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Understanding species distributions is a global priority for mitigating
environmental pressures from human activities. Ample studies have
identified key environmental (climate and habitat) predictors and the

spatial scales at which they influence species distributions. However,
regarding human influence, such understandings are largely lacking.

Here, to advance knowledge concerning human influence on species
distributions, we systematically reviewed species distribution modelling
(SDM) articles and assessed current modelling efforts. We searched 12,854
articles and found only 1,429 articles using human predictors within SDMs.
Collectively, these studies of >58,000 species used 2,307 unique human
predictors, suggesting that in contrast to environmental predictors, there
isno ‘rule of thumb’ for human predictor selection in SDMs. The number
of human predictors used across studies also varied (usually one to four
per study). Moreover, nearly half the articles projecting to future climates
held human predictors constant over time, risking false optimism about
the effects of human activities compared with climate change. Advancesin
using human predictors in SDMs are paramount for accurately informing
and advancing policy, conservation, management and ecology. We

show considerable gapsinincluding human predictors to understand
current and future species distributions in the Anthropocene, opening
opportunities for new inquiries. We pose 15 questions to advance ecological
theory, methods and real-world applications.

Correlating species’ occurrences with their surrounding habitat has
beenthebest possible way to empirically approximate species’ niches
ingeographic space. Species distribution models (SDMs) are statisti-
cal and machine learning tools that correlate species’ locations with
environmental predictors (thatis, covariates, variables and parameters)
to predict species’ probabilities of occurrence (or occupancy, habi-
tat suitability and presence) across geographic space and/or time'?.
Species-environment relationships determined from SDMs also inform

on the multi-dimensional environmental gradient (hypervolume?)
along which species’ niches can be defined. Across thousands of stud-
ies and across all domains, spatial scales and taxa, this hypervolume
has been commonly represented by suites of predictors relating to
climate (for example, temperature and precipitation) and other abi-
oticinteractions (altitude, latitude and topography). Such predictors
have been used to estimate species distributions with highaccuracy*’.
However, while these predictors correspond to general ecological
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niche requirements, the emphasis on such predictors ignores a quin-
tessential phenomenon most relevant to the conditions of our current
era: humaninfluence.

Ample evidence has shown that human activities (or simply human
presence) have direct and indirect influence on species distributions
inthe Anthropocene®. Such influence has been the most obvious in
examples relating to human population growth’, species invasions'2,
urban expansion®” and land-use change'*". Other less obvious exam-
ples exist for species found in the most remote or well-protected envi-
ronments on the globe (for example, noise pollution from increased
tourism in a nature reserve for conserving giant pandas (Ailuropoda
melanoleuca) has caused themto prefer habitats outside the reserve').
Despite evidence from ecological studies and international expres-
sions of concern regarding the state of species as a result of human
influence”?°, it is unclear how often predictors relating to human
activities, presence or pressures (hereafter called human predictors)
arebeing used in SDMs.

The absence of human predictors can be especially problematic
when species distributions are projected to novel environments. For
example, a geographic area might be projected as suitable for a spe-
cies because of its land cover and climate conditions, but is actually
unsuitable due to night-time light intensity from distant residential
areas”. If suchimportant human predictors are not utilized, the mecha-
nisms behind many ecological changes might not be revealed in even
protected areas™, and resources and efforts to reintroduce a species
as aresult of SDM predictions could be unsuccessful®. A similar con-
cern exists with projecting species distributions across time based
on future climate scenarios if human activities have a greater effect
on species distributions than climate*. Thus, inadequately account-
ing for human predictors in species projections could largely affect
broader applications or interpretations from SDMs?, leading to false
optimism about aspecies’ future trajectory or theimplementation of
misinformed policies.

AsSDMs are used inawide variety of fields—from disease ecology
to conservation—understanding how human predictors are currently
being used in SDMs can help direct modelling efforts as human influ-
ence in the Anthropocene amplifies. In this Analysis, we conducted a
systematic review to critically examine how humaninfluenceisincor-
porated into models of species distributions. We examined whether
SDM articles acknowledged humaninfluence and, if so, whether human
predictors were incorporated in models for assessing and predicting
species distributions. We compiled alist of the unique human predic-
tors being used in SDMs so far and examined the context for their use
across domains (marine, terrestrial and freshwater), spatial scales
andtaxaallaround the globe. Acknowledging the critical intersection
between biodiversity and sustainability’®*, we also examined how
these human predictors related to global Sustainable Development
Goals (SDGs)?. Lastly, we searched for trends in model procedures
for predictor selection, SDM training and forecasting, and evaluated
researchers’ reports on model performance.

Our synthesis demonstratesthe need foradvancesin SDMs, as we
found substantial variability in SDM studies’ consideration of human
influence. Since SDMs are open, easily accessible tools for conserva-
tion, management and ecological studies, covering even data-poor
locations and data-deficient species, we propose that standardizing the
use of human predictors in SDMs offers opportunities to (1) improve
the realism and applications of predicting species distributions in
novel spaces and time; (2) enhance global syntheses on the effects of
human activities across various domains, taxa and spatial scales; and
(3) broaden theoretical perspectivesin ecology.

The current state of humaninfluencein SDM
research

Modelling humaninfluence (human activities, presence or pressures)
onspecies distributionsis extremely uncommon. Among 12,854 SDM
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Fig.1|Rarity of modelling human influence onspecies distributions in SDM
literature. a,b, While the number of published SDM articles acknowledging
human influence on species distributions has been increasing over time (a, blue),
therelative proportion of articles where human influence is incorporated within
SDM procedures is substantially less (purple), and the interest in modelling
humaninfluence on species distributions (b) has plateaued to below 15% over the
past two decades. These graphs represent the total articles published from 2000
t0 2021 (teal), found in a Web of Science search (for search terms, see Methods).
Ofthese, the articles that acknowledge human influence on species distributions
(blue) are those that describe human influence within their abstracts. The articles
that use human predictors in SDMs (purple) are those that use human predictors
inSDM training for their predictions.

articles published up to 2021 and catalogued in the Web of Science
(Methods and Extended DataFig. 1), we found that 5,177 (40%) of them
acknowledged human influence on species distributions within their
abstracts (Fig. 1a) and only 1,429 articles published since 2000 (11%)
went on to use human predictors (that is, predictors associated with
human activities or human-induced pressures) within their SDMs.
Another 267 articles (2%) used human predictors outside their models
by, for example, masking (omitting) predicted areas of occurrence
with human infrastructure or residential areas®. While the number of
articles using human predictors in SDMs has increased over time, the
relativeinterestin conducting such studies has plateaued to less than
15% of published SDM articles since the early 2000s (Fig. 1b).
Fromthese1,429 articles that used human predictors within SDMs,
we found that human predictors have been used mostly in studies at
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Fig.2|Spatial scales, study locations and initial years of human predictor use
in SDMs across the globe. a-c, While most studies are at local, regional (within
country) and national scales (a), there is a disparity in the global coverage of
species distribution modelling studies using human predictors in model training
compared with the 2020 Global Human Footprint (b)** and a temporospatial

bias for when human predictors have first been used around the world across
various scales (c). These studies represent 1,429 SDM articles published between
2000 and 2021 that include human predictors in model training. Note that the

mapped studies inbinclude local to multi-national scales but exclude global and
continental (all countries within-continent) scale studies; marine studies were
appended to their respective countries. In ¢, we use the first years of publication
between 2000 and 2021 as a proxy to signify the first year that ahuman predictor
was used inan SDM within a given region (NA refers to locations where human
predictors have not been used during this time period). See Extended Data Figs.
2,3 and 5-8 for more detailed maps, sorted by domain, taxa, study focus and
spatial scale.

local, regional (within country) and national spatial scales (Fig. 2a and
Extended Data Fig. 2). Global and continental-scale studies were few
(37and 46 articles, respectively, or 3% each). While humaninfluence is
globally pervasive”?, most studies using human predictors in SDMs
focused onthe United States (n = 274), China (n =100), Spain (n=100),
Italy, Germany, Iran, India, Canada, Australia, Portugal and France,
totalling 931 articles (65%; Fig. 2b and Extended Data Fig. 3). In other
areas, suchas South America, central and southern Africa, Scandinavia,
Eastern Europe and Southeast Asia, where the global human footprint
is predominantly high?, relatively few studies used human predictors
inSDMs. Insuchareas, it was not until around 2010 that human predic-
tors were firstused in SDMs at global and continental scales. In Africa,
South Americaand some parts of Asia especially, it was not until 2020
that human predictors were first used in SDMs at national, regional or
evenlocal scales (Fig. 2c).

Articles including human predictors in SDMs collectively mod-
elled the distributions of over 58,000 species. These studies were
not specific to domain, taxa or the focus of research (Extended Data
Fig. 4). There were 1,375 terrestrial, 184 freshwater and 38 marine
studies (some articles included multiple domains; Extended Data
Fig.5). Most studies were of mammals (32%), followed by birds (22%)
and invertebrates (15%), and covered most of the globe (Extended
DataFig. 6). Theremaining studies included herbaceous plants (11%),
fish (5%), reptiles (5%), trees or shrubs (4%), amphibians (4%) and
microorganisms (2%).

Studies that include human predictors primarily focused on
conservation (24%), exploratory work (for example, exemplifying
new methodologies or frameworks*®?; 23%), or species invasions
(18%). Others focused on disturbance or habitat change (for example,
human land-use shifts and land abandonment™; 15%), reintroductions
or restoration (7%), food or economics (for example, food security
and economically important species®?*; 5%), human health or safety
(for example, disease vectors®; 5%) and human-wildlife conflict or
collisions (3%) (Extended Data Fig. 4). Exploratory, disturbance or
habitat change, conservation and human health or safety studies had
the widest global coverage at various spatial scales, with most studies
inthe United States, China, France, Italy and Iran (Extended DataFig. 7).

Human predictor selection

We did not find any consistent patterns for the number of human predic-
torsused in SDMs inrelation to environmental (climate and/or habitat)
predictors. Human predictors in SDMs ranged from as few as1to as
many as 61, in contrast to 1-184 environmental predictors in these
same studies (Fig. 3aand Supplementary Fig. 1). The mean and median
number of human predictors used were three and two, respectively,
compared with eleven and eight environmental predictors. Some arti-
clesexclusively used human predictors to model species distributions®
orused more human predictors than environmental predictors® . In
most cases, one to four human predictors were used with four to ten
environmental predictors (Fig. 3a).
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Fig. 3| Wide variability in human predictor use in SDMs. a-c, Thereisa
disproportionate use of environmental (habitat and climate) predictors
compared with human predictors in SDMs (a), and wide variability in predictor
selection across study focus and taxa (b), with most predictors (84%) being
unique to only one article (c). A consistent ratio of human-to-environmental
predictors for model training is not apparent from these studies. However,
most studies use fewer human predictors than environmental predictors (a).
Across taxa and areas of research focus (b), the majority of human predictors
used pertained to food or agriculture, infrastructure, transportation or were
ambiguous (that is, they could equally represent both environmental and human
features). Inc, we see a large variability in human predictor selection for SDMs.
With a total of 2,307 unique human predictors used across 1,429 SDM articles,
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there were six different data types (centre pie, numeric labels are counts of
predictors), covering 12 different categories of human activities (middle pie,
numeric labels are counts of predictors within data types; numeric labels are
excluded for categories with <10 predictors). The outer pie highlights that the
most commonly used predictors related to food or agriculture and infrastructure
as density or count data (the coloured bars are the sums of articles using each
predictor within each category and data type, with the darkest bars being the
most frequently used by articles). Only 371 predictors (16%) were used by more
than one article (darker bars of the outer pie). See Extended Data Table1for a
description of data types and categories, Extended Data Fig. 8 for amap of the
spatial distribution of human predictors across spatial scales and Supplementary
Table 4 for adescriptive list of all predictors.
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Fig. 4 | Persistence and prevalence of human predictors since their first
emergencein SDM literature. Thereis a consistent emergence of new human
predictors per year, but only 26% of human predictors have been used more
than once over the past two decades. The persistence of ahuman predictor is
determined by how far beyond the first published year of use ahuman predictor

has been used in other SDM articles (x andy axes) and the prevalence of ahuman
predictoris determined by the total number of articlesin which it is used (the size
ofapoint). The points represent the 2,307 human predictors found among the
1,429 SDM articles published between 2000 and 2021, separated by category (for
category descriptions, see Extended Data Table1).

The types of human predictors selected for SDM training were
similarly variable. The 1,429 articles collectively used 2,307 unique
human predictors, which is a surprisingly large number. Given the
complexity of human-species interactions, we considered that
human predictor selection could also depend on study context
suchas taxaand study focus. However, no real patterns were evident
(Fig.3b).Interms of popularity, only 16% (n = 371) of these predictors
were used in more than one instance; most predictors (n =1,936) were
unique to only one article (Fig. 3c). The most common predictors
were land use/land cover, distance from roads, human population
density, percent agricultural areas, roads density and percent urban
areas, used in 17%, 10%, 8%, 4%, 4% and 4% of articles, respectively
(Supplementary Tables 4 and 6). Human footprint and human influ-
ence index were respectively used in only 74 and 36 articles (5% and
3%). Overall, human predictors ranged across many categories of
humaninfluence, with most relatingto food and agriculture (n = 734;
for example, crop area sizes, harvest intensity and commercial fish-
ing effort), infrastructure (n = 617; for example, percent of buildings
andintensity of development), transportation (n = 227; for example,
distance from highways and boat traffic), energy or raw materials
(n=127; for example, density of powerlines and renewable energy

sites) or disturbance (n =115; for example, fragmentation, logging
cut-block areas and human-induced extirpation risk). Ambiguous
predictors (n =115) are predictors that can either represent human
influence or be equally interpreted as environmental predictors (for
example, land use/land cover and openareas). They were used in the
SDMs of 490 articles (34%), of which 197 (14%) solely used ambiguous
predictors to represent human influence®****°, New human predic-
tors have been consistently emerging each year (Fig. 4), and their
cumulative numbers vary across countries, regions, and spatial scales
(Extended Data Fig. 8). The categories with the most momentum and
persistence in use after first being introduced by authors or made
available related to food and agriculture (n =125), infrastructure
(n=85) and transportation (n = 48). We list more predictor catego-
ries in Fig. 3¢, provide descriptions of all data types and categories
in Extended Data Table1and have a full descriptive list of predictors
inSupplementary Table 4.

Potential for Sustainable Development Goal
assessments

Asbothglobal biodiversity conservationinitiatives and United Nations
SDGs are set for multiple targets by the years 2030 and 2050°°*,
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Fig. 5| Human predictor relationships to the 17 SDGs. Among the United
Nations’ 17 SDGs, human predictors used in SDMs were most closely related to
Sustainable Cities and Communities (SDG-11), Clean Water and Sanitation
(SDG-6), Life on Land (SDG-15), Zero Hunger (SDG-2), No Poverty (SDG-1) and
Life Below Water (SDG-14). A total of 682 human predictors relating to SDGs were
used by 924 of the 1,429 articles. See Supplementary Fig. 2 for more details on
article coverage and definitions for all the SDGs.

trade-offs and synergies between species and human prosperity are
inevitable”. We thus tested whether the human predictors used for
modelling species distributions related to any of the 17 SDGs. A total
of 682 (30%) of them related to 13 of the 17 SDGs, modelled in 924 of
the 1,429 articles (65%). These human predictors most closely related
to Sustainable Citiesand Communities (SDG-11, n = 282), Clean Water
and Sanitation (SDG-6, n = 253) and Life on Land (SDG-15, n = 246).
This was seen both for the number of predictors related to SDGs and
the number of articles using them (Fig. 5). Other predictors found in
substantially fewer articles related to Zero Hunger (SDG-2, n = 65), No
Poverty (SDG-1, n=41) and Life Below Water (SDG-14, n = 35). There were
no predictors related to Gender Equality (SDG-5), Reduced Inequality
(SDG-10), Peace andJustice Strong Institutions (SDG-16) or Partnerships
for the Goals (SDG-17).

Human predictors for forecasting and
hindcasting over time

Itiscommon for SDM studies to project species distributions not only
across geographicspacebut also across time. However, we found that
nearly half of the multi-temporal studies (past-present, present-future,
past-present-future and so on) kept human predictors constant, that
is, unchanged from the predictors’state at the study period (typically
the present) for which the SDM was trained (136 out of 275 articles;
Fig. 6). Human predictors were held constant (unchanged) for more
forecasting studies (n =122) than hindcasting studies (n =24). The
remaining articles focusing on projecting species distributions across
time transformed human predictors to match the environmental
predictors’ past or future time frames. Human predictors that were
changed across time included distances from settlements and roads
(calculated as hypothetical percent changes*?), human population
sizes?, forest or non-forested areas® and simulated percent habitat
loss*’, among others (Supplementary Table 4). Some example human
predictors that remained constant were land use or land cover*™¢,
agricultural areas*’, numbers of agricultural workers*®, built-up areas™
and human footprint index***,

Assessing SDM fit
Somearticles tested and reported on the performance of using human
predictors alongside environmental predictors compared with
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Fig. 6 | SDM study time frames compared with human predictor time frames
inmodel training and projection. Most SDM articles using human predictors
were both trained and projected within present time frames (n =1,148), but for
cases where species distributions were predicted across time (that is, hindcasting
or forecasting), nearly half of the articles held human predictors constant
(unchanged, n =136). This disparate modelling procedure could indicate that
authors either assumed that most human activities and influence would indeed
remain the same in future years as far as 2050 and 2100, or that accessible human
predictor data or data preparation steps for future scenarios are lacking. In this
figure, the base of an arrow represents the overall time frame of the SDM for both
model training and projection (n = number of articles); the point of the arrow is
the time frame of the human predictor used in the SDM. When an arrow folds back
toits base, the overall SDM time frame (for example, present/future) matches the
human predictor time frame (for example, present/future); when an arrow points
away from its base and instead to another base, there is a mismatch between the
study time frame (for example, present/future) and the human predictor time
frame (for example, present).

environmental predictors alone, but showed no real ‘rule of thumb’
for human predictor selection and evaluation. SDM performance can
consist of model training accuracy metrics, predictor importance,
comparing predicted ranges to expert knowledge or external sources,
and/or a holistic evaluation. There were 127 articles that made such
comparisons (Supplementary Table 3), of which 43 stated that SDMs
holistically improved when human predictors were included, while
26 stated that performance was context dependent (for example,
depending on the species, scale, seasonal behaviour or preferences,
or the history of a landscape)®**. Another 18 articles found little to
no improvement in using human predictors alongside environmen-
tal predictors, while 10 articles stated that using human predictors
made SDM predictions much worse***, The remaining 30 articles did
notexplicitly make statements about human predictor performance.
0ddly, some of the studies that found improvement in using human
predictors nevertheless chose environment-only SDMs as their best
models”, while others found it essential to use human predictors in
their final models—especially for future projections.
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New directions for SDMs in the Anthropocene

With abundant evidence of the effects of human influence on biodi-
versity, habitat and species abundance and distributions'®**¢, our
synthesis sets the stage for amultitude of possible directions for future
research focused on understanding and predicting species distribu-
tions and niches in the Anthropocene. We propose new questions for
advancingecological theory, restructuring SDM methods and enhanc-
ing the real-world applications of SDMs.

Advancing ecological theory

Incorporating human predictors in SDMs can further theory on how
SDMs reflect ecological niches. As human predictors are increasingly
made available and employed, researchers should begin to explore
the following questions:

1. How will existing ecological theories and predictions on the
niche, competition, disturbance and connectivity, among oth-
ers, be revised when human predictors are incorporated?

2. What type of niche (fundamental, realized, Grinnellian, Hutch-
insonian, Eltonian, contemporary and so on) is being modelled
when human predictors are used in SDMs?

3. What are the theoretical roles of human influence on species
distributions (scenopoetic/abiotic, interactive/biotic, distur-
bance, facilitation, mutualism, competition and so on), and will
this depend on the human predictor being used or its data trans-
formation type?

4. To what extent are human predictors correlated with environ-
mental predictors, and when do they classify as Eltonian noise?
Various perspectives exist on the types of niches SDMs are

modelling™ %, and the general definition of the niche has changed
through time and within ecological subdisciplines®. Incentives to
use human predictors in SDMs would thus require re-evaluating the
niche concept under these new circumstances. For example, Soberén
and Nakamura®® suggest that the type of predictor used determines
whether a niche is Grinellian (SDMs using abiotic, non-interactive
predictors) or Eltonian (SDMs using predictors relating to biotic
interactions or resource consumption). Additionally, Moll et al.*” pro-
pose that human interactions can be classified as super-predators,
niche constructors, hyper-keystone species, risk responders and
pseudo-mutualists. However, not all 2,307 human predictors used in
these SDM articles may represent such Eltonian roles. Some human
predictors may be interactive (for example, hunting areas, avian lead
poisoning, pesticide application rates and percent protected area),
while others may not (for example, artificial light intensity, human
population density, settlements distance and gross domestic prod-
uct). The interpretations, implications and limitations of these kinds
of niches or ahybrid of them should be discussed. Methods to extract
and categorize human Eltonian roles from SDMs would also need to be
developed. It is also possible that if human predictors are correlated
with environmental predictors due to indirect effects from human
activities, the use of human predictors could be theoretically unnec-
essary, following the Eltonian noise hypothesis®®. However, excluding
them due to Eltonian noise could misguide the practical use of SDMs,
where mechanisms could be revealed for policy and decision-making.
Further investigations are needed.

Other ecological concepts also come under question with the
incorporation of humaninfluence. In connectivity analyses, for exam-
ple, the inverse of SDM results are used to create resistance surfaces
for informing on habitat fragmentation and important pathways or
corridors for species’”". When including human influence, some
paradoxes may develop in connectivity concepts. For example, one
study revealed that intermediate levels of habitat fragmentation
could surprisingly benefit a habitat specialist’”. Fragmentation from
human influence is therefore not always a negative impact for sensi-
tive species, but can also be positive or neutral”>’*. These complex
interactions may be difficult to generalize or anticipate, causing the

need for such ecological concepts to be reinterpreted when human
influenceisincluded.

Restructuring SDM methods

The methodological advantages and disadvantages of incorporating
human predictors in SDMs should be evaluated more broadly and for
each specific study based on the questions of interest. As a starting
point, future research should consider the following questions as SDM
methods are re-examined in the context of human influence:

1. When should human predictors be included (spatial scale, taxa,
functional traits, study aims, domain, accuracy and resolution)
and when are they negligible?

2. When is it necessary to consider cross-scale, local (intracou-
pled), distant (telecoupled) and/or adjacent (pericoupled) hu-
man predictors in SDMs?

3. What are some of the universal challenges of using human pre-
dictors when projecting species distributions into novel areas
(currently unoccupied by the species) or future time frames,
and how can they be addressed?

4. Despite the complexities of coupled human and natural sys-
tems, can an ontology of human predictors and standard proto-
cols for their use be made for SDM studies?

5. What are the appropriate selection measures and data transfor-
mation types for using human predictors in SDMs?

6. How can legacy or lag effects of human influence be modelled in
SDMs?

7. Whichmethods are appropriate for preparing current or histori-
cal human predictors for future scenarios?

Besidesimproving model accuracy, human predictors canenrich
understandings of how human activities affect species distributions
viacommon SDM outputs such as percent rankings of predictorimpor-
tance and predictor response curves. Compared with many other
ecological assessments’™’¢, SDMs offer an invaluable, geographically
unbiased pool of knowledge fromwhichinferences onhuman activities’
effects on species distributions could be synthesized; they are one of
the most widespread and accessible tools in ecology, covering even
data-poor locations and species. If more studies incorporate human
predictors and report predictor importance and response curves,
key patterns could be aggregated and summarized across domains,
taxa, spatial scales and even functional traits in future meta-analytic
studies. Such findings would be especially helpful for conservation-,
restoration- or economically focused studies.

Clarity on appropriate protocols for selecting human predic-
tors could expand their use in SDMs and greatly enhance the use of
model outputs. Currently, numerous human predictors are being
used across many contexts (Fig. 3b and Supplementary Table 4),
which can make it difficult to find meaning across studies. Recent
literature has called for standardizing SDM methods*”””%, but none
specifically concerning humaninfluence. Key human predictors need
to beidentified and approaches for summarizing and standardizing
them are necessary for wider use. With respect to environmental
predictors, astandardized suite of 30 bioclimatic predictorsis already
widely accepted and used by the SDM community*’**°, as evidenced
by their use by 33% of the articles that we evaluated (Supplementary
Table 5). An ontology of human predictors could be selected for use
based on general improvements to SDM fit, species’ responses or
whether predictors correspond to human activities that are com-
monly consideredin decision-making. Toincentivize standardization,
future research should focus on (1) determining the most influential
human predictors on species distributions; (2) assessing whether a
fixed proportion of human predictors compared to environmental
predictorsis appropriate, whether there isaspectrum of proportions
depending on context or whether correlation with environmental
predictors removes their necessity; (3) evaluating if human predic-
tor selection is specific to taxa, domain, spatial scale, study context
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and/or functional traits, and how these conditions are affected in
combination with environmental predictors; and (4) creating an
accessible repository of selected predictors to facilitate widespread
use. Existing methods for testing the utility,importance and perfor-
mance of environmental predictors in SDMs® " can be expanded to
include human predictors. Additionally, open data efforts such as
the ‘Essential Biodiversity Variables’ initiative® could include human
predictorsintheir considerations.

An examination of the ambiguous predictors identified in our
synthesisis also needed. We questioned the status of ambiguous pre-
dictors in relation to human activities because they can represent
environmental-only or humaninfluence-only circumstances, or both.
Predictors such as land cover (the most commonly used predictor
acrossarticles) and the presence or absence of certain habitat types (for
example, forested or non-forested areas) may falsely represent human
influencein, forexample, presence-only SDMsif species’ occurrences
areonly located in non-human-influenced areas.

Future investigations should examine the circumstances under
which human predictors are necessary. Human predictors are being
used in SDMs for a variety of contexts (Fig. 3b and Extended Data
Fig.4). While ample studies suggest that species’ responses to human
influence are scale dependent”®, most SDM studies used a single
scale for predictor values as opposed to multiple scales, and none
used human predictors that crossed scales (for example, local-scale
occurrences and regional-scale predictors). Species distributions
may also be affected by human activities adjacent to or distant from
species’occurrence locations (pericoupling and telecoupling, respec-
tively®*%), as opposed to directly within their occurrence locations
(intracoupling)®’. While we identified 393 human predictors as dis-
tance data types (for example, distance from roads or residential
areas), and 409 predictors across data types were radial buffers (for
example, percent agricultural areas within4 kmradius), further stud-
ies need to determine how species respond to such data compared
with other data transformations. Temporal dynamics also matter
where, for example, daytime and night-time distributions can vary
inresponse to human activities®. Yet our synthesis revealed that few
studies use temporal data types (for example, fire years and field
activity periods; Fig. 3¢). SDMs using human predictors to model
multiple species can also expand our understanding of how human
influence affects community diversity, as biotic homogenization
threatens many areas around the globe®°°. While modelling and
mapping multi-scaled and/or multi-temporal predictors to single- or
multi-species occurrences may be complex, tools exist to facilitate
their integration”%,

Thereisnoclear trendin proper procedures for modelling human
influence over time. Simply masking projections or maintaining
human predictors constant through time adds a misleading weight
to theimpacts of climate change on species distributions and canrisk
misguiding managers and decision-makers concerned about human
activities. Such misguidance is counterintuitive, given the multitude
of studies demonstrating the magnitude of human effects on eco-
logical communities at present™®°"3; future effects are inevitable.
Human activities may be more influential on species distributions than
climate—especially in predictions at shorter timescales—and human
impacts could become more evident over time due to lag effects, or
have lasting effects due to permanent changes to habitats or ecosys-
tems (thatis, legacy effects’). We thus suggest that multiple human pre-
dictor scenarios be used in projections of species distributions, similar
to how climate scenarios are projected. Of course, we recognize that
for some study areas, the data necessary to create human predictors
for forecasting or hindcasting distributions may be limited, especially
atmultiple spatial scales. Alack of interdisciplinary expertise may also
limit researchers in generating such predictors. One solution could
be to simulate multiple potential percent increases or decreases of a
predictor’s values or area coverage over time”*” or to use propensity

score matching® if mechanistic predictors of human influence are
unavailable. Open-access tools to simulate land-use change are also
being developed””.

Enhancingreal-world applications

Finally, considering human predictors is paramount for advancing the
real-world applications of SDMs. We pose the following questions for
applications-focused research:

1. How does the inclusion of human predictors in SDMs affect the
way protected areas are defined and evaluated?

2. How can human predictors in SDMs affect evaluations of conser-
vation or management progress?

3. Which human predictors are the most helpful for identifying
ecological sinks or traps?

4. Whichhuman predictors would best represent linkages between
SDG progress and species distributions over time—especially
beyond SDG-13 (Climate Action), SDG-14 (Life below Water) and
SDG-15 (Life on Land)?

SDMs are commonly used to map the ranges of species of concern,
define protected areas, highlight areas of potential human-wildlife
conflictand enhance the genetic connectivity and diversity of popula-
tions, among others. SDMs are also used to track changes in species’
ranges over time, especially under climatic or anthropogenic pressures.
These uses inform local, regional, national and even international
incentives and policies regarding biodiversity protection. With human
influence perforating most landscapes and seascapes either directly or
indirectly®®?*%, current gaps in using human predictors in SDMs risk
missing important opportunities for conservation and management
practices. Itis especially important to consider human predictors for
future projections to avoid the misallocation of resources or missteps
in climate mitigation. Evaluating SDM projections with and without
human predictors canalso assist inidentifying and mapping ecological
traps or sinks for critical species.

Around the globe, protected areas have a range in human
presence’*'°%'—from complete absence to domination—but the
current trend of SDMs (that is, using environmental predictors only)
risks biasing how current and future protected areas are being defined.
This is particularly important as the world is promoting the global
30 x 30 Initiative’ to triple the size of protected areas to 30% of Earth’s
lands and oceans by 2030*"'**while also trying to achieve major SDGs™.
SDMs for defining protected areas can employ human predictors to
assess potential spectra of humaninfluence to find balances between
conservation, development and sustainability. While SDG indicators
directly relating to species distributions have already been identified
under SDG-14 (Life below Water) and SDG-15 (Life on Land), studies
are continually emerging that show that species within protected
areas are linked to other SDGs, such as Decent Work and Economic
Growth (SDG-8, tourism increasing the income around protected
areas), Industry, Innovation and Infrastructure (SDG-9, building roads
around protected areas for access) and even Partnerships for the Goals
(SDG-17, international conservation breeding programmes introducing
individuals to new locations)*. Beyond protected areas, even human
predictors pertaining to Peace, Justice and Strong Institutions (SDG-16)
could correlate with species distributions, as issues such as systemic
racism in urban areas can impact biodiversity at national scales'”.
An assessment of species distribution changes over time in relation
to the United Nations’ 231 SDG indicators and across multiple taxa
may reveal the relevance of species to all sectors of global policy and
human flourishing.

Incorporating human predictors in SDMs may also change how
conservation and management progress is traditionally evaluated.
For example, supplementary tools for SDMs, such as multivariate
similarity surfaces and limiting factor mapping, can highlight loca-
tions where habitat suitability is compromised and which predictors
compromised them?'°*, Accessible protocols for interpreting human

Nature Ecology & Evolution | Volume 8 | July 2024 | 1365-1377

1372


http://www.nature.com/natecolevol

Analysis

https://doi.org/10.1038/s41559-024-02435-3

predictorimportance or responses should be developed for managers
and decision-makers, as well.

Conclusions

As ecosystems continue to transform from natural systems to increas-
ingly coupled human-natural systems™'®, and species distributions
continueto shiftin response to changing climate and increasing human
activities, methodological advances offer promise for developing new
and revising existing ecological theories. A species’ niche is generi-
cally defined by biotic and abiotic interactions, but our current era,
the Anthropocene, adds further complexities due to human influ-
ence. As SDMs are powerful, easily accessible tools used for a variety
of study aims across domains, taxa and spatial scales, they can pro-
vide much-needed information to ensure species persistence under
impending climate change and rising human populations and activities
worldwide. Further research to advance the incorporation of human
predictorsinSDMsis needed to enhance their applications and ensure
ecological sustainability.

Methods

Literature search

We used the Web of Science tosearchits Core Collection for all SDM arti-
cles published through 31 December 2021, using search terms that were
general and synonymous to SDMs, as described in Franklin' (search
string: 7S = (‘'SDM* OR ‘environmental niche model* OR ‘species niche
model* OR ‘bioclimatic niche model* OR ‘habitat suitability model* OR
‘ecological niche model* OR ‘habitat model*)) AND DT = (Article) AND
PY=(1900-2021), where TSis ‘Topic’, DT is ‘Document Type’, and PY is
‘Year Published’). This yielded 12,854 articles. While we acknowledge
that more articles could have been captured using additional search
terms (for example, listing SDM algorithms), a test using terms such
as ‘occupancy model’, ‘resource selection function* or ‘niche model*
showed that our choice of general search terms and their resulting
articles were sufficient to capture the current state of modelling human
influence onspecies distributions. Following the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA) framework'®
(Extended Data Fig. 1), we screened 12,683 of these articles’ abstracts
to identify articles acknowledging or describing human influence on
species distributions, using the ‘revtools’ package'” in R'°%. Given the
large number of articles, we ensured transparency and replicability
of'the abstract screening process by developing a dictionary of terms
related to human influence (that is, a list of words or phrases used by
authorsthat caused us toaccept papers, along with synonyms based on
those terms; Supplementary Table1). This abstract screening approach
is similar to Pham et al.'””, except we did not use machine learning.
We manually reviewed ~300 abstracts at a time, added terms to this
dictionary and then searched along the entire pool of abstracts to
accept articles based on the updated terms. We repeated this for 28
iterations, allowing us to manually screen all rejected article abstracts
(n=7,506), manually accept 551 article abstracts, automatically accept
4,626 article abstracts from the 477 terms added to the search and
manually review a total of 5,177 full articles and their supplementary
materials (Extended Data Fig.1).

In the full-article screening, eligible articles were those that
used traditional, correlative SDMs to model species distributions
(as opposed to expert-opinion-based or deductive habitat suitability
models) and included human predictorsin SDM training. Human pre-
dictors, also known as anthropogenic predictors, are those thatinclude
anindicator of humanactivities, presence or pressures. These include
predictorsthat directly allude to humaninfluence (for example, human
population size, human footprint, distance from residential areas) or
indirectly allude to human influence (for example, protected versus
unprotected areas and land use/land cover). We also noted articles
using human predictors outside SDMs (for example, by masking pre-
dictions or highlighting areas of concern) but did not use themin the

rest of our study. Any rejected articles were marked for one of three
of the following reasons: (1) the article did not use a traditional, cor-
relative SDM for modelling species distributions (for example, species
abundance or density models or deductive, expert opinion models are
rejected; for lists of typical SDM algorithms that are accepted, see Sup-
plementary Table 3 and Extended Data Fig. 9); (2) no human predictors
were used in SDM model training (that is, no human predictors in the
paper, or human predictors were used as masks, detection probability
estimates or in a post-analysis of an SDM); or (3) it was not aresearch
articleonmodelling species distributions (for example, abook chapter,
literature review or a model of disease, fire, cover or virtual species)
or the authors used SDMs from another source. To better align our
analysis with the start of global data initiatives"° "%, we later chose to
remove articles before the year 2000 (n = 74). Of the full articles, we
accepted 1,429 (13 were unavailable) and reviewed their full text and
supplementary materials for synthesis.

Systematic review and synthesis

We catalogued information from each of the 1,429 full articles identi-
fied as relevant in the full-text screening (for full reference list, see
Supplementary Information). This information included the general
focus (or aim) of the study (as stated by the authors in the abstract or
introduction), spatial scale of the study area, study area countries,
the study’s time frame (past, present and/or future SDM training and
projection), the time frame represented by human predictors (includ-
ing simulated scenarios across time), the taxa studied, study domain
(terrestrial, marine or freshwater habitat type) and SDM algorithms. For
eacharticle, we also listed the human predictors’names and the total
numbers of environmental predictors used in the SDMs. We provide
adescription of these data in Supplementary Table 2, corresponding
toSupplementary Table 5.

We synthesized the catalogued data entries using R v.4.3.0 (ref.
108). To determine the distribution of studies compared with human
influence, we mapped the numbers of studies in each country against
agridded 2020 Human Footprint Index®®. We summed the numbers of
articles covering various domains, taxa and a range of general study
aims, and mapped their global coverage as well. The maps were made
using the ‘tmap’ R package' and ArcPro v.3.1 (ref. 114). We compared
the numbers of human predictors with environmental predictors used
in SDMs by creating a density plot of the frequency of articles modelling
each human-to-environmental predictor ratio.

We simplified our list of predictors, as named by authors, to syn-
thesize similar predictor names across articles. We identified transfor-
mations of predictor data (for example, percent or distance data types
or various units) as unique predictors to simulate their treatment by
the SDM articles’ authors (for example, cropland areas and cropland
percent may be used in the same SDM of a study). We then sorted the
predictors by first assessing their data type (Extended Data Table 1).
We defined data types as (1) density/count, for predictors relating to
sums or frequencies of human activities (for example, road density and
household income); (2) descriptive, for predictors that are typically
categorical (factors; for example, presence/absence of barriers and
land cover types); (3) distance, for predictors measuring distance from,
for example, human infrastructure or locations of human activities;
(4) index, for predictors calculated from a combination of other predic-
tors (forexample, humanfootprint); (5) size, for predictors describing
the length, width, height or area of an object of human influence (for
example, building height and road length); and (6) time, for predictors
relating to the temporal occurrence of ahuman activity (for example,
period of field activities™ or prescribed fire years™®).

Wethenassigned the synthesized human predictorsto10of12 cate-
gories of humaninfluence (Extended Data Table1): (1) barriers/access,
for predictors describing the facilitation or deterrence of move-
ment (for example, fence presence/absence and passable/impass-
able stream barriers); (2) disturbance, for predictors describing, for
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example, habitat fragmentation, deforestation, degradation, change
in naturalness, or indices of disturbance or avoidance (for example,
human perturbation index and marine human impact); (3) energy/
raw materials, for predictors relating to energy infrastructure (for
example, wind farm distance, dams density and renewable energy
lease sites) or extractions of fuels or other materials (for example, oil
well pads, seismic lines, dredging and disposal areas, historic mines
and mine distance); (4) food/agriculture, for predictors describing
the cultivation or harvest of food products (for example, percent
farmlands or their distance, livestock or cultivated product density or
abundance, livestock encounter rates, harvest intensity and fishing);
(5) human presence, for predictors that are derived from multiple
features related to humans, and that are typically synthesized into
indices or intensities (for example, anthropogenic biome, high/low
human activity, humanfootprint, humaninfluence index and human
features distance); (6) infrastructure, for predictors describing devel-
oped areas (for example, urban or residential areas, building types,
housing, land ownership and military training areas); (7) management/
interventions, for predictors relating to protection, conservation
or management actions or locations (for example, protected area
distance, non-hunting area distance and reintroduction site nuclei);
(8) pollution, for predictors describing chemical, noise or light pol-
lution or intensity (for example, night or artificial light intensity) or
effects from pollutants (for example, count of poisoning incidents);
(9) recreation/tourism, for predictors relating to, for example, trails,
hunting pressure, or scenic locations; (10) socio-economics, for pre-
dictors describing human population sizes or densities, demographic
and social structures (for example, human poverty, education, types
of wateraccess), jurisdiction (for example, state names), illegal activi-
ties (for example, opium eradication areas) and finances (for example,
gross domestic product and household income); (11) transportation,
for predictors typically relating to human movement or the move-
ment of goods (for example, roads density or distance and shipping
intensity); and (12) ambiguous, for predictors that can equally repre-
sent environmental predictors (for example, land use/land cover or
forested/unforested areas).

Weextracted the first and last (most recent) years of human predic-
tor usetoexaminethe persistence and prevalence of human predictors
being used in SDMs over the years. We used years of publication as a
proxy for the years when each predictor was used. We plotted these
sets of years per predictor as scatter plots, faceted by the 12 predictor
categories. We mapped the first years of human predictor usein each
study areaacross local, regional, national, multi-national, continental
and global scales. We also mapped the total number of unique human
predictors used across these spatial scales.

From thislist of predictors, we used the ‘text2sdg’ R package'’ to
minethe predictor names and assign SDGs to them, where appropriate.
We calculated the sum of SDGs per predictor and plotted them using
code adapted from the ‘SDGDetector’ package™®.

After renaming and categorization, this list of predictors was
exported asatable, with data types, data categories, predictor names,
study time frames, modelled taxa, study focus, number of articles,
SDGs, number of SDGs and corresponding article identification num-
bers for each predictor. This datasetis provided here as Supplementary
Table 6. From it, we calculated the sum of unique predictors used across
eachstudy focus and taxonomicgroup, and the frequency of predictors
across articles, data types and categories.

Finally,amongthese articles, we also looked for author statements
that holistically (both quantitatively and/or qualitatively) evaluated
the performance of SDMs with human predictors compared with SDMs
using only environmental (habitat and/or climate) predictors. These
statements were found in the results and/or discussion sections of
the articles that used both model schemes. The authors’ evaluations
couldbebased on SDM performance measures (forexample, accuracy,
predictor importance or statistical significance), model selection

procedures (for example, step selection), differences in predictions
(for example, ranges and extents) and/or support from literature or
expertknowledge. We used a vote counting method, simply recording
the number of such articles stating that SDMs performed (1) better
when including human predictors, (2) worse or (3) no difference was
found, or that (4) performance depended on multiple other factors (for
example, differences depending onscale, resolution or modelled spe-
cies), so it could not be strictly determined, or (5) comparable model
schemeswere done, but the authors did not discuss performance. We
summed these five types of conclusions to determine overall trends
in SDM performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets developed from this study are available as Supplemen-
tary Tables 5 and 6. They are also available on the Figshare repository
(https://doi.org/10.6084/m9.figshare.24225316)"°. Source data are
provided with this paper.

Code availability

The code used for this study were made using R version 4.3.0 and
is available on the Figshare repository (https://doi.org/10.6084/
m9.figshare.24225316)" and GitHub (https://github.com/vffrans/
Human_influence_SDMs).
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Extended Data Table 1| Data types and categories assigned to human predictors listed in the accepted SDM articles of the

systematic review

Definition

Example predictors

Data types

density/count

predictors relating to sums or frequencies of human activities

road density, household income, avian pesticide deaths

descriptive predictors that are typically categorical (factors) presence/absence of barriers, land cover types
distance predictors measuring distance from human-related structures, distance to trails or roads, distance from non-hunting
land cover, or activities reserves
index predictors calculated from a combination of other predictors human footprint, human influence index, human activity
levels
size predictors describing the length, width, height, or area of an building height, road length
object of human influence
time predictors relating to the temporal occurrence of a human period of field activities, or prescribed fire years, mean annual
activity inundation time, year moved into housing
Categories
ambiguous predictors that can be equally representative of environmental land use/land cover or forested/unforested areas
predictors
barriers/access predictors describing the facilitation or deterrence of movement  fence presence/absence, passable/impassable stream
barriers
disturbance predictors describing habitat fragmentation, deforestation, human perturbation index, marine human impact, logging
degradation, change in naturalness, or indices of disturbance or  cut-block area, harvested forest percent, logging duration
avoidance
energy/raw materials predictors relating to energy infrastructure or extractions of wind farm distance, dam density, renewable energy lease

fuels or other materials

sites, oil well pads, seismic lines, dredging and disposal areas,
historic mines, mine distance

food/agriculture

predictors describing the cultivation or harvest of food products

percent farmlands or their distance, livestock or cultivated
product density or abundance, livestock encounter rates,
harvest intensity, fishing

human presence

predictors that are derived from multiple features related to
humans, and that are typically synthesized into indices or
intensities

anthropogenic biome, high/low human activity, human
footprint, human influence index, human features distance

infrastructure

predictors describing developed areas

urban or residential areas, building types, housing, land
ownership, military training areas

management/interventions

predictors relating to protection, conservation, or management
actions or locations

protected area distance, non-hunting area distance,
reintroduction site nuclei

pollution predictors describing chemical, noise, or light pollution, or night or artificial light intensity, count of poisoning incidents
intensity or effects from pollutants
recreation/tourism predictors relating to recreational trails, hunting, tourism, or recreational areas, distance to ski resorts, trails index, parks,

scenic locations

hunting registration

socio-economics

predictors describing human population sizes or densities,
demographic and social structures, jurisdiction, illegal activities,
and finances

human poverty, education, types of water access, state
names, opium eradication areas, gross domestic product,
household income

transportation

predictors typically relating to human movement or the
movement of goods

roads density or distance, shipping intensity

Data types refer to the format of the human predictor, while data categories refer to kind of human influence (human activities, presence, or pressures) that a human predictor represents.
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Identification of new studies via databases and registers

Records removed before screening:

c
% Records identified from: Duplicate records (n = 8)
i Web of Science (n = 12,854) —» Records marked as ineligible by automation
b= Registers (n = 0) tools (n = 163)
ﬁ Records removed for other reasons (n = 0)
Records screened Records excluded
(n=12,683) (n=7,506)
_8 Reports sought for retrieval Reports not retrieved
§ (n=5,177) > (n = 87)
b
n
Reports excluded:
Reports assessed for eligibility Reason 1 (n = 432)
(n =5,090) Reason 2 (n = 3,064)
Reason 3 (n = 165)
- New studies included in review
2 (n=1,429)
g Reports of new included studies
£ (n=0)

Extended Data Fig. 1| PRISMA workflow for article search, screening,
selection and inclusionin the literature review and synthesis on human
predictor use in SDMs. Using Web of Science, we found 12,854 articles under the
searchstring, TS = ((‘species distribution model* OR ‘environmental niche model*
OR ‘species niche model* OR ‘bioclimatic niche model*OR ‘habitat suitability
model* OR ‘ecological niche model* OR ‘habitat model*)) AND DT = (Article) AND
PY =(1900-2021). Of these articles, there were 8 duplicates and 163 articles
published after 2021 that were removed using automation tools (R coding).
12,683 article abstracts were screened (see Table S1 for abstract screening
procedure), of which 5,177 mentioned human influence on species distributions
and were thus accepted. From those abstracts, 5,090 full articles were accessible

and reviewed, assessing whether human predictors were used in SDM training.

Of these articles, a total of 3,661 were rejected for the following reasons: Reason
1:atraditional, correlative SDM was not used for modelling species distributions
(seelist of typical algorithmsin Table S2 and Extended Data Fig. 9); Reason 2: no
human predictors were used in SDM model training (that is, no human predictors
inthe paper, or human predictors are used as masks or in a post-analysis of an
SDM); and Reason 3: not aresearch article (for example, abook chapter, literature
review), or the authors used SDMs from another source. This yielded a final total
of1,429 accepted articles for our synthesis. Note that the term ‘records’ under
the PRISMA framework refers to ‘abstracts’ in our case, and ‘reports’ and ‘studies’
bothrefer to ‘full articles”.
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Extended Data Fig. 2| Spatial distribution of articles using human predictors in SDMs, based on the spatial scale of each study. These represent 1,429 SDM
articles published from 2000 to 2021. Note that marine articles are appended to their respective countries.
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Extended Data Fig. 3| Spatial distribution of articles using human predictors in SDMs. These represent 1,429 SDM articles published from 2000 to 2021. Note that
marine articles are appended to their respective countries, and continental and global-scale studies are excluded.
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Extended Data Fig. 5| Spatial distribution of articles using human predictors in SDMs in freshwater, marine and terrestrial domains. These represent 1,429 SDM
articles published from 2000 to 2021. Note that marine articles are appended to their respective countries, and continental and global-scale studies are excluded.
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299 of the 1,429 full articles (21%), multiple SDM algorithms were used, either
separately or as an ensemble. *Abbreviations: ANN (artificial neural network);
CTA (classification tree analysis, including classification and regression trees
[CART]); Discriminant (discriminant analyses, including flexible and mixture
[FDA; MDA]); DOMAIN (also known as Gower’s distance); ENFA (environmental
niche factor analysis); Favorability (favorability function); GAM (generalized
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additive model); GARP (genetic algorithm for rule-set production); GBM
(gradient boosting model, including TreeNet and boosted regression trees
[BRTI); GLM (general/generalized linear model, including logistic regression and
resource selection function [RSF]); Hierarchical (a hierarchical model; typically
acustomized learning method such as Bayesian inference or occupancy model);
MARS (multivariate adaptive regression splines); Mahalanobis (Mahalanobis
distance, including Penrose distance); Maxent (maximum entropy); RF (random
forest); SRE (surface range envelope, also known as BIOCLIM); SVM (support
vector machine).
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection  The data for the articles collected from Web of Science are available on Figshare (https://doi.org/10.6084/m9.figshare.24225316).

Data analysis All data were analyzed using R version 4.3.0. All code for this study are publicly accessible on GitHub (https://github.com/vffrans/
Human_influence_SDMs) and Figshare (https://doi.org/10.6084/m39.figshare.24225316).
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets developed from this study are in Supplementary Tables 5 and 6. They are also publicly accessible on the Figshare repository (https://doi.org/10.6084/
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

these points even when the disclosure is negative.

This is a systematic review of articles on species distribution modeling (SDMs). We assessed whether articles published up to 2021
included human predictors in their models, and summarized those' articles procedures.

Using Web of Science, we searched for all published articles up to December 31, 2021 that used the following terms in their titles,
keywords, or abstracts: TS=(("species distribution model*" OR "environmental niche model*" OR "species niche model*" OR
"bioclimatic niche model*" OR "habitat suitability model*" OR "ecological niche model*" OR "habitat model*")) AND DT=(Article)
AND PY=(1900-2021)). This yielded 12,854 articles for the abstract screening step.

We screened all 12,854 article abstracts, searching for abstracts that indicate some acknowledgment of human influence on species'
distributions. We manually screened ~300 abstracts at a time, added human-related terms found in those abstracts to a text-mining
dictionary string, and then searched along the entire pool of abstracts to accept articles based on the updated terms. We repeated
this for 28 iterations, allowing us to manually screen all rejected article abstracts (n=7,506), manually accept 551 article abstracts,
automatically accept 4,626 article abstracts from the 477 terms added to the search, and manually review a total of 5,177 full articles
and their supplementary materials (see PRISMA framework in Extended Data Fig. 1).

All data were collected by the corresponding author, Veronica F. Frans. The 5,177 full articles that were accepted in the abstract
screening step were manually downloaded based on a web search using each article's DOI or title. The supplementary materials of
these articles were also collected. Fourteen accepted articles were not available. The full articles were then reviewed to see whether
human predictors were used in species distribution models. This led to 1,429 eligible articles for our analysis and summary. We
summarized the 1,429 articles by gathering the general focus (or, aim) of the study (as stated by the authors in the abstract or
introduction), spatial scale of the study area, study area countries, the study’s time frame (past, present and/or future SDM training
and projection), the time frame represented by human predictors (including simulated scenarios across time), the taxa studied, study
domain (terrestrial, marine, or freshwater habitat type), and SDM algorithms. For each article, we also listed the human predictors’
names and the total numbers of environmental predictors used in the SDMs. We provide a description of these data in
Supplementary Table 2.

We conducted the Web of Science search on September 14, 2022. The articles were collected from the year 1900 to 2021, but our
analysis was restricted to articles published between 2000 and 2021. We did not limit the geographic coverage of our study.

In the abstract screening step, we did not accept articles that did not mention human influence on species distributions in the
abstract. Of the 5,177 full articles that we read, we did not accept articles that did not use human predictors within species
distribution models.

We maximized the reproducibility of our work by doing all abstract screening and data cleanup and analysis in R. The only portion of
our work that cannot be automated is the collection of the raw data for each of the 1,429 accepted articles. These data were typed
up in Excel while reading the articles. The PDFs of these articles were highlighted and annotated, and cannot be distributed due to
copyright issues with article publications. However, all raw data corrections from the Excel spreadsheet were done in code in R. This
project has 5 R scripts, which are accessible on GitHub (https://github.com/vffrans/Human_influence_SDMs) and Figshare (https://
doi.org/10.6084/m39.figshare.24225316).
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Randomization We did not do randomization in our study. We were able to summarize all 1,429 accepted articles for our review and analysis.

Blinding We did not do any blinding procedures in our study, since it was systematic review.

Did the study involve field work? |:| Yes No
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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