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ABSTRACT
Multitask learning is a widely used paradigm for training models
on diverse tasks, with applications ranging from graph neural net-
works to language model fine-tuning. Since tasks may interfere
with each other, a key notion for modeling their relationships is
task affinity. This includes pairwise task affinity, computed among
pairs of tasks, and higher-order affinity, computed among subsets
of tasks. Naively computing either of them requires repeatedly
training on data pooled from various task combinations, which is
computationally intensive. We present a new algorithm Grad-TAG
that can estimate task affinities without this repeated training.

The key idea of Grad-TAG is to train a “base” model for all tasks
and then use a linearization technique to estimate the loss of any
other model with a specific task combination. The linearization
works by computing a gradient-based first-order approximation of
the loss, using low-dimensional projections of gradients as features
in a logistic regression trained to predict labels for the specific task
combination. We show theoretically that the linearized model can
provably approximate the loss when the gradient-based approxi-
mation is accurate, and also empirically verify that on several large
models. Then, given the estimated task affinity matrix, we design
a semi-definite program for clustering to group similar tasks that
maximize the average density of clusters.

We evaluate Grad-TAG’s performance across seven datasets,
including multi-label classification on graphs, and instruction fine-
tuning of language models. Our results show that our task affinity
estimates are within 2.7% distance of the true affinities while need-
ing only 3% of FLOPs compared to full training. On our largest
graph with 21M edges and 500 labeling tasks, our algorithm deliv-
ers an estimate accurate to within 5% of the true affinities, while
using only 112.3 GPU hours. Our results show that Grad-TAG
achieves excellent performance and runtime tradeoffs compared to
existing approaches.
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1 INTRODUCTION
Modern applications of neural networks often employ a single
neural network for prediction or classification on multiple tasks.
This multitask learning setup is widely used across a variety of
settings, with examples such as a visual system that aims to detect
various objects in autonomous driving simultaneously [46], a Graph
Neural Network for community detection on large networks [25],
and prompt-tuning of pre-trained LLMs for NLP tasks [30]. This
multitask learning setup is not only computationally efficient (a
single network can jointly predict many tasks), but it often improves
prediction accuracy due to transfer learning.

The often implicit assumption behind multitask modeling is
that there is a positive transfer effect among tasks [8]. However, as
the number of tasks increases, one frequently observes a negative
transfer effect in many applications, such as for prompt tuning of
large language models, where adding a task to the model degrades
performance on one or more tasks [53–55, 49]. This observation
has motivated a line of work that aims to group the tasks into
subsets such that negative transfer among tasks within a subset is
minimized, allowing one to train a separate multitask model per
subset, improving performance on all tasks [25].

A key concept underlying many multitask learning algorithms
is a notion of task affinity, which can capture the abovementioned
positive or negative transfer effects across tasks in a precise way. For
instance, one can compare pairwise task affinity [46, 12]—the loss
of a model trained on each pair of tasks—against the loss of a model
trained on each task. Given a notion of task affinity, a common
recipe for designing multitask learning algorithms involves (1) Task
affinity computation that builds a task affinity matrix, then (2) task
grouping that uses this task affinity matrix to group tasks with a
positive transfer together, and finally (3) multitask training that fits
a separate model per task group.

The performance improvement achieved through this paradigm
depends on the notion of task affinity and the grouping procedure.
Moreover, the ability to leverage this paradigm hinges on the com-
putation of task affinity computation (Step 1 above), which becomes
expensive as the number of tasks grows. As a case in point, the com-
putational complexity of pairwise task affinity scales quadratically
with the number of tasks: this implies that even for community
detection with 100 labelings, using pairwise task affinity requires
training nearly 5000 models for computing the affinity matrix.
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Figure 1: Visualization of the gradient-based model approxi-
mation step in our Grad-TAE algorithm, where we replace
multitask training with a regression-based estimation of
model parameters fine-tuned on a particular subset of tasks.

In this paper, we scale up this multitask learning paradigm by
dramatically speeding up the first step of task affinity computation
for two canonical examples of task affinities: Pairwise and higher-
order task affinity (See Examples 2.2, 2.3). In our experiments on
various real-world datasets representing different applications, our
Grad-TAE algorithm can reduce the task affinity computation time
by nearly 32× compared to full model training while incurring less
than 2.7% error. In addition to this dramatic efficiency improve-
ment, we also design a more robust method for task grouping (Step
2). Taken together, these new techniques match or improve the
performance of previous multitask models.

The primary challenge for task affinity computation is how to
avoid training a large number of multitask models with various
task combinations. The key technical insight behind our algorithm
is to leverage a linearization property of deep neural networks,
including large language models. The linearization property for
a neural network means that we can approximate the model loss
for a pre-trained meta-initialization and an input/output pair by
using a gradient-based Taylor’s expansion centered at the meta-
initialization. This linearization property has been observed for
large language model fine-tuning in recent works, albeit not for
the purpose of multitask learning [33, 34, 52]. Here, we leverage
linearization to estimate task affinities in an efficient manner by
using the first-order Taylor expansion from a pre-trained model,
thereby saving the computation of backpropagation during model
fine-tuning. This Grad-TAE algorithm is illustrated in Figure 1.

In more detail, we first compute the gradient at the initialization
and then map the gradients to task labels with logistic regression.
The dimension of this regression can be high, especially for heav-
ily parameterized models. Thus, we use a dimension reduction
technique and apply the Johnson-Lindenstrauss Lemma to give
an error analysis. On experiments of datasets with 100 tasks, we
show that this approach estimates pairwise task affinity with 45×
fewer FLOPs and 11× less GPU hours than fully computing the true
scores, with only 5.7% relative error. For higher-order task affinity,
our approach uses 32× fewer FLOPs and 5× less GPU hours, with
only 2.7% relative error. Furthermore, our approach also scales to
a large-scale graph with over 21M edges and 500 tasks and esti-
mates the task affinities within 5% relative errors with 112.3 GPU
hours, while computing the true affinity scores can take over 8000
GPU hours. Our algorithm is also suitable for accelerating task
selection methods that are typically computationally expensive and

ineffective for downstream performance. An example is forward
or backward subset selection [15], which is a popular heuristic but
requires evaluating quadratically many task combinations.

As for the second step, we design a new clustering algorithm
that uses these estimated task influences efficiently through a Semi-
Definite Programming (SDP) relaxation formulation. The clustering
algorithm takes as input the estimated task affinity matrix 𝑇 (of
size 𝑛 × 𝑛) & the number 𝑘 of task groups to output and solves an
SDP for maximizing the average density of the 𝑘 groups. Since the
SDP is a convex program, it can be solved efficiently, and we round
the resulting solution to get the final task groups. Our experiments
indicate that our clustering algorithm is more robust and perfor-
mant than commonly used clustering techniques such as spectral
clustering [35] and Lloyd’s algorithm [29]. Once we have the task
groups from the clustering, we can partition the tasks into subsets
and train a separate model on tasks within each subset — this over-
all algorithm is called Grad-TAG. In experiments, we show that
our approach achieves the Pareto optimum in terms of error rate
and computation cost. For multi-label prediction on graphs trained
with a 3-layer GNN, Grad-TAG achieves comparable performance
with over four baselines, while using 32× fewer FLOPs and 5×
less GPU hours. For instruction fine-tuning of language models
using T5 base, Grad-TAG uses 48.2× fewer FLOPs and 10.6× less
GPU hours with comparable performance of the best baseline. The
code repository for reproducing our experiments can be found at:
https://github.com/VirtuosoResearch/ScalableMTL.
Summary of Contributions: We design an efficient algorithm,
Grad-TAE, for estimating the task affinity scores of a multitask
learning algorithm. The key idea of Grad-TAE is to trade off
multitask pre-training, which is computationally expensive, with
gradient-based estimation for fine-tuning, whose computation is
lightweight.We then design a clustering algorithm on top of the esti-
mation procedure for downstream multitask optimization. Through
a detailed experimental study, we demonstrate that our overall al-
gorithm, Grad-TAG, significantly speeds up full model training
while delivering comparable performance.
Organization: We briefly touch on related work and then provide
the technical preliminaries for the rest of the paper. In section 3,
we outline our task affinity estimation procedure Grad-TAE, along
with a theoretical error analysis for the estimation error. Then, we
present the clustering approach for task grouping and the overall
algorithm Grad-TAG in Section 4. Finally, we provide a thorough
empirical evaluation of the Grad-TAG algorithm for a variety of
multitask learning settings in Section 5.

1.1 Related Work
Multitask learning is a fundamental problem, with many applica-
tions such as federated learning [45], road safety modeling [37], and
language model fine-tuning [30]. This problem has been studied
since the early literature of data mining [8]. Modeling task relation-
ships is challenging and can get quite complex as the number of
tasks gets large [32, 62]. Task relationships depend on the data dis-
tribution characteristics, such as covariate and label shifts, to name
a few [54]. Thus, designing optimization algorithms for multitask
learning is challenging [25, 26].We contribute to this literature by
proposing a new approach to significantly speed up the computation
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of task affinity scores for modeling task relationships. We now move
on to discuss several lines of work most related to ours.
Gradient-based Task Similarity Measures. Previous works [46,
12] estimate task affinities between every pair of tasks. The com-
putation complexity of such methods scales quadratically with the
number of tasks. Another approach is to use task embeddings [49],
i.e., training one model on each task and measuring the cosine
similarity between the model weights. The method trains models
linear to the number of tasks, but the measures are noisy. Intu-
itively, if two tasks are similar, their gradients should have higher
cosine similarity. This idea can be implemented to balance train-
ing by dynamically tuning gradient magnitudes [10], or to project
the gradients noto the span of other tasks’ gradients that have a
conflicting gradient [12]. The same idea can also be implemented
to choose auxiliary tasks that are most beneficial for a primary
task [11]. Similarity measures based on feature representations of
tasks have also been applied to grouping tasks [44] and used to
predict task transferabilities [4]. The advantage of these approaches
is that they are very efficient since only a single multitask model
will be trained. The downside is that the gradients can be noisy
during a stochastic training procedure. For example, Azorin et al.
[5] empirically observe that representation and gradient similarity
measurements do not correlate well with actual MTL performance.
Thus, a more accurate approach is to build measures to approxi-
mate multitask outcomes; see recent work on developing surrogate
models for multitask learning systems [25, 26].
Transferability Estimation. There have also been developments
on information theoretic measures of transferability in recent liter-
ature. One natural idea is to evaluate conditional entropy between
target pseudo labels (assigned by a pretrained source model) and
real target label [7]. Log Expected Empirical Predictor [36] proposes
a modified procedure by using soft predictions from the source
model. These methods do not utilize feature embeddings in the
measure [50]; A surrogate measure based on mutual information
that additionally uses this information is introduced in TransRate
[17]. An improved estimation method with better robustness can be
achieved by shrinkage [18]. In the fine-tuning setting, the distance
between the model search and the pretrained initialization can
indicate the level of generalization capability [27]. The geometry
relates to the Hessian of the loss, which can accurately correlate
with the fine-tuned model’s generalization performance [22]. Ju
et al. [21] extend this Hessian measure to graph neural networks,
which can guide the design of optimization algorithms to regularize
the Hessian of neural networks [23].
Multitask Learning Optimization Algorithms. One can view
multitask learning as a multiobjective optimization problem [38],
and then identify the Patero frontier between the objectives [43].
One type of MTL optimization algorithm is to use reweighting that
optimizes a weighted combination of each task’s loss [28, 42]. Since
our goal is to maximize the averaged prediction performance of
all tasks, we are interested in partitioning the tasks into similar
groups such that the tasks are closely related within each group
(but can still be quite different across groups). There is another
interesting line of work on designing branching neural networks
such as tree structures [48, 14], which involve multiple separate
modules in each layer to process different tasks [31]. Compared

with branching methods, task grouping may be more suitable for
handling a large number of tasks (like hundreds to thousands).
In this regime, there is inevitably a lot of negative interference
among tasks, so clustering them into similar groups may be a better
strategy than designing a single neural network for all.
Influence Functions. There is a line of work on estimating the
influence of adding or removing one sample on the remaining sam-
ples. Influence functions [24] based on efficient approximation of
the Hessian inverse provide one way to approximate this. Random
sampling-based approaches to measuring leave-one-out influence
have also been studied [19, 39]. The distinction between these works
and us is we focus on task-level affinity, whereas this literature fo-
cuses on estimating the influence of a single data sample.
Clustering Algorithms. Clustering is a fundamental aspect of
machine learning. Besides SDP relaxations, linear programming
relaxations are known for clustering objectives such as 𝑘-center.
The integrality gap of linear programming and semidefinite pro-
gramming relaxations can be analyzed when there is a separation
structure in the underlying clusters [3]. These approximation guar-
antees typically require the underlying similarity scores to satisfy
a metric condition. By contrast, the task affinity matrix can easily
violate the triangle inequality. Recent work has also studied mixed
integer programming for best subset selection [9]. One novel con-
tribution of this work is to make explicit a connection between
multi-instruction fine-tuning and clustering. In light of this connec-
tion, it would also be interesting to revisit hierarchical clustering
and hypergraph clustering for task grouping. Recent work by Tsit-
sulin et al. [47] investigates unsupervised graph clustering problems
with graph neural networks.

2 PRELIMINARIES
Suppose we are interested in making predictions on 𝑛 tasks. We
are given a set of samples for training and testing of each task. Our
goal is to design a prediction algorithm to maximize the averaged
testing performance over all the 𝑛 tasks simultaneously. We assume
that the samples from all the tasks are supported on a joint product
between a 𝑝-dimensional feature space X and a label space Y. In
order to precisely discuss task relationships, we formally define
what we mean by a multitask learning algorithm.

Definition 2.1 (Multitask learning algorithms). For any subset 𝑆 ⊆
{1, 2, . . . , 𝑛}, a multitask learning algorithm 𝑓 takes the training data
of all the tasks of 𝑆 , combining them in a joint training procedure.
Then, the (jointly trained) model is tested on each individual task
𝑡 ∈ 𝑆 . In the end, a test result is obtained for each 𝑡 . Let us denote
the test result as 𝑓 (𝑆, 𝑡). Thus, the output of the algorithm will
include a total of |𝑆 | results for any subset 𝑆 , one for each 𝑡 ∈ 𝑆 .

Given a multitask learning algorithm, the transfer between the
𝑛 tasks can then be viewed through the results of 𝑓 , applied to
combinations of tasks as subsets. This notion of transfer underlies
many existing multitask learning systems. We give two examples
below, which have been used in prior works to tackle task transfer
in complex visual systems [59, 46].

Example 2.2 (Pairwise task affinity). Consider two tasks such as
𝑖 and 𝑗 . Given a multitask learning algorithm 𝑓 , one can mix the
training data of tasks 𝑖, 𝑗 , using SGD to train a shared encoder and
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the prediction heads. If we compute the pairwise task affinity for
all pairs of tasks 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, then we get an 𝑛 by 𝑛 task affinity
matrix 𝑇 , where 𝑇𝑖, 𝑗 = 𝑓 ({𝑖, 𝑗}, 𝑖).

Example 2.3 (High-order task affinity). Next, we discuss higher-
order task affinity, which is analogous to sampling features in
random forests. First, fix an integer𝑚, which corresponds to the
number of subsets we would like to sample (e.g., analogous to the
number of decision trees in a random forest). Then, sample𝑚 sub-
sets independently out of the set {1, 2, . . . , 𝑛} = [𝑛]. In particular,
sample a subset of size 𝛼 uniformly over all such subsets. Let us
denoted the𝑚 subsets as 𝑆1, 𝑆2, . . . , 𝑆𝑚 . Then, compute 𝑓 (𝑆𝑘 , 𝑗), for
every 𝑘 = 1, 2, . . . ,𝑚, and 𝑗 = 1, . . . , 𝛼 . Lastly, compute 𝑇𝑖, 𝑗 as the
average value of 𝑓 among all subsets including tasks 𝑖, 𝑗 :

𝑇𝑖, 𝑗 =
1

𝑛𝑖, 𝑗

∑︁
1≤𝑘≤𝑚: 𝑖∈𝑆𝑘 , 𝑗∈𝑆𝑘

𝑓
(
𝑆𝑘 , 𝑖

)
, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (1)

where 𝑛𝑖, 𝑗 is the number of subsets that include both 𝑖, 𝑗 . This leads
to another task affinity matrix 𝑇 , better capturing the higher-order
relationship among tasks.

In both examples, computing the task affinity matrix requires
fitting at least Ω(𝑛) models, given 𝑛 tasks. In Example 2.2, one
needs to train

(𝑛
2
)
models, one for every pair of tasks. Then, in

Example 2.3, a total of𝑚 = Ω(𝑛 log𝑛) models are required, each
for a subset of tasks. This raises the question of whether one can
approximate the results of a multitask learning algorithm by de-
signing a more efficient computational method, outlined as follows:
Given a multitask learning algorithm 𝑓 and a collection of subsets
𝑆1, 𝑆2, . . . , 𝑆𝑚 ⊆ {1, . . . , 𝑛} (= [𝑛]), can we quickly estimate the task
affinity scores corresponding to 𝑓 (𝑆𝑖 , 𝑗), for any 𝑖 = 1, 2, . . . ,𝑚 and
any 𝑗 ∈ 𝑆𝑖 quickly (e.g. without having to train a full model for each
subset)? Do these task affinity estimates accurately approximate
the affinity one would get from fully trained models? And are the
estimates useful in the downstream task grouping setup?

3 TASK AFFINITY ESTIMATION
We now describe a new method for estimating task affinity scores.
To circumvent the cost of full-model training, we start by describing
an empirical observation regarding pre-training and fine-tuning.
Then, we present our approach to estimating fine-tuned model
parameters for task subsets. Additionally, we use random projection
to reduce the dimension of the gradients. We provide an error
analysis to justify the design of our algorithm.

3.1 Linearization of Fine-tuned Models
Our method is motivated by the fact that once we pre-train all
the 𝑛 tasks to obtain a meta-initialization, this initialization can
provide representations that can be quickly adapted to the remain-
ing tasks. This is based on the premise that the underlying tasks
share structural similarities in multitask learning. Therefore, the
model adapted to a subset of tasks stays in the affinity of the initia-
tion, rendering the adaptation procedure behave like linear models
locally. To illustrate this observation, we consider three distinct sce-
narios involving graph neural networks (GNNs) and transformers
(BERT and T5). We test GNNs on a multi-label prediction dataset
on a YouTube graph [56], using a 3-layer SIGN network [13]. This

Table 1: Measuring Taylor’s expansion error for models fine-
tuned from an initialization pre-trained on all tasks. The
results are averaged over 100 random task subsets.

GNN BERT T5

Distance RSS Distance RSS Distance RSS

1% 4.2 × 10−4 1% 3.6 × 10−6 1% 3.8 × 10−6
2% 9.5 × 10−4 2% 5.4 × 10−6 2% 6.0 × 10−5
3% 1.1 × 10−3 3% 3.0 × 10−5 3% 3.2 × 10−5
4% 2.5 × 10−3 4% 1.5 × 10−4 4% 2.6 × 10−4
5% 6.8 × 10−3 5% 2.2 × 10−4 5% 6.3 × 10−4
6% 7.5 × 10−3 6% 5.7 × 10−4 6% 8.4 × 10−4
7% 9.0 × 10−3 7% 9.9 × 10−4 7% 1.4 × 10−3
8% 9.3 × 10−3 8% 9.0 × 10−4 8% 2.5 × 10−3
9% 1.2 × 10−2 9% 2.2 × 10−3 9% 3.3 × 10−3
10% 3.4 × 10−2 10% 5.1 × 10−3 10% 4.1 × 10−3

dataset includes 𝑛 = 100 subtasks, one corresponding to the node
labels of a subgraph of the whole graph. For transformers, we take a
pretrained BERT model and fine-tune it on a sentence classification
dataset [58], which contains 𝑛 = 26 tasks in total. We also use a
pretrained T5-Base model and fine-tune it on the RTE dataset [51]
with 100 instructions [6], which has 𝑛 = 100 tasks in total. We first
train a meta-initialization 𝜃★ by combining all the tasks. Then, we
fine-tune 𝜃★ on a random subset of the tasks.

We perform Taylor’s expansion with 𝜃★ as the anchor point. Let
𝑊 denote the fine-tuned weight. Denote the model with𝑊 and
𝜃★ as 𝑓𝑊 and 𝑓𝜃★ , respectively. For an input 𝑥 with label 𝑦, denote
the output of the fine-tuned model as 𝑓𝑊 (𝑥,𝑦). If𝑊 is close to 𝜃★,
𝑓𝑊 (𝑥,𝑦) can be approximated by

𝑓𝑊 (𝑥,𝑦) ≈ 𝑓𝜃★ (𝑥,𝑦) +
[
∇𝑊 𝑓𝜃★ (𝑥,𝑦)

]⊤ (𝑊 − 𝜃★) + 𝜖. (2)

Wemeasure the error term 𝜖 and report the Residual Sum of Squares
(RSS) in Table 1:

𝑓𝑊 (𝑥,𝑦) − 𝑓𝜃★ (𝑥,𝑦) − ∇𝑊 𝑓𝜃★ (𝑥,𝑦)⊤ (𝑊 − 𝜃★)



2
∥ 𝑓𝑊 (𝑥,𝑦)∥2

.

In particular, we fine-tune a meta-initialization pre-trained on all
tasks to a subset of tasks to get weight𝑊 . Then, we measure the
fine-tuned distance as ∥𝑊 −𝜃

★∥
∥𝜃★∥ . Interestingly, our results show

that the gradient-based approximation is within 3.5% RSS, even
when the fine-tuned distance is 10%. In particular, viewing𝑊 as
the decision variables, Eq. (2) is a linear model with ∇𝑊 𝑓𝜃★ (𝑥,𝑦)
as the feature vector.

Remark 3.1 (Second-order approximation). It is natural to ask if a
second-order approximation can further reduce Taylor’s expansion
error. Notice that there is a tradeoff between approximation quality
and computation cost. Based on our preliminary test of the Hessian
approximation, it can indeed reduce estimation error; however,
this requires computing Hessian-gradient products. The premise of
multitask learning is that the underlying tasks share a structural
similarity, like in community detection, where clusters have higher
densities. Our experiments found that 94% of models trained on
random task subsets remain <10% distance to initialization (on the
Youtube and RTE data sets).
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3.2 Gradient-based Estimation
We now describe our algorithm, which builds on the above lin-
earization property, by using logistic regression with gradients as
features. It also includes dimension reduction, as described below.

(1) Estimating fine-tuned model parameters: In the fol-
lowing discussion, we focus on binary classification, such that
𝑦𝑖 ∈ {+1,−1}. See Remark 3.2 for extensions to multiple classifi-
cation and regression. Recall the gradient-based approximation of
𝑓𝑊 (𝑥𝑖 , 𝑦𝑖 ), given the input (𝑥𝑖 , 𝑦𝑖 ):

∇𝑊 𝑓𝜃★ (𝑔𝑖 , 𝑦𝑖 )⊤ (𝑊 − 𝜃★) + 𝑓𝜃★ (𝑥𝑖 , 𝑦𝑖 )

Let us denote ∇𝑊 𝑓𝜃★ (𝑥𝑖 , 𝑦𝑖 ) as 𝑔𝑖 and −𝑦𝑖 𝑓𝜃★ (𝑥𝑖 , 𝑦𝑖 ) as 𝑏𝑖 , for any
𝑖 . Using logistic loss, we can write down the loss function as

ℓ̃𝑊 (𝑔𝑖 , 𝑦𝑖 ) = log
(
1 + exp

(
−𝑦𝑖𝑔⊤𝑖 (𝑊 − 𝜃

★) + 𝑏𝑖
) )
, (3)

for𝑊 ∈ R𝑝 . Denote the combined data set in the task subset 𝑆 as

D𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛𝑆 , 𝑦𝑛𝑆 )},

where 𝑛𝑆 is the combined number of data samples in the set D𝑆 .
The main idea is to solve a logistic regression problem with 𝑔𝑖

being the feature vector and 𝑦𝑖 being the response label. However,
keep in mind that the dimension of 𝑔𝑖 is the same as the number of
parameters in a neural network, which could be tens of millions.
Thus, we introduce a dimension reduction procedure that does not
lose much precision.

(2) Dimension reduction:We use the Johnson-Lindenstrauss
random projection [20], which projects the gradients to a much
lower dimension before solving the logistic regression. Let 𝑃 be a
𝑝 by 𝑑 Gaussian random matrix, whose entries are independently
sampled from a Gaussian 𝑁 (0, 𝑑−1). We project the gradient from
dimension 𝑝 onto dimension 𝑑 as 𝑔𝑖 = 𝑃⊤𝑔𝑖 . Then, we solve the
following logistic regression, which is now in dimension 𝑑 :

𝑊̂𝑑 ← argmin
𝑊 ∈R𝑑

𝐿̂(𝑊 ) = 1
𝑛𝑆

𝑛𝑆∑︁
𝑖=1

ℓ̃𝑊 (𝑔𝑖 , 𝑦𝑖 ) . (4)

Lastly, we set 𝑊̂𝑆 as 𝑃𝑊̂𝑑 + 𝜃★ to map the projected solution back
to the 𝑝-dimensional space. 𝑊̂𝑆 is the estimated model parameter
for fine-tuning 𝜃★ with task subset 𝑆 .

(3) Averaging over an ensemble: To reduce the above estima-
tion’s variance, we also add amodel averaging step. In particular, we
train several meta-initializations and repeat the above estimation
procedure. We average the estimated scores within the ensemble.

We summarize the entire procedure in Algorithm 1 with all three
steps. Let us compare the running time complexity between this
estimation and one that uses full training to get 𝑓 (𝑆𝑖 , 𝑗) instead:
• In our estimation, we need 𝑀 full training, plus 𝑂 (𝑛) gradient
evaluations and solving logistic regression𝑚 times.
• If we were to compute 𝑓 , we need𝑚 full model training instead.
Typically,𝑀 = 𝑂 (1), while𝑚 = Ω(𝑛) or even𝑂 (𝑛2) in downstream
use cases. Thus, our estimation algorithm reduces Ω(𝑛) full-model
training to only𝑂 (1). The tradeoff is that we require𝑂 (𝑛) gradient
evaluations (to retrieve the gradients on all tasks) plus solving
logistic regression𝑚 times. As we will show below, the random
projection helps reduce the dimension of the logistic regression
problem to 𝑂 (log𝑝) dimension, which is much cheaper. This is in

Algorithm 1 Grad-TAE (Gradient-based Task Affinity Estimation)
Input: A list of subsets 𝑆1, 𝑆2, . . . , 𝑆𝑚 ⊆ {1, 2, . . . , 𝑛}, and their
training and testing data sets
Require: Initializations 𝜃★1 , 𝜃

★
2 , . . . , 𝜃

★
𝑀
; projected dimension 𝑑

Output: Estimated scores 𝑓 (𝑆𝑖 , 𝑗) for every 𝑖 = 1, 2, . . . ,𝑚, 𝑗 ∈ 𝑆𝑖
1: for 𝑘 = 1, . . . , 𝑀 do
2: Let 𝑃 be a 𝑝 by 𝑑 Gaussian random matrix ∼ 𝑁 (0, 𝑑−1)
3: Project the gradient of every training example (𝑥,𝑦) as

𝑔 = 𝑃⊤∇𝑊 𝑓𝜃★
𝑘
(𝑥,𝑦)

4: for 𝑖 = 1, . . . ,𝑚 do
5: Run logistic regression with {𝑔,𝑦} on all the samples

belong to tasks in 𝑆𝑖 to obtain 𝑊̂𝑑 . Let

𝑊̂𝑆𝑖 = 𝜃★
𝑘
+ 𝑃𝑊̂𝑑 (5)

6: Evaluate 𝑓 (𝑘 )
𝑊̂𝑆𝑖

(𝑆𝑖 , 𝑗), for every 𝑗 ∈ 𝑆𝑖
7: end for
8: Average over the ensemble as

𝑓 (𝑆𝑖 , 𝑗) =
1
𝑀

𝑀∑︁
𝑘=1

𝑓
(𝑘 )
𝑊̂𝑆𝑖

(𝑆𝑖 , 𝑗), for every 𝑗 ∈ 𝑆𝑖

9: end for

terms of the asymptotic complexity. In Section 5.2, we materialize
the constants to compare the number of FLOPs during training.

Remark 3.2 (Extension to multiple classification or regression).
We note that the above procedure can be extended to deal with
multiple classifications. This requires setting up one prediction
vector for each class; The rest remains the same. The procedure
also applies to regression by using mean squared error instead.

3.3 Error Bounds
We now show that the error introduced by approximations inGrad-
TAE is bounded. Specifically, we use the Johnson-Lindenstrauss
Lemma to argue that as 𝑑 increases, the random projection yields
a minimizer whose quality is not much worse than the solution
without the projection. We will assume that the averaged Taylor’s
expansion error is at most 𝛿 across the entire data set of every task.
Additionally, we assume that the search procedure occurs within a
bounded space of radius 𝐷 . Lastly, in the pretrained initialization,
each gradient vector’s Euclidean norm is at most 𝐺 . With these
conditions, we state the error bounds for Grad-TAE as follows.

Proposition 3.3. LetD be a search space whose radius is at most
𝐷 . Suppose the gradient of 𝑓𝜃★ at the initialization 𝜃★ in the training
set is at most𝐺 in Euclidean norm. For each task 𝑖 = 1, 2, . . . , 𝑛, let 𝑇𝑖
denote the training data. Suppose that for every 𝑖 ,

1
|𝑇𝑖 |

∑︁
(𝑥,𝑦) ∈𝑇𝑖

��𝑓𝑊 (𝑥,𝑦) − 𝑓𝜃★ (𝑥,𝑦) − ∇𝑊 𝑓𝜃★ (𝑥,𝑦)⊤ (𝑊 − 𝜃★)
�� ≤ 𝛿.

Provided that 𝑑 = 𝑂

(
log𝑝
𝜖2

)
, the training loss of 𝑊̂𝑆 is bounded away

from the minimum training loss for any 𝑆 ⊆ {1, 2, . . . , 𝑛} as

𝐿̂(𝑊̂𝑆 ) ≤ min
𝑊 ∈D

𝐿̂(𝑊 ) + 2𝛿 + 4𝐺𝐷𝜖. (6)
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The proof, given in Appendix A, uses the Johnson-Lindenstrauss
Lemma [20]. In particular, using the fact that the logistic loss is 1-
Lipschitz continuous, we can relate 𝐿̂(𝑊̂𝑆 ) tomin 𝐿̂(𝑊 ). The errors
introduced by random projection and Taylor’s expansion can be
bounded using the JL Lemma and the bound on Taylor’s expansion
error, respectively. Further, our experiments in Table 1 suggest that
𝛿 is relatively small in practice. Thus, as 𝜖 goes to zero, Eq. (6)
guarantees the gap between 𝐿̂(𝑊̂𝑆 ) and min 𝐿̂(𝑊 ) will be small.

4 TASK AFFINITY BASED GROUPING
We now describe a clustering algorithm to partition the 𝑛 tasks into
𝑘 disjoint subsets. Given an 𝑛 by 𝑛 task affinity matrix 𝑇 , we will
find a clustering that maximizes the average density of all clusters.
Concretely, let𝐶1, . . . ,𝐶𝑘 be a disjoint partition of [𝑛]. Let 𝑣1, . . . , 𝑣𝑘
be a 0-1 vector indicating whether a task is in one cluster or not.
The average density of this clustering can be written as:

1
𝑘

𝑘∑︁
𝑖=1

𝑣⊤
𝑖
𝑇𝑣𝑖

𝑣⊤
𝑖
𝑣𝑖

. (7)

This integral objective is NP-hard to optimize in general (in par-
ticular, geometric clustering is a special case [2]). We design a
Semi-Definite Programming (SDP) relaxation and then round the
SDP solution to a clustering. Let us denote the assignment variables
as an 𝑛 × 𝑘 matrix 𝑉 , such that each entry 𝑉𝑖, 𝑗 indicates whether
a task 𝑖 belongs to a cluster 𝑗 , for every 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘 .
Moreover, let the 𝑗 th column of𝑉 , which is the characteristic vector
of the 𝑗-th cluster, be denoted as 𝑣 𝑗 . Under this assignment, the
sum of 𝑉𝑖, 𝑗 across any task 𝑖 must be one, as we allow one task to
be assigned in a single group. By contrast, the sum of 𝑉𝑖, 𝑗 across
𝐶 𝑗 is the number of tasks assigned to 𝐶 𝑗 , which is at least one.

Let 𝑒 denote the all-ones vector. We state an integer program to
maximize the average density of all 𝑘 clusters as follows

max
𝑉 ∈R𝑛×𝑘

〈
𝑇,

1
𝑘

𝑘∑︁
𝑗=1

𝑣 𝑗𝑣
⊤
𝑗

𝑣⊤
𝑗
𝑣 𝑗

〉
𝑉𝑒 = 𝑒,

𝑛∑︁
𝑖=1

𝑉𝑖, 𝑗 ≥ 1 for 1 ≤ 𝑗 ≤ 𝑘

𝑉𝑖, 𝑗 ∈ {0, 1}, for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘. (8)

Note that 𝑣𝑖𝑣⊤𝑖 is a rank-one semidefinite matrix. Let us denote the
sum of them (normalized by 𝑣⊤

𝑖
𝑣𝑖 ) as the following new variable

𝑋 =

𝑘∑︁
𝑗=1

𝑣 𝑗𝑣
⊤
𝑗

𝑣⊤
𝑗
𝑣 𝑗

. (9)

𝑋 has rank 𝑘 since it is the sum of 𝑘 rank-1 matrices, and the 𝑣𝑖 ’s
are orthogonal to each other. Additionally, its trace is equal to 𝑘

because the trace of
𝑣𝑗 𝑣
⊤
𝑗

𝑣⊤
𝑗
𝑣𝑗

is one for any 𝑗 . Second, one can verify
that the entries of every row of 𝑋 sum up to one. Removing the 0-1
integer constraint, we derive a rank-constrained problem as

max
𝑋 ∈R𝑛×𝑛

⟨𝑇,𝑋 ⟩

𝑋𝑒 = 𝑒,Tr[𝑋 ] = 𝑘, rank(𝑋 ) = 𝑘

𝑋 ≥ 0, 𝑋 ⪰ 0.

Algorithm 2 Grad-TAG (Gradient-based Task Affinity Grouping)
Input: 𝑛 tasks along with their training and testing data sets;
number of desired clusters 𝑘
Require: Number of subsets𝑚 and size 𝛼 , rounding threshold 𝜆,
number of trials𝑀 , projected dimension 𝑑
Output: A disjoint partition of [𝑛] as C
1: Run 𝑓 ( [𝑛], ·) for𝑀 times independently to obtain 𝜃★1 , . . . , 𝜃

★
𝑀

2: Sample𝑚 subsets of size 𝛼 from [𝑛]
3: {𝑓 (𝑆𝑖 , 𝑗) : 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ∈ 𝑆𝑖 } ← Grad-TAE(𝜃★1 , . . . , 𝜃

★
𝑀
;𝑑)

4: Construct an 𝑛 by 𝑛 affinity matrix 𝑇 following equation (1)
5: Obtain 𝑋 by solving problem

max
𝑋 ∈R𝑛×𝑛

⟨𝑇,𝑋 ⟩ (10)

𝑋𝑒 = 𝑒,Tr[𝑋 ] = 𝑘

𝑋 ≥ 0, 𝑋 ⪰ 0.

6: Round the solution 𝑋 into clusters using the threshold 𝜆

Further relaxing the rank constraint (while keeping the trace con-
straint) leads to a convex program, which can be solved efficiently.

Given a solution of the SDP, denoted as 𝑋 , the last step is to
round 𝑋 into an integer solution. We set a threshold 𝜆 such that
if 𝑋𝑢,𝑣 ≥ 𝜆, tasks 𝑢 and 𝑣 are assigned to the same cluster. In the
experiments, we set 𝜆 as 𝑐/𝑛 for a constant 𝑐 ≥ 1, since 𝑋𝑢,𝑣 should
be 1
|𝐶𝑖 | when they are in the same cluster with |𝐶𝑖 | < 𝑛. Thus, the

intra-cluster distance must always be at least 𝜆 with the assignment.
We provide the entire procedure in Algorithm 2, which uses

Algorithm 1 as a subroutine to estimate the task affinity scores.

Example 4.1 (Discussion about alternative clustering algorithms).
A natural question is using alternative algorithms such as spectral
clustering or Lloyd’s clustering. We find that these algorithms are
not as robust as the SDP relaxation because the scale of the loss
values varies across rows for different tasks. We describe a toy
example to illustrate. Suppose 𝑇 is a 6 by 6 matrix involving three
clusters 𝐶1,𝐶2,𝐶3 of size 2 each. The affinity in 𝐶1 is 7, while the
affinity scores in 𝐶2 and 𝐶3 are 20, 19, respectively. We find that
both spectral clustering and Lloyd’s clustering will group 𝐶2 and
𝐶3 together, while the SDP relaxation manages to separate them
apart. See Figure 2 for an illustration. For this reason, we use the
SDP relaxation in Grad-TAG.

Remark 4.2 (Approximation ratio of the SDP relaxation). Anatural
question is whether one can quantify the approximation ratio of
the SDP relaxation (10). Although this is a well-studied problem
in approximation algorithms [1], our setting violates the metric
condition typically required in order to obtain guarantees in this
literature. In particular, the triangle inequality 𝑇𝑖, 𝑗 + 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘
is violated. It is possible that by making an assumption regarding
intra-cluster separation (see, e.g., Awasthi et al. [3]), one might be
able to analyze the SDP theoretically. This is left for future work.

Remark 4.3 (Further variants of Grad-TAG). While we focus on
the task grouping problem, the idea can be used to speed up forward
and backward selection. We set the list of subsets in Algorithm 1 as
{1}, {2}, . . . , {𝑛}. Suppose we select task 3. Then, in the next round,
we set the list of subsets as {3, 1}, {3, 2, }, . . . , {3, 𝑛}. And so on.
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T1,1 T1,2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6

T5,1 T5,2 T5,3 T5,4 T5,5 T5,6

T6,1 T6,2 T6,3 T6,4 T6,5 T6,6

(a) SDP relaxation

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6

T5,1 T5,2 T5,3 T5,4 T5,5 T5,6

T6,1 T6,2 T6,3 T6,4 T6,5 T6,6

(b) Spectral/Lloyd’s clustering

Figure 2: We compare the SDP relaxation with spectral and
Lloyd’s clustering in a toy example. There are three clusters,
with the second and third clusters having higher densities
than the first. The black solid line illustrates the clusters
yielded by each algorithm. As shown in Fig. 2b, spectral and
Lloyd’s clustering group the high-affinity clusters together.
Fig. 2a shows the SDP relaxation separates them correctly.

5 EXPERIMENTS
We now validate Grad-TAE and Grad-TAG across various settings.
The evaluation focuses on the following key questions. Does the
estimation procedure accurately approximate the target task affinity
scores? How much running time does it cost relative to the full
computation needed to compute them? Third, do the estimated
affinity scores combined with the clustering algorithm work well
in downstream use cases?

Our experiments show that Grad-TAE approximates the true
task affinities (computed based on full model training) within less
than 5.7% (relative) distance while using less than 3% computation
of full training. Further, the downstream accuracy of Grad-TAG, as
evaluated on two canonical applications of interest, namely multi-
label classification on graphs and language model fine-tuning, is
comparable to existing approaches while requiring 32.8× fewer
FLOPs. Lastly, we discuss the parameters and the steps as part of
our algorithm, including the comparison with alternative clustering.

5.1 Experimental Setup
5.1.1 Evaluation settings. We note that our algorithm is relevant
to many multitask learning applications. For a representative eval-
uation, we focus on multi-label prediction on graphs, and language
model fine-tuning. In terms of the former, each labeling task cor-
responds to a subgraph within a graph. Given a seed set of each
labeling as the training set, the goal is to identify the remaining
nodes of the subgraph. This can be cast as multitask learning, by
viewing each labeling as a binary classification task. The objective
is to optimize the average accuracy of all the labeling tasks.

The second setting involves language model fine-tuning, using
human-designed instructions, a.k.a. instruction fine-tuning. Each
instruction corresponds to a prompt. Typically, a data set can come
up with many relevant instructions, some of which are more rele-
vant to a subset of tasks than others [30]. Thus, a natural question
is to select the instructions that are more relevant to the down-
stream task, which can be formulated using multitask learning. In
particular, we view each instruction tuning as a single task. As a
remark, it is conceivable that our algorithm can be used in other
related applications, but we focus on these two in this paper.

5.1.2 Datasets and models. We use social network datasets with
community labels for multi-label prediction on graphs. We select
four graphs from SNAP [56] (Amazon, YouTube, DBLP, and Live-
Journal), while emphasizing that we expect similar results to hold
on other graphs. The number of nodes in these four graphs ranges
from 3k to 57k; the number of edges ranges from 20k to 1M. For each
graph, we pick 100 (largest) communities corresponding to 𝑛 = 100
tasks. For preprocessing, we randomly sample 10% of nodes from
each subgraph for training, and 10% of nodes outside the subgraph
as negative samples. Then, we randomly sample 20% for validation.
We report the macro 𝐹1-score on the test set as the performance
measure [57].

Next, we examine the running time scaling of our algorithm on a
large graph (the Orkut network), which has 395k nodes, 21M edges,
and a total of 500 communities. We use a 3-layer SIGN model [13]
with a fixed width of 256 as the encoder in the MTL models, which
is more efficient to train than GCN.

We use two text classification datasets from SuperGLUE [51] for
fine-tuning language models, including RTE and WiC. Each dataset
contains 100 instructions, including ten instructions from Bach et al.
[6] and 90 instructions that we generate with an automatic instruc-
tion generation method in [61]. Thus, each dataset has 100 tasks
in total, each corresponding to fine-tuning with one instruction.
We use T5-Base [41] as the encoder for the MTL model. The choice
of this encoder is without loss of generality, as we expect similar
results to hold on other encoders.

Put together, our experiment covers seven different datasets
in total, spanning medium- and large-scale instances, the largest
containing 500 tasks.

5.1.3 Evaluation metrics. We assess the accuracy of estimated task
affinity by measuring the distance between our estimated task
affinities and the task affinities computed from fully trained models.

For task grouping, we evaluate the accuracy averaged over all
tasks when training a collection of networks, each on a subset of
tasks. Note that the average measure is task-specific, which can be
zero-one accuracy and 𝐹1 score in different settings.

Lastly, we measure each method’s total number of FLoating-
point OPerations, namely FLOPs. In addition, we report the number
of GPU hours evaluated on a single Nvidia RTX6000 GPU.

5.2 Task Affinity Estimation
We now report the results from running our estimation procedure.
We regard the task affinity scores computed from fully trained
models as the target, denoted as 𝑇★. Then, after running Grad-
TAE, we compute the affinity matrix 𝑇 , and measure the relative
distance between 𝑇 and 𝑇★ as:

Distance(𝑇,𝑇★) =


𝑇 −𝑇★



2
𝐹

∥𝑇★∥2𝐹
.

We evaluate the relative distance on the YouTube graph, which
includes 100 labeling tasks corresponding to 𝑛 = 100.

As for the computation cost, our procedure has three parts: (i)
training 𝑀 meta-initializations, each on the combination of all
tasks; (ii) For each meta-initialization, compute the gradients on all
training examples and project the gradients to a lower-dimension;
(iii) Solving logistic regression on projected gradients of a subset of
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Table 2: We report the distance between our estimated task
affinity and 𝑇★, computed on the YouTube graph. For inter-
preting the computation cost, we report the ratio between
the number of FLOPs to compute 𝑇★ divided by the number
of FLOPs of our algorithm. Recall from Algorithm 1 that 𝑀
is the number of meta-initializations, and 𝑑 is the random
projection dimension. The number of GPU hours is reported
in the full, online version.

Pairwise task affinity Higher-order task affinity

𝑑 𝑀 Distance Speedup Distance Speedup

50 1 10.8% 132.1× 5.5% 72.4×
100 1 10.2% 131.6× 5.0% 72.2×
200 1 7.0% 130.4× 3.5% 71.4×
400 1 6.8% 128.2× 3.4% 69.8×
200 3 6.1% 66.9× 2.7% 45.0×
200 5 5.7% 45.0× 2.7% 32.8×
200 7 5.4% 33.9× 2.6% 25.9×
200 9 5.4% 27.2× 2.4% 21.3×
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(a) Our estimation
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(b) Full training cost

Figure 3: The number of GPU hours vs. the number of tasks
to compute pairwise affinity, evaluated on the Orkut graph
up to 500 tasks. We estimate the full training cost by training
on randomly sampled 2000 subsets of tasks.

task and evaluate the performance on each task in the subset. We
report the computation in terms of FLOPs using our algorithm to
compute 𝑇 and fully training models to compute 𝑇★.

5.2.1 Accelerating pairwise task affinity computation. First, we train
a separate multitask model on each pair of tasks to compute 𝑇★.
We report the distance metric and the number of FLOPs between
fully-trained models (to compute 𝑇★) and our algorithm in Table 2.

To explain our findings, we fix the number of meta-initializations
as 𝑀 = 1 and vary the projection dimension 𝑑 between 50, 100,
200, and 400. We note that all these values yield an estimation of
𝑇★ within 11% distance. As expected, increasing 𝑑 leads to better
estimation. After 𝑑 increases above 200, the distance metric also
stabilizes to around 5.7%. Thus, we set 𝑑 as 200 in the remaining
experiments. As a remark, this is approximately 15 log(𝑝), where
𝑝 = 683, 370 in this experiment, which corroborates with our anal-
ysis in Proposition 3.3. Remarkably, under this setting, Grad-TAE
uses 3.5 GPU hours and achieves 130.4× less computation com-
pared to fully-trained models!

Next, we fix 𝑑 = 200 while increasing 𝑀 up to 9. This further
reduces the distance metric to 5.4%, with 45.0× less compute cost.
After𝑀 goes beyond 5, the benefit of ensembling diminishes. Thus,
we will set 𝑀 as 5 in the remaining experiments. This uses 17.6
GPU hours and 44.9× less computation than fully-trained models.

5.2.2 Accelerating higher-order task affinity computation. We note
qualitatively similar results for approximating higher-order task
affinity matrix. Recall this definition from equation (1), Example
2.3. We set𝑚 = 2000 so that the higher-order task affinity matrix
converges while setting the subset size as 𝛼 = 10 (further ablation
study will be provided in Section 5.3.4).

Using 𝑀 = 1 and 𝑑 = 200, our algorithm approximates 𝑇★ to
within 3.5% distance while using less than 1% cost of computing𝑇★.
Further increasing 𝑀 to 5, the distance drops to 2.7%. Again, the
computation cost is only 3% of computing 𝑇★. This takes 11.9 GPU
hours and uses 32.8× less computation than fully-trained models.

5.2.3 Accelerating task affinity computation on text and image data
sets. We have shown that Grad-TAE significantly reduces the
computational cost in task affinity estimation. To ensure that the
efficiency benefit is consistent across data modalities, we apply
Grad-TAE to both a text classification data set, RTE, and an image
classification data set, DomainNet [40]. The RTE data set contains
100 tasks. We use T5-Base and compute higher-order task affinity
with 2000 subsets of size 10. The DomainNet data set contains 6
tasks. We use ResNet-50 and compute higher-order task affinity
with 20 subsets of size 3. On the two data sets, our algorithm re-
duces computation by 42.6× and 9.5×, respectively, compared to
computing true higher-order task affinities, while incurring less
than 3% relative error. The smaller speedup in the image dataset is
due to the smaller total number of models trained on task subsets.

5.2.4 Scaling task affinity estimation to very large instances. Lastly,
we estimate task affinities on the Orkut graph by varying 𝑛 from
100 to 500. We measure the distance between the estimated and the
true pairwise affinity by downsampling the number of pairs to 1000.
Figure 3 shows the comparison. We observe that our algorithm
scales to as many as 500 tasks, using only 112.3 GPU hours, which
is much faster than computing 𝑇★. Moreover, the relative distance
to the true scores remains within 5%.

5.3 Comparison for Task Grouping
5.3.1 Baselines. We set up a wide range of baselines covering
heuristic solutions and recent optimization techniques.

Forward Selection (FS) and Backward Selection (BS) [15]: These
are standard approaches to perform subset selection, and we adapt
them to task selection.

Higher-Order Approximation (HOA) [46]: This algorithm com-
putes pairwise task affinity between every two tasks and then
averages the pairwise task affinity to approximate higher-order
affinity. It uses a branch-and-bound search algorithm to identify
task groupings.

Task Affinity Grouping (TAG) [12]: This approach computes the
task affinity by evaluating the projecting one task’s gradients onto
another task’s gradients during training. TAG also uses the branch-
and-bound search algorithm to identify grouping.

Auto-𝜆 [28]: This bilevel optimization technique balances the
ratio of each task relative to the average objective of all tasks.

BoostMTL [25]: This approach computes higher-order task affin-
ity between two tasks as the prediction loss of one task jointly
trained with another task and a random subset of the remaining
tasks, then applies spectral clustering to identify task groupings.
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(a) Multi-label prediction on graphs (The YouTube network)
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(b) Instruction fine-tuning of language models (On the RTE dataset)

Figure 4: This figure illustrates the tradeoff between error rate and computation cost (measured by the number of FLOPs and
GPU hours) compared to multitask learning baselines. Recall that 𝑀 is the number of meta-initializations used in Grad-TAG.
The number of FLOPs is reported in the Giga FLOPs unit. For both settings, there are 𝑛 = 100 tasks. Our approach delivers
comparable test accuracy to all baselines, using 32.8× fewer FLOPs and 5.2× less GPU hours than all baselines.

5.3.2 Multi-label classification on graphs. We report the result from
applying our algorithm to overlapped community detection. We
use our algorithm to estimate higher-order task affinity scores
and then cluster the tasks. We illustrate our results in Figure 4a,
while deferring a full comparison to the full version online. We use
1− Macro F1 score as the error rate on multi-label classification
datasets. First, we confirm that our algorithm outperforms single-
task learning that trains one model on each task by 2.1% (as also
evidenced by prior works on multitask learning [60]).

We note that our algorithm lowers the error rate compared to
all baselines while using 32.8× fewer FLOPs and 5.2× fewer GPU
hours compared to the closest baseline.

This is achieved with𝑀 = 5. We can set𝑀 = 1 for further speed
up, which now uses 71.4× less FLOPs and 26.2× less GPU hours
than the closest baseline. The decrease in performance is only 0.3%.

5.3.3 Fine-tuning language models. Next, we report the results
from fine-tuning language models (T5 base) on text classification
with 𝑛 = 100 instructions. We again use our algorithm to estimate
higher-order task affinity scores and apply SDP clustering after-
ward to group tasks. We illustrate our results in Figure 4b while
deferring the complete comparison to the full paper online. We use
1− accuracy as the error rate on the text classification datasets. In
particular, our algorithm outperforms single-task learning by 1.9%.

With𝑀 = 5, our algorithm shows comparable performance to
all baselines while using 48.2× fewer FLOPs and 10.6× less GPU
hours. With𝑀 = 1, our algorithm now uses 105.4× less FLOPs and
53.2× less GPU hours, with only 0.5% performance decrease.

5.3.4 Discussion of clustering algorithms and hyper-parameters.
We discuss the design choices of Algorithm 2. First, we study the
SDP-based clustering vs. spectral and Lloyd’s clustering. On the six
datasets, we find that SDP-based clustering is 1.2% better than these
two classical algorithms (on average). Next, we discuss the number
of clusters 𝑘 and the rounding threshold 𝜆. We vary 𝑘 between
5, 10, 20, and 40 (recall that 𝑛 = 100). We note that the performance
stabilizes when 𝑘 = 20. Thus, we set 𝑘 = 20. For 𝜆, we choose
between 1

𝑛 and 10
𝑛 , and choose the one that gives 𝑘 clusters.

Recall that Algorithm 2 also requires setting the number of sub-
sets𝑚 and each subset’s size 𝛼 . Given 𝑛 = 100, we vary𝑚 from
1000 to 3000 and observe that the result stabilizes when𝑚 reaches

2000. Thus, we set𝑚 = 2000. For 𝛼 , we choose it between 5, 10, and
20. We pick 𝛼 = 10, yielding better results than the rest.

6 CONCLUSION
This paper designs an efficient estimation algorithm to compute
task affinity scores. The main idea is to first pre-train a meta-
initialization on all tasks and then use the initialization’s gradients
to estimate the fine-tuned model parameters for a particular task
combination using logistic regression. A random projection is ap-
plied to the gradients to reduce the dimension of the regression.
Then, we design a robust clustering algorithm to accompany the
task affinity estimation, which together yields an efficient multi-
task learning algorithm. Experiments show that the algorithm can
scale to as many as 500 tasks on very large graphs while accurately
approximating the true task affinity scores. The overall algorithm
gives the best tradeoff between computation and performance com-
pared to existing multitask learning methods.

We discuss several aspects for future work. First, it would be
interesting to design novel dimension reduction and clustering
methods in Grad-TAG, and they will likely depend on downstream
applications. Second, it would be interesting to see if boosting could
be used in branching neural networks, another type of multitasking
architecture. A naive application of our method to group at the
layer level is to start with a joint model and gradually split layers
into task groups from input to output. In each layer, the estimation
procedure (based on layer-level features) may be used to compute
task affinity scores and then group them accordingly. This would
help reduce the final model to a single neural network.
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A PROOF OF PROPOSITION 3.3
For this proof, we shall focus on binary classification. As discussed in Remark 3.2, the extension to multiple classifications requires additional
notations, but the proof is straightforward.

Proof of Proposition 3.3. Recall that we define the minimizer for the logistic regression after random projection as 𝑊̂𝑑 . To make it
clear, we annotate the vector with its dimension so that it is easy to distinguish. 𝑊̂𝑑 is the minimizer of the following problem

minℎ1 (𝑊 ) =
1
𝑛S

𝑛S∑︁
𝑖=1

log
(
1 + exp

(
−𝑦𝑖𝑔⊤𝑖 𝑃𝑊 + 𝑏𝑖

) )
, for𝑊 ∈ R𝑑 , (11)

where we recall that 𝑃 is a 𝑝 by 𝑑 random projection matrix, 𝑔𝑖 = ∇𝑊 𝑓𝜃★ (𝑥𝑖 , 𝑦𝑖 ), and 𝑏𝑖 = −𝑦𝑖 𝑓𝜃★ (𝑥𝑖 , 𝑦𝑖 ).
Now, we define an intermediate solution𝑊 𝑝 as follows

minℎ2 (𝑊 ) =
1
𝑛S

𝑛S∑︁
𝑖=1

log
(
1 + exp

(
−𝑦𝑖𝑔⊤𝑖 𝑃𝑃

⊤ (𝑊 − 𝜃★) + 𝑏𝑖
) )
. (12)

We can see that the function value of 𝑊̂𝑑 for equation (11) must be less than the function value of𝑊 𝑝 for equation (12). This is because the
latter is a special case of the former. Thus, we first have that

ℎ1 (𝑊̂𝑑 ) ≤ ℎ2 (𝑊 𝑝 ). (13)

Next, we compare ℎ2 (𝑊 𝑝 ) with 𝐿̂(𝑊★). Recall that𝑊★ is the minimizer for the following problem:

min 𝐿̂(𝑆) = 1
𝑛S

𝑛S∑︁
𝑖=1

log (1 + exp (−𝑦𝑖 𝑓𝑊 (𝑥𝑖 , 𝑦𝑖 ))) . (14)

We note that there are two sources of errors in this comparison. The first is the error between 𝑓𝑊 (𝑥𝑖 , 𝑦𝑖 ) and its Taylor’s expansion
𝑔⊤
𝑖
(𝑊 − 𝜃★) + 𝑏𝑖 . The second is the error introduced by the random projection.
To make it easier to compare between equation (14) with (12), let us expand the former as follows:

min
1
𝑛S

𝑛S∑︁
𝑖=1

log (1 + exp (−𝑦𝑖 𝑓𝑊 (𝑥𝑖 , 𝑦𝑖 ))) (15)

=min
1
𝑛S

𝑛S∑︁
𝑖=1

log
(
1 + exp

(
−𝑦𝑖 (𝑏𝑖 + 𝑔⊤𝑖 (𝑊 − 𝜃

★) + 𝜖𝑖 )
) )

(we use 𝜖𝑖 to denote Taylor’s expansion error for 𝑥𝑖 , 𝑦𝑖 )

=min
1
𝑛S

𝑛S∑︁
𝑖=1

log
(
1 + exp

(
−𝑦𝑖𝑔⊤𝑖

(
(𝑃𝑃⊤ + (Id−𝑃𝑃⊤)

)
(𝑊 − 𝜃★) + 𝑏𝑖

) )
(16)

Let us denote

𝜖𝑖 = 𝑔⊤𝑖 (Id−𝑃𝑃
⊤) (𝑊 − 𝜃★) + 𝑏𝑖 . (17)

Thus, we can see that the difference between𝑊★ and 𝑊̂ can be attributed to the error term 𝜖𝑖 . We rewrite equation (16) as follows to
make it clear

min
1
𝑛S

𝑛S∑︁
𝑖=1

log
(
1 + exp(−𝑦𝑖𝑔⊤𝑖 𝑃𝑃

⊤ (𝑊 − 𝜃★) + 𝑏𝑖 + 𝜖𝑖 )
)
. (18)

Now we bound the magnitude of 𝜖𝑖 . Our idea is to use the fact that the logistic loss is 1-Lipschitz continuous (to see that, one just needs to
verify that

|log(1 + exp(−𝑥)) − log(1 + exp(−𝑦)) | ≤ |𝑥 − 𝑦 | .

With this, we could then show that ℎ2 (𝑊 𝑝 ) and 𝐿̂(𝑊★) are relatively close to each other. By definition, ℎ2 (𝑊 𝑝 ) ≤ ℎ2 (𝑊★). Additionally,��ℎ2 (𝑊★) − 𝐿̂(𝑊★)
�� (19)

=
1
𝑛S

𝑛S∑︁
𝑖=1

��log (1 + exp(−𝑦𝑖𝑔⊤𝑖 𝑃𝑃⊤ (𝑊 − 𝜃★)) + 𝑏𝑖 ) − log (1 + exp(−𝑦𝑖𝑔⊤𝑖 𝑃𝑃⊤ (𝑊 − 𝜃★) + 𝑏𝑖 + 𝜖𝑖 )) �� (20)

≤ 1
𝑛S

𝑛S∑︁
𝑖=1
|𝜖𝑖 | . (21)

 

1552



KDD ’24, August 25–29, 2024, Barcelona, Spain Dongyue Li, Aneesh Sharma, & Hongyang R. Zhang

Recall from the assumption that the averaged Taylor’s expansion error is at most 𝛿 . Thus,

1
𝑛S

𝑛S∑︁
𝑖=1
|𝑏𝑖 | ≤ 𝛿.

Next, by the Johnson-Lindenstrauss transformation [20] (For a modern exposition, see, e.g., lectures notes by Gregory Valiant: https:
//theory.stanford.edu/~valiant/teaching/CS265/lectureNotes/l9.pdf), provided that 𝑑 = 𝑂

( log𝑝
𝜖2

)
, we have��⟨𝑔𝑖 ,𝑊 − 𝜃★⟩ − ⟨𝑃𝑔𝑖 , 𝑃 (𝑊 − 𝜃★)⟩�� ≤ 𝜖

��⟨𝑔𝑖 ,𝑊 − 𝜃★⟩�� ≤ 2𝐺𝐷𝜖.

Thus, applying the above two steps back into equation (21), we can now conclude that��ℎ2 (𝑊★) − 𝐿̂(𝑊★)
�� ≤ 𝛿 + 2𝐺𝐷𝜖. (22)

Applying equation (21) back into equation (13), we can now conclude that

ℎ1 (𝑊̂𝑑 ) ≤ ℎ2 (𝑊 𝑝 ) ≤ ℎ2 (𝑊★) ≤ 𝐿̂(𝑊★) + 𝛿 + 2𝐺𝐷𝜖. (23)

To finish the proof, we can apply the above calculation to compare between ℎ1 (𝑊̂𝑑 ) and 𝐿̂(𝑃𝑊̂𝑑 + 𝜃★)), to get that��ℎ1 (𝑊̂𝑑 ) − 𝐿̂(𝑃𝑊̂𝑑 + 𝜃★))
�� ≤ 𝛿 + 2𝐺𝐷𝜖. (24)

Combining equations (23) and (24) together, we finally conclude that

𝐿̂(𝑃𝑊̂𝑑 + 𝜃★) ≤ 𝐿̂(𝑊★
𝑝 ) + 2𝛿 + 4𝐺𝐷𝜖. (25)

This completes the proof of Proposition 3.3. □

It would also be interesting to examine Taylor’s expansion up to the Hessian in equation (2). This requires additional computation of
Hessian vector products. After that, one needs to solve a quadratic program that depends on the Hessian matrix. This is left for future work.

Lastly, there is a line of work on model agnostic meta-learning and continual learning (See, e.g., survey article by Hospedales et al. [16]). It
would be interesting to see if our method can be applied to this setting (i.e. estimating fine-tuned model parameters without backpropagation).
This is a promising direction for future work.

B DATA MATRIX FOR EXAMPLE 4.1
For completeness, we report the data matrix 𝑇 used to generate the clusters in Example 4.1.

𝑇 =



7 7 6 6 5 5
7 7 6 6 5 5
6 6 20 20 19 19
6 6 20 20 19 19
5 5 19 19 20 20
5 5 19 19 20 20


.

C ADDITIONAL EXPERIMENTS
Due to space limit, we defer additional experiments to the full version of this paper online for reference.
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