
Is ML-Based Cryptanalysis Inherently
Limited? Simulating Cryptographic

Adversaries via Gradient-Based Methods

Avital Shafran1(B), Eran Malach2, Thomas Ristenpart3, Gil Segev1,
and Stefano Tessaro4

1 School of Computer Science and Engineering, Hebrew University of Jerusalem,
Jerusalem 91904, Israel

{avital.shafran,segev}@cs.huji.ac.il
2 Kempner Institute for the Study of Natural and Artificial Intelligence,

Harvard University, MA, USA
emalach@fas.harvard.edu

3 Department of Computer Science, Cornell Tech, New York, USA
ristenpart@cornell.edu

4 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

tessaro@cs.washington.edu

Abstract. Given the recent progress in machine learning (ML), the
cryptography community has started exploring the applicability of ML
methods to the design of new cryptanalytic approaches. While current
empirical results show promise, the extent to which such methods may
outperform classical cryptanalytic approaches is still somewhat unclear.

In this work, we initiate exploration of the theory of ML-based crypt-
analytic techniques, in particular providing new results towards under-
standing whether they are fundamentally limited compared to tradi-
tional approaches. Whereas most classic cryptanalysis crucially relies on
directly processing individual samples (e.g., plaintext-ciphertext pairs),
modern ML methods thus far only interact with samples via gradient-
based computations that average a loss function over all samples. It is,
therefore, conceivable that such gradient-based methods are inherently
weaker than classical approaches.

We introduce a unifying framework for capturing both “sample-based”
adversaries that are provided with direct access to individual samples
and “gradient-based” ones that are restricted to issuing gradient-based
queries that are averaged over all given samples via a loss function.

This research was partially supported by the Israel Science Foundation (Grant No.
1336/22), the European Union (ERC, FTRC, 101043243), NSF grants CNS-2055169,
CNS-2120651, CNS-2026774 and CNS-2154174, a JP Morgan Faculty Award, a CISCO
Faculty Award, and a gift from Microsoft. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting author-
ity can be held responsible for them. This work was performed while A. Shafran was
visiting Cornell Tech.
c© International Association for Cryptologic Research 2024
L. Reyzin and D. Stebila (Eds.): CRYPTO 2024, LNCS 14925, pp. 37–71, 2024.
https://doi.org/10.1007/978-3-031-68391-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68391-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-68391-6_2

38 A. Shafran et al.

Within our framework, we establish a general feasibility result show-
ing that any sample-based adversary can be simulated by a seemingly-
weaker gradient-based one. Moreover, the simulation exhibits a nearly
optimal overhead in terms of the gradient-based simulator’s running
time. Finally, we extend and refine our simulation technique to con-
struct a gradient-based simulator that is fully parallelizable (crucial for
avoiding an undesirable overhead for parallelizable cryptanalytic tasks),
which is then used to construct a gradient-based simulator that executes
the particular and highly useful gradient-descent method.

Taken together, although the extent to which ML methods may out-
perform classical cryptanalytic approaches is still somewhat unclear, our
results indicate that such gradient-based methods are not inherently lim-
ited by their seemingly restricted access to the provided samples.

1 Introduction

The interplay between cryptography and learning theory has been extensively
studied over the years, consistently leading to fundamental insights, both theo-
retical and practical. Traditionally, the study of this interplay has mostly focused
on establishing a fruitful relationship between the hardness of cryptographic
problems and that of learning problems (see, for example, [Val84,KV89,Riv91,
Kha93,Reg05,KS09,ABW10,SZB21] and the references therein). Quite recently,
however, following the tremendous progress in the area of machine learning, the
cryptographic community has gradually started revealing an additional exciting
avenue: Exploring the applicability of modern machine learning methods (in par-
ticular, those based on training deep neural networks, or DNNs) to the design
of new cryptanalytic approaches that may hopefully improve upon the classic,
somewhat “manual”, cryptanalytic approaches.

ML-Based Cryptanalysis. ML-based cryptanalytic methods have so far been
developed mostly for attacking block ciphers, starting with the work of Gohr
[Goh19] focusing on differential cryptanalysis of SPECK [BSS+13], and for
attacking the LWE problem, starting with the work of Wenger, Chen, Charton,
and Lauter [WCC+22]. In both cases, essentially, the same high-level ML-based
methodology was followed: First, a large sample set was used to train a DNN
using a certain network architecture and learning algorithm. Then, the resulting
DNN was challenged with respect to an appropriate key recovery task or an
indistinguishability task. For example, the sample set used by Gohr consisted of
samples ((C1, C2), y) corresponding to encryptions under a secret key of either
two uniformly random plaintexts (y = 0) or uniformly chosen plaintexts that
have a fixed difference Δ = P ⊕ P ′ (y = 1).

Similarly, the sample set used by Wenger et al. consisted of a large number
of independently generated LWE samples (x, y = x · s + e mod q) for a secret s
and added noise e.

The work of Gohr and that of Wenger et al. motivated a large and grow-
ing amount of follow-up work, as we further discuss in Sect. 1.2. This includes

Is ML-Based Cryptanalysis Inherently Limited? 39

additional applications of ML-based methods both in the context of block
ciphers [JKM20,BGP+21,GLN22,BB22] and in the context of the LWE prob-
lem [LSW+23a,LSW+23b,SWL+24]. The extent to which these ML-based tech-
niques outperform classic ones has been the subject of debate [DPS23], and
further empiricism is warranted. We suggest complementing empiricism with
theoretical treatments. To date, however, no formal frameworks have been sug-
gested.

Sample-Based vs. Gradient-Based Methods. In this work, we initiate the
exploration of the theoretical foundations of ML-based cryptanalysis, focusing
on the question of whether learning-based approaches are fundamentally limited
compared to others.

Motivating our exploration is the observation that modern ML-based meth-
ods fall into a specific template (as discussed above) that only access samples via
gradient-based computations, which are averaged over all samples via a “loss
function”. In comparison, traditional approaches use full access to directly pro-
cess samples. This crucial difference motivates the following question:

Are ML-based cryptanalytic methods inherently limited due to their
seemingly restricted access to cryptographic samples?

1.1 Our Contribution

We initiate a foundational exploration of the extent to which machine learning
methods may lead to significant cryptanalytic advances. First, we introduce a
unifying framework that models both “sample-based” adversaries and “gradient-
based” ones, and put forward strong simulation notions capturing a concrete
and quantifiable extent to which a sample-based adversary may be simulated
by a gradient-based one. Then, within our framework, we provide a somewhat
surprising negative answer to the above fundamental question via a sequence
of increasingly refined general feasibility results, showing that any sample-based
adversary can be simulated by a seemingly weaker gradient-based one with no
significant loss in efficiency.

Taken together, our results indicate that the extent to which machine learning
methods may lead to significant cryptanalytic advances is not inherently limited
by their seemingly restricted access to the provided samples. In what follows, we
provide a high-level overview of our main contributions.

Modeling Gradient-Based Methods. Our notions of sample-based adver-
saries and gradient-based ones model algorithms that are provided with access
to a set S of samples (x, y) ∈ X × Y, for some finite sets X and Y. However,
while sample-based adversaries receive the sample set S as an explicit input,
gradient-based ones receive only the size |S| of the sample set as an explicit
input and are then restricted to accessing the sample set itself by querying a
corresponding “gradient oracle” OG.

Our gradient oracle, which models a gradient-based training process, is pro-
vided with the sample set S, and receives queries of the form (�, h, �θ), where:

40 A. Shafran et al.

– � : R × Y → R
+ is a differentiable loss function, and

– h : R
p × X → R is a differentiable model function equipped with its model

parameters �θ ∈ R
p.

At a high level, the model function h represents the gradient-based adversary’s
current estimate of a mapping between X and Y, and the loss function � is used
by the oracle to determine the extent to which the estimated mapping is accu-
rate. Specifically, given a sample set S and a query (�, h, �θ), the gradient oracle
OG averages, over all samples (x, y) ∈ S, the gradient ∇θ�(h(�θ, x), y) of the loss
function when composed with the model function h(�θ, ·). Intuitively, this pro-
vides a measure of the way the model parameters �θ may be modified in order
to minimize the value of the loss function. Note that the gradient oracle still
enables general access in terms of adversarial choice of � and h that can change
adaptively with each query. Common ML algorithms, including cryptanalytic
ones, interact with gradient oracles in a much more limited fashion, most often
via gradient descent (GD). Here, algorithms start with some initial set of param-
eters �θ0 and then, over a fixed number of iterations, refine them by (1) querying
(�, h, �θt−1) to obtain a gradient vector �g, and (2) applying a fixed update rule
�θt = �θt−1 − η · �g. Here, η is a parameter called the learning rate.

As we concretely demonstrate in the full version of this work, this modeling of
a gradient-based training process is indeed sufficiently general and expressive for
capturing the ML-based cryptanalytic methods that have so far been developed.
At the same time, such gradient-based and, even more so, GD-based algorithms
clearly utilize very limited access to samples. Intuitively, it would seem that this
could limit the power of such adversaries, at least compared to ones that have
unfettered sample access.

Notions of Simulation. To explore this intuition, we put forward strong sim-
ulation notions capturing a concrete and quantifiable extent to which a sample-
based adversary may be simulated by a gradient-based one. Our simulation
notions are strong in the sense that they enable replacing any sample-based
adversary in a cryptographic experiment with a gradient-based adversary that
simulates it. At a high level, we quantify the “ε-closeness” of such a simulation
in an information-theoretic manner, and say that a gradient-based adversary B
simulates a sample-based one A if, for any distribution D that produces samples
sets, it holds that

SDS←D
(
(S,A (S)) ,

(
S,BOG(S,·,·,·)

(
1|S|

)))
≤ ε,

where SD denotes the statistical distance between the above two distributions.
This guarantees that whenever we replace a sample-based adversary in a crypto-
graphic experiment with a gradient-based one that simulates it within distance ε,
the results of the two experiments differ by statistical distance at most ε.

Our results in this work, in fact, provide an even stronger guarantee that we
formalize by asking for a single “universal” gradient-based adversary that can be
used to simulate any sample-based algorithm. For this purpose, such a universal

Is ML-Based Cryptanalysis Inherently Limited? 41

black-box gradient-based simulator is provided with oracle access both to the
gradient-based oracle and to the sample-based adversary it simulates.

Goal: Gradient-Based Simulation—with Low Overhead. Equipped with
our framework, we then start exploring the feasibility of constructing gradient-
based simulators for sample-based adversaries. Concretely, our first goal is to
understand whether any sample-based adversary may be simulated by a gradient-
based one. At this point, we crucially observe that such a feasibility result on
its own may be insufficient for cryptographic applications: Although simulat-
ing within statistical distance ε guarantees that the success probability of the
resulting gradient-based adversary would be essentially identical to that of the
sample-based adversary that it simulates, it does not capture the efficiency over-
head of the simulation.

Thus, given that the security of cryptographic primitives and schemes is
measured via the trade-off between the success probability of attacking them
and the efficiency of the attack, we must therefore additionally consider the
efficiency overhead of the simulator. We capture this overhead by considering
the following two key measures of efficiency for any gradient-based simulator:
The internal running time of the simulator and the number of queries that it
issues to the gradient oracle.

Black-Box Perfect Simulation via DFS-Based Extraction. As our first
construction, we present a gradient-based adversary that black-box simulates
any sample-based one. Moreover, the simulation is perfect in terms of producing
a completely identical output distribution, and is highly efficient in terms of
the simulator’s internal running time and query complexity (both are essentially
linear in the number of samples).

The main observation underlying this construction is that gradient queries
are, somewhat counterintuitively, sufficiently expressive for efficiently extract-
ing the entire set of samples. Specifically, we observe that, for any sample set
S = {(xi, yi)}i∈[s] and for any given prefix z, a single gradient query enables to
distinguish between the case in which there are no samples xi that are prefixed
with z, the case in which there is exactly one sample xi that is prefixed with z,
and the case in which there is more than one sample xi that is prefixed with z.
We then rely on this observation to realize a recursive depth-first search (DFS)
based exploration of the given sample set by interacting with the gradient ora-
cle. Ultimately, our simulator is rather efficient, using O(|S| · log |X |) gradient
queries and has time overhead O(|S| · log2 |X |) (see Theorem 4.1).

Our first construction provides a surprising negative answer to our main
research question. But it is somewhat unsatisfying because, while on the one
hand, it constructively shows that gradient-based adversaries are as strong as
any sample-based one, it does so using gradient queries that are fundamentally
adaptive and, in particular, are not naturally produced by any GD-based adver-
sary, i.e., an adversary that only runs the GD algorithm on the samples. There-
fore, it may still be the case that although gradient-based methods are generally
not inherently limited, the commonly-used methods (most notably, GD and its
various variants) are inherently limited.

42 A. Shafran et al.

Gradient Descent via Parallelizable Gradient Queries. We therefore go
on to extend our approach to build a simulator that is GD-based. Such a sim-
ulator would have to somehow succeed at simulating a sample-based adversary
despite being severely restricted in its interaction with the gradient oracle: it
is not allowed to process the intermediate responses of the gradient oracle in
any way other than determining the next query based on the fixed GD update
rule. Crucially, the simulation can only choose the model function h and the
loss function �, along with the initial parameters �θ0, the learning rate η, and the
iteration number T . The output of the simulation then can only rely on the final
parameters �θT produced by the GD algorithm. The techniques underlying our
DFS-based simulator above are now inapplicable as they rely on adaptively dis-
carding “non-useful” paths in order to be efficient. We need a different approach.

As an intermediate step on our way to construct a GD-based simulator, we
first devise a non-adaptive gradient-based simulation technique. We present a
black-box gradient-based simulator whose gradient queries are issued in a non-
adaptive manner and are thus fully parallelizable (i.e., all of its gradient queries
can be issued within a single round of parallel queries). This simulator crucially
relies on randomization and thus does not provide a perfect simulation as our
first simulation. Instead, it provides simulation within any statistical distance ε,
while its efficiency scales with just log(1/ε) (therefore, from a cryptographic per-
spective, this allows choosing ε to be a negligible function of the security param-
eter). In fact, as we discuss in Sect. 5, this construction does not only present
an intermediate simulation technique, but enables us to avoid an undesirable
sequential overhead in the simulation of parallelizable cryptanalytic tasks.

Finally, we build off our parallelizable simulator to obtain a black-box GD-
based simulator. The efficiency of this simulator crucially relies on our non-
adaptive simulation, as each of its gradient oracle queries essentially encodes a
number of non-adaptive queries. While encoding multiple queries, we introduce
a mechanism to separate between them, such that each query issued by the
GD-based simulator only replicates a single query issued by the non-adaptive
simulator. When concluding all iterations, the simulator can extract the samples
from the final set of parameters.

Summary and Open Problems. The framework we have introduced enables
to formally reason on the applicability of gradient-based methods to the design of
new cryptanalytic approaches. Focusing on the restricted manner in which such
methods process their provided samples, our results indicate that gradient-based
methods are not inherently limited when compared to classical cryptanalytic
approaches. Moreover, this holds even when further restricting gradient-based
methods to the most common gradient-descent learning methodology.

Our exploration gives rise to a variety of interesting problems, with the aim
of both improving our concrete techniques and constructions, and extending
the reach of this line of research to consider various restrictions on ML-based
methods. In what follows, we briefly exemplify some of these potential future
directions:

Is ML-Based Cryptanalysis Inherently Limited? 43

– Although our techniques already lead to highly efficient constructions in terms
of their internal time and query complexities, a natural goal is to establish
lower bounds on the required overhead for black-box simulating any sample-
based adversary. Moreover, given that the running time of our GD-based
simulator is somewhat higher than that of our other simulators, it would be
interesting to identify any inherent additional overhead imposed by restricting
the simulation to use gradient descent.

– Our parallelizable simulator crucially relies on randomization, as discussed
above, and does not provide a perfect simulation as our DFS-based determin-
istic one. A foundational research direction is to explore the role of random-
ness in gradient-based simulation of sample-based adversaries, and whether
it is indeed essential for parallelism in this setting.

– Each of our gradient-based simulators utilizes carefully crafted queries, which
are based on non-trivial choices of the loss function, model function, and
parameters. This setting is somewhat theoretical and might not fully reflect
some common practices in ML. An interesting direction for further research
would be to explore whether similar results may be obtained even when using
a more restricted class of queries (e.g., fixing the loss function to be a com-
monly used loss such as the square loss).

– A weakened variant of our gradient oracle may be obtained by adding a cer-
tain amount of independent noise to each of its responses. This realistically
models, for example, training with limited-precision samples, and training in
the presence of random labeling errors. For this and other practically moti-
vated variants of our gradient oracle, it would be fascinating to identify the
extent to which they enable simulating sample-based adversaries.

1.2 Related Work

ML-Based Cryptanalysis. As discussed above, ML-based cryptanalytic meth-
ods have so far been developed in the contexts of block ciphers and the LWE
problem. In the context of block ciphers, Gohr [Goh19] focused on round-reduced
versions of Speck32/64 [BSS+13], and trained a ResNet-based [HZR+16] clas-
sification neural network to distinguish between ciphertext pairs that originate
from plaintexts with a predefined difference, and ciphertext pairs that originate
from independent plaintexts. Gohr’s neural distinguisher outperforms classical
methods for 5 to 8 rounds of Speck32/64. Additionally, a key-recovery attack
for 11 rounds of Speck32/64 was proposed, based on the trained model, with
an estimated time complexity of 238, improving upon the best-known attack of
Dinur [Din14] with time complexity of 246, at the cost of higher data complexity
of 214.5 ciphertext pairs.

Benamira, Gerault, Peyrin, and Tan [BGP+21] revisited Gohr’s work with
the goal of obtaining a better understanding of its success, suggesting that his
distinguisher was able to effectively approximate the cipher’s differential distri-
bution tables (DDT). Baksi [BB22] and Jain, Kohli, and Mishra [JKM20] pro-
posed a somewhat different approach, and trained neural networks to classify

44 A. Shafran et al.

input differences from a set of predefined differences, instead of distinguishing
between pairs with a predefined difference and independent pairs. A signifi-
cant amount of follow-up work subsequently applied similar ML-based methods
to other block ciphers (see, for example, [HRC21a,SZM21,YK21,BB22,ZW22,
BB22,CSY+23,ZW22,CSY+23,BB22,CSY+23,ZW22,JKM20,LLS+22,
ZWw22,HRC21b,BGL+21,LLS+22,GLN22,BLY+23]).

In the context of the LWE problem, Wenger, Chen, Charton, and Lauter
[WCC+22] trained a neural network on LWE samples with a shared secret s,
which they then used for a secret-recovery attack. This enables them to extract
secrets for very sparse (only 3 or 4 nonzero bits) and low-dimension (up to 128)
instances of LWE. Li et al. [LSW+23b] proposed an improvement based on a
preprocessing step, in which the LWE samples are processed by BKZ [CN11],
a lattice reduction algorithm, for obtaining LWE samples with smaller coordi-
nate variance. For larger moduli, this enabled them to extract secrets for higher
dimensions (up to 350) and larger Hamming weights (up to 60). A follow-up work
by Li et al. [LSW+23a] was then able to reduce the modulus size as well as to
additionally recover ternary and small Gaussian secrets. Stevens et al. [SWL+24]
proposed additional improvements that enabled to improve efficiency and reduce
sample complexity. The extent to which these methods can outperform classical
methods is still unclear, as also noted by Ducas et al. [DPS23].

In the full version of this work we show how the previous ML-based crypt-
analytic methods are indeed captured within our framework.

PAC vs. Differential-Based Learning
In the context of machine learning theory, some works focused on studying the
power and limitations of learning with GD and stochastic gradient-descent
(SGD), a popular variant of GD. Abbe and Sandon [AS20] showed that a neural
network trained with SGD with a batch size of 1 (i.e., each gradient update
is based on the gradient of a single example) can implement any PAC learn-
ing algorithm [Val84]. Namely, any algorithm for learning with examples can be
used to generate a neural network, such that running batch-1 SGD over this
network simulates the learning algorithm. This result was extended by Abbe
et al. [AKM+21], showing that SGD with a larger batch size can also simulate
algorithms for learning from examples, as long as the gradients are not noisy,
where the noise is modeled by the level of arithmetic precision. These results
show that with low noise, i.e., high arithmetic precision, SGD is equivalent to
PAC learning from examples, while SGD with high noise,i.e., low precision, is
equivalent to learning from Statistical Queries [Kea98], a learning framework
known to be weaker than PAC.

These works focused on comparing different learning frameworks (e.g., learn-
ing with SGD versus PAC and Statistical Query learning), but did not study
the power of gradient-based algorithms in the context of cryptography. From
the technical perspective, the work of Abbe et al. focuses on (a variant of) the
SQ learning model as an intermediate learning model in between PAC learning
and differential-based learning. In the cryptographic context, however, the SQ
learning model does not seem to directly capture realistic applications (either

Is ML-Based Cryptanalysis Inherently Limited? 45

classic ones or recent ML-based ones as those discussed above). Therefore, we
focus on directly exploring the interplay between samples-based methods and
gradient-based ones.

Specifically, in the SQ setting a learner interacts with the SQ oracle by issu-
ing statistical queries about the sample set, while in the gradient-based setting,
the learner interacts with the gradient oracle by issuing queries that consist of
an estimated mapping (as a parameterized function) and a loss function (used to
estimate the quality of the estimate). This difference in interaction with the ora-
cle requires to structure the oracle queries differently in order to extract the same
information, namely the sample set. For this, Abbe et al. constructed “counting”
queries, that ask for the number of samples that match some rule, e.g., prefix. In
our gradient-based setting, we construct the queries by designing a dedicated loss
function and parameterized model function such that the gradient with respect
to the samples will directly encode samples that match some rule, e.g., prefix.
Most crucially, our direct approach enables us to focus on quantitative measures
that are more fundamental in the cryptographic setting, such as the running
time and query complexity of attackers, while Abbe et al. focus most of their
technical attention on identifying the level of numeric precision that separates
differential-based learning from either PAC learning or SQ learning.

Memorization in Machine Learning. Neural networks are known to be able
to “memorize” some of their training samples. Empirically it has been shown
that large enough deep neural networks can achieve good accuracy on large,
randomized training sets [ZBH+17]. A line of previous works explored this
phenomenon using neural tangent kernels [JGH18] to show that large enough
networks, trained with GD, can, in theory, memorize the label of each sam-
ple in the training set [ADH+19,DLL+19,Dan20]. Some works showed how
individual training samples can be reconstructed from trained models, both in
the vision and in the text domains [CLE+19,HVY+22,BHY+23]. Song et al.
[SRS17] demonstrated that by maliciously modifying the training algorithm, an
adversary can cause intended memorization and increase its ability to extract
samples or information about the training set. Seen in this light, our simulators
can be viewed as malicious training algorithms, and our results go beyond prior
ones by showing how to extract the entire training set (rather than just a few
points), and moreover to do so efficiently, as we show in this work. That said, our
simulators do not attempt to simultaneously memorize training data while also
achieving good performance for some baseline tasks.

1.3 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
several standard notions that are used throughout this work. In Sect. 3 we present
our framework for modeling sample-based adversaries and gradient-based ones.
In Sect. 4 we establish our general feasibility result by presenting a gradient-based
adversary that black-box simulates any sample-based one. In Sects. 5 and 6 we
then show that our approach extends to providing a gradient-based simulator

46 A. Shafran et al.

whose gradient queries are fully parallelizable, and a gradient-based simulator
that follows the particular gradient-descent algorithm, respectively.

Due to space limitations, some of our contributions are provided in the full
version of this work. This includes extending our results from the single-bit out-
put case to the multi-bit one, and from the full-batch gradient oracle to the
mini-batch case (as used in the popular SGD algorithm), as well as demonstrat-
ing the generality of our notion of gradient-based adversaries by exemplifying
how previous ML-based cryptanalytic methods are indeed captured by it. The
full proof of the gradient-descent simulation described in Sect. 6 is also provided
in the full version of this work.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X
we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x ← X the process of sampling a value
x from the uniform distribution over X . For a binary string x ∈ {0, 1}n, we
interchangeably refer to x both as a binary vector x = x1 · · · xn ∈ {0, 1}n and
as a real-valued one �x = (x1, . . . , xn) ∈ R

n. For two random variables X and Y
over a finite domain Ω we denote by SD(X,Y) their statistical distance, which
is defined as

SD(X,Y) =
1
2

∑
ω∈Ω

|Pr [X = ω] − Pr [Y = ω]| .

Let Mn,k be a family of functions mapping from n-bit inputs to k-bit outputs.
The family Mn,k is said to be pairwise-independent if for every x1, x2 ∈ {0, 1}n

such that x1 �= x2, and for every y1, y2 ∈ {0, 1}k, it holds that

Pr
M←Mn,k

[M(x1) = y1 ∧ M(x2) = y2] =
1
22k

.

For a differentiable function f : R
n → R, the gradient ∇f : R

n → R
n with

respect to �x = (x1, . . . , xn) is defined as the vector of its partial derivatives with
respect to each component of �x, i.e.,

∇f(�x) =
(

∂f(�x)
∂x1

, . . . ,
∂f(�x)
∂xn

)
∈ R

n .

For functions defined over multiple inputs, we use subscript to denote the input
with respect to which the gradient is computed. For example, for a differentiable
function f : R

n1 × R
n2 → R with two input variables x ∈ R

n1 and z ∈ R
n2 , its

gradient with respect to x is defined as

∇xf(�x, �z) =
(

∂f(�x, �z)
∂x1

, . . . ,
∂f(�x, �z)

∂xn

)
∈ R

n1 .

Is ML-Based Cryptanalysis Inherently Limited? 47

3 Our Framework

In this section, we present our framework for modeling both “sample-based”
adversaries that are provided with direct access to individual samples and
“gradient-based” ones that are restricted to issuing gradient-based queries that
are averaged over all given samples via a loss function. We begin by formally
defining our notion of sample-based adversaries and exemplifying the range of
fundamental cryptographic applications that they enable us to capture in this
context. Then, we formally define our notion of gradient-based adversaries, and
provide strong simulation notions capturing a concrete and quantifiable extent
to which a sample-based adversary may be simulated by a gradient-based one.

Sample-Based Adversaries. Our notion of sample-based adversaries captures
the basic form of an algorithm that explicitly receives as input a sample set,
denoted S, and produces an output. Throughout this work, when we refer to a
“sample set”, we in fact refer to a list that contains pairs of the form (x, y) ∈
X × Y, for some finite sets X and Y (the term set was chosen for consistency
with the common ML terminology of learning from datasets).

Definition 3.1 (Sample-Based Adversary). Let X and Y be finite sets,
and let D be a distribution over (X × Y)∗. A sample-based adversary A is a
potentially-randomized algorithm that, when given as input a sample set S ← D,
produces an output A(S) ∈ {0, 1}∗.

Despite its simplicity, our notion of a sample-based adversary captures a
wide range of fundamental cryptographic applications, including both unpre-
dictability and indistinguishability ones. Specifically, providing the above dis-
tribution D (which produces the sample sets in Definition 3.1) with access to
a typically-keyed cryptographic primitive enables to capture various standard
security notions corresponding to the primitive, as we now exemplify.

The most interesting applications in our setting, however, are those in which
the produced sample sets correspond to ones that may be realistically used by
ML-based cryptanalytic methods. Such sample sets are typically generated by
independently sampling each pair (x, y) from a given distribution that origi-
nates from a hard-to-compute mapping between x and y (and, more generally,
a hard-to-compute relation). For unpredictability applications, this captures, in
particular, key recovery for various forms of keyed primitives (e.g., block ciphers,
pseudorandom functions and encryption schemes) as well as unforgeability for
MACs and signatures. In both cases, sample sets may consist, for example, of
pairs (x, Fsk(x)), where F is the keyed primitive, and all of the x values are
independently sampled from a given distribution (e.g., the uniform distribution,
which would correspond to a random message attack). The goal of the adversary
is either to extract the key sk (for key recovery) or to produce a new “valid” pair

48 A. Shafran et al.

(x∗, y∗) for a value x∗ that was not included in sample set (for unforgeability of
MACs and signatures).1

As somewhat expected, the above applications do not cover adaptive attacks
(e.g., ones in which an attacker would choose the x values one by one in an adap-
tive manner after observing each corresponding output Fsk(x)). Indeed, realistic
sample sets for ML-based methods are of a rather static flavor, as discussed
above, and we concretely exemplify this in the full version of this work using
those utilized by Gohr [Goh19] and by Wenger, Chen, Charton, and Lauter
[WCC+22]. Nevertheless, it is important to note that our framework and results
capture arbitrary sample sets that may be generated by any distribution D, and
not only those that may be viewed as realistic for ML-based cryptanalysis.

Gradient-Based Adversaries. Our notion of a gradient-based adversary relies
on a corresponding gradient oracle. This oracle, as formally defined in Fig. 1,
receives as input a sample set S, two functions denoted � and h, as well as a
vector of parameters �θ for the function h. The first function, �, typically referred
to as the loss function, is a differentiable function � : R × Y → R

+. The second
function, h, typically referred to as the model, is a parameterized differentiable
function h : R

p × X → R, where �θ ∈ R
p is its vector of parameters (�θ is

typically referred to as the model parameters). Generally speaking, the function
h represents the adversary’s current estimate of a mapping between X and Y,
and the loss function � is used by the oracle to determine the extent to which
the estimated mapping is accurate.2

The gradient oracle OG

(
S, �, h, �θ

)
:

1. Compute and output �g ← 1
|S|

∑
(�x,y)∈S ∇θ�(h(�θ, �x), y).

Fig. 1. The gradient oracle OG.

For a given query
(
S, �, h, �θ

)
, the oracle evaluates ŷi = h(�θ, �xi) for each

sample (�xi, yi) ∈ S, and compares it to yi using �, i.e., �(ŷi, yi). Then, the oracle
1 Similarly, for indistinguishability applications, realistic ML sample sets naturally

arise in various pseudorandomness experiments (such as those used to define the
security of weak pseudorandom functions, or hard-core predicates for a one-way
function). In these applications, the goal of the adversary is to distinguish between
two distributions from which the sample set S is sampled: In one distribution it
consists of pairs (x, y) where y is a pseudorandom value computed from x (e.g.,
the output of a weak pseudorandom function or a hard-core predicate applied to
the inverse of x), and in the other distribution it consists of such pairs where y is
uniformly distributed.

2 While it may seem redundant to distinguish between h and �θ and to provide the
oracle both as input (since �θ can contain a function description and h can be a
universal function computing the function provided by �θ), we nevertheless distinguish
between the two since this would be useful for defining our next class of adversaries,
in which both h and �θ admit a particular structure.

Is ML-Based Cryptanalysis Inherently Limited? 49

computes the gradient of the evaluation of the loss function with respect to the
parameters �θ. Denote the individual parameters as �θ = (θ1, . . . , θp), then the
gradient is the vector of partial derivatives with respect to each parameter:

∇θ�(h(�θ, �xi), yi) =

(
∂�(h(�θ, �xi), yi)

∂θ1
, . . . ,

∂�(h(�θ, �xi), yi)
∂θp

)
.

Then, the oracle outputs the average of this gradient over all samples in the
set S. Computing the gradient of the loss function, composed with h(�θ, ·), with
respect to the parameters �θ provides a measure for the way these parameters
may be modified in order to minimize the value of the loss function. In other
words, the oracle evaluates the performance of h(�θ, ·) over the sample set S using
the loss function � and then computes the gradient in order to suggest a way to
improve this performance. Throughout this work, we do not explicitly require
the oracle to verify that all queries consist of differentiable functions. This is
since, in all of our results, all issued queries consist of differentiable functions (as
explicitly established by our proofs).

Note that although it is not essential for our framework to explicitly force
any computational constraints over the functions � and h, we do however assume
their computation and derivation can be computed in polynomial time when
considering a sufficient level of precision (we would like to avoid, for example, a
function h that performs an exhaustive search over an exponentially-large key
space). Instead, we include the gradient computation and derivation time in the
total running time of a gradient-based adversary B, which includes the time
required for expressing and forwarding a certain explicit representation (e.g., an
arithmetic circuit) of �, h, and the parameters �θ to the oracle OG.

Definition 3.2 (Gradient-Based Adversary). Let X and Y be finite sets,
and let D be a distribution over (X × Y)∗. A gradient-based adversary B is
a potentially-randomized algorithm that, when provided with access to the ora-
cle OG(S, ·, ·, ·) for a set S ← D, and given as input 1|S|, produces an output
BOG(S,·,·,·)(1|S|) ∈ {0, 1}∗.

Definition 3.2 allows the adversary B to perform arbitrary computations and
interact with the oracle OG in any way, under the only restriction that the
queries must consist of differentiable functions. However, in the most common
learning methodology, the learner (adversary in our setting) runs a particular
iterative optimization algorithm in order to learn an estimate of some function
or mapping. The Gradient Descent (GD) algorithm is the base for the most
popularly used optimization algorithms. In this algorithm, given a fixed loss
function � and function h, the learner chooses the first oracle query using some
heuristic, meaning it chooses initial parameters �θ0. Then, the following queries
are dependent on a computation of a specific form over the oracle’s responses.
This computation, known as the GD update rule, receives the current query and
the oracle’s response to it, and defines the next one. More specifically, at each
time step t, given the current query (�, h, �θt) and the oracle’s response �gt, the
parameters of next query (�, h, �θt+1) are defined as:

50 A. Shafran et al.

�θt+1 = �θt − η · �gt ,

where η ∈ R is known as the step size or learning rate. In other words, the
GD algorithm uses the gradients to direct the parameters of h towards a set of
parameters that minimizes the loss functions.

Therefore, we additionally consider the following notion of a GD-based
adversary as a refinement of a gradient-based one: A GD-based adversary
BGD[T,�,h,η,�θ0] is a gradient-based adversary that runs a GD algorithm for T

iterations, and can then perform any additional computation over the output
of the T -th iteration. We denote by PostProcess such additional computation,
which can be viewed either as part of the internal description of the adversary
BGD[T,�,h,η,�θ0] or as a supplied parameter. See Fig. 2 for the formal description.

The GD-based adversary BOG(S,·,·,·)
GD[T,�,h,η,�θ0]:

1. For t ∈ {1, . . . , T} :
1.1 Query OG(S, ·, ·, ·) with (�, h, �θt−1) to obtain �gt.
1.2 Update �θt = �θt−1 − η · �gt.

2. Output v = PostProcess(�θT).

Fig. 2. The GD-based adversary BGD.

In the full version of this work, we demonstrate that our notion of a GD-based
adversary enables us to capture the ML-based cryptanalytic methods that have
been studied so far. We exemplify this by focusing on the methods developed
by Gohr [Goh19] and by Wenger, Chen, Charton, and Lauter [WCC+22] (as
discussed in Sect. 1.2 and which have already led to additional similar methods),
and showing that they indeed fit into our framework.

We emphasize that GD is not the only optimization algorithm used in learn-
ing settings, and that there are many others, such as SGD [RM51], ADAM
[KB14], and many more [Rud16]. However, in this work, we focus our attention
on the GD algorithm, as it is the base algorithm behind many of the popu-
larly used algorithms. This is not a limitation of our work, and all of our results
can be adapted to other algorithms as well. In particular, in the full version
of this work, we extend our approach to the commonly used stochastic mini-
batch setting (which also represents the key difference between the GD and SGD
algorithms).

Our Notions of Simulation. We capture the extent to which a gradient-based
adversary simulates a sample-based one by measuring the statistical distance
between their input-output distributions. This enables to replace any sample-
based adversary in a cryptographic experiment with a gradient-based adversary
that simulates it, and ensures that the statistical distance between the experi-
ments is bounded by the “closeness” of the simulation.

Is ML-Based Cryptanalysis Inherently Limited? 51

Definition 3.3 (ε-simulation). Let X and Y be finite sets, let ε > 0, and let A
and B be a sample-based adversary and a gradient-based adversary, respectively.
Then, we say that B ε-simulates A with respect to X × Y if for any distribution
D over (X × Y)∗, it holds that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·)

(
1|S|

)))
≤ ε,

where S ← D in both distributions.

Definition 3.3 presents a highly intuitive notion of simulation, providing a
strong information-theoretic guarantee that enables to replace any sample-based
adversary with a gradient-based one that simulates it. Our results in this work,
in fact, provide an even stronger guarantee obtained by naturally extending
Definition 3.3 to ask for a single “universal” gradient-based algorithm that ε-
simulates for any sample-based algorithm. For this purpose, such a universal
gradient-based algorithm B is provided with oracle access both to the gradient-
based oracle OG and to the sample-based adversary A that it simulates.

Definition 3.4 (Black-box ε-simulation). Let X and Y be finite sets and
let ε > 0. We say that a gradient-based algorithm B black-box ε-simulates all
sample-based adversaries with respect to X × Y if for any distribution D over
(X × Y)∗ and for any sample-based adversary A it holds that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|

)))
≤ ε,

where S ← D in both distributions.

Whenever Definitions 3.3 and 3.4 are satisfied by a gradient-based adversary
B for ε = 0 (as in the case with our simulator in Sect. 4), we refer to such an
ε-simulation as prefect simulation.

Measuring the Simulation Overhead. Finally, for identifying the overhead
incurred when simulating a sample-based adversary by a gradient-based one,
throughout this work we focus on the following main measures of efficiency for
such algorithms A and B:

– We denote by TA = TA(s, |X |, |Y|) and TB = TB(s, |X |, |Y|, TA) the running
time of A and B, respectively, while naturally allowing the running time of
B to depend on that of A. However, when considering a black-box simulator
B, we measure its running time as a function of only s, |X | and |Y|, while
separately accounting for the number of queries that it issues to A. In order
to account for the internal runtime of B, we assume as a standard baseline
that simple arithmetic operations (e.g., additions and multiplications) over
a small constant number of elements from X and Y can be executed in unit
cost.

– We denote by QB = QB(s, |X |, |Y|, TA) the number of gradient-oracle queries
issued by B (where, again, we allow the number of queries issued by B to
depend on the running time of A – although this will not be used by our
constructions).

52 A. Shafran et al.

Simulation via Neural Networks. Neural networks (NN) are a particularly
important class of (typically) non-linear differentiable functions and are the most
popular family of model functions h used in the ML literature. As discussed
above, in our framework the model functions h are assumed to be computable
in polynomial time, i.e., their computation can be implemented using Turing
machines (TM) running in polynomial time. As such, they can be represented
by a bounded-size NN. In a nutshell, this holds as poly-sized TMs can be imple-
mented using poly-sized Boolean circuits [Coo23,Lev73], which in turn can be
represented by bounded-sized NNs [SSBD14]. As a result, although being the
most common function family in the ML community, in particular in the ML-
based cryptanalysis literature, we do not need to explicitly limit the class of
functions h to neural networks as any h can be represented as one.

Distinct vs. Arbitrary Samples. Our gradient-based simulators, which we
present throughout the following sections, assume that the sample sets S given as
input to the gradient oracle OG(S, ·, ·, ·) consist of “distinct” samples. Specifically,
letting S = {(xi, yi)}i∈[s] ⊂ X × Y, our gradient-based simulators assume that
xi �= xj for any i �= j ∈ [s] (i.e., that the x-values within any sample set are
always distinct). This, however, may not be a valid assumption whenever the
underlying distribution D may generate non-distinct samples (say, with some
non-negligible probability).

Nevertheless, this assumption does not limit the scope of our framework. This
is due to the fact that machine-learning methods naturally allow to preprocess
sample sets, where in our case a naive single-pass serialization suffices. That is,
any sample set S = {(xi, yi)}i∈[s] can be easily transformed into a serialized one
S′ = {(i||xi, yi)}i∈[s] by concatenating an index to each sample. This increases
the bit-length of the x-values from log |X | to log |X |+log s, which for our results
yields only a minor lower-level overhead with no asymptotic effect.3 Thus, in
the remainder of this work, we assume that all sample sets which are given as
input to the gradient oracle always consist of distinct samples (and we will not
explicitly serialize and deserialize them).

4 Perfect Simulation via DFS-Based Extraction

Equipped with our framework for modeling sample-based and gradient-based
adversaries, in this section we establish a general feasibility result by present-
ing a gradient-based adversary that black-box simulates any sample-based one.
Moreover, the simulation is perfect, ensuring a completely identical output dis-
tribution (see Definition 3.4), and exhibits a nearly optimal overhead in terms
of the gradient-based adversary’s running time (when compared to that of the
simulated sample-based adversary).

3 Looking ahead, our gradient-based simulators would in fact extract the serialized
sample set S′ via their oracle queries, and then invoke the sample-based adversary
A providing it with the original sample set S as input. This naturally requires de-
serializing each sample, which again yields only a minor lower-level overhead with
no asymptotic effect.

Is ML-Based Cryptanalysis Inherently Limited? 53

For simplicity, here we state and prove our result for samples over X × Y
where X = {0, 1}n for some integer n ∈ N and Y = {0, 1}. In the full version of
this work we then extend our result to capture the more general setting in which
Y = {0, 1}m for some integer m ∈ N. We prove the following theorem:

Theorem 4.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. There exists
a gradient-based adversary B that black-box perfectly-simulates all sample-based
adversaries with respect to X × Y, where:

– B runs in time TB(|S|, |X |, |Y|) = O(|S| · log2 |X |).
– B issues QB(|S|, |X |, |Y|) = O(|S| · log |X |) queries to the gradient oracle, and

a single query to the simulated sample-based adversary.

For the more general setting in which log |Y| = m > 1, for some integer
m ∈ N, our simulator B runs in time TB(|S|, |X |, |Y|) = O(|S| · log |X | · (log |X |+
log |Y|)) and issues the same number of queries QB(|S|, |X |, |Y|) = O(|S|·log |X |).
We refer the reader to the full version of this work for the extended result.
In what follows, we first discuss in more detail the overhead of our gradient-
based simulator provided by Theorem 4.1. Next, we provide a high-level technical
overview of our proof of Theorem 4.1, and then provide its formal proof.

The Overhead of our Gradient-Based Simulation. In terms of running
time, as our gradient-based simulator issues only a single query to the simulated
sample-based adversary, then the running time overhead is simply the simulator’s
internal running time Ω(|S| · log2 |X |). Note that any sample-based adversary
that merely examines the entire sample set S would run in time Ω(|S| · log |X |),
and therefore compared to all such sample-based adversaries our overhead is
asymptotically optimal within a multiplicative factor of at most O(log |X |).
Proof Overview. Inspired by the work of Abbe et al. [AKM+21] (as discussed
in Sect. 1.2), our main observation underlying the proof of Theorem 4.1 is that
gradient queries are sufficiently expressive for efficiently extracting the entire
set of samples. That is, we show that there exists a gradient based-adversary B
that, for any set S ⊆ X × Y, can issue O(|S| · log |X |) queries to the gradient
oracle OG(S, ·, ·, ·) and extract the set S. Then, a single query to the simulated
sample-based adversary A provides the output A(S).

More specifically, our gradient-based simulator (which is formally described
in Fig. 3 below), is based on the following main observation: For any sample set
S = {(xi, yi)}i∈[s] and for any given prefix z, we can issue a query that enables to
distinguish between the case in which there are no samples xi that are prefixed
with z, the case in which there is exactly one sample xi that is prefixed with z,
and the case in which there is more than one sample xi that is prefixed with z.4
Thus, beginning with empty string z = ε, this enables our simulator to realize a
recursive DFS-based exploration of the sample set S. Specifically, when exploring
a path corresponding to a certain prefix z, if no samples are prefixed with z then

4 Recall, as discussed in Sect. 3, that throughout this work we assume that sample
sets always consist of distinct samples, as otherwise straightforward single-pass seri-
alization may be applied.

54 A. Shafran et al.

this path is terminated, if there is exactly one sample prefixed with z then the
gradient oracle’s response in fact enables to extract the sample, and if there is
more than one such sample then the simulator continues recursively with the
exploration paths corresponding to the prefixes z0 and z1. The gradient queries
issued by B enable, in particular, to always correctly distinguish between these
three cases, and this ensures that all samples are eventually extracted (and that
no false samples are “extracted”).

From a more technical perspective, the simulator B uses the same loss func-
tion � across all queries, which is defined as �(ŷ, y) = (2+y) · ŷ. As for our choice
of the constant 2, since each y ∈ {0, 1} is a single bit, we have that y < 2. Looking
ahead, our proof relies on this property to distinguish between the case where a
single sample is prefixed by some z to the case where multiple samples are. In the
full version of this work we extend our results to the multi-bit label setting, and
show how to adjust the loss function accordingly. Letting �′(h(�θ, �x), y) denote
the partial derivative of � with respect to h(�θ, �x), it holds that

�′(h(�θ, �x), y) = 2 + y,

and therefore the response �g to any query (�, h, �θ) issued by B to the gradient
oracle OG(S, ·, ·, ·) is of the following form (recall Fig. 1 for the definition of the
gradient oracle):

�g =
1

|S|
∑

(�x,y)∈S

�′(h(�θ, �x), y) · ∇θh(�θ, �x)

=
1

|S|
∑

(�x,y)∈S

(2 + y) · ∇θh(�θ, �x).

At each step of the exploration B can now tailor the function h, whose gra-
dient ∇θh(�θ, �x) depends on the current prefix z, so that it enables to count the
number of samples prefixed with z (and, in case of a single match, to extract it).
Specifically, B chooses h and �θ such that ∇θh(�θ, �x) returns (�x, 1) if �x is prefixed
by z (the additional entry 1 enables counting), and otherwise returns the all-zeros
vector. That is, for a current prefix z = z1 . . . zk ∈ {0, 1}k, and for some vector
of parameters �w ∈ R

n+1, we set �θ = (�w, z) = ((�w)1, . . . , (�w)n+1, z1, . . . , zk) and
define z to be a non-differentiable parameter. Note that the exact value of �w is
not important as it is only used for its gradient behaviour, however for consis-
tency we will define it as the all-zeros vector (0, . . . , 0) ∈ R

n+1. We can obtain
the desired gradient behavior by defining the function h as follows:

h(�θ, �x) = �w · ((�x)1, . . . , (�x)n, 1) · 1x1,...,k=z

= (w1(�x)1, . . . , wn(�x)n, wn+1) · 1x1,...,k=z ,

and we get:

∇θh(�θ, �x) =

(
∂h(�θ, �x)

∂w1
, . . . ,

∂h(�θ, �x)
∂wn

,
∂h(�θ, �x)
∂wn+1

)

Is ML-Based Cryptanalysis Inherently Limited? 55

= ((�x)1, . . . , (�x)n, 1) · 1x1,...,k=z

=

{
(0, . . . , 0) ∈ R

n+1 if x1...k �= z

((�x)1, . . . , (�x)n, 1) ∈ R
n+1 otherwise

Note that although �θ contains both the differentiable parameters �w and the
non-differentiable parameters z, for clarity we denote by ∇θ the gradient with
respect to all differentiable parameters (i.e., ∇θ represents ∇w). Using the func-
tion h and parameters �θ, as described above, enables us to realize a recursive
DFS-based exploration for extracting any sample set S.

The black-box gradient-based simulator BOG(S,·,·,·),A(·)(1s):

1. Set �(ŷ, y) = (2 + y) · ŷ.
2. Set z = ε. // empty bit-string
3. Compute D = CHECK-MATCH(z).
4. Obtain v ← A(D) and output v.

The recursive procedure CHECK-MATCH(z):

1. Define k = |z| // bit-length of z

2. Define = (0, . . . , 0) ∈ R
n+1 and set �θ = (z,

w�
w�w�).

3. Define h(�θ, �x) = · ((�x)1, . . . , (�x)n, 1) · x1,...,k=z.
4. Obtain �g = OG(S, �, h, �θ) ∈ R

n+1

5. If (�g)n+1 = 0: // no matches
Return ∅.

6. If 0 < |S| · (�g)n+1 < 4: // single match
Define x̂ = (1/(�g)n+1) · (�g)1...n and ŷ = |S| · ((�g)n+1 − 2)
Return (x̂, ŷ)

7. Else:
Define z0 = z0z1 . . . zk0 and z1 = z0z1 . . . zk1// concat 0 and 1 to z
Return CHECK-MATCH(z0) ∪ CHECK-MATCH(z1)

Fig. 3. The black-box gradient-based simulator B.

Proof of Theorem 4.1. Let X = {0, 1}n for some n ≥ 1 and Y = {0, 1}. We
show that the gradient-based simulator B described in Fig. 3 black-box perfectly
simulates all sample-based adversaries with respect to X × Y. In what follows
we first prove the correctness of the simulation, and then analyze the running
time and query complexity of B.

Let D be a distribution over (X × Y)∗. For proving that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|

)))
= 0 ,

where S ← D in both distributions, we in fact prove a stronger statement. We
prove that for any s ≥ 1 and for any set S ⊆ (X × Y)s, the distribution of

56 A. Shafran et al.

the output produced by the computation BOG(S,·,·,·),A(·)(1s) is identical to the
distribution of the output produced by the computation A(S). For this purpose,
it suffices to show that, for any such set S, the algorithm B always extracts the
sample set S via its queries to the gradient oracle (i.e., that in Step 3 of B’s
description it holds that D = S).

At each invocation of the procedure CHECK-MATCH with some prefix z, the
algorithm B queries the oracle OG(S, ·, ·, ·) with (�, h, �θ), and obtains a response
�g computed as follows:

�g =
1

|S|
∑

(�x,y)∈S

∇θ�(h(�θ, �x), y) =
1

|S|
∑

(�x,y)∈S

�′(h(�θ, �x), y) · ∇θh(�θ, �x) .

Denoting by Sz ⊆ S the set of samples (�x, y) ∈ S for which �x is prefixed by z,
we obtain:

1
|S|

∑
(�x,y)∈S

(2 + y) · ∇θh(�θ, �x)

=
1

|S|

⎛
⎝ ∑

(�x,y)∈Sz

(2 + y) · ∇θh(�θ, �x) +
∑

(�x,y)∈S\Sz

(2 + y) · ∇θh(�θ, �x)

⎞
⎠

=
1

|S|

⎛
⎝ ∑

(�x,y)∈Sz

(2 + y) · ((�x)1, . . . , (�x)n, 1)

+
∑

(�x,y)∈S\Sz

(2 + y) · (0, . . . , 0)
⎞
⎠

=
1

|S|
∑

(�x,y)∈Sz

(2 + y) · ((�x)1, . . . , (�x)n, 1)

=
1

|S|
∑

(�x,y)∈Sz

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y)) ,

and thus for the response �g provided by the oracle it holds that

�g =
1

|S|
∑

(�x,y)∈Sz

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y)) .

We now distinguish between the following three cases depending on the size of
the set Sz:

– Case I: |Sz | = 0. In this case �g = (0, . . . , 0) ∈ R
n+1, and therefore the

procedure CHECK-MATCH returns ⊥ at Step 5.
– Case II: |Sz | = 1. In this case, for Sz = {(�x′, y′)} we get:

�g =
1

|S|
∑

(�x,y)∈Sz

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y))

Is ML-Based Cryptanalysis Inherently Limited? 57

=
1

|S| · ((2 + y′) · (�x′)1, . . . , (2 + y′) · (�x′)n, (2 + y′)) ,

thus the (n + 1)-th component of the vector �g will contain 1
|S| · (2 + y′). As

y′ ∈ {0, 1} we get that y′ < 2, and in particular 0 < 2+y′ < 2+2 = 4. There-
fore, the procedure CHECK-MATCH extracts and returns the pair (�x′, y′) at
Step 6.

• For the extraction of y′, we multiply the (n + 1)-th component of �g by
|S| and subtract 2, and we get

ŷ = |S| ·
(

1
|S| · (2 + y′)

)
− 2 = y′ .

• For the extraction of �x′ we use the first n components of the vector �g. By
multiplying element-wise by |S|

(2+y′) we get

x̂ =
|S|

(2 + y′)
·
(

1
|S| · (2 + y′) · �x′

)
= �x′ .

– Case III: |Sz | ≥ 2. Without loss of generality, we will analyze this case for
|Sz| = 2. Let Sz = {(�x1, y1), (�x2, y2)}. We have:

�g =
1

|S|
∑

(�x,y)∈Sz

((2 + y) · (�x)1, . . . , (2 + y))

=
1

|S| (((2 + y1) · (�x1)1 + (2 + y2) · (�x2)1) , . . . , (4 + y1 + y2))

We can see that the (n + 1)-th component of �g now contains 4 + y1 + y2 ≥ 4
and therefore the procedure CHECK-MATCH will continue the search over
longer prefix values at Step 7.

Thus, we have shown that in each call to CHECK-MATCH we either extract
and return one sample, return ⊥, or return nothing and continue the search
recursively. By starting from an empty string z, that matches all samples in
S, we extend it bit-by-bit until we reach all prefixes of the sample set. This
ensures that we extract the entire set S, thus obtaining D = S and proving the
correctness of our algorithm.

After establishing correctness, we now bound the number of queries issued
by B as well as B’s running time. As there are |S| distinct samples, the search
will reach at most 2|S| leaves of the resulting tree: |S| leaves corresponding to
the samples, and an additional |S| leaves corresponding to prefixes that differ
in their last bit from a sample. The maximal depth of the DFS tree is at most
the bit-length n of the samples, and therefore each time we reach a leaf, we
visit n nodes on the way. Although some of these nodes may be shared between
different samples (meaning they correspond to prefixes that match more than
one sample), there are at most 2|S| · n visited nodes.

58 A. Shafran et al.

Each one of these node visits corresponds to one run of CHECK-MATCH,
in which the simulator B issues one oracle query and performs some basic arith-
metic computations over the output �g. For issuing the oracle query the sim-
ulator encodes a parameter vector �θ = (�w, z) ∈ R

(n+1)+k, where k ranges
from 0 to n. Therefore, we bound the number of parameters by O(n). The
output �g is of size n + 1 and thus in total we get that we perform O(n)
basic arithmetic computations in each run of CHECK-MATCH. We conclude
that by running CHECK-MATCH for O(|S| · n) times the simulator issues at
most QB = O(|S| · n) = O(|S| · log |X |) queries and runs in time at most
TB = O((|S| · n) · n) = O(|S| · n2) = O(|S| · log2 |X |) (assuming that basic
arithmetic operations over n-bits are values are counted at unit cost). �

5 Statistical Simulation with Fully-Parallelizable
Gradient Queries

In Sect. 4 we established a general feasibility result by presenting a gradient-
based adversary that black-box simulates any sample-based one. Although the
presented simulator is highly efficient in terms of both its running time and
query complexity, it issues its gradient queries in a sequential manner. Over the
years, however, parallelization techniques have played an instrumental role in
speeding up cryptanalytic tasks. Such techniques have provided parallel algo-
rithms for a variety of cryptanalytic tasks, with notable examples ranging from
classic ones such as discrete logarithm algorithms via parallel variants of Pol-
lard’s rho method [Pol78,vOW99,BKN+10,BCC+10,BKK+12] and collision
finding algorithms via parallel variants of Wagner’s generalized birthday attack
[Wag02,Ber07,BLN+09] to a wide variety of parallel algorithms for lattice prob-
lems [Mic] (for additional examples see also [Nie12,Bos15] and the references
therein). Thus, when simulating a sample-based adversary for a cryptanalytic
task that may highly benefit from parallelization techniques, a sequential query
pattern as exhibited by our gradient-based adversary presented in Sect. 4 may
introduce an undesirable simulation bottleneck.

In this section we show that our sequential simulation approach can be mod-
ified to result in a simulator whose gradient queries are fully parallelizable (i.e.,
all of its gradient queries can be issued within a single round of parallel queries).
This comes at a rather minor cost of statistical simulation instead of perfect simu-
lation (i.e., simulation within statistical distance ε for any fixed ε > 0 as captured
by Definition 3.4) together with a slight increase in the running time and query
complexity of the simulator for some ranges of the parameters (depending loga-
rithmically on 1/ε and thus enabling to efficiently support negligible values of ε).
As we show below, for most natural choices of the parameters, the multiplicative
overhead compared to our sequential simulator is in fact constant.

As in Sect. 4, for simplicity here we state and prove our result for samples
over X × Y where X = {0, 1}n for some integer n ∈ N and Y = {0, 1}. We prove
the following theorem:

Is ML-Based Cryptanalysis Inherently Limited? 59

Theorem 5.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. For any
ε > 0 there exists a gradient-based adversary B that black-box ε-simulates all
sample-based adversaries with respect to X × Y, where:

– B runs in time TB(|S|, |X |, |Y|) = O((|S| · log(|S|/ε) · log |X |).
– B issues QB(|S|, |X |, |Y|) = O(|S| · log(|S|/ε)) parallel queries to the gradient

oracle, followed by a single query to the simulated sample-based adversary.

Recall that our sequential simulator provided by Theorem 4.1 runs in time
O(|S| · log2 |X |) and issues O(|S| · log |X |) gradient queries. Thus, in terms of
both the running time and query complexity, the performance of our parallel
simulator provided by Theorem 5.1 matches that of our sequential simulator
within a multiplicative gap of log(|S|/ε)/ log |X |. Recall that |S| ≤ |X | = {0, 1}n,
and therefore even for an exponentially-small ε = exp(−Ω(n)) this multiplicative
gap is constant.

For the more general setting in which |Y| = m > 1 for some integer
m ∈ N, our simulator B runs in time TB(|S|, |X |, |Y|) = O(|S| · log(|S|/ε) ·
(log |X | + log |Y|)) and issues the same number of queries QB(|S|, |X |, |Y|) =
O(|S| · log(|S|/ε)). We refer the reader to the full version of this work for the
extended result.

In what follows we first provide a high-level technical overview of our proof
of Theorem 5.1 when compared to that of Theorem 4.1, and then provide its
formal proof.

Proof Overview. Recall that our sequential simulation approach, as detailed in
Sect. 4, relies on the observation that gradient queries are sufficiently expressive
for efficiently extracting the entire set of samples. Specifically, we observed that,
for any sample set S = {(xi, yi)}i∈[s] and for any given prefix z, a single gradient
query enables to distinguish between the case in which there are no samples
xi that are prefixed with z, the case in which there is exactly one sample xi

that is prefixed with z, and the case in which there is more than one sample xi

that is prefixed with z. We then used this observation to realize a recursive and
completely deterministic DFS-based exploration of the sample set S, leading to a
highly sequential process for extracting all samples (e.g., whenever two samples
share a prefix of length �, then our simulator must issue at least � sequential
queries in order to extract them).

A natural approach for obtaining a less sequential process is to rely on ran-
domization, and a naive attempt would be to guess a prefix z, and hope that
it matches exactly one sample (this is obviously fully parallelizable). Unfortu-
nately, on the one hand, for n-bit samples xi, guessing a rather short prefix (say,
of length O(log n) bits) may not enable to isolate any sample (e.g., consider a
sample set S in which all samples xi share the same n/2-bit prefix). On the
other hand, guessing a rather long prefix (say, of length Ω(n) bits) may lead
to an exponentially small probability of even hitting the prefix of any sample.
Thus, this naive attempt completely fails.

Our approach relies on a more subtle form of randomization, where instead
of guessing a prefix, we guess an output of a hash function M : {0, 1}n →

60 A. Shafran et al.

{0, 1}k that is independently sampled for each gradient query from a pairwise-
independent function family. Recall that the pairwise independence guarantee
provided by such a function family is that for any xi �= xj it holds that the
random variables M(xi) and M(xj) are independent and uniformly distributed
over the choice of the function M from the given function family. This guarantees
that, even for a short output length k = O(log n), each sample xi would be
eventually isolated from all other samples, except any some pre-specified failure
probability ε that would determine the number of queries. Moreover, since the
output length is short, we can guess the output z = M(xi) of the hash function
with a sufficiently high probability and include it in the gradient query to enable
the extraction of the sample.

From a more technical perspective, for each gradient query our simulator
samples a string z ∈ {0, 1}k and a function M : {0, 1}n → {0, 1}k from a pairwise
independent function family Mn,k. For a vector of parameters �w ∈ R

n+1, we
define �θ = (�w, z,M), where we assume M can be encoded using �(n, k) = O(n+
k) bits, and define z and M to be non-differentiable parameters. We remind that
although the exact value of �w is not important, for consistency we will define it
as the all-zeros vector (0, . . . , 0) ∈ R

n+1. The function h is defined as follows:

h(�θ, �x) = �w · ((�x)1, . . . , (�x)n, 1) · 1M(x)=z

= (w1(�x)1, . . . , wn(�x)n, wn+1) · 1M(x)=z .

The simulator then issues an oracle query (�, h, �θ), for which it holds that

∇θh(�θ, �x) =

{
(0, . . . , 0) ∈ R

n+1 if M(x) �= z

((�x)1, . . . , (�x)n, 1) ∈ R
n+1 otherwise

As we noted in Sect. 4, we denote by ∇θ the gradient with respect to all
differentiable parameters in �θ, in this case this means �w only. As these queries are
now independent of each other, they can all be issued in parallel. Our analysis
below shows that, for any ε > 0, issuing T = O(|S| · log(|S|/ε)) such queries
guarantees that all samples are extracted except with probability ε.

Proof of Theorem 5.1. Let X = {0, 1}n for some n ≥ 1, Y = {0, 1}, and let
ε > 0. We show that the gradient-based simulator B described in Fig. 4 black-box
ε-simulates all sample-based adversaries with respect to X × Y. In what follows
we first prove the correctness of the simulation, and then analyze the running
time and query complexity of B.

Let D be a distribution over (X × Y)∗. For proving that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|

)))
≤ ε,

where S ← D in both distributions, we in fact prove a stronger statement. We
prove that for any s ≥ 1 and for any set S ⊆ (X × Y)s, the output produced by
the computation BOG(S,·,·,·),A(·)(1s) is distributed as follows: With probability
at most ε over the internal randomness of B it outputs ⊥, and otherwise it is

Is ML-Based Cryptanalysis Inherently Limited? 61

The black-box gradient-based simulator BOG(S,·,·,·),A(·)(1s):

1. Set k = �log2(2s)� and T = �16s · ln (s/ε)�.
2. Let Mn,k be a pairwise-independent function family, where M : {0, 1}n → {0, 1}k

for every M ∈ Mn,k.
3. Set �(ŷ, y) = (2 + y) · ŷ.
4. Set D = ∅.
5. For t ∈ {1, . . . , T}: // can be performed in parallel

5.1. Sample z
$← {0, 1}k and M

$← Mn,k.
5.2. Define � w= (0, . . . , 0) ∈ R

n+1 and set �θ = (M,z,w�).
5.3. Define h(�θ, �x) = � w· ((�x)1, . . . , (�x)n, 1) · M(x)=z.
5.4. Obtain �g = OG(S, �, h, �θt) ∈ R

n+1.
5.5. If 0 < |S| · (�g)n+1 < 4: // single match

i. Define x̂ = (1/(�g)n+1) · (�g)1...n and ŷ = |S| · ((�g)n+1 − 2).
ii. Update D = D ∪ {(x̂, ŷ)}.

6. If |D| < s then output ⊥, and otherwise obtain v ← A(D) and output v.

Fig. 4. The black-box gradient-based simulator B.

identical to the distribution of the output produced by the computation A(S).
For this purpose, it suffices to show that, for any such set S, with probability at
least 1− ε over the internal randomness of B, the algorithm B is able to extract
the sample set S via its queries to the gradient oracle.

For every t ∈ [T] we denote by zt ∈ {0, 1}k and Mt ∈ Mn,k the random
variables corresponding to the bit-string and the function sampled at iteration
t, respectively. For every i ∈ [s] and for each iteration t ∈ [T], we say that
the sample (�xi, yi) is isolated by the t-th iteration if Mt(�xi) = zt and for every
j ∈ [s] \ {i} it holds that Mt(xi) �= Mt(xj). For every i ∈ [s] we let Failurei

denote the event in which the sample (�xi, yi) is not isolated by any iteration,
and we let Failure =

⋃
i∈[s] Failurei.

We will now show that if the event Failure does not occur, then the gradient-
based simulator extracts the entire set S (and otherwise outputs ⊥). For any
iteration t ∈ [T], the response of the gradient oracle is as follows:

�g =
1

|S|
∑

(�x,y)∈S

∇θ�(h(�θ, �x), y)

=
1

|S|
∑

(�x,y)∈S

�′(h(�θ, �x), y) · ∇θh(�θ, �x)

=
1

|S|
∑

(�x,y)∈S

(2 + y) · ∇θh(�θ, �x) .

62 A. Shafran et al.

Denoting by SM,z ⊆ S the set of samples (�x, y) ∈ S for which it holds that
M(x) = z, we obtain

1
|S|

∑
(�x,y)∈S

(2 + y) · ∇θh(�θ, �x)

=
1

|S|

⎛
⎝ ∑

(�x,y)∈SM,z

(2 + y) · ∇θh(�θ, �x) +
∑

(�x,y)∈S\SM,z

(2 + y) · ∇θh(�θ, �x)

⎞
⎠

=
1

|S|

⎛
⎝ ∑

(�x,y)∈SM,z

(2 + y) · ((�x)1, . . . , (�x)n, 1)

+
∑

(�x,y)∈S\SM,z

(2 + y) · (0, . . . , 0)
⎞
⎠

=
1

|S|
∑

(�x,y)∈SM,z

(2 + y) · ((�x)1, . . . , (�x)n, 1)

=
1

|S|
∑

(�x,y)∈SM,z

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y)) ,

and thus for the response �g provided by the oracle it holds that

�g =
1

|S|
∑

(�x,y)∈SM,z

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y)) .

We now distinguish between the following three cases depending on the size of
the set SM,z:

– Case I: |SM,z | = 0. In this case �g = (0, . . . , 0) ∈ R
n+1 and therefore the

condition in Step 5.5 is not satisfied, and the iteration will end with no samples
being extracted.

– Case II: |SM,z | = 1. In this case it holds that

�g =
1

|S|
∑

(�x,y)∈SM,z

((2 + y) · (�x)1, . . . , (2 + y) · (�x)n, (2 + y))

=
1

|S| · ((2 + y′) · (�x′)1, . . . , (2 + y′) · (�x′)n, (2 + y′)) ,

for SM,z = {(�x′, y′)}. The (n + 1)-th component of the vector �g contains
1

|S| · (2+ y′). As y′ ∈ {0, 1} we get that y′ < 2, and in particular 0 < 2+ y′ <

2+2 = 4. Therefore, the condition in Step 5.5 is satisfied and we will extract
the pair (�x′, y′) as follows:

• For the extraction of y′, we multiply the (n + 1)-th component of �g by
|S| and subtract 2, and we get

ŷ = |S| ·
(

1
|S| · (2 + y′)

)
− 2 = y′ .

Is ML-Based Cryptanalysis Inherently Limited? 63

• For the extraction of �x′ we use the first n components of the vector �g

which contains 1
|S| · (2+ y′) ·�x′. By multiplying element-wise by |S|

(2+y′) we
get

x̂ =
|S|

(2 + y′)
·
(

1
|S| · (2 + y′) · �x′

)
= �x′ .

– Case III: |SM,z | ≥ 2. Without loss of generality, we analyze this case for
|SM,z| = 2. In this case,

�g =
1

|S|
∑

(�x,y)∈M

((2 + y)(�x)1, . . . , (2 + y))

=
1

|S| (((2 + y1) · (�x1)1 + (2 + y2) · (�x2)1) , . . . , (4 + y1 + y2)) ,

for SM,z = {(�x1, y1), (�x2, y2)}. We can see that the the (n+1)-th component
of �g now contains 4 + y1 + y2 ≥ 4 and therefore the condition in Step 5.5 is
not satisfied and the iteration will end with no samples being extracted.

We now show that the event Failure occurs with probability at most ε, and
this finalizes the correctness of the simulation. From the definition of the events
{Failurei}i∈[s], for every i ∈ [s] it holds that

Pr [Failurei] = (Pr [(�xi, yi) is not isolated by the first iteration])T

=
(

Pr
z1,M1

[∃j ∈ [s] \ {i} : M1(xi) = M1(xj) ∧ z1 �= M1(xi)]
)T

=
(
1 − Pr

z1,M1
[�j ∈ [s] \ {i} : M1(xi) = M1(xj) ∨ z1 = M(xi)]

)T

,

where the first equality follows from the independence across all iterations. Using
the union bound, we obtain

Pr
M1

[�j ∈ [s] \ {i} : M1(xi) = M1(xj)]

= 1 − Pr
M1

[∃j ∈ [s] \ {i} : M1(xi) = M1(xj)]

≥ 1 −
∑

j∈[s]\{i}
Pr
M1

[M1(xi) = M1(xj)]

= 1 −
∑

j∈[s]\{i}

1
2k

= 1 − (s − 1) · 1
2k

,

where the last equality follows from the pairwise-independence of the function
family Mn,k. Since z1 is uniformly sampled and is independent of M1, the prob-
ability of a match between z1 and M1(xi), given that there are no collisions can
be computed as

Pr
z1,M1

[z1 = M1(xi) | �j ∈ [s] \ {i} : M1(xi) = M1(xj)] =
1
2k

.

64 A. Shafran et al.

Therefore,

Pr [Failurei] ≤
(
1 −

(
1 − s − 1

2k

)
· 1
2k

)T

=
(
1 −

(
1
2k

− s − 1
22k

))T

,

and our choice of k = �log2(2s)� guarantees that

1
2k

− s − 1
22k

≥ s

22k
≥ 1

16 s
,

implying

Pr [Failurei] ≤
(
1 − 1

16 s

)T

≤ e−T/16 s .

We conclude by observing that our choice of T = �16s · ln (s/ε)� now implies

Pr [Failure] = Pr

⎡
⎣ ⋃

i∈[s]

Failurei

⎤
⎦ ≤ s · e−T/16 s ≤ ε .

After establishing correctness, we now bound the number of queries issued by
B as well as B’s running time. In each iteration the simulator issues a single oracle
query and performs some basic arithmetic computations over the output �g ∈
R

n+1. For issuing the oracle query, the simulator encodes the parameter vector
�θ = (�w, z,M) ∈ R

(n+1)+k+�(n,k) with �(n, k) = O(n + k) being the description
length of the pairwise functions. As we defined k = O(log |S|), we can bound the
number of parameters, and correspondingly the runtime of a single iteration, by
O(log |X |+log |S|) = O(log |X |). By running for T = O(|S|·log(|S|/ε)) iterations
we get a total runtime of TB = O(|S| · log(|S|/ε) · log |X |) and query complexity
of QB = O(|S| · log(|S|/ε)). �

6 Statistical Simulation via Gradient Descent

In this section we show that all sample-based adversaries can be simulated not
only using general gradient-based methods (as established by Theorems 4.1 and
5.1), but in fact using the particular gradient-descent (GD) algorithm. Recall
that whereas our notion of a gradient-based adversary allows querying the gra-
dient oracle in a rather arbitrary manner, our notion of a GD-based adver-
sary forces the application of a specific update rule for each query based on
the response provided to the previous one. As discussed in Sect. 3, this restric-
tion models the GD algorithm, which is considered the most common learning
methodology.

Specifically, as detailed in Fig. 2, a GD-based algorithm starts by initializ-
ing the parameters θ according to some predefined distribution. Then, in each
iteration, the algorithm updates these parameters based on the current gradi-
ent information �g (which, in our case, is received from the gradient oracle) for

Is ML-Based Cryptanalysis Inherently Limited? 65

“directing” the update towards parameters that minimize the loss function (and
thus correspond to a better estimate). In other words, at every iteration t ∈ [T],
given the current parameters �θ(t−1) and the gradient vector �g, the algorithm
updates the parameters by computing

�θ(t) = �θ(t−1) − η · �g ,

where η is the algorithm’s “step size” (also known as the “learning rate”) which
determines the size of the steps taken in the direction of the gradient.

Our result in this section shows that, even in this significantly more restricted
setting, we can construct a GD-based adversary BGD that black-box ε-simulates
any sample-based one. As in Sects. 4 and 5, for simplicity here we state and prove
our result for samples over X ×Y where X = {0, 1}n for some integer n ∈ N and
Y = {0, 1}. We prove the following theorem:

Theorem 6.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. For any ε >
0 there exists a GD-based adversary BGD that black-box ε-simulates all sample-
based adversaries with respect to X × Y, where:

– BGD runs in time TBGD
(|S|, |X |, |Y|) = O((|S| · log(|S|/ε))2 · log |X |).

– BGD issues QBGD
(|S|, |X |, |Y|) = O(|S| · log(|S|/ε)) queries to the gradient

oracle, followed by a single query to the simulated sample-based adversary.

For the more general setting in which |Y| = m > 1 for some integer
m ∈ N, our simulator B runs in time TB(|S|, |X |, |Y|) = O((|S| · log(|S|/ε))2 ·
(log |X | + log |Y|)) and issues the same number of queries QB(|S|, |X |, |Y|) =
O(|S| · log(|S|/ε)). We refer the reader to the full version of this work for the
extended result.

Due to space limitations, the formal proof of Theorem 6.1 is provided as
supplementary material in the full version of this work. In the remainder of
this section, we provide an overview of this proof and explaining the main ideas
underlying our GD-based simulator described in Fig. 5.
Proof Overview. The main challenge underlying the proof of Theorem 6.1
stems from the “non-adaptive” nature of the GD updates. In Sects. 4 and 5, we
extracted samples after each query, for queries that isolated a single sample.
Here, we are allowed to extract samples only after completing the entire exe-
cution of the GD algorithm, meaning concluding all T iterations. Towards this
goal, we extend our parameters so that they can store all of the gradient ora-
cle’s responses, and we extract all samples at once. This requires the size of the
parameters to grow from O(log |X |) to O(T · log |X |). In addition, in our previ-
ous constructions we defined the parameters �θ to include a vector of additional
parameters �w ∈ R

n+1 that enabled to obtain the desired gradient behavior. As
we only used �w for its gradient vector, any specific choice of �w could be used,
and for consistency we used the all-zeros vector �w = (0, . . . , 0) ∈ R

n+1. In the
GD setting, we can no longer extract the samples directly from the value of �g,
and must write the value of �g to that of �w in each iterations. Therefore, here we
require �w to be initialized as the all-zeros vector.

66 A. Shafran et al.

The black-box GD-based simulator BOG(S,·,·,·),A(·)
GD (1s):

1. Set k = �log2(2s)�, T = �16s · ln (s/ε)�, and η = −s.
2. Set �(ŷ, y) = (2 + y) · ŷ.
3. Initialize �θ(0) = (�θ(0)

1 , . . . , �θ
(0)
T), such that for all t ∈ [T] we denote by �θ

(0)
t the set

of parameters ((0)
t , zt, Mt, κ

(0)
t) initialized as follows:

– (0)
t = (0, . . . , 0) ∈ R

n+1

– zt ∈ {0, 1}k

– Mt ∈ Mn,k

– κ
(0)
t = 0

4. Define h((κ,M,z,w�), �x) = (· ((�x)1, . . . , (�x)n, 1)) · M(x)=z + κ
s
.

5. Define h̃(�θ, �x) =
∑T

j=1 φ
(
κj−1, κj , h(�θj , �x)

)
.

6. For t ∈ {1, . . . , T}: // Running GD for T iterations
6.1 Obtain �g = OG(S, �, h̃, �θ(t−1)) ∈ R

|�θ(t−1)|

6.2 Update �θ(t) = �θ(t−1) − η · �g.
7. Set D = ∅.
8. For t ∈ {1, . . . , T}: // decode extracted samples from parameters (T)

1 w�,...,
(T)
T

8.1 If 0 w�<
(T)
t < 4:

i. Define x̂ = (1/((T)
t)n+1) · ((T)

t)1...n and ŷ = ((T)
t)n+1 − 2.

ii. Update D = D ∪ {(x̂, ŷ)}.
9. Compute v ← A(D) and output v.

w�

w�w�w�

w�

w�

w�

Fig. 5. The black-box gradient-based simulator BGD.

Another main difference compared to Sect. 5 lies in the selection of the string
z and the pairwise independent function M in each of the T iterations. In the
gradient-based construction the adversary samples a fresh pair of (z,M) in each
iteration and encodes them in the parameters �θ so they can be used by the
gradient oracle OG, i.e., �θ = (�w, z,M). In the GD-based setting this is no longer
possible, as the GD update rule does not allow the adversary to encode arbitrary
new values into the parameters �θ in each iteration. As such, the sampling of the
z’s and M ’s for all iterations must be made in advance. Namely, our GD-based
adversary running for T iterations will sample in advance T pairs (z,M) and
encode all of them at once in the initial parameters �θ. However, in order to use a
different set of parameters (z,M, �w) in each iteration, a “clock” mechanism must
be introduced, to direct the computation to use only the relevant parameters at
each iteration. For this, following Abbe et al. [AKM+21], we include in each set of
parameters (z,M, �w) an additional bit κ indicating whether this set was already
used in some iteration. We initialize κ = 0, and after using the corresponding
set of parameters, the value of κ is updated to 1. At each iteration, we only use
the first set of parameters for which κ = 0.

More formally, we construct the model function and model parameters as fol-
lows. For any parameter p, we denote by p(t) the value of the parameter at the
end of iteration t. Then, for every t ∈ [T] the adversary initializes a set of param-
eters �θ

(0)
t = (�w(0)

t , zt,Mt, κ
(0)
t) such that �w

(0)
t = (0, . . . , 0) ∈ R

n+1, zt ∈ {0, 1}k,

Is ML-Based Cryptanalysis Inherently Limited? 67

Mt ∈ Mn,k, and κ
(0)
t = 0. Similarly to the construction in Fig. 4, we define the

parameters z and M to be non-differentiable, and as such their value does not
change between different iterations. We get that the entire set of parameters at
initialization time is of the form:

�θ(0) =
(
�θ
(0)
1 , . . . , �θ

(0)
T

)
.

As the GD update rule requires the subtraction of the gradient vector �g
from the vector of parameters �θ, we modify our notation of the gradient. In
our previous results we denoted by ∇θ the gradient with respect to only the
differentiable parameters in �θ, so that when �θ is composed of pdiff differentiable
parameters and pnon-diff non-differentiable ones, we get that |�g| = pdiff . Here we
will denote by ∇θ the gradient with respect to the differentiable parameters, and
in positions corresponding to non-differentiable parameters we will return 0, and
we get |�g| = pdiff + pnon-diff .

Let φ : R
3 → R be a differentiable function such that

φ(α1, α2, α3) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α3 α1 = 1 ∧ α2 = 0
0 α1 = α2 = 0
0 α1 = α2 = 1
∗ otherwise

,

where the “∗” symbol may correspond to any arbitrary values that ensure the
continuity of the function, required for it to be differentiable. Then, we define
the differentiable model h̃ as follows:

h̃(�θ, �x) =
T∑

j=1

φ
(
κj−1, κj , h(�θj , �x)

)
,

where h is the differentiable function defined as in Fig. 4, and we set κ0 = 1.
We prove that this construction indeed provides the clock mechanism described
above, such that when running GD for T iterations we get that in each iteration
we initiate an independent evaluation of h on a fresh set of parameters �θt.

It is important to note that while we extended the construction of our fully-
parallelizable gradient-based adversary, the construction here is not necessarily
parallelizable. This is due to GD being an iterative algorithm in its nature, where
a fully-parallelizable solution is less intuitive. The construction in Fig. 4 can be
viewed as a one-step parallelizable variant of GD. The DFS-based construction
described in Fig. 3 does not fit the GD-based construction as all “guesses” must
be made in advance and in a non-adaptive manner.

68 A. Shafran et al.

References

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the Forty-second ACM Sympo-
sium on Theory of Computing, pp. 171–180(2010)

[ADH+19] Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of opti-
mization and generalization for overparameterized two-layer neural net-
works. In: International Conference on Machine Learning, pp. 322–332.
PMLR (2019)

[AKM+21] Abbe, E., Kamath, P., Malach, E., Sandon, C., Srebro, N.: On the power
of differentiable learning versus PAC and SQ learning. Adv. Neural. Inf.
Process. Syst. 34, 24340–24351 (2021)

[AS20] Abbe, E., Sandon, C.: Poly-time universality and limitations of deep learn-
ing. arXiv preprint arXiv:2001.02992 (2020)

[BB22] Baksi, A., Baksi, A.: Machine learning-assisted differential distinguishers
for lightweight ciphers. In: Classical and Physical Security of Symmetric
Key Cryptographic Algorithms, pp. 141–162(2022)

[BCC+10] Bernstein, D.J., Chen, H.-C., Cheng, C.-M., Lange, T., Niederhagen, R.,
Schwabe, P., Yang, B.-Y.: ECC2K-130 on NVIDIA GPUs. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 328–346.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-
8_23

[Ber07] Bernstein, D.J.: Better price-performance ratios for generalized birthday
attacks. Workshop Record of SHARCS 2007: Special-purpose Hardware
for Attacking Cryptographic Systems (2007)

[BGL+21] Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Conditional differential-neural
cryptanalysis. IACR Cryptol. ePrint Arch. 2021, 719 (2021)

[BGP+21] Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at
machine learning-based cryptanalysis. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 805–835. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77870-5_28

[BHY+23] Buzaglo, G., et al.: Deconstructing data reconstruction: Multiclass, weight
decay and general losses. arXiv preprint arXiv:2307.01827 (2023)

[BKK+12] Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.:
Solving a 112-bit prime elliptic curve discrete logarithm problem on game
consoles using sloppy reduction. Int. J. Appl. Cryptogr. 2(3), 212–228
(2012)

[BKN+10] Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-130 on
cell CPUs. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010.
LNCS, vol. 6055, pp. 225–242. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12678-9_14

[BLN+09] Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSB-
day: Implementing Wagner’s generalized birthday attack against the SHA-
3 round-1 candidate FSB. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT
2009. LNCS, vol. 5922, pp. 18–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10628-6_2

[BLY+23] Bao, Z., Lu, J., Yao, Y., Zhang, L.: More insight on deep learning-aided
cryptanalysis. In: International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pp. 436–467. Springer (2023).
https://doi.org/10.1007/978-981-99-8727-6_15

http://arxiv.org/abs/2001.02992
https://doi.org/10.1007/978-3-642-17401-8_23
https://doi.org/10.1007/978-3-642-17401-8_23
https://doi.org/10.1007/978-3-030-77870-5_28
http://arxiv.org/abs/2307.01827
https://doi.org/10.1007/978-3-642-12678-9_14
https://doi.org/10.1007/978-3-642-12678-9_14
https://doi.org/10.1007/978-3-642-10628-6_2
https://doi.org/10.1007/978-3-642-10628-6_2
https://doi.org/10.1007/978-981-99-8727-6_15

Is ML-Based Cryptanalysis Inherently Limited? 69

[Bos15] Bos, J.W.: Parallel cryptanalysis. Summer school on real-world crypto and
privacy, Croatia (2015). Slides available at https://summerschool-croatia.
cs.ru.nl/2015/ParallelCryptanalysis.pdf

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers,
L.: The simon and speck families of lightweight block ciphers. Cryptology
ePrint Archive, Paper 2013/404 (2013). https://eprint.iacr.org/2013/404

[CLE+19] Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.: The secret sharer:
Evaluating and testing unintended memorization in neural networks. In:
28th USENIX Security Symposium (USENIX Security 19), pp. 267–284
(2019)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–
20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0_1

[Coo23] Cook, S.A.: The complexity of theorem-proving procedures. In: Logic,
Automata, and Computational Complexity: The Works of Stephen A.
Cook, pp. 143–152 (2023)

[CSY+23] Chen, Y., Shen, Y., Yu, H., Yuan, S.: A new neural distinguisher consid-
ering features derived from multiple ciphertext pairs. Comput. J. 66(6),
1419–1433 (2023)

[Dan20] Daniely, A.: Neural networks learning and memorization with (almost)
no over-parameterization. Adv. Neural. Inf. Process. Syst. 33, 9007–9016
(2020)

[Din14] Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

[DLL+19] Du, S., Lee, J., Li, H., Wang, L., Zhai, X.: Gradient descent finds global
minima of deep neural networks. In: International Conference on Machine
Learning, pp. 1675–1685. PMLR (2019)

[DPS23] Ducas, L., Postlethwaite, E., Sotáková, J.: Salsa Verde versus the actual
state of the art. CRYPTO 2023 Rump Session Talk. https://crypto.iacr.
org/2023/rump/crypto2023rump-paper13.pdf (2023)

[GLN22] Gohr, A., Leander, G., Neumann, P.: An assessment of differential-
neural distinguishers. Cryptology ePrint Archive, Paper 2022/1521 (2022).
https://eprint.iacr.org/2022/1521

[Goh19] Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep
learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7_6

[HRC21a] Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based
on deep learning. Cryptology ePrint Archive, Paper 2021/362 (2021).
https://eprint.iacr.org/2021/362

[HRC21b] Hou, Z., Ren, J., Chen, S.: Improve neural distinguisher for cryptanalysis.
Cryptology ePrint Archive, Paper 2021/1017 (2021). https://eprint.iacr.
org/2021/1017

[HVY+22] Haim, N., Vardi, G., Yehudai, G., Shamir, O., Irani, M.: Reconstructing
training data from trained neural networks. Adv. Neural. Inf. Process. Syst.
35, 22911–22924 (2022)

[HZR+16] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778 (2016)

https://summerschool-croatia.cs.ru.nl/2015/Parallel Cryptanalysis.pdf
https://summerschool-croatia.cs.ru.nl/2015/Parallel Cryptanalysis.pdf
https://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-13051-4_9
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf
https://eprint.iacr.org/2022/1521
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://eprint.iacr.org/2021/362
https://eprint.iacr.org/2021/1017
https://eprint.iacr.org/2021/1017

70 A. Shafran et al.

[JGH18] Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and
generalization in neural networks. Adv. Neural Inform. Process. Syst. 31
(2018)

[JKM20] Jain, A., Kohli, V., Mishra, G.: Deep learning based differential distin-
guisher for lightweight cipher present. Cryptology ePrint Archive, Paper
2020/846 (2020). https://eprint.iacr.org/2020/846

[KB14] Kingma, D.P., Ba., J.: Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

[Kea98] Kearns, M.: Efficient noise-tolerant learning from statistical queries. J.
ACM (JACM) 45(6), 983–1006 (1998)

[Kha93] Kharitonov, M.: Cryptographic hardness of distribution-specific learning.
In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, pp. 372–381 (1993)

[KS09] Klivans, A.R., Sherstov, A.A.: Cryptographic hardness for learning inter-
sections of halfspaces. J. Comput. Syst. Sci. 75(1), 2–12 (2009)

[KV89] Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean
formulae and finite automata. In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pp. 433–444 (1989)

[Lev73] Levin, L.A.: Universal sequential search problems. Problemy peredachi
informatsii 9(3), 115–116 (1973)

[LLS+22] Lu, J., Liu, G., Sun, B., Li, C., Liu, L.: Improved (related-key) differential-
based neural distinguishers for simon and simeck block ciphers. arXiv
preprint arXiv:2201.03767 (2022)

[LSW+23a] Li, C., Sotakova, J., Wenger, E., Allen-Zhu, Z., Charton, F., Lauter, K.:
Salsa verde: a machine learning attack on learning with errors with sparse
small secrets. arXiv preprint arXiv:2306.11641 (2023)

[LSW+23b] Li, C., Sotáková, J., Wenger, E., Malhou, M., Garcelon, E., Charton, F.,
Lauter, K.: Salsa picante: a machine learning attack on lwe with binary
secrets. arXiv preprint arXiv:2303.04178 (2023)

[Mic] Micciancio, D.: Parallel algorithms for lattice problems. https://cseweb.
ucsd.edu/~daniele/LatticeLinks/Parallel.html

[Nie12] Niederhagen, R.: Parallel Cryptanalysis. PhD thesis, Eindhoven University
of Technology (2012). http://polycephaly.org/thesis/niederhagen-thesis-
printed.pdf

[Pol78] Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math.
Comput. 32, 918–924 (1978)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, pp. 84–93 (2005)

[Riv91] Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–
439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-
1_36

[RM51] Robbins, H., Monro, S.: A stochastic approximation method. Annals math.
stat., 400–407 (1951)

[Rud16] Ruder, S.: An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747 (2016)

[SRS17] Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that
remember too much. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 587–601 (2017)

https://eprint.iacr.org/2020/846
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2201.03767
http://arxiv.org/abs/2306.11641
http://arxiv.org/abs/2303.04178
https://cseweb.ucsd.edu/~daniele/LatticeLinks/Parallel.html
https://cseweb.ucsd.edu/~daniele/LatticeLinks/Parallel.html
http://polycephaly.org/thesis/niederhagen-thesis-printed.pdf
http://polycephaly.org/thesis/niederhagen-thesis-printed.pdf
https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-57332-1_36
http://arxiv.org/abs/1609.04747

Is ML-Based Cryptanalysis Inherently Limited? 71

[SSBD14] Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From
theory to algorithms. Cambridge university press (2014)

[SWL+24] Stevens, S., et al.: SALSA FRESCA: Angular embeddings and pre-training
for ML attacks on learning with errors. Cryptology ePrint Archive, Paper
2024/150 (2024)

[SZB21] Song, M.J., Zadik, I., Bruna, J.: On the cryptographic hardness of learning
single periodic neurons. Adv. Neural. Inf. Process. Syst. 34, 29602–29615
(2021)

[SZM21] Su, H.-C., Zhu, X.-Y., Ming, D.: Polytopic attack on round-reduced
Simon32/64 using deep learning. In: Wu, Y., Yung, M. (eds.) Inscrypt
2020. LNCS, vol. 12612, pp. 3–20. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-71852-7_1

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–
1142 (1984)

[vOW99] van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptana-
lytic applications. J. Cryptol. 12(1), 1–28 (1999)

[Wag02] Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_19

[WCC+22] Wenger, E., Chen, M., Charton, F., Lauter, K.E.: Salsa: attacking lat-
tice cryptography with transformers. Adv. Neural. Inf. Process. Syst. 35,
34981–34994 (2022)

[YK21] Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning
based generic extension for differential cryptanalysis. In: Longa, P., Ràfols,
C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 191–212. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88238-9_10

[ZBH+17] Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding
deep learning requires rethinking generalization. In: International Confer-
ence on Learning Representations (2017)

[ZW22] Zhang, L., Wang, Z.: Improving differential-neural distinguisher model for
des, chaskey, and present. arXiv preprint arXiv:2204.06341 (2022)

[ZWw22] Zhang, L., Wang, Z., Wang, B.: Improving differential-neural cryptanal-
ysis. Cryptology ePrint Archive, Paper 2022/183 (2022). https://eprint.
iacr.org/2022/183

https://doi.org/10.1007/978-3-030-71852-7_1
https://doi.org/10.1007/978-3-030-71852-7_1
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-030-88238-9_10
http://arxiv.org/abs/2204.06341
https://eprint.iacr.org/2022/183
https://eprint.iacr.org/2022/183

	Is ML-Based Cryptanalysis Inherently Limited? Simulating Cryptographic Adversaries via Gradient-Based Methods
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	3 Our Framework
	4 Perfect Simulation via DFS-Based Extraction
	5 Statistical Simulation with Fully-Parallelizable Gradient Queries
	6 Statistical Simulation via Gradient Descent
	References

