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Abstract

LLMs have immense potential for generating
plans, transforming an initial world state into
a desired goal state. A large body of research
has explored the use of LLMs for various plan-
ning tasks, from web navigation to travel plan-
ning and database querying. However, many of
these systems are tailored to specific problems,
making it challenging to compare them or de-
termine the best approach for new tasks. There
is also a lack of clear and consistent evaluation
criteria. Our survey aims to offer a comprehen-
sive overview of current LLM planners to fill
this gap. It builds on foundational work by Kar-
tam and Wilkins (1990) and examines six key
performance criteria: completeness, executabil-
ity, optimality, representation, generalization,
and efficiency. For each, we provide a thorough
analysis of representative works and highlight
their strengths and weaknesses. Our paper also
identifies crucial future directions, making it
a valuable resource for both practitioners and
newcomers interested in leveraging LLM plan-
ning to support agentic workflows.1

1 Introduction

Planning, which involves generating a sequence of
actions to reach a desired goal state (Newell et al.,
1958; Kartam and Wilkins, 1990), is fundamental
to human intelligence. For example, when planning
a trip to San Francisco, one would search for flights,
book tickets based on budget and schedule, arrange
local transportation to the airport, and consider al-
ternatives in case of cancellations. These planning
tasks require complex reasoning, world knowledge,
decision-making, and the ability to adapt, making
them a significant challenge for humans. To date,
there has been a growing focus on developing LLM
planners to automate these complex tasks.

1A curated list of papers and resources related to this
survey are available at https://github.com/wll199566/
Awesome-LLM-Planning-Capability.

A comprehensive survey of LLM planners would
significantly propel research in this field. Prior stud-
ies have explored planning methods and evaluation
benchmarks (Huang et al., 2024c; Li et al., 2024d).
Huang et al. (2024c) categorized planning methods
into decomposition, plan selection, external mod-
ules, reflection, and memory, while Li et al. (2024d)
reviewed evaluation benchmarks across various do-
mains. However, many of these benchmarks and
systems are tailored to specific problems, making it
hard to compare LLM planners across domains or
determine the best planner for new tasks. Further,
there is a lack of clear and consistent evaluation
criteria. We believe this gap may hinder the devel-
opment of advanced LLM planners.

Our survey builds on the foundational work of
Kartam and Wilkins (1990) to address key evalua-
tion criteria for LLM planners. The original paper
highlighted challenges in evaluating early AI plan-
ning systems, which relied on heuristics and were
confined to research labs. The initial criteria were
categorized into performance, representation, and
communication issues. With more advanced LLM
planning, we reexamine this critical framework and
focus on six key evaluation criteria: completeness,
executability, optimality, representation, general-

ization, and efficiency. For each criterion, we pro-
vide a thorough analysis of representative works,
highlighting their strengths and weaknesses.

We contribute to the literature by addressing key
research questions in LLM planning: What founda-
tional capabilities distinguish them from earlier AI
planners? How can we comprehensively measure
their performance? We examine the datasets, evalu-
ation methods, and metrics available to the commu-
nity. We also highlight crucial areas where research
is still lacking, including representation, hallucina-
tion, alignment, multi-agent planning, connections
to agentic workflows, aiming to fill these gaps and
advance the field. Figure 1 presents a taxonomy
of six key performance criteria and representative

https://github.com/wll199566/Awesome-LLM-Planning-Capability
https://github.com/wll199566/Awesome-LLM-Planning-Capability
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(§2)

Task Decomposition DEPS (Wang et al., 2023b); ProgPrompt (Singh et al., 2023); Wu et al. (2024);
AdaPlanner (Sun et al., 2024); SelfGoal (Yang et al., 2024); ADaPT (Prasad et al., 2023).

LLM+Classical Planner LLM+P (Liu et al., 2023a); LLM-DP (Dagan et al., 2023); Guan et al. (2023);
LATS (Zhou et al., 2023a); (Valmeekam et al., 2023b); SimPlan (Hirsch et al., 2024); Tree Search (Koh et al., 2024).

Search Algorithm
Tree of Thought (Yao et al., 2024); Thought of Search (Katz et al., 2024); LLM-MCTS (Zhao et al., 2024);
RAP (Hao et al., 2023); LATS (Zhou et al., 2023a); SimPlan (Hirsch et al., 2024); Tree Search (Koh et al., 2024);
MC-DML (Shi et al., 2025); ARMAP (Chen et al., 2025).

Fine-tuning Jansen (2020); RobLM (Chalvatzaki et al., 2023); ETO (Song et al., 2024); Agent-FLAN (Chen et al., 2024b);
AgentOhana (Zhang et al., 2024); NAT(Wang et al., 2024).

Performance
Criteria
(§3 - §8)

Completeness (§3)
Plan Correctness Guan et al. (2023); Hao et al. (2024a).

Plan Achievability PPNL (Aghzal et al., 2023); Valmeekam et al. (2024).

Executability (§4)

Object Grounding

AdaPlanner (Sun et al., 2024); Inner Monologue (Huang et al., 2022b);
SayCan (Ahn et al., 2022); LLM-Planner (Song et al., 2023); LLP (Sharma et al., 2021);
ADaPT (Prasad et al., 2023); LLM-DP (Dagan et al., 2023); LLM-MCTS (Zhao et al., 2024);
G-PlanE (Lin et al., 2023a).

Action Grounding LLM-Planner (Song et al., 2023); BrainBoday-LLM (Bhat et al., 2024);
Corrective Re-prompting (Raman et al., 2022); SayCanPay (Hazra et al., 2024).

Sample-then-Filter CLP (Yuan et al., 2023); PLASMA (Brahman et al., 2024); PRoC3S (Curtis et al., 2024).

Closed-Loop Systems
Corrective Re-prompting (Raman et al., 2022); ProgPrompt (Singh et al., 2023);
ADaPT (Prasad et al., 2023); SelfGoal (Yang et al., 2024); AdaPlanner (Sun et al., 2024);
ISR-LLM (Zhou et al., 2024).

Optimality (§5)
LLM + Optimizer TTG (Ju et al., 2024); LLMFP (Hao et al., 2024b).

A* Search-Based Methods ToolChain* (Zhuang et al., 2023); SayCanPay (Hazra et al., 2024);
Beyond A* (Lehnert et al., 2024).

Representation (§6)

LLM-as-a-Translator
LLM-GoalTrans (Xie et al., 2023); ISR-LLM (Zhou et al., 2024); Adaplanner (Sun et al., 2024);
LLM-GenPlan (Silver et al., 2024); LLM+P (Liu et al., 2023a); Pan et al. (2023);
LLM-DP (Dagan et al., 2023); Guan et al. (2023).

LLM-as-a-Planner

G-PlanET (Lin et al., 2023a); Chain-of-symbols (Hu et al., 2024); PPNL (Aghzal et al., 2023);
Adaplanner (Sun et al., 2024); PLaG (Lin et al., 2024); SayCan (Ahn et al., 2022);
Wu et al. (2024); LLM-GenPlan (Silver et al., 2024);
ProgPrompt (Singh et al., 2023); LID (Li et al., 2022).

Generalization (§7)

Fine-tuning RobLM (Chalvatzaki et al., 2023); Agent-FLAN (Chen et al., 2024b); ETO (Song et al., 2024);
AgentOhana (Zhang et al., 2024); NAT (Wang et al., 2024); (Jansen, 2020).

Generalized Planning LLM-GenPlan (Silver et al., 2024).

Skill Storage VOYAGER (Wang et al., 2023a).

Efficiency (§8)

Reduced LLM and
World Model Calls

AdaPlanner (Sun et al., 2024); Query-Efficient Planning (Gonzalez-Pumariega et al., 2024);
Thought of Search (Katz et al., 2024); Tree-Planner (Hu et al., 2023b).

Shorter Inputs and Outputs Chain-of-Symbols (Hu et al., 2024); Beyond A* (Lehnert et al., 2024);
DEPS (Wang et al., 2023b); LLM-DP (Dagan et al., 2023).

Smaller Model Size PLASMA (Brahman et al., 2024).

Evaluation
(§9)

Datasets

Planning-Focused

Embodied Environment: BlocksWorld; Logistics; PlanBench (Valmeekam et al., 2023a);
ALFRED (Shridhar et al., 2020a); VirtualHome (Puig et al., 2018); ALFWorld (Shridhar et al., 2020b);
Embodied Agent Interface (Li et al., 2024f); Open Grounded Planning (Guo et al., 2024);
PPNL(Aghzal et al., 2023); AsyncHow(Lin et al., 2024); Planetarium (Zuo et al., 2024);
PARTNR (Chang et al., 2024); Robotouille (Gonzalez-Pumariega et al., 2025).
Task Scheduling: TravelPlanner (Xie et al., 2024); Natural Plan (Zheng et al., 2024).
Game: MineCraft; SmartPlay (Wu et al., 2023a); AUCARENA (Chen et al., 2023b);
GAMA-Bench (Huang et al., 2024b).
Task Decomposition: TaskLAMA (Yuan et al., 2024); CoScript (Yuan et al., 2023);
WORLDAPIS (Ou et al., 2024).

Downstream Tasks

Reasoning: PrOntoQA (Saparov and He, 2022); GSM8K (Cobbe et al., 2021);
AGENTBENCH (Liu et al., 2023b); SWE-BENCH (Jimenez et al., 2023).
Tool Usage: ToolBench (Xu et al., 2023); API-Bank (Li et al., 2023); TPTU (Ruan et al., 2023).
Programming: CodePlan (Bairi et al., 2023); Spider (Yu et al., 2018); Bird (Li et al., 2024e).
Web: WEBARENA (Zhou et al., 2023b); Mind2Web (Deng et al., 2024).
Generation: Videodirectorgpt (Lin et al., 2023b); DiagrammerGPT (Zala et al., 2023);
Step-by-Step (Moryossef et al., 2019).

Methods

Verifier; Groundtruth Verifier: VAL (Howey et al., 2004); BUTLER (Shridhar et al., 2020b).
Groundtruth: Natural Plan (Zheng et al., 2024); PPNL (Aghzal et al., 2023); (Sharma et al., 2021).

Human Evaluation PLASMA (Brahman et al., 2024); CAPE (Raman et al., 2024); TaPA (Wu et al., 2023b); TIP (Lu et al., 2023).

LLM-as-a-Judge Open Grounded Planning (Guo et al., 2024); BioPlanner (O’Donoghue et al., 2023).

Metrics

Success Rate (Valmeekam et al., 2023b); Goal Condition Recall (Hu et al., 2023b); Step Success Rate (Deng et al., 2023);
Exact Match Score (Aghzal et al., 2024); True Negative Rate and False Negative Rate (Valmeekam et al., 2023b);
Unreachable Accuracy (Aghzal et al., 2023); Optimality Rate (Lehnert et al., 2024); Executability Rate (Hazra et al., 2024);
Constraint Pass Rate (Xie et al., 2024); Inference Time (Brahman et al., 2024);
Number of Output and Input Tokens (Hu et al., 2024); Number of Plan Steps (Raman et al., 2022);
Number of LLM and World Model Calls (Sun et al., 2024); Model Size (Brahman et al., 2024);
Number of Parseable Problems (Zuo et al., 2024).

Figure 1: Taxonomy of LLM Planning



techniques. For those new to LLM planning, we
recommend a thorough read, while experts can fo-
cus on specific sections. Each section offers clear
definitions, relevant works, and includes links to ta-
bles in the Appendix. We will dive into the details
in the following sections.

2 LLM Planning Foundations (Tables 1-3)

We begin by exploring LLM planning foundations,
covering widely-used paradigms to provide back-
ground for readers unfamiliar with the field. It is
broken down into four parts.
Task Decomposition Task decomposition breaks
down abstract goals into specific, manageable sub-
goals. It helps mitigate errors by enabling verifica-
tion at each step and makes LLM reasoning more
tractable by narrowing the knowledge space.

Task decomposition can be performed sequen-

tially, in parallel, or asynchronously. Specifically,
sequential decomposition (Wang et al., 2023b;
Singh et al., 2023; Sun et al., 2024; Wu et al.,
2024) requires that the precondition of the subse-
quent subgoal is the effect of the preceding subgoal.
In contrast, parallel decomposition (Yang et al.,
2024) involves subgoals that share the same pre-
condition and effect, where achieving the final goal
requires completing only one of these subgoals.
Asynchronous decomposition (Lin et al., 2024) in-
volves parallelizing subgoals as well. However,
these subgoals in distinct branches have unique

preconditions and effects. Asynchronous decom-
position requires the completion of all subgoals to
achieve the overall goal.

Moreover, task decomposition can be performed
recursively, applying any of the above three ap-
proaches at each step. For example, Prasad et al.
(2023) recursively break down the goal until each
subgoal can be easily executed in the environment.
LLM + Classical Planner Studies (Valmeekam
et al., 2023b; Kambhampati, 2024; Kambhampati
et al., 2024) show that LLMs struggle with inde-
pendent planning. Classical planners, such as Fast
Downward (Helmert, 2006), ensure correct plans
but depend on experts to translate user queries into
formal representations, limiting scalability. A hy-
brid approach integrating LLMs with classical plan-
ners combines the world knowledge of LLMs with
the precision and reliability of classical methods,
addressing their individual limitations.

When integrated with classical planners, LLMs
translate natural language problems into formal

representations or generate initial plans. For exam-
ple, LLM+P (Liu et al., 2023a), LLM-DP (Dagan
et al., 2023), and Guan et al. (2023) use LLMs
to convert planning problems into PDDL (McDer-
mott et al., 1998), solved by Fast Downward or
BFS(f) (Lipovetzky et al., 2014). Valmeekam et al.
(2023b) employs LLMs to generate an initial plan,
guiding the LPG planner (Gerevini et al., 2002),
which iteratively refines it until a correct solution
is found.
Search Algorithm Search algorithms, includ-
ing Breadth-First Search, Depth-First Search (Yao
et al., 2024; Katz et al., 2024), Monte Carlo Tree

Search (Hao et al., 2023; Zhou et al., 2023a; Zhao
et al., 2024; Shi et al., 2025), and Greedy Best-

First Search (Koh et al., 2024; Hirsch et al., 2024),
have been applied to improve LLM-based plan-
ning. These algorithms treat planning as a search
problem, using search policy to guide the explo-
ration of various possibilities. Search algorithms
excel in planning problems by offering systematic
exploration, optimality guarantees, and formal veri-
fication without requiring extensive domain knowl-
edge, though they may be computationally inten-
sive compared to more specialized methods like
task decomposition.

All search algorithms consist of four core com-
ponents: (1) Search Policy determines node explo-
ration order, which are defined by the underlying
search algorithm and are independent of LLMs.
(2) Expansion generates possible actions from a
state, often using LLMs to propose actions based
on user instructions and current environment. (3)
World Models define state transitions based on ac-
tion preconditions and effects, using LLMs (Hao
et al., 2023), classical planners (Hirsch et al., 2024),
or external environment simulators (Zhou et al.,
2023a; Zhao et al., 2024; Koh et al., 2024). (4)
Evaluation assesses state progress toward the goal
via scores computed by predefined functions (Katz
et al., 2024), LLM/LVM ratings (Yao et al., 2024;
Hao et al., 2023; Zhou et al., 2023a), log-likelihood
scores (Hirsch et al., 2024), voting (Yao et al.,
2024), self-consistency scores (Zhou et al., 2023a)
or reward models (Chen et al., 2025).
Fine-tuning Commonly used pretrained LLMs
(e.g., GPT-4 (Achiam et al., 2023), Claude 3 (An-
thropic, 2024), Llama 2 (Touvron et al., 2023))
are not specifically trained for planning tasks,
and prompt-based methods, which do not update
model parameters, cannot fundamentally improve
performance in these areas (Chen et al., 2023a;



Wang et al., 2024). Fine-tuning, either focused on
planning-specific tasks or broader agentic capa-

bilities, enhances planning correctness by directly
updating LLM parameters.

Planning-specific fine-tuning involves training
a pretrained model on planning-focused tasks
(e.g., Blocksworld or ALFWorld (Shridhar et al.,
2020b)), to improve planning performance. For ex-
ample, Jansen (2020) and Chalvatzaki et al. (2023)
fine-tuned GPT-2 (Radford et al., 2019) on ALF-
World, demonstrating its effectiveness in robotics
planning.

Generalized agentic fine-tuning optimizes mod-
els using datasets that include both general tasks
(e.g., question answering) and diverse agentic tasks
(e.g., reasoning, planning, and tool use). This ap-
proach is motivated by two key insights: (1) focus-
ing too narrowly on planning may degrade general
capabilities (Chen et al., 2024b), and (2) agentic
tasks share overlapping capabilities. For instance,
reasoning and tool-use tasks often involve plan-
ning components. Thus, fine-tuning on a broader
set of agentic tasks can simultaneously enhance
planning performance and other interrelated capa-
bilities, like reasoning, which are integral to plan-
ning. Moreover, standardizing trajectory formats
from different tasks (Zhang et al., 2024; Chen et al.,
2024b), as well as incorporating unsuccessful rea-
soning or planning trajectories (Wang et al., 2024;
Chen et al., 2024b; Song et al., 2024) can further
enhance learning and performance.

3 Criterion I: Completeness (Table 4)

The completeness of planning has two key aspects:
(1) if a valid plan exists, the model should generate
it correctly, and (2) if no feasible plan is possible,
the model should recognize this and refrain from
generating an incorrect or arbitrary plan.

A plan is correct if it achieves the goal within a
fixed budget while avoiding excessive complexity
and infinite loops (e.g., finishing booking a flight
ticket to San Francisco within five hours meets the
criteria for correctness). To ensure correctness, the
LLM must work with classical sound and complete
solvers (Guan et al., 2023; Hao et al., 2024a). Also,
the LLM has to accurately translate the domain
and problem into the specific format (e.g., PDDL),
required by these solvers (Guan et al., 2023).

In terms of identifying unsolvable planning prob-
lems, those with inherently unachievable goals,
even top LLMs (e.g., GPT-4 (Achiam et al., 2023))

and Large Reasoning Models (e.g., OpenAI O1
(Jaech et al., 2024)) struggle due to hallucination
issues (Aghzal et al., 2023; Valmeekam et al., 2024;
Katz et al., 2024).

4 Criterion II: Executability (Tables 5-6)

Executability checks if a plan can be carried out in a
given environment while meeting all constraints. A
executable plan must use only allowed actions and
recognizable objects. Beyond basic precondition
and postcondition rules, planners must consider ex-
tra constraints, such as avoiding sugar when baking
a cake for diabetics (Yuan et al., 2023). Importantly,
executability and correctness are orthogonal: an

executable plan isn’t necessarily correct, since it
might be grounded and follow all constraints but
still fail to reach the goal; likewise, a correct plan

isn’t always executable since it may only include
high-level steps that can’t be executed in a specific
environment. Real-world applications typically re-
quire plans that are both correct and executable,
especially when the executors are not humans (e.g.,
robots and computers).

To ensure plans are executable, researchers have
proposed several approaches, including Object
Grounding, Action Grounding, Closed-Loop Sys-
tems, and Sample-then-Filter.
Object Grounding Object grounding ensures the
LLM planner uses objects available in the current
environment when generating plans. E.g., if a
stove is present but a microwave is not, the planner
should correctly select the stove to heat a pancake
and exclude the unavailable microwave from its
plan. The simplest way to do this is by feeding
observed or available objects into the planner via
prompts (Huang et al., 2022b; Song et al., 2023;
Lin et al., 2023a; Singh et al., 2023) or neural em-
beddings (Sharma et al., 2021; Ahn et al., 2022).
In partially observed environments, where some
object information are uncertain (e.g., needing to
clean a cup that could be in a cabinet, drawer, or
fridge), the planner can generate multiple possi-
ble plans, one for each scenario, and select the
first feasible one (Prasad et al., 2023; Dagan et al.,
2023; Zhao et al., 2024). Sun et al. (2024) takes
a different approach, first generating a plan with
placeholders for objects, then filling in the blanks
with observed objects during execution.
Action Grounding Action grounding ensures all
actions in a plan can actually be executed in the
current environment. E.g., the planner should not



include an action like “draw a star” if the robot arm
cannot perform such a complex operation. Instead,
the task should be decomposed into simpler sup-
ported actions, such as multiple steps of “draw a
line”. Like object grounding, the simplest way is
to explicitly list all admissible actions in LLMs’ in-
puts (Singh et al., 2023). If a step goes beyond the
executor’s capabilities (e.g., combining multiple
allowed actions into one), the LLM planner should
be reprompted to break it down until every step is
executable (Prasad et al., 2023).

Hierarchical Planning is another common
method for grounding actions in LLM planning
(Huang et al., 2022a; Raman et al., 2022; Song
et al., 2023; Hazra et al., 2024; Bhat et al., 2024).
It starts with high-level steps and then translates
each one into a sequence of executable actions.
This can be done in two ways: either generating
all high-level steps first and then refining them into
actions or translating each step as it’s generated. If
an action isn’t exactly admissible, the closest valid
action is retrieved instead (Huang et al., 2022a;
Raman et al., 2022).

Sample-then-Filter Since LLMs alone can’t guar-
antee plans meet all constraints, this approach first
generates multiple plans and then verifies them, se-
lecting only those that pass all checks. Yuan et al.
(2023) ranks InstructGPT-generated plans using co-
sine similarity with task embeddings and selects
the most similar one. Brahman et al. (2024) applies
a verifier-guided beam search, keeping the top-K
plans based on correctness and constraint adher-
ence at each step. Curtis et al. (2024) generates
Pythonic plans with parameter ranges, tests them
with a simulator or classifier, and prompts the LLM
to revise if constraints are still violated.

Closed-Loop Systems A closed-loop system in
LLM planning means the model adapts its plan
based on feedback from executors (Prasad et al.,
2023; Yang et al., 2024), simulators (Bhat et al.,
2024), validators (Zhou et al., 2024; Silver et al.,
2024), other LLMs (Wang et al., 2023b; Zhou et al.,
2023a), or even humans (Huang et al., 2022b),
when the initial plan are inexecutable. It reprompts
the LLM planner to replan until the plan is fully ex-
ecutable. Unlike open-loop systems (Huang et al.,
2022a), which lack feedback, closed-loop planning
helps reduce hallucinations and enables LLMs to
handle complex, long-horizon, and dynamic envi-
ronments (Wang et al., 2023b).

Closed-loop systems fall into two types: implicit

and explicit (Sun et al., 2024). Implicit systems
only fix the failed action (Raman et al., 2022; Singh
et al., 2023; Zhou et al., 2024; Prasad et al., 2023;
Yang et al., 2024), while explicit systems regen-
erate the entire plan (Sun et al., 2024). Though
explicit systems require more computation, they
prevent errors from compounding across steps.

5 Criterion III: Optimality (Table 7)

Optimality means achieving the goal state through
the best possible plan. It poses a greater challenge
than standard planning, which only requires reach-
ing the goal state. Researchers have proposed two
paradigms for achieving the optimal plans: LLM +
Optimizer and A⇤ search-based methods.
LLM + Optimizer It combines the LLM, which
turns user requests into symbolic optimization prob-
lems, with an optimizer that solves them and finds
the best solution (Ju et al., 2024; Hao et al., 2024b).
For example, TTG (Ju et al., 2024) uses the LLM
to convert travel planning requests of minimum to-
tal costs into Mixed Integer Linear Programming
problems, then runs an optimizer such as SCIP
(Bestuzheva et al., 2021) to provide the optimal
plan. Compared to LLM + classical planners,
where LLMs define the domain and problem in
a formal representation (e.g., PDDL), LLM + op-
timizers ensure optimal solutions by leveraging
LLMs to formulate constrained optimization prob-
lems and classical optimizers to solve them. Unlike
classical planners, which typically rely on search
algorithms, heuristics and logical deductions and
may not guarantee optimality (Russell and Norvig,
2016), optimizers, often using gradient-based meth-
ods (e.g., Newton’s methods), can guarantee opti-

mal solutions (Boyd and Vandenberghe, 2004).
A* Search-Based Methods A* search finds the
lowest-cost optimal solution, particularly when us-
ing admissible heuristics that do not overestimate
the actual cost to the goal. This makes it a natural
choice for LLM-based planners to achieve optimal-
ity. ToolChain* (Zhuang et al., 2023) combines A*
tree search with an LLM, which suggests next steps
and estimates heuristic scores, to create plans with
the fewest tool API calls. SayCanPay (Hazra et al.,
2024) uses A* search with LLMs to generate the
shortest possible plans. Beyond A* (Lehnert et al.,
2024) trains a Transformer model, Searchformer,
to mimic A* search paths for complex tasks like
Maze navigation and Sokoban puzzles, optimiz-
ing for the fewest steps. Besides A* search, other



search algorithms (e.g., DFS and MCTS) could
also be used to find optimal solutions, although
without guarantee.

6 Criterion IV: Representation (Tab. 8-9)

In LLM planning, representation refers to how in-
puts and outputs are formatted. Inputs include do-
mains (predicates and actions), problems (initial
and goal states), and environmental observations,
while outputs are the generated plans. Effective rep-
resentation enhances problem comprehension and
execution efficiency, especially given LLMs’ sensi-
tivity to prompts. We discuss this in two contexts:
LLM-as-a-Translator and LLM-as-a-Planner.

LLM-as-a-Translator LLM-as-a-Translator
converts between natural language (NL) and
formal planning languages (e.g. PDDL), making
classic planners more accessible to non-experts.
By converting natural language tasks into formal
representations and translating the resulting plans
back into NL, LLMs reduce ambiguity, minimize
hallucinations, and enable external validation,
improving both usability and reliability in planning
systems (Xie et al., 2023; Zhou et al., 2024; Sun
et al., 2024; Silver et al., 2024).

Recent work has used LLMs to translate natu-
ral language descriptions into PDDL (Liu et al.,
2023a; Guan et al., 2023; Xie et al., 2023; Dagan
et al., 2023; Zhou et al., 2024; Tantakoun et al.,
2025), LTL (Pan et al., 2023), and STL (Chen et al.,
2024a). To ensure reliability, translations should
be tested on development or external datasets like
Planetarium (Zuo et al., 2024). If there are syntax
or semantic errors, validators (e.g. VAL (Howey
et al., 2004)) or human experts can provide feed-
back for the LLM to fix them.

LLM-as-a-Planner When LLMs act as stan-
dalone planners without classical planners or op-
timizers, various methods help encode environ-
mental information, domains, and plans beyond
just natural language. Environment and domain
details have been represented using tables (Lin
et al., 2023a), condensed symbols (Hu et al., 2024),
Pythonic code (Aghzal et al., 2023; Singh et al.,
2023; Sun et al., 2024), neural embeddings (Li
et al., 2022; Ahn et al., 2022), and graphs (Lin
et al., 2024; Wu et al., 2024). For generated plans,
Pythonic code is a common alternative to natural
language (Singh et al., 2023; Silver et al., 2024).

7 Criterion V: Generalization (Table 10)

Generalization refers to LLM planners’ ability to
apply learned strategies to new, more complex out-
of-domain scenarios beyond its training environ-
ment, which can be enhanced through three key
approaches: fine-tuning (described previously in
Section 2), generalized planning, and skill storage.
Given the diverse user queries in the real-world
deployments, ensuring LLM planners’ generaliz-
ability is important alongside other performance.

Generalized Planning Generalized planning ex-
tracts common patterns from a limited set of train-
ing solutions (i.e., plans) to solve unseen tasks
within the same domain, which may be larger and
more complex than the training tasks (Srivastava
et al., 2011). For example, in the Delivery dataset
(Yang et al., 2022), models trained on small-scale
deliveries (9–17 locations) can generalize to larger
ones (70–100 locations) using the same core strat-
egy. Silver et al. (2024) approached this by prompt-
ing LLMs to summarize the domain and generate a
minimal, generalizable Python-based plan.

Skill Storage Skill storage focuses on learning
and reusing previously acquired skills to tackle new
problems. E.g., Wang et al. (2023a) introduced a
skill library that stores successfully executed skills
(e.g., Combat Zombie). These skills are abstracted
and generalized for reuse in similar situations (e.g.,
fighting spiders involves similar actions to fighting
zombies). When encountering an unseen task, the
LLM planning system retrieves relevant learned
skills based on the task and current states, then
applies them to generate an effective solution.

8 Criterion VI: Efficiency (Table 11)

Efficiency in LLM planning means reducing com-
putational and monetary costs by decreasing LLM
calls, world model interactions, input and output
lengths, and model sizes. This is crucial especially
developing planners based on commercial LLMs.
Reduced LLM and World Model Calls To
decrease LLM and world model calls, several
tricks are used: (1) generating the entire plan in
one shot instead of step-by-step to reduce redun-
dant prompts (Hu et al., 2023b; Sun et al., 2024;
Gonzalez-Pumariega et al., 2024); (2) checking
feasibility by world models only at the end of
each subgoal, not after every action (Sun et al.,
2024; Gonzalez-Pumariega et al., 2024); (3) merg-
ing plans with the same prefix actions or subgoals



to avoid duplicate world model checks when sam-
pling multiple plans (Hu et al., 2023b); and (4)
in tree search-based methods, querying the LLM
once to generate a successor function and a goal
check function. The successor function, which
can produce all possible actions and states, pro-
vides state transitions based on the current state
and selected action. The goal-check function de-
termines whether the current state is the desired
final goal. This approach avoids repeated LLM and
world model calls at each node (Katz et al., 2024).

Shorter Inputs and Outputs Reducing input
and output length includes decreasing prompt and

plan tokens and minimizing actions in the final plan

to alleviate the load on executors. For spatial rea-
soning and planning, (Hu et al., 2024) introduces
Chain-of-Symbols (CoS), a compact symbolic rep-
resentation that replaces natural language descrip-
tions in CoT (Wei et al., 2022) trajectories. Lehnert
et al. (2024) uses search dynamic bootstrapping
to iteratively fine-tune a LLM, replacing training
cases with solutions with less tokens and equal op-
timality. To minimize actions, Dagan et al. (2023)
and Wang et al. (2023b) use action selectors based
on predefined rules or trained models to find the
shortest successful plan.

Smaller Model Sizes Shrinking the model size
can reduce the computational burden, accelerat-
ing training and inference while lowering costs.
To train a smaller planning model, Brahman et al.
(2024) uses GPT-3 (Brown et al., 2020) as the
teacher and T5 (Raffel et al., 2020) as the student,
distilling the teacher’s planning capabilities into
the more compact student model.

9 Evaluation
Datasets LLM planning evaluation is conducted
on two types of datasets: planning-focused datasets

and downstream-task datasets.
Planning-focused datasets primarily assess plan-

ning abilities. The most common scenarios include
(1) Embodied environments, (2) Task scheduling ,
(3) Games, and (4) Task decomposition (Li et al.,
2024d). Figure 1 presents commonly used plan-
ning datasets; readers can refer to Li et al. (2024d,
2025) for further details.

While most of the datasets mentioned above as-
sess whether the generated plans are correct, some
specifically target key performance criteria in LLM
planning. For grounding, Open Grounded Plan-
ning (Guo et al., 2024) and Embodied Agent Inter-

face (Li et al., 2024f) evaluate performance in em-
bodied environments, while CoScript (Yuan et al.,
2023), TravelPlanner (Xie et al., 2023), and PPNL
(Aghzal et al., 2023) focus on planning problems
with constraints. For representation, Planetarium
(Zuo et al., 2024) assesses LLMs’ ability to trans-
late natural language into PDDL. For optimality,
Lin et al. (2024) and Gonzalez-Pumariega et al.
(2025) introduce tasks requiring optimal plans us-
ing asynchronous actions. PPNL (Aghzal et al.,
2023) can also evaluate a planner’s ability to iden-

tify unachievable goals (i.e., completeness).
Planning abilities can also be evaluated through

downstream tasks, where planning is integral to
task completion, and stronger planning skills en-
hance overall performance. Downstream tasks can
be categorized as follows: (1) Agentic tasks, in-
cluding reasoning-oriented tasks, tool-use-oriented
tasks, programming tasks, and web tasks (Yu et al.,
2018; Cobbe et al., 2021; Saparov and He, 2022;
Zhou et al., 2023b; Deng et al., 2023; Liu et al.,
2023b; Li et al., 2023; Xu et al., 2023; Jimenez
et al., 2023; Ruan et al., 2023; Bairi et al., 2023;
Li et al., 2024e), (2) Generation tasks, including
video (Lin et al., 2023b), image (Zala et al., 2023)
and text generation (Moryossef et al., 2019). Please
refer to Figure 1 for example datasets.

Methods The most common approach to eval-
uating LLM planning is to test it in a simulated
environment and validate the generated plans using
either an internal verifier provided by the envi-
ronment or external verifier (e.g., VAL (Howey
et al., 2004)) to ensure they achieve the intended
goal. When ground-truth plans are available, LLM-
generated plans can also be compared against these

reference plans (Zheng et al., 2024).
The second evaluation method is human evalua-

tion, typically used in the following cases: (1) No
available verifier: when certain simulated environ-
ments (e.g., VirtualHome) or real-world scenarios
(e.g., using a mobile manipulator) lack automated
verification; (2) Open-ended problems: tasks with
ambiguous instructions or generative outputs (e.g.,
text or images) where multiple valid solutions may
differ from the ground truth.

The final evaluation method, LLM-as-a-Judge,
uses another LLM to automatically assess the qual-
ity of generated plans in the cases mentioned above.
This approach has been increasingly adopted in
recent LLM planning research (Guo et al., 2024;
O’Donoghue et al., 2023). Compared to human



evaluation, LLM judges are faster and more cost-
effective, making them especially valuable for eval-
uating large datasets. However, this method has
limitations, such as position bias, length bias, self-
inconsistency, and sensitivity to prompts (Zheng
et al., 2023; Ye et al., 2024; Wei et al., 2024). Ad-
dressing these issues is crucial to ensure reliable
assessments. For more details on LLM-as-a-Judge,
please see Li et al. (2024a,b); Gu et al. (2024).

Metrics Figure 1 summarizes commonly used
evaluation metrics for planning-focused tasks,
along with representative works. Performance cri-
teria are measured using specific metrics: (1) Com-

pleteness: success rate and goal condition recall
measure whether the generated plan reaches final
or stepwise goals, while classification metrics (e.g.,
true negative rate, false negative rate, and unreach-
able accuracy) assess the planner’s ability to iden-
tify unachievable tasks. When ground-truth plans
are available, the exact match score is used. (2) Ex-

ecutability: executability rate evaluates whether the
plan can be executed in the environment, while con-
straint pass rate checks if constraints are met. (3)
Optimality: measured by the optimality rate (i.e.,
the percentage of optimally solved tasks). (4) Effi-

ciency: common metrics include inference time, in-
put and output token counts, number of plan steps,
and model size. (5) Representation: the number of
parseable problems indicates correct translations.
(6) Generalization: all these metrics can also be ap-
plied to unseen scenarios to assess generalization.
See Figure 1 for definitions of individual metrics
and representative works.

10 Discussion

In this section, we discuss the limitations in current
LLM planning research studies, and suggest future
directions for improvement and more comprehen-
sive evaluations of LLM planning performance.
Datasets and Baselines The current evaluation
of LLM planning has its limitations, primarily be-
cause studies often rely on limited datasets and
baselines. This makes it tough to fairly and compre-
hensively compare different methods. Most studies
only use a few datasets from a single domain and
difficulty level, and they do not evaluate all the six
performance criteria. Inconsistent dataset choices
make direct comparisons difficult. On top of that,
many studies only compare against basic baselines
such as CoT or ReAct, which does not help in com-
paring more advanced approaches. To fix this, a

public, standardized leaderboard should be set up
that covers all performance criteria, uses consis-
tent evaluation metrics, includes a variety of base-
line and advanced methods, and utilizes diverse
datasets spanning multiple domains and difficulty
levels. Another useful direction would be to cre-
ate multilingual planning datasets and assess LLM
performance across different languages.

Representation LLMs are highly sensitive to
prompts (Sclar et al., 2024; Razavi et al., 2025),
but most research relies on natural language with-
out comparing them to alternative formats, such
as PDDL or Python, for describing domains and
problems. Some studies (Singh et al., 2023; Aghzal
et al., 2024) suggest that using Python to represent
planning problems can improve performance, but
automatically translating natural language problem
descriptions into Python remains challenging, par-
ticularly for non-experts. If LLMs are to handle
this translation effectively, additional datasets and
evaluations are needed to assess their performance.
Furthermore, little research has been conducted on
how different prompt templates impact LLM plan-
ning performance, or on the best output formats for
representing plans. Lastly, most fine-tuning meth-
ods rely on natural language data without exploring
other formats, such as symbolic representations.
Filling these gaps requires building benchmarks
like Planetarium (Zuo et al., 2024) and carefully
choosing representation formats in experiments.

Hallucination LLMs often experience hallucina-
tions (Huang et al., 2023), which present two major
challenges in planning. First, they might struggle to
assess if a plan is achievable given a specific prob-
lem description (Aghzal et al., 2023; Kambhampati,
2024). Second, they can generate inadmissible ac-
tions and non-existent objects, requiring translation
or expert intervention to correct them (Huang et al.,
2022a; Raman et al., 2022). This increases the cost
of planning systems. Further research is needed
to understand the root causes and improve LLMs’
ability to accurately identify unachievable plans.
Evaluating the impact of these hallucinations re-
mains an important research direction.

Human Preference Alignment There is a gap
in understanding whether system generated plans
align with human preferences. It is crucial for open-
ended problems where humans execute the plans.
Ensuring alignment with human preferences is vital
for safety, feasibility, and usability, particularly in
personalized planning tasks such as calendar and



travel planning. Additionally, Aghzal et al. (2024)
found that LLM planners often fail to achieve opti-
mality in path planning, frequently producing un-
necessarily long plans. This may stem from inher-
ent length bias in LLMs, which tend to generate
longer sequences. Alignment techniques such as
RLHF (Ouyang et al., 2022) and DPO (Rafailov
et al., 2024) may help alleviate this issue, as hu-
mans generally prefer shorter plans for their effi-
ciency, simplicity, and cognitive ease. Further in-
vestigation is needed to better align LLM planners
with human preferences.

Cost Effectiveness Current methods, particularly
task decomposition and search-based approaches,
often consume a large number of tokens due to
lengthy prompts and repeated LLM queries. While
heuristic search is considered more efficient than
task decomposition, it still requires substantial re-
peated prompting. To improve cost-effectiveness,
we may summarize problem descriptions and en-
hance heuristic evaluations, e.g., by improving
LLM uncertainty estimation (Huang et al., 2024a)
and verification (Li et al., 2024c). These improve-
ments would help reduce prompt length and enable
the early stopping of unpromising partial plans.

Multi-Agent Planning Most existing research
focuses on single-agent planning, where only one
agent performs a task. Multi-agent planning (Kono-
lige and Nilsson, 1980; Torreno et al., 2017) is more
challenging, as it involves multiple agents (e.g.,
robots) working together or competing in parallel.
Despite its complexity, multi-agent planning has
received limited attention in AI planning research.
It often requires coordinating multiple agents in
collaborative or competitive environments where
they operate simultaneously. The major challenge
lies in developing effective communication proto-
cols and cooperation strategies while generating
viable plans for their collective actions.

Reasoning, Tool Use, and Memory There is
often limited discussion on how other components
of LLM agents, such as reasoning, tool use, and
memory, affect planning performance. In particular,
when LLMs are combined with classical planners
or optimizers, it is crucial that the LLM accurately
translates the planning problem into the appropri-
ate domain representation to ensure correct plan
generation. Currently, these approaches rely on
human-selected planners and optimizers. Treating
them as tools that LLMs can autonomously choose
from could be an exciting prospect. This also raises

the question of whether LLMs can effectively se-
lect the best tool for a given planning task. Future
research should look into enhancing these agentic
capabilities in LLM-based planning.

11 Conclusion

In our survey, we explore the landscape of modern
LLM planners, proposing key performance crite-
ria and discussing evaluation challenges. Our pro-
posed criteria offer a structured approach to assess
LLM planners across diverse domains. By system-
atically analyzing existing systems, datasets, and
evaluation strategies, we aim to provide a founda-
tion for future research in this space. We encourage
researchers to build on our findings to create robust,
highly adaptable, and efficient LLM planners.

12 Limitations

This work primarily focuses on commonly stud-
ied domains involving single-agent scenarios, such
as robotics, household tasks, and computer-based
tasks. We acknowledge that LLM planning is also
applied in other areas, including the natural sci-
ences (O’Donoghue et al., 2023; Liu et al., 2024),
the Internet of Things (Cui et al., 2024), and multi-
agent scenarios. However, these studies follow
similar methodologies and evaluations, suggesting
our survey’s comprehensiveness. We focus on six
commonly used performance criteria and exclude
others, such as security and personalization, due to
limited research in these areas. Instead, we discuss
them in our future directions section.
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Table 1: Summary of Foundations in LLM Planning (Section 2)

Method Name Dataset Evaluation Metric Methods Major Contribution

DEPS
(Wang et al., 2023b)

Alfworld Success Rate, Average
Episode Length

1. LLM generates PDDL goal from task
description
2. Sampling world beliefs and using sym-
bolic planning
3. Plan generator (BFS(f)) for generating
plans

1.LLM-DP achieves 96% success in Alfworld,
outperforming the ReAct baseline (53%) with
fewer actions.
2.Enhances correctness in LLM planning by dy-
namically adjusting plans in response to environ-
mental feedback and sub-goal feasibility.

ProgPrompt
(Singh et al., 2023)

VirtualHome,
Real-World
Robot Tasks

Success Rate, Goal
Conditions Recall,
Executability

1. Pythonic program generation for task
planning
2. Use of natural language comments and
assertions for feedback
3. Integration with real-time environment
state feedback during task execution

1. ProgPrompt significantly outperforms base-
line methods by using programmatic LLM
prompts to generate executable task plans,
achieving up to 1.00 SR and 1.00 Exec in var-
ious VirtualHome tasks. It also adapts well to
real-world robot tasks, with a Plan SR of 1 in
most cases.
2. Improves correctness by incorporating envi-
ronmental state feedback directly into the plan-
ning process.

Adaplanner
(Sun et al., 2024)

ALFWorld and
MiniWoB++

Success Rate Closed-loop approach allowing LLM agent
to refine self-generated plan adaptively

1. Uses code-style LLM prompt structure and
skill discovery mechanism. Achieves 91.79%
success rate on ALFWorld tasks.
2. Achieves 91.11% success rate on MiniWoB++
tasks with feedback.
3. Improves planning correctness by adaptively
refining plans based on environmental feedback,
effectively managing complex sequential tasks.

GNN-Enhanced Task
Planner
(Wu et al., 2024)

HuggingFace,
Multimedia tasks,
Daily Life API
tasks, TMDB
API tasks

Node F1-Score, Link
F1-Score, Task Accu-
racy, Token Consump-
tion

1. Integration of GNNs for task graph navi-
gation
2. Training-free (SGC) and training-
required (GraphSAGE) approaches
3. GNN-based node and edge selection for
task planning
4. Training fine-tuned models for better task
retrieval

1. GNN-enhanced planning outperforms LLM-
based solutions by improving task accuracy (up
to 9%) with reduced token consumption. The
proposed method scales well with larger task
graphs and improves planning efficiency by a
significant margin.
2.Addresses correctness by effectively mapping
task dependencies in a graph structure, enhanc-
ing sub-task selection and sequence planning.

SelfGoal
(Yang et al., 2024)

Public Goods
Game, Guess 2/3
of the Average,
First-Price Auc-
tion, Bargaining

Success Rate, TrueSkill
Score, Contribution
Consistency

1. Constructs GOALTREE to decompose
high-level goals dynamically
2. Uses Search Module to select the most
relevant subgoals
3. Decomposition updates based on environ-
mental feedback
4. Adaptive subgoal tree refinement during
task execution

1. SelfGoal achieves a 94% success rate in dy-
namic multi-agent environments, outperforming
baselines (e.g., ReAct, ADAPT) by dynamically
adjusting subgoal guidance. It significantly im-
proves task performance, especially in coopera-
tive and competitive tasks.
2. SelfGoal enhances correctness and adaptabil-
ity in planning by dynamically adjusting sub-
goals and actions based on ongoing task perfor-
mance and feedback.

ADaPT
(Prasad et al., 2023)

ALFWorld, Web-
Shop, TextCraft
& hotel data

Success Rate, Task
Complexity Handling,
Sub-Task Decomposi-
tion Efficiency

1. As-needed recursive decomposition of
complex tasks
2. Planner and executor modules with dy-
namic failure adaptation
3. Multi-level decomposition for task com-
plexity handling

ADaPT improves success rates by up to 33%
over baselines, dynamically decomposing com-
plex tasks as needed. It handles task complexity
efficiently with up to 28.3% higher success rates
on ALFWorld and 27% higher on WebShop.

LLM+P
(Liu et al., 2023a)

Blocksworld,
Grippers, Bar-
man, Termes, and
other robot plan-
ning scenarios

Success Rate, Optimal
Plan Success, Plan Exe-
cution Time

1. Converts natural language problem de-
scription into PDDL format
2. Uses classical planners (e.g., FAST-
DOWNWARD) to generate optimal plans
3. Translates planner output back into natu-
ral language

1. LLM+P significantly outperforms LLMs in
solving long-horizon planning problems, achiev-
ing optimal plans in robot domains with high
success rates (up to 100% on Blocksworld) and
minimal execution time. 2. LLM+P improves
correctness by integrating LLMs with classical
planning techniques to generate and execute op-
timal plans.

LLM-DP
(Dagan et al., 2023)

Alfworld Success Rate, Average
Episode Length

1. LLM converts task descriptions into exe-
cutable PDDL goals
2. Symbolic planner (BFS(f)) generates
valid plans
3. Belief sampling to generate multiple
world states for planning

LLM-DP outperforms the ReAct baseline,
achieving 96% success in Alfworld, with sig-
nificantly fewer actions (13.16 vs. 18.69) per
task and higher efficiency due to belief sampling
and symbolic planning integration.

PDDL World Model
Generation
(Guan et al., 2023)

Household, Tyre-
world, Logistics

Error Count, Success
Rate

1. LLM-based PDDL generation for task
planning
2. Error correction using LLMs as feedback
interfaces
3. Use of external planners for generating
feasible plans from PDDL models

1. The paper shows that GPT-4 is capable of gen-
erating high-quality PDDL models with fewer
errors than GPT-3.5-Turbo. It demonstrates that
GPT-4-based world models lead to a 95% suc-
cess rate in planning tasks using classical plan-
ners like Fast Downward.
2. Enhances plan correctness by using LLM-
generated PDDL models in conjunction with
domain-independent planners, ensuring plans
are not only feasible but also optimal.

LLM Planning Evalu-
ation
(Valmeekam et al.,
2023b)

Blocksworld,
Mystery
Blocksworld

Success Rate, Leven-
shtein Edit Distance

1. Evaluates LLMs (GPT-3, BLOOM) on
common planning domains
2. Three evaluation modes: autonomous,
heuristic, and human-in-the-loop
3. Comparison of LLM-generated plans
with optimal solutions using automated plan-
ning tools

LLMs struggle with autonomous plan generation
(3% success rate), but perform better when used
for heuristic guidance in planning tasks (with
LPG) and assist human planners by improving
task completion accuracy (74% to 82%).



Table 2: Summary of Foundations in LLM Planning (Section 2)

Method Name Dataset Evaluation Metric Methods Major Contribution

Tree Search for Lan-
guage Model Agents
(Koh et al., 2024)

WebArena, Visu-
alWebArena

Success Rate, Search
Budget Efficiency

1. Best-first search algorithm using language
model feedback
2. Backtracking to refine paths based on
value function
3. Model-based value function for search
guidance

1. Tree Search improves the GPT-4o agent’s
success rate by 39.7% on VisualWebArena and
28.0% on WebArena. The search mechanism
enhances multi-step planning and exploration,
setting a new state-of-the-art in web task com-
pletion.
2. Enhances correctness by using a best-first
search strategy that adapts to environmental feed-
back, improving decision-making in complex
web tasks.

SimPlan
(Hirsch et al., 2024)

Blocksworld,
Ferry, Grippers,
Depots, Minigrid

Success Rate 1. Hybrid approach combining LLMs with
greedy best-first search
2. Utilizes external world modeling tools
3. Heuristic-driven planning for enhanced
action ranking
4. Optimizes path selection through search
algorithms

1.SimPlan outperforms baseline LLM-based
planners by integrating world modeling and
search algorithms, achieving high success rates
in domains like Blocksworld and Ferry. It high-
lights the effectiveness of combining LLMs with
traditional planning methods.
2. Addresses limitations in LLMs’ planning
capabilities by integrating classical planning
methodologies, enhancing correctness through
structured problem-solving.

LATS
(Zhou et al., 2023a)

HotPotQA,
WebShop, Hu-
manEval, Game
of 24

Pass@1 Accuracy, Suc-
cess Rate

1. Integrates MCTS-based search for reason-
ing, acting, and planning
2. External feedback integration with self-
reflection for better decision-making
3. Dynamic sampling of multiple action
paths for exploration

1.LATS achieves state-of-the-art results, includ-
ing 92.7% Pass@1 accuracy on HumanEval with
GPT-4 and surpassing ReAct with 75.9% suc-
cess rate on WebShop. It unifies reasoning, act-
ing, and planning in one framework and im-
proves decision-making by using Monte Carlo
Tree Search.
2.Significantly enhances correctness in planning
by introducing a tree search framework that
adapts to environmental feedback and multiple
reasoning paths.

Tree of Thought
(Yao et al., 2024)

Game of 24,
Creative Writing,
Mini Crosswords

Success Rate, Passage
Coherency, Task Com-
pletion Time

1. Tree-based search for exploring multiple
reasoning paths
2. Self-evaluation and decision-making with
backtracking
3. Application of breadth-first and depth-
first search
4. Thought decomposition for structured
problem-solving

1.ToT significantly improves problem-solving
performance, with 74% success in Game of
24 compared to 4% for traditional Chain-of-
Thought prompting. It introduces a new frame-
work for deliberate planning and exploration in
LLM-based reasoning tasks.
2.Enhances correctness by allowing for explo-
ration of multiple paths and adjusting strategies
based on real-time feedback.

Thought of Search
(Katz et al., 2024)

24 Game, Mini
Crosswords,
BlocksWorld,
PrOntoQA

Success Rate, Plan
Time, Model Evaluation
Calls

1. Using LLMs to generate code for search
components (successor functions and goal
tests)
2. Search performed using BFS and DFS
3. Minimizes LLM calls for efficiency

1. Thought of Search achieves 100% accuracy
across datasets with minimal LLM calls (1–2
calls per function). Significantly more efficient
than existing LLM-based planning methods.
2. Significantly improves correctness by verify-
ing search components for soundness and com-
pleteness, reducing computational inefficiency.

RAP
(Hao et al., 2023)

Blocksworld,
GSM8K, PrOn-
toQA

Success Rate, Plan Gen-
eration Success, Task
Completion Time

1. Repurposes LLM as both a world model
and a reasoning agent
2. Uses Monte Carlo Tree Search (MCTS)
for strategic exploration
3. Reward-based planning for balancing ex-
ploration and exploitation

1. RAP achieves 33% relative improvement in
plan generation over GPT-4 with CoT, and out-
performs baseline methods on math reasoning
and logical inference tasks, achieving a 64% suc-
cess rate on Blocksworld and 94.2% accuracy
on PrOntoQA.
2. Enhances correctness in LLM planning by
effectively balancing exploration and exploita-
tion in reasoning, leading to higher task success
rates.

LLM-MCTS
(Zhao et al., 2024)

Virtual Home Success Rate, Task
Completion Time, Task
Complexity

1. Combines LLM as a commonsense world
model and heuristic policy in MCTS
2. Utilizes LLM to predict object locations
and generate action suggestions
3. Improves planning efficiency by limiting
search space with a heuristic policy
4. World model and policy guide MCTS to
select promising action paths

LLM-MCTS achieves up to 91.4% success in
simple tasks, outperforms GPT-3.5-based poli-
cies and traditional MCTS approaches, and
demonstrates superior performance for large-
scale task planning with partial observations.

Visual Semantic Plan-
ning with GPT-2
(Jansen, 2020)

ALFRED Success Rate, Predic-
tion Accuracy

1. Uses GPT-2 for sequence-to-sequence
translation of natural language directives
into action plans
2. Evaluates command prediction accuracy
using strict and permissive scoring metrics
3. Focuses on generating multi-step plans
with minimal visual input

1. The GPT-2 model achieved 26% accuracy in
generating correct visual semantic plans without
visual input, increasing to 58% when provided
with starting location. This demonstrates that de-
tailed task planning can be done using language
models alone.
2. Improves correctness and efficiency in task
planning by leveraging LLMs for both heuristic
guidance and world modeling, leading to better
performance in complex tasks.

RobLM
(Chalvatzaki et al.,
2023)

ALFRED Task Success Rate, Plan
Accuracy, Argument
Accuracy, Sub-Task
Success Rate

1. Fine-tunes GPT-2 for task planning with
grounded scene graph input
2. Uses Graph2NL to convert scene graphs
into natural language for model input
3. Task and geometric grounding for robot
execution
4. Grounding high-level actions to low-level
robotic commands

1.RobLM outperforms classical planning sys-
tems in several task categories, achieving high
success rates (up to 98% for "SliceObject") and
demonstrating the feasibility of grounded LLMs
for robotic task planning.
2. Demonstrates correctness in generating ac-
tionable plans from textual directives alone, sig-
nificantly improving plan success rates without
relying on visual data.



Table 3: Summary of Foundations in LLM Planning (Section 2)

Method Name Dataset Evaluation Metric Methods Major Contribution

Agent-FLAN
(Chen et al., 2024b)

HALF-World,
WebShop,
Mind2Web,
Knowledge
Graph, Oper-
ating System,
Database, Tool-
Bench

Accuracy, hallucination
scores

1.Fine-tuning LLMs (Llama2-7B) for agent
tasks
2.Decomposing training data into capabili-
ties like reasoning, retrieval, understanding,
instruction following
3. Negative sample generation for hallucina-
tion mitigation

1. Outperforms previous works by 3.5% on
agent tasks
2. Significantly reduces hallucinations through
negative sample learning
3. Demonstrates scaling law for data and model
size improvement
4. Enhances general capabilities like reasoning
and instruction-following in general NLP tasks

AgentOhana
(Zhang et al., 2024)

Webshop,
HotpotQA,
ToolAlpaca,
ToolBench, Alf-
World, APIbank,
Mind2Web,
Knowledge
Graph, Database

Success Rate, Task
Completion Time,
Reward Accuracy

1. Standardizes heterogeneous multi-turn
agent trajectories from diverse environments
2. AgentRater for filtering low-quality tra-
jectories
3. Generic dataloader for efficient data han-
dling during training

AgentOhana aggregates and unifies agent trajec-
tories from ten diverse environments, achieving
significant improvements in model performance
and task execution. The xLAM-v0.1 model
trained using AgentOhana outperforms GPT-4
and other models in benchmarks like Webshop
and ToolEval.

NAT
(Wang et al., 2024)

GSM8K, ASDiv,
SVAMP, Multi-
Arith, HotpotQA,
StrategyQA

Accuracy, F1-Score,
EM Score

1. Incorporates both positive and negative
samples in fine-tuning LLMs for agent tasks
2. Introduces a prefix/suffix to indicate
whether trajectories are positive or negative
3. Differentiates high-quality and low-
quality negative examples
4. Fine-grained NAT with two-level classifi-
cation of negative examples

1. NAT achieves a 64.64% average performance
across GSM8K, ASDiv, SVAMP, and MultiArith
using 2k positive and 10k negative samples. It
outperforms Vanilla and NUT methods in vari-
ous tasks, demonstrating the value of negative
examples for agent fine-tuning.
2.Enhances correctness by utilizing negative ex-
amples to inform the fine-tuning process, im-
proving task success rates

ETO
(Song et al., 2024)

WebShop, Sci-
enceWorld,
ALFWorld

Average Reward, Suc-
cess Rate, Task Solving
Efficiency

1. Exploration phase for failure trajectory
collection
2. Contrastive learning using failure-success
trajectory pairs
3. DPO loss for iterative policy refinement
4. Iterative optimization cycle for improve-
ment

1. ETO demonstrates a 22% improvement in
task-solving efficiency over traditional behav-
ioral cloning, surpassing baselines like PPO and
RFT. It significantly improves performance in
both in-domain and out-of-domain tasks, espe-
cially when expert trajectories are unavailable.
2. Significantly improves correctness in task
planning by allowing agents to learn from both
successful and failed interactions, leading to ro-
bust policy enhancements.

MC-DML
(Shi et al., 2025)

Jericho Bench-
mark

Success Rate, Planning
Efficiency

1. Integrates Monte Carlo Tree Search
(MCTS) with LLMs for more effective plan-
ning.
2. Uses in-trial and cross-trial memory
mechanisms to enhance decision-making
based on past failures.

1. Strengthens the foundation of LLM planning
by combining search algorithms (MCTS) with
language-based reasoning, enabling more struc-
tured and adaptive decision-making.
2. Improves correctness by leveraging memory-
guided LLM policies to adjust action probabil-
ities dynamically, ensuring valid and effective
decision paths in text-based planning.

ARMAP
(Chen et al., 2025).

Multiple agent
benchmarks

Success Rate 1. Uses LLMs to navigate environments and
generate diverse action trajectories.
2. Employs a separate LLM to create and
refine a reward model from these trajecto-
ries, integrating it with various planning al-
gorithms.

1. Establishes a novel foundation for LLM plan-
ning by automating the creation of reward mod-
els, enhancing decision-making capabilities of
LLM agents.
2. Demonstrates a significant advancement in
LLM agents’ ability to handle complex, multi-
step decision-making tasks without human-
annotated data, making the approach highly scal-
able and adaptable.

Table 4: Summary of Completeness in LLM Planning (Section 3)

Method Name Dataset Evaluation Metric Methods Major Contribution

PDDL World Model
Generation
(Guan et al., 2023)

Household, Tyre-
world, Logistics

Error Count, Success
Rate

1. LLM-based PDDL generation for task
planning
2. Error correction using LLMs as feedback
interfaces
3. Use of external planners for generating
feasible plans from PDDL models

The paper shows that GPT-4 is capable of gen-
erating high-quality PDDL models with fewer
errors than GPT-3.5-Turbo. It demonstrates that
GPT-4-based world models lead to a 95% suc-
cess rate in planning tasks using classical plan-
ners like Fast Downward.

Large Language Mod-
els Can Solve Real-
World Planning Rigor-
ously with Formal Ver-
ification Tools
(Hao et al., 2024a)

TravelPlanner,
UnsatChristmas,
TSP, Block
Picking, Task
Allocation, Ware-
house

Success Rate, Optimiza-
tion Rate, Interactive
Repair Success Rate

1. Converts natural language travel plan-
ning queries into SMT (Satisfiability Mod-
ulo Theory) problems
2. Uses LLMs to generate steps and code
for formal solvers
3. Provides feedback and suggestions for
unsatisfiable queries
4. Zero-shot generalization to new tasks and
constraints

1.TravelPlan-LLM achieves 93.9% success in
solving complex multi-constraint travel planning
problems and offers interactive plan repair for
unsatisfiable queries. It generalizes well to new
problem domains, including TSP and task allo-
cation.
2.Enhances completeness by using formal tools
to verify that LLM-generated plans are both cor-
rect and complete, ensuring that all solutions are
viable and no false solutions are proposed.

PPNL
(Aghzal et al., 2023)

Grid environ-
ments, ALFRED

Success Rate, Optimal
Rate, Exact Match Ac-
curacy, Unreachable Ac-
curacy, Feasible Rate

1. Few-shot prompting with GPT-4 for path
planning
2. Action-and-effect prompting to guide
long-term spatial reasoning
3. CoT and ReAct prompting to en-
hance spatial-temporal reasoning and obsta-
cle avoidance
4. Multi-goal path planning with hierarchi-
cal task decomposition

1.PPNL evaluates LLMs on path planning tasks,
demonstrating GPT-4’s spatial reasoning ability
when prompted effectively. ReAct prompting
achieves 96.1% success rate, while fine-tuned
models like T5 outperform in in-distribution set-
tings but struggle with generalization.
2. Directly addresses the completeness of LLM
planning by evaluating their ability to identify
unsolvable problems and correctly navigate solv-
able scenarios.

LRM Evaluation
(Valmeekam et al.,
2024)

Blocksworld,
Mystery
Blocksworld,
Random-
ized Mystery
Blocksworld

Success Rate, Execu-
tion Time

1. Comparison of LLMs and LRMs using
the PlanBench test set
2. Zero-shot and one-shot prompting for
evaluation
3. Performance measured on standard
Blocksworld tasks as well as obfuscated ver-
sions (Mystery Blocksworld)
4. Efficiency evaluation of reasoning tokens
used by o1

LRM o1 outperforms all LLMs, achieving
97.8% on Blocksworld, but struggles with per-
formance on Mystery Blocksworld (52.8d%).
LLMs fail to generalize well, showing signif-
icant limitations when faced with obfuscated
tasks.



Table 5: Summary of Executability in LLM Planning (Section 4)

Method Name Dataset Evaluation Metric Methods Major Contribution

Adaplanner
(Sun et al., 2024)

ALFWorld and
MiniWoB++

Success Rate Closed-loop approach allowing LLM agent
to refine self-generated plan adaptively

• Uses code-style LLM prompt structure and
skill discovery mechanism. Achieves 91.79%
success rate on ALFWorld tasks.
• Achieves 91.11% success rate on MiniWoB++
tasks with feedback.

Inner Monologue
(Huang et al., 2022b)

Tabletop and mo-
bile manipulation
tasks in both sim-
ulated and real-
world settings

Success Rate Uses LLMs for generating sequential, ac-
tionable plans based on feedback.
Employs closed-loop feedback incorporat-
ing success detection, scene descriptions,
and human interactions.

Demonstrates that LLMs can effectively inte-
grate multimodal feedback to improve planning
and execution in robotic tasks.
Shows adaptability of LLMs to dynamic envi-
ronments and tasks, significantly enhancing task
success rates in complex manipulation scenar-
ios.

LLM-Planner
(Song et al., 2023)

ALFRED Success Rate Uses GPT-3 for generating high-level plans.
Incorporates dynamic grounded re-planning
based on environment feedback.

Achieves high few-shot performance on the
ALFRED dataset, demonstrating the ability to
quickly adapt to new tasks with minimal training
data.
Introduces dynamic re-planning to adjust plans
based on real-time environmental changes, en-
hancing task success under varied conditions.

G-PlanET
(Lin et al., 2023a)

ALFRED Key Action Score Utilizes encoder-decoder LMs with a focus
on grounded planning for embodied tasks.
Introduces object tables as environmental
input for LMs to perceive and plan actions.

First study to investigate LMs’ capability in
grounded planning for embodied tasks.
Developed a new evaluation metric (KAS) tai-
lored for assessing the quality of generated plans
in realistic environments.

LLP
(Sharma et al., 2021)

ALFRED Task Completion rates Utilizes latent language to segment and label
hierarchical tasks in demonstrations.
Employs weak and partial natural language
supervision to train policies.

Demonstrates effective policy training with mini-
mal natural language annotations, achieving per-
formance comparable to models using more ex-
tensive data.
Introduces a method that allows hierarchical poli-
cies to be trained using unannotated action se-
quences by inferring natural language descrip-
tions.

SayCan
(Ahn et al., 2022)

Real-World
Kitchen environ-
ment

Plan Success Rate, Exe-
cution Success Rate

Leverages LLMs to score the likelihood of
robotic skills contributing to task comple-
tion.
Combines LLM outputs with affordance
functions from reinforcement learning to pri-
oritize feasible actions.

Enables robots to execute complex, long-horizon
tasks using natural language instructions.
Nearly doubles performance over non-grounded
baselines by integrating real-world affordance
functions with LLM predictions.

ADaPT
(Prasad et al., 2023)

ALFWorld, Web-
Shop, TextCraft
& hotel data

Success Rate, Task
Complexity Handling,
Sub-Task Decomposi-
tion Efficiency

1. As-needed recursive decomposition of
complex tasks
2. Planner and executor modules with dy-
namic failure adaptation
3. Multi-level decomposition for task com-
plexity handling

ADaPT improves success rates by up to 33%
over baselines, dynamically decomposing com-
plex tasks as needed. It handles task complexity
efficiently with up to 28.3% higher success rates
on ALFWorld and 27% higher on WebShop.

LLM-DP
(Dagan et al., 2023)

Alfworld Success Rate, Average
Episode Length

1. LLM converts task descriptions into exe-
cutable PDDL goals
2. Symbolic planner (BFS(f)) generates
valid plans
3. Belief sampling to generate multiple
world states for planning

LLM-DP outperforms the ReAct baseline,
achieving 96% success in Alfworld, with sig-
nificantly fewer actions (13.16 vs. 18.69) per
task and higher efficiency due to belief sampling
and symbolic planning integration.

LLM-MCTS
(Zhao et al., 2024)

Virtual Home Success Rate, Task
Completion Time, Task
Complexity

1. Combines LLM as a commonsense world
model and heuristic policy in MCTS
2. Utilizes LLM to predict object locations
and generate action suggestions
3. Improves planning efficiency by limiting
search space with a heuristic policy
4. World model and policy guide MCTS to
select promising action paths

LLM-MCTS achieves up to 91.4% success in
simple tasks, outperforms GPT-3.5-based poli-
cies and traditional MCTS approaches, and
demonstrates superior performance for large-
scale task planning with partial observations.

Corrective Re-
prompting
(Raman et al., 2022)

Virtual Home Executability Rate,
Semantic Correctness,
Number of Re-prompts

1. Utilizes precondition errors for re-
prompting to generate corrective actions.
Employs a template-based prompt strategy
that incorporates error details for plan adjust-
ments.

1. Introduced a novel approach to improve plan
executability and correctness using error-driven
re-prompting.
2. Demonstrated substantial improvements in
task execution rates and reduced the number of
necessary re-prompts compared to baselines.



Table 6: Summary of Executability in LLM Planning (Section 4)

Method Name Dataset Evaluation Metric Methods Major Contribution

LLM-Planner
(Song et al., 2023)

ALFRED Success Rate Uses GPT-3 for generating high-level plans.
Incorporates dynamic grounded re-planning
based on environment feedback.

Achieves high few-shot performance on the
ALFRED dataset, demonstrating the ability to
quickly adapt to new tasks with minimal training
data.
Introduces dynamic re-planning to adjust plans
based on real-time environmental changes, en-
hancing task success under varied conditions.

SayCanPay
(Hazra et al., 2024)

Ravens (Tower of
Hanoi), BabyAI,
VirtualHome

Planning Success, Cost-
Effectiveness, General-
ization

1. Heuristic search-based planning frame-
work using LLMs
2. Three-step process: Say (generate ac-
tions), Can (action feasibility), Pay (action
payoff)
3. Beam search for action selection

SayCanPay outperforms other LLM-based plan-
ning approaches, achieving higher planning suc-
cess rates (e.g., 94% on BabyAI), improved cost-
efficiency, and better generalization across envi-
ronments.

BrainBody-LLM
(Bhat et al., 2024)

Virtual Home,
Franka Research
3

Success Rate, Goal Con-
dition Recall

Employs two separate LLMs for high-level
planning and low-level control.
Utilizes closed-loop state feedback to itera-
tively refine plans based on environmental
feedback.

- Achieved a 29% improvement in task-oriented
success rates over existing methods.
Demonstrated effective grounding of language
models in robotic task planning with minimal
human intervention.

CLP
(Yuan et al., 2023)

CoScript 3 Constraint faithfulness,
Executability rate

1.Uses an over-generate-then-filter approach
to improve LLMs’ planning.
2. Distills structured script knowledge into
smaller models using LLMs.

1.Introduced constrained language planning as a
new task, allowing for step-by-step procedural
reasoning under constraints.
2.Proposed CoScript, a dataset of 55,000
constraint-driven scripts, improving planning
performance.
3.Smaller models trained on CoScript outper-
form LLMs in constrained planning accuracy.

PLaSma
(Brahman et al., 2024)

COPLAN, Virtu-
alHome

Human Evaluation:
Coverage, Order,
Overall Quality, Exe-
cutability, Correctness

1. Symbolic procedural knowledge distilla-
tion
2. Multi-task and task-specific distillation
3. Verifier-guided step-wise beam search
4. Constrained and counterfactual replan-
ning tasks

PlaSma enhances smaller models with procedu-
ral knowledge, outperforming GPT-3 in tasks
like goal-based planning and counterfactual re-
planning. Achieves up to 93% success in coun-
terfactual replanning.

PRoC3S
(Curtis et al., 2024)

Various sim-
ulated and
real-world do-
mains 3

Success Rate 1. Uses LLMs to generate programs han-
dling continuous parameters and constraints.
2.Incorporates continuous constraint satis-
faction to adjust plans based on real-time
feedback.

1. Pioneered the integration of LLMs with
constraint satisfaction techniques for complex
robotic tasks.
2.Demonstrated superior efficiency and effec-
tiveness in diverse manipulation tasks compared
to existing methods.

BrainBody-LLM
(Bhat et al., 2024)

Virtual Home,
Franka Research
3

Success Rate, Goal Con-
dition Recall

Employs two separate LLMs for high-level
planning and low-level control.
Utilizes closed-loop state feedback to itera-
tively refine plans based on environmental
feedback.

- Achieved a 29% improvement in task-oriented
success rates over existing methods.
Demonstrated effective grounding of language
models in robotic task planning with minimal
human intervention.

ProgPrompt
(Singh et al., 2023)

VirtualHome,
Real-World
Robot Tasks

Success Rate, Goal
Conditions Recall,
Executability

1. Pythonic program generation for task
planning
2. Use of natural language comments and
assertions for feedback
3. Integration with real-time environment
state feedback during task execution

ProgPrompt significantly outperforms baseline
methods by using programmatic LLM prompts
to generate executable task plans, achieving up
to 1.00 SR and 1.00 Exec in various Virtual-
Home tasks. It also adapts well to real-world
robot tasks, with a Plan SR of 1 in most cases.

ISR-LLM
(Zhou et al., 2024)

Diverse planning
problem domains

Success Rate 1.Utilizes iterative self-refinement to en-
hance LLM-based planning.
2.Employs an LLM translator to convert nat-
ural language to PDDL, aiding in plan for-
mulation and refinement.

1.Introduced a novel framework that signifi-
cantly improves feasibility and success in long-
horizon task planning.
2. Demonstrated superior task accomplishment
rates across multiple domains compared to state-
of-the-art LLM-based planners.

ADaPT
(Prasad et al., 2023)

ALFWorld, Web-
Shop, TextCraft
& hotel data

Success Rate, Task
Complexity Handling,
Sub-Task Decomposi-
tion Efficiency

1. As-needed recursive decomposition of
complex tasks
2. Planner and executor modules with dy-
namic failure adaptation
3. Multi-level decomposition for task com-
plexity handling

ADaPT improves success rates by up to 33%
over baselines, dynamically decomposing com-
plex tasks as needed. It handles task complexity
efficiently with up to 28.3% higher success rates
on ALFWorld and 27% higher on WebShop.

SelfGoal
(Yang et al., 2024)

Public Goods
Game, Guess 2/3
of the Average,
First-Price Auc-
tion, Bargaining

Success Rate, TrueSkill
Score, Contribution
Consistency

1. Constructs GOALTREE to decompose
high-level goals dynamically
2. Uses Search Module to select the most
relevant subgoals
3. Decomposition updates based on environ-
mental feedback
4. Adaptive subgoal tree refinement during
task execution

SelfGoal achieves a 94% success rate in dynamic
multi-agent environments, outperforming base-
lines (e.g., ReAct, ADAPT) by dynamically ad-
justing subgoal guidance. It significantly im-
proves task performance, especially in coopera-
tive and competitive tasks.



Table 7: Summary of Optimality in LLM Planning (Section 5)

Method Name Dataset Evaluation Metric Methods Major Contribution

TTG
(Ju et al., 2024)

Synthetic travel
requests and
flight & hotel
data

Exact Match accuracy,
Cost ratio, Net Promoter
Score

1. Fine-tuned LLM for translating NL re-
quests to symbolic form
2. MILP solver for optimal travel itineraries
3. Real-time response (<5 seconds) with
guaranteed optimality

TTG achieves 91% translation accuracy with
LLM, guarantees optimal itineraries with min-
imal cost, and provides a user-friendly sys-
tem with a high NPS (35-40%) on generated
itineraries.

ToolChain*
(Zhuang et al., 2023)

Home Search,
Trip Booking,
Google Sheets,
Virtual Home,
GSM8K

Success Rate, Effi-
ciency (Time), Running
Time Comparison

1. A* search-based planning algorithm for
tool-use tasks
2. Efficient node expansion and pruning us-
ing task-specific cost functions
3. Combines exploration and exploitation
for optimal solutions

ToolChain* improves success rate by 3.1% and
reduces planning time by 7.35x compared to
baselines like MCTS, demonstrating its effi-
ciency in navigating expansive action spaces.

SayCanPay
(Hazra et al., 2024)

Ravens (Tower of
Hanoi), BabyAI,
VirtualHome

Planning Success, Cost-
Effectiveness, General-
ization

1. Heuristic search-based planning frame-
work using LLMs
2. Three-step process: Say (generate ac-
tions), Can (action feasibility), Pay (action
payoff)
3. Beam search for action selection

SayCanPay outperforms other LLM-based plan-
ning approaches, achieving higher planning suc-
cess rates (e.g., 94% on BabyAI), improved cost-
efficiency, and better generalization across envi-
ronments.

Beyond A*
(Lehnert et al., 2024)

Sokoban, Maze
Navigation

Success Weighted by
Cost (SWC), Improved
Length Ratio (ILR), Op-
timal Plan Success Rate

1. Trains Transformer to imitate A* search
dynamics
2. Fine-tunes to generate shorter execution
traces
3. Bootstraps from search dynamics for op-
timized plan generation

1. Demonstrates novel training methods that in-
tegrate search dynamics into Transformer train-
ing, enhancing planning efficiency.
2. Achieves significant reductions in search
steps (up to 26.8% fewer than A*) and improves
task-solving performance on complex puzzles
and navigation tasks.

LLMFP
(Hao et al., 2024b)

9 diverse plan-
ning tasks
(multi-constraint
decision-making
and multi-step
planning)

Plan optimality, con-
straint satisfaction rate

1. Converts natural language planning prob-
lems into formal optimization problems us-
ing zero-shot LLM reasoning.
2. Uses SMT solvers to guarantee that the
generated plans are both logically correct
and executable.

1. Introduces a novel method of achieving op-
timality in LLM planning by rigorously con-
structing optimization problems from natural
language inputs, significantly outperforming tra-
ditional planning models.
2. Demonstrates strong performance across a
range of complex tasks, achieving over 83% opti-
mal rates, thereby highlighting the effectiveness
of integrating LLMs with classical optimization
approaches for high-quality planning outcomes.



Table 8: Summary of Representation in LLM Planning (Section 6)

Method Name Dataset Evaluation Metric Methods Major Contribution

LLM-GoalTrans
(Xie et al., 2023)

Blocksworld, AL-
FRED

Goal Translation Suc-
cess Rate

1. Uses GPT-3.5 to translate natural lan-
guage instructions into PDDL goals.
2.Employs n-shot learning to improve trans-
lation accuracy.

1. Demonstrated effective translation of natural
language to PDDL goals, with high success rates
in structured environments.
2.Highlighted the challenges and limitations of
LLMs in tasks requiring numerical or physical
reasoning.

ISR-LLM
(Zhou et al., 2024)

Diverse planning
problem domains

Success Rate 1.Utilizes iterative self-refinement to en-
hance LLM-based planning.
2.Employs an LLM translator to convert nat-
ural language to PDDL, aiding in plan for-
mulation and refinement.

1.Introduced a novel framework that signifi-
cantly improves feasibility and success in long-
horizon task planning.
2. Demonstrated superior task accomplishment
rates across multiple domains compared to state-
of-the-art LLM-based planners.

Adaplanner
(Sun et al., 2024)

ALFWorld and
MiniWoB++

Success Rate Closed-loop approach allowing LLM agent
to refine self-generated plan adaptively

1. Uses code-style LLM prompt structure and
skill discovery mechanism. Achieves 91.79%
success rate on ALFWorld tasks.
2. Achieves 91.11% success rate on MiniWoB++
tasks with feedback.

LLM-GenPlan
(Silver et al., 2024)

Various PDDL
domains

Percentage of tasks
solved

1.Uses GPT-4 to synthesize domain-specific
Python programs for task planning.
2.Incorporates Chain-of-Thought summa-
rization and automated debugging in the pro-
cess.

1.Demonstrated GPT-4’s effectiveness as a gen-
eralized planner across several PDDL domains.
2.Highlighted the significant benefits of auto-
mated debugging and the mixed impacts of
Chain-of-Thought summarization in planning
tasks.

LLM+P
(Liu et al., 2023a)

Blocksworld,
Grippers, Bar-
man, Termes, and
other robot plan-
ning scenarios

Success Rate, Optimal
Plan Success, Plan Exe-
cution Time

1. Converts natural language problem de-
scription into PDDL format
2. Uses classical planners (e.g., FAST-
DOWNWARD) to generate optimal plans
3. Translates planner output back into natu-
ral language

LLM+P significantly outperforms LLMs in solv-
ing long-horizon planning problems, achieving
optimal plans in robot domains with high suc-
cess rates (up to 100% on Blocksworld) and
minimal execution time.

PDDL World Model
Generation
(Guan et al., 2023)

Household, Tyre-
world, Logistics

Error Count, Success
Rate

1. LLM-based PDDL generation for task
planning
2. Error correction using LLMs as feedback
interfaces
3. Use of external planners for generating
feasible plans from PDDL models

The paper shows that GPT-4 is capable of gen-
erating high-quality PDDL models with fewer
errors than GPT-3.5-Turbo. It demonstrates that
GPT-4-based world models lead to a 95% suc-
cess rate in planning tasks using classical plan-
ners like Fast Downward.

LLM-DP
(Dagan et al., 2023)

Alfworld Success Rate, Average
Episode Length

1. LLM converts task descriptions into exe-
cutable PDDL goals
2. Symbolic planner (BFS(f)) generates
valid plans
3. Belief sampling to generate multiple
world states for planning

LLM-DP outperforms the ReAct baseline,
achieving 96% success in Alfworld, with sig-
nificantly fewer actions (13.16 vs. 18.69) per
task and higher efficiency due to belief sampling
and symbolic planning integration.

LTL-Gen
(Pan et al., 2023)

Custom datasets
with LTL/natural
language pairs

Accuracy 1. Uses large-scale semantic parsing with
minimal human-labeled data.
2.Employs synthetic data generation and
constrained decoding.

1.Demonstrates high accuracy with minimal hu-
man data compared to prior work.
2.Enhances data efficiency for natural language
to LTL translation, making it feasible for broader
applications.

AutoTAMP
(Chen et al., 2024a)

Custom 2D task
domains

Success Rate 1. Translates NL instructions to STL using
LLMs.
2.Utilizes autoregressive re-prompting for
syntactic and semantic error correction.
3.Plans trajectories with a formal STL plan-
ner.

1. Introduces a novel method for autoregressive
re-prompting to correct translation errors.
2.Demonstrates significant improvements in task
success rates with hard geometric and temporal
constraints.
3.Provides a robust framework that combines
LLM translation capabilities with formal plan-
ning efficiency.

G-PlanET
(Lin et al., 2023a)

ALFRED Key Action Score Utilizes encoder-decoder LMs with a focus
on grounded planning for embodied tasks.
Introduces object tables as environmental
input for LMs to perceive and plan actions.

First study to investigate LMs’ capability in
grounded planning for embodied tasks.
Developed a new evaluation metric (KAS) tai-
lored for assessing the quality of generated plans
in realistic environments.

PPNL
(Aghzal et al., 2023)

Grid environ-
ments, ALFRED

Success Rate, Optimal
Rate, Exact Match Ac-
curacy, Unreachable Ac-
curacy, Feasible Rate

1. Few-shot prompting with GPT-4 for path
planning
2. Action-and-effect prompting to guide
long-term spatial reasoning
3. CoT and ReAct prompting to en-
hance spatial-temporal reasoning and obsta-
cle avoidance
4. Multi-goal path planning with hierarchi-
cal task decomposition

PPNL evaluates LLMs on path planning tasks,
demonstrating GPT-4’s spatial reasoning ability
when prompted effectively. ReAct prompting
achieves 96.1% success rate, while fine-tuned
models like T5 outperform in in-distribution set-
tings but struggle with generalization.

ProgPrompt
(Singh et al., 2023)

VirtualHome,
Real-World
Robot Tasks

Success Rate, Goal
Conditions Recall,
Executability

1. Pythonic program generation for task
planning
2. Use of natural language comments and
assertions for feedback
3. Integration with real-time environment
state feedback during task execution

ProgPrompt significantly outperforms baseline
methods by using programmatic LLM prompts
to generate executable task plans, achieving up
to 1.00 SR and 1.00 Exec in various Virtual-
Home tasks. It also adapts well to real-world
robot tasks, with a Plan SR of 1 in most cases.

Adaplanner
(Sun et al., 2024)

ALFWorld and
MiniWoB++

Success Rate Closed-loop approach allowing LLM agent
to refine self-generated plan adaptively

1. Uses code-style LLM prompt structure and
skill discovery mechanism. Achieves 91.79%
success rate on ALFWorld tasks.
2. Achieves 91.11% success rate on MiniWoB++
tasks with feedback.

LID
(Li et al., 2022)

VirtualHome,
BabyAI

Task completion rates,
Generalization to novel
scenes and tasks

1. Utilizes pre-trained LMs to convert ob-
servations, goals, and history into sequential
data for decision-making.
2. Employs active data gathering to train
policies without pre-collected expert data.

1. Demonstrates that pre-trained LMs can signif-
icantly improve task completion rates and gener-
alization in interactive decision-making.
2. Provides insights into the effectiveness of
sequential input representations and LM-based
weight initialization for generalization.

SayCan
(Ahn et al., 2022)

Real-World
Kitchen environ-
ment

Plan Success Rate, Exe-
cution Success Rate

Leverages LLMs to score the likelihood of
robotic skills contributing to task comple-
tion.
Combines LLM outputs with affordance
functions from reinforcement learning to pri-
oritize feasible actions.

Enables robots to execute complex, long-horizon
tasks using natural language instructions.
Nearly doubles performance over non-grounded
baselines by integrating real-world affordance
functions with LLM predictions.



Table 9: Summary of Representation in LLM Planning (Section 6)

Method Name Dataset Evaluation Metric Methods Major Contribution

PLaG
(Lin et al., 2024)

AsyncHow accuracy 1. Utilizes graph-based representations to
instruct LLMs in planning tasks.
2. Combines natural language with graph
theory for enhanced task planning.

1. Successfully introduces a graph-theoretical
approach to enhance LLMs’ performance in
asynchronous planning tasks.
2. Demonstrates the utility of graph-enhanced
prompts to improve accuracy across different
LLM architectures.

GNN-Enhanced Task
Planner
(Wu et al., 2024)

HuggingFace,
Multimedia tasks,
Daily Life API
tasks, TMDB
API tasks

Node F1-Score, Link
F1-Score, Task Accu-
racy, Token Consump-
tion

1. Integration of GNNs for task graph navi-
gation
2. Training-free (SGC) and training-
required (GraphSAGE) approaches
3. GNN-based node and edge selection for
task planning
4. Training fine-tuned models for better task
retrieval

GNN-enhanced planning outperforms LLM-
based solutions by improving task accuracy (up
to 9%) with reduced token consumption. The
proposed method scales well with larger task
graphs and improves planning efficiency by a
significant margin.

Table 10: Summary of Generalization in LLM Planning (Section 7)

Method Name Dataset Evaluation Metric Methods Major Contribution

LLM-GenPlan
(Silver et al., 2024)

Various PDDL
domains

Percentage of tasks
solved

1.Uses GPT-4 to synthesize domain-specific
Python programs for task planning.
2.Incorporates Chain-of-Thought summa-
rization and automated debugging in the pro-
cess.

1.Demonstrated GPT-4’s effectiveness as a gen-
eralized planner across several PDDL domains.
2.Highlighted the significant benefits of auto-
mated debugging and the mixed impacts of
Chain-of-Thought summarization in planning
tasks.

VOYAGER
(Wang et al., 2023a)

Minecraft Unique items collected,
Distance traveled, Tech
tree milestones

1. Uses an automatic curriculum to maxi-
mize exploration.
2. Maintains a skill library for storing and
retrieving executable behaviors.
3. Employs an iterative prompting mecha-
nism that incorporates feedback for continu-
ous improvement.

1. First LLM-powered embodied agent for life-
long learning in Minecraft, capable of continu-
ous self-improvement.
2. Demonstrates significant improvements in
discovery and task completion, outperforming
state-of-the-art methods in efficiency and gener-
alization.



Table 11: Summary of Efficiency in LLM Planning (Section 8)

Method Name Dataset Evaluation Metric Methods Major Contribution

Adaplanner
(Sun et al., 2024)

ALFWorld and
MiniWoB++

Success Rate Closed-loop approach allowing LLM agent
to refine self-generated plan adaptively

1. Uses code-style LLM prompt structure and
skill discovery mechanism. Achieves 91.79%
success rate on ALFWorld tasks.
2. Achieves 91.11% success rate on MiniWoB++
tasks with feedback.
3. Improves planning correctness by adaptively
refining plans based on environmental feedback,
effectively managing complex sequential tasks.

Query-Efficient Plan-
ning
(Gonzalez-Pumariega
et al., 2024)

PlanBench, Lo-
gistics, Grippers,
Robotouille

Success Rate 1. Uses LLMs as heuristics in search-based
planning to propose actions or select states.
2. Employs generative LLM planners that
dynamically adapt plans based on feedback
from a world model.

1. Enhances query efficiency in planning by
leveraging LLMs to reduce the number of
queries to the world model, thus saving com-
putational resources and time.
2. Demonstrates that LLM-based generative
planners can effectively adapt to feedback, im-
proving correctness and efficiency in planning
tasks by avoiding cul-de-sacs and refining action
sequences dynamically.

Tree-planner
(Hu et al., 2023b)

VirtualHome Success Rate, Ex-
ecutability, Goal
Conditions Recall,
Error, Correction Token
Cost

1. Plan sampling using LLM for prospective
plans
2. Action tree construction
3. Grounded deciding with real-time obser-
vations

1. Tree-Planner achieves a 1.29% improvement
in Success Rate and a 53.29% reduction in token
cost compared to ITERATIVE-PLANNER and
a 40.52% reduction in error corrections.
2. Significantly enhances efficiency in LLM
planning by reducing the number of LLM calls
and interaction with the world model, and
by minimizing input/output lengths and model
sizes.

Thought of Search
(Katz et al., 2024)

24 Game, Mini
Crosswords,
BlocksWorld,
PrOntoQA

Success Rate, Plan
Time, Model Evaluation
Calls

1. Using LLMs to generate code for search
components (successor functions and goal
tests)
2. Search performed using BFS and DFS
3. Minimizes LLM calls for efficiency

Thought of Search achieves 100% accuracy
across datasets with minimal LLM calls (1–2
calls per function). Significantly more efficient
than existing LLM-based planning methods.

Chain-of-Symbols
(Hu et al., 2023a)

Brick World,
NLVR-based
Manipulation,
Natural Lan-
guage Naviga-
tion, SPARTUN

Accuracy, Precision, Re-
call, Token Usage

1. Translates spatial relationships to sym-
bolic representation
2. Uses chained intermediate steps for effi-
cient planning
3. Reduced redundancy in input tokens

1. COS improves accuracy by 60.8% on Brick
World tasks (from 31.8% to 92.6%) and reduces
token usage by 65.8%.
2.Significantly enhances the correctness and ef-
ficiency of LLM planning by reducing unnec-
essary token usage by up to 65.8% and improv-
ing accuracy by up to 60.8% in complex spatial
tasks.

Beyond A*
(Lehnert et al., 2024)

Sokoban, Maze
Navigation

Success Weighted by
Cost (SWC), Improved
Length Ratio (ILR), Op-
timal Plan Success Rate

1. Trains Transformer to imitate A* search
dynamics
2. Fine-tunes to generate shorter execution
traces
3. Bootstraps from search dynamics for op-
timized plan generation

1. Demonstrates novel training methods that in-
tegrate search dynamics into Transformer train-
ing, enhancing planning efficiency.
2. Achieves significant reductions in search
steps (up to 26.8% fewer than A*) and improves
task-solving performance on complex puzzles
and navigation tasks.

LLM-DP
(Dagan et al., 2023)

Alfworld Success Rate, Average
Episode Length

1. LLM converts task descriptions into exe-
cutable PDDL goals
2. Symbolic planner (BFS(f)) generates
valid plans
3. Belief sampling to generate multiple
world states for planning

1. LLM-DP outperforms the ReAct baseline,
achieving 96% success in Alfworld, with signifi-
cantly fewer actions (13.16 vs. 18.69) per task
and higher efficiency due to belief sampling and
symbolic planning integration.
2. Reduces computational costs by decreasing
the number of search steps required for planning,
improving efficiency by up to 26.8%

DEPS
(Wang et al., 2023b)

Alfworld Success Rate, Average
Episode Length

1. LLM generates PDDL goal from task
description
2. Sampling world beliefs and using sym-
bolic planning
3. Plan generator (BFS(f)) for generating
plans

1. LLM-DP achieves 96% success in Alfworld,
outperforming the ReAct baseline (53%) with
fewer actions.
2.Reduces reliance on extensive LLM calls and
minimizes human involvement by integrating
automatic PDDL generation, thereby enhancing
the efficiency of planning in dynamic environ-
ments.

PLaSma
(Brahman et al., 2024)

COPLAN, Virtu-
alHome

Human Evaluation:
Coverage, Order,
Overall Quality, Exe-
cutability, Correctness

1. Symbolic procedural knowledge distilla-
tion
2. Multi-task and task-specific distillation
3. Verifier-guided step-wise beam search
4. Constrained and counterfactual replan-
ning tasks

1. PlaSma enhances smaller models with proce-
dural knowledge, outperforming GPT-3 in tasks
like goal-based planning and counterfactual re-
planning. Achieves up to 93% success in coun-
terfactual replanning.
2.Demonstrates efficiency by enabling smaller
models to perform complex planning tasks with
reduced computational costs.

KnowNo
(Ren et al., 2023)

Simulated and
Real Robot Tasks

Success Rate, Help Re-
duction, Task Success
with Human Help, Pre-
diction Set Size

1. Use of Conformal Prediction (CP) for
uncertainty calibration
2. Selection of multiple candidate actions
3. Minimizes human intervention based on
prediction set size

1. KNOWNO achieves 85% task success while
reducing human help by 10–24%. Guarantees
task success with a calibrated confidence level
using CP.
2. Enhances efficiency and autonomy by reduc-
ing the need for human intervention, aligning
uncertainty to ensure task success

AutoToS
(Cao et al., 2024)

BlocksWorld, 24
Game, Sokoban,
Mini Crosswords,
PrOntoQA

Success Rate, Plan
Accuracy, Number of
Language Model Calls,
Time to Solve

1. Automates feedback process for search
components 2. Uses soundness and com-
pleteness checks to refine the generated code
3.Incorporates both generic and domain-
specific unit tests

1. AutoToS achieves 100% accuracy across five
domains with minimal human feedback. Signif-
icantly reduces the number of model calls and
ensures soundness and completeness.
2.Improves efficiency by automating the feed-
back process, significantly reducing the number
of LLM calls and human involvement.
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