3ϑ3l K

2L2

Mϱ3
T ωavgφ

2 +
ϑ2ϑ3l KL2

↘
Mϱ3

N ↓M

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]T ωavg
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+
ϑ2ϑ3l KL2

M2ϱ3
6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)ω3max

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2]

+
L

2ϱ2

T∑

t=1

ϑ2t


2Kϑ2l
M

φ2 +
2ϑ2l (N ↓M)

NM(N ↓ 1)


15NK3L2ϑ2l (φ

2 + 6Kφ2
g) + 3NK2φ2

g



+
2ϑ2l (N ↓M)

M(N ↓ 1)
(90NK4L2ϑ2l + 3NK2)

1

N

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2]



+


ϑL

ϱ2
ϑ2l (M ↓ 1)

NM(N ↓ 1)
+

2ϑ2ϑ3l KL2

M2ϱ3
M(M ↓ 1)

N(N ↓ 1)
ω2max ↓

ϑl
2KN2CG

 T∑

t=1

ϑtE
∥∥∥∥

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
, (61)

by the relationship of
∑T

t=1
1
N

∑N
j=1 E[⇑↔f(xt↔ω i

t
)⇑2] ≃ ωmax

∑T
t=1 E[⇑↔f(xt)⇑2].

If the learning rates satisfy ϑl ≃
1

8KL and

ϑϑl ≃
ϱ2M(N ↓ 1)

4CGN(M ↓ 1)KL
, ϑϑl ≃


ϱ3M(N ↓ 1)

8CGN(M ↓ 1)

1

Lωmax
,

ϑl ≃

↘
ϱ

↘
360CGωmaxKL

, ϑϑl ≃
ϱ2M(N ↓ 1)

60CGN(N ↓M)KLωmax
,

ϑϑl ≃


ϱ3M(N ↓ 1)

12

CGN(M ↓ 1)ω3maxKL

. (62)

Then we have

ϑL

ϱ2
ϑ2l (M ↓ 1)

NM(N ↓ 1)
+

2ϑ2ϑ3l KL2

M2ϱ3
M(M ↓ 1)

N(N ↓ 1)
ω2max ↓

ϑl
2KN2CG

≃ 0

ϑlKL2

ϱ
30K2ϑ2l ωmax +

ϑL

ϱ2
ϑ2l (N ↓M)

M(N ↓ 1)
(90K4L2ϑ2l + 3K2)Nωmax

+
ϑ2ϑ3l KL2

M2ϱ3
6M(N ↓M)

N ↓ 1
(30K4L2ϑ2l +K2)ω3max ≃

ϑlK

4CG
. (63)

Thus Eq. (61) becomes

T∑

t=1

ϑtE[⇑↔f(xt)⇑
2]

≃
4CG

ϑlK
[f(x1)↓ E[f(xT+1)]] +

4CGL2

ϱ
5Kϑ2l (φ

2 + 6Kφ2
g)

T∑

t=1

ϑt

+
8CGϑ3ϑ2l KL2

Mϱ3
T ωavgφ

2 +
24CGϑ2ϑ2l L

2

↘
Mϱ3

N ↓M

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]T ωavg

+
4CGϑL

ϱ2

T∑

t=1

ϑt


ϑl
M

φ2 +
ϑl(N ↓M)

NM(N ↓ 1)
[15NK2L2ϑ2l (φ

2 + 6Kφ2
g) + 3NKφ2

g ]


, (64)

divided by the learning rates,
∑T

t=1 ϑtE[⇑↔f(xt)⇑2]∑T
t=1 ϑt

≃
4CG

ϑlK
∑T

t=1 ϑt
[f(x1)↓ E[f(xT+1)]]

+ 20CGϱ
↔1L2Kϑ2l (φ

2 + 6Kφ2
g) +

8CGϑ3ϑ2l KL2

Mϱ3
T ωavg∑T
t=1 ϑt

φ2

+
24CGϑ2ϑ2l L

2

↘
Mϱ3

N ↓M

N ↓ 1
[5K3L2ϑ2l (φ

2 + 6Kφ2
g) +K2φ2

g ]
T ωavg∑T
t=1 ϑt
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+
4CGϑL

ϱ2


ϑl
M

φ2 +
ϑl(N ↓M)

M(N ↓ 1)
[15K2TL2ϑ2l (φ

2 + 6Kφ2
g) + 3Kφ2

g ]


. (65)

This concludes the proof.

Proof of Corollary 5.10. Since the delay adaptive learning rate satisfy, ϑt ≃ ϑ, and when ωc = ωmedian, there is
∑T

t=1 ϑt ↑∑
t:ωt⇐ωc

ϑ ↑
Tϖ
2 (since there are at least half of the iterations with the delay smaller than ωc). Recalling that CG = ϑlKG+ϱ,

then
∑T

t=1 ϑtE[⇑↔f(xt)⇑2]∑T
t=1 ϑt

= O


(ϑlKG+ ϱ)

ϑϑlKT
F + (ϑlKG+ ϱ)

ϑ2l KL2(φ2 +Kφ2
g)

ϱ

+
(ϑlKG+ ϱ)ϑ2ϑ2l KL2ωavg

Mϱ3
φ2 +

(ϑlKG+ ϱ)ϑϑ2l KL2ωavg
↘
Mϱ3

N ↓M

N ↓ 1
[K2L2ϑ2l (φ

2 +Kφ2
g) +Kφ2

g ]

+ (ϑlKG+ ϱ)
ϑϑlL

Mϱ2


φ2 +

N ↓M

N ↓ 1
Kφ2

g


+ (ϑlKG+ ϱ)

ϑϑlKL

Mϱ2
N ↓M

N ↓ 1
[ϑ2l KL2(φ2 +Kφ2

g)]


. (66)

Reorganizing Eq. (66), particularly merging the stochastic variance and the global variance, then we have
∑T

t=1 ϑtE[⇑↔f(xt)⇑2]∑T
t=1 ϑt

= O


(ϑlKG+ ϱ)

ϑϑlKT
F + (ϑlKG+ ϱ)

ϑ2l KL2

ϱ
(φ2 +Kφ2

g)

+ (ϑlKG+ ϱ)
ϑϑ2l KL2

Mϱ3


ϑωavgφ

2 +

↘
M(N ↓M)

N ↓ 1
ωavgKφ2

g


+

(ϑlKG+ ϱ)ϑϑ4l K
3L4ωavg

↘
Mϱ3

N ↓M

N ↓ 1
(φ2 +Kφ2

g)

+ (ϑlKG+ ϱ)
ϑϑlL

Mϱ2


φ2 +

N ↓M

N ↓ 1
Kφ2

g


+ (ϑlKG+ ϱ)

ϑϑ3l K
2L3

Mϱ2
N ↓M

N ↓ 1
(φ2 +Kφ2

g)


. (67)

By choosing ϑ =
↘
M/ωc and ϑl = min


1

KL ,
ωc

→
F↘

TK(ϱ2+Kϱ2
g)L


, which implies ϑϑl = min

 →
M

ωcKL ,
→
FM↘

TK(ϱ2+Kϱ2
g)L


,

∑T
t=1 ϑtE[⇑↔f(xt)⇑2]∑T

t=1 ϑt

= O


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ



F(φ2 +Kφ2

g)L
↘
TKM

+


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FLω2c
T ϱ

+


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FLωavg
T ϱ3

+
N ↓M

N ↓ 1

FLωcωavg
T ϱ3



+

 ↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ

 ↘
FLφ

↘
TKM

+
N ↓M

N ↓ 1

↘
FLφg
↘
TM


+

C1

T 3/2
+

C2

T 2



= O


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ



F(φ2 +Kφ2

g)L
↘
TKM

+


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FLω2c
T ϱ

+


ωc
↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ


FLωavg
T ϱ3

+
FLωcωavg

T ϱ3


+

 ↘
FKG

T (φ2 +Kφ2
g)L

+ ϱ

 ↘
FLφ

↘
TKM

+

↘
FLφg
↘
TM



+
C1

T 3/2
+

C2

T 2


. (68)
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We again generalize terms with smaller T dependency orders, then we have
∑T

t=1 ϑtE[⇑↔f(xt)⇑2]∑T
t=1 ϑt

≃ O


ωcFG

T
↘
M

+

↘
Fφ

↘
TKM

+

↘
Fφg

↘
TM

+
Fω2c
T

+
Fωavg
T

+
Fωcωavg

T


, (69)

reorganizing and then obtain the rate of convergence in Eq. (9).

C. Supporting Lemmas
Lemma C.1 (Lemma for momentum term in the update rule). The first order momentum terms mt in Algorithm 1 hold the

following relationship w.r.t. model difference !t:

T∑

t=1

E[⇑mt⇑
2] ≃

T∑

t=1

E[⇑!t⇑
2]. (70)

Proof. By the updating rule, we have

E[⇑mt⇑
2] = E

∥∥∥∥(1↓ ϖ1)
t∑

u=1

ϖt↔u
1 !u

∥∥∥∥
2

≃ (1↓ ϖ1)
2

d∑

i=1

E
 t∑

u=1

ϖt↔u
1 !i

u

2

≃ (1↓ ϖ1)
2

d∑

i=1

E
 t∑

u=1

ϖt↔u
1

 t∑

u=1

ϖt↔u
1 (!i

u)
2



≃ (1↓ ϖ1)
t∑

u=1

ϖt↔u
1 E[⇑!u⇑

2]. (71)

Summing over t = 1, ..., T yields

T∑

t=1

E[⇑mt⇑
2] = (1↓ ϖ1)

T∑

t=1

t∑

u=1

ϖt↔u
1 E[⇑!u⇑

2]

= (1↓ ϖ1)
T∑

u=1

T∑

t=u

ϖt↔u
1 E[⇑!u⇑

2]

≃ (1↓ ϖ1)
T∑

u=1

1

1↓ ϖ1
E[⇑!u⇑

2]

=
T∑

u=1

E[⇑!u⇑
2]. (72)

This concludes the proof.

Lemma C.2. Under Assumptions 5.3, we have ⇑↔f(x)⇑ ≃ G, ⇑!t⇑ ≃ ϑlKG, ⇑mt⇑ ≃ ϑlKG, ⇑vt⇑ ≃ ϑ2l K
2G2

and

⇑v̂t⇑ ≃ ϑ2l K
2G2

.

Proof. Since f has G-bounded stochastic gradients, for any x and ε, there is ⇑↔f(x, ε)⇑ ≃ G, thus it implies

⇑↔f(x)⇑ = ⇑Eε↔f(x, ε)⇑ ≃ Eε⇑↔f(x, ε)⇑ ≃ G.
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For each model difference !i
t on client i, !i

t satisfies,

!i
t = xi

t,K ↓ xt = ↓ϑl

K↔1∑

k=0

gi
t,k,

therefore,

∥∥!i
t

∥∥ =

∥∥∥∥↓ ϑl

K↔1∑

k=0

gi
t,k

∥∥∥∥ ≃ ϑlKG,

for the global model difference !t,

⇑!t⇑ =

∥∥∥∥
1

M

∑

i↓Mt

!i
t

∥∥∥∥ ≃ ϑlKG.

Thus we can obtain the bound for momentum mt and variance vt,

⇑mt⇑ =

∥∥∥∥(1↓ ϖ1)
t∑

s=1

ϖt↔s
1 !s

∥∥∥∥ ≃ ϑlKG, ⇑vt⇑ =

∥∥∥∥(1↓ ϖ2)
t∑

s=1

ϖt↔s
2 !2

s

∥∥∥∥ ≃ ϑ2l K
2G2.

By the updating rule of v̂t, there exists a j → [t] such that v̂t = vj . Then

⇑v̂t⇑ ≃ ϑ2l K
2G2. (73)

This concludes the proof.

Lemma C.3. For the variance difference sequence Vt =
1→
v̂t+ϑ

↓
1↘

v̂t↑1+ϑ
, we have

T∑

t=1

⇑Vt⇑1 ≃
d

ϱ
,

T∑

t=1

⇑Vt⇑
2
2 ≃

d

ϱ2
. (74)

Proof. The proof of Lemma C.3 is exactly the same as the proof of Lemma C.2 in Wang et al. (2022b).

Lemma C.4. Recall the sequence !t = 1
M

∑
i↓Mt

!i
t↔ω i

t
= ↓

ϖl

M

∑
i↓Mt

∑K↔1
k=0 gi

t↔ω i
t ,k

=

↓
ϖl

M

∑
i↓Mt

∑K↔1
k=0 ↔Fi(xi

t↔ω i
t ,k

; ε) and Mt be the set that include client send the local updates to the server at

global round t. The global model difference !t satisfies

E[⇑!t⇑
2] = E

∥∥∥∥
1

M

∑

i↓Mt

!i
t↔ω i

t

∥∥∥∥
2

≃
2Kϑ2l
M

φ2 +
2ϑ2l (N ↓M)

NM(N ↓ 1)


15NK3L2ϑ2l (φ

2 + 6Kφ2
g) + (90NK4L2ϑ2l + 3K2)

·

N∑

i=1

E[⇑↔f(xt↔ω i
t
)⇑2] + 3NK2φ2

g


+

2ϑ2l (M ↓ 1)

NM(N ↓ 1)
E
∥∥∥∥

N∑

i=1

K↔1∑

k=0

↔Fi(x
i
t↔ω i

t ,k
)

∥∥∥∥
2
.

Proof. The proof of Lemma C.3 is similar to the proof of Lemma C.6 in (Wang et al., 2022b).

Lemma C.5. (This lemma follows from Lemma 3 in FedAdam (Reddi et al., 2021). For local learning rate which satisfying

ϑl ≃
1

8KL , the local model difference after k (⇒k → {0, 1, ...,K ↓ 1}) steps local updates satisfies

1

N

N∑

i=1

E[⇑xi
t,k ↓ xt⇑

2] ≃ 5Kϑ2l (φ
2
l + 6Kφ2

g) + 30K2ϑ2l E[⇑↔f(xt)⇑
2]. (75)

Proof. The proof of Lemma C.5 is similar to the proof of Lemma 3 in Reddi et al. (2021).
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Lemma C.6. If assuming that the clients’ participation distributions are simulated as independently uniform distribution,

then the sequence Gs =
∑

j↓Ms

∑K↔1
k=0 ↔Fj(x

j

s↔ωj
s ,k

) has the following upper bound,

E
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↔Fj(x
j

s↔ωj
s ,k
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·
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)

∥∥∥∥
2
.

Proof. We begin with the proof similar to the partial participation with sampling without replacement,

E
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. (76)
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D. Additional Experiments
Tables 8 and 9 present results computed over experiments with 3 different random seeds. Tables 8 and 9 compare the
performance of various federated learning methods, on the test accuracy of the ResNet-18 model across CIFAR-10 and
CIFAR-100 datasets with heterogeneous data distributions. It is observed that the delay-adaptive FADAS (abbreviated as
delay-adaptive FADAS) consistently outperforms the other methods. The consistency of FADAS performance under large

worst-case delay settings indicates its reliability and potential for practical applications in federated learning environments
with diverse and asynchronous model updates.

D.1. Additional Results

Table 8. The test accuracy on training ResNet-18 model on CIFAR-10 dataset with two data heterogeneity levels in a large worst-case
delay scenario for 500 communication rounds. We abbreviate delay-adaptive FADAS to FADASda in this and subsequent tables. We
conduct experiments on three seeds, and we report the average accuracy and standard derivation.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 50.29 ± 6.86 59.75 ± 13.40
FedBuff 44.92 ± 5.26 46.94 ± 0.99
FADAS 70.57 ± 2.04 75.97 ± 2.64
FADASda 72.64 ± 1.00 80.26 ± 0.68

Table 9. The test accuracy on training ResNet-18 model on CIFAR-100 dataset with two data heterogeneity levels in a large worst-case

delay scenario for 500 communication rounds. We conduct experiments on three seeds, and we report the average accuracy and standard
derivation.

Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std.

FedAsync 46.25 ± 4.33 43.22 ± 10.75
FedBuff 15.97 ± 2.44 28.58 ± 4.74
FADAS 47.85 ± 0.69 52.80 ± 1.15
FADASda 51.55 ± 1.03 56.01 ± 0.95

D.2. Implementation Details

Details of applying adaptive learning rate. During our experiments, we found that choosing a relatively small global
learning rate ϑ yields better results for adaptive FL methods (hyper-parameter details can be found in the following). To
scale the learning rate down for the model update with larger delays, we directly scale down the learning rate for this step to
ϑ/ωmax

t , which is shown in (77),

ϑt =

{
ϑ if ωmax

t ≃ ωc,

min
{
ϑ, ϖ

ωmax
t

}
if ωmax

t > ωc.
(77)

Hyper-parameter Settings. We conduct detailed hyper-parameter searches to find the best hyper-parameter for each
baseline. We grid the local learning rate ϑl from {0.001, 0.003, 0.01, 0.03, 0.1}, and global learning rate ϑ = 1 for
SGD-based method. We grid the local learning rate ϑl from {0.003, 0.01, 0.03, 0.1} and global learning rate ϑ from
{0.0001, 0.0003, 0.001, 0.003} for adaptive method. For the global adaptive optimizer, we set ϖ1 = 0.9, ϖ1 = 0.99, and we
set ϱ = 10↔8. Table 10 summarizes the hyper-parameter details in our experiments.
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Table 10. Hyper-parameters details for vision tasks.

CIFAR-10 (mild delay)
FedAsync FedBuff FADAS FADASda

Models & Dir(ϑ) ϖl ϖ ϖl ϖ ϖl ϖ ϖl ϖ

ResNet-18 & Dir(0.1) 0.003 1 0.03 1 0.1 0.0003 0.1 0.001
ResNet-18 & Dir(0.3) 0.01 1 0.03 1 0.1 0.0003 0.1 0.001

CIFAR-100 (mild delay)
FedAsync FedBuff FADAS FADASda

Models & Dir(ϑ) ϖl ϖ ϖl ϖ ϖl ϖ ϖl ϖ

ResNet-18 & Dir(0.1) 0.01 1 0.03 1 0.1 0.0003 0.1 0.001
ResNet-18 & Dir(0.3) 0.01 1 0.03 1 0.1 0.0003 0.1 0.001

CIFAR-10 (large worst-case delay)
FedAsync FedBuff FADAS FADASda

Models & Dir(ϑ) ϖl ϖ ϖl ϖ ϖl ϖ ϖl ϖ

ResNet-18 & Dir(0.1) 0.003 1 0.03 1 0.1 0.0001 0.1 0.001
ResNet-18 & Dir(0.3) 0.003 1 0.03 1 0.1 0.0001 0.1 0.001

CIFAR-100 (large worst-case delay)
FedAsync FedBuff FADAS FADASda

Models & Dir(ϑ) ϖl ϖ ϖl ϖ ϖl ϖ ϖl ϖ

ResNet-18 & Dir(0.1) 0.003 1 0.03 1 0.1 0.0001 0.1 0.001
ResNet-18 & Dir(0.3) 0.001 1 0.03 1 0.1 0.0001 0.1 0.001

Table 11. Hyper-parameters details for language tasks.

FedAsync FedBuff FADAS FADASda
Datasets ϖl ϖ ϖl ϖ ϖl ϖ ϖl ϖ

RTE 0.01 1 0.01 1 0.01 0.005 0.01 0.01
MRPC 0.001 1 0.01 1 0.01 0.001 0.01 0.002
SST-2 0.001 1 0.001 1 0.1 0.0005 0.1 0.001
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