
Grokking of Implicit Reasoning in Transformers:

A Mechanistic Journey to the Edge of Generalization

Boshi Wang♠ Xiang Yue3∗ Yu Su♠ Huan Sun♠

♠The Ohio State University 3Carnegie Mellon University
{wang.13930,yue.149,su.809,sun.397}@osu.edu

Abstract

We study whether transformers can learn to implicitly reason over parametric knowl-
edge, a skill that even the most capable language models struggle with. Focusing on
two representative reasoning types, composition and comparison, we consistently
find that transformers can learn implicit reasoning, but only through grokking, i.e.,
extended training far beyond overfitting. The levels of generalization also vary
across reasoning types: when faced with out-of-distribution examples, transformers
fail to systematically generalize for composition but succeed for comparison. We
delve into the model’s internals throughout training, conducting analytical exper-
iments that reveal: 1) the mechanism behind grokking, such as the formation of
the generalizing circuit and its relation to the relative efficiency of generalizing
and memorizing circuits, and 2) the connection between systematicity and the
configuration of the generalizing circuit. Our findings guide data and training
setup to better induce implicit reasoning and suggest potential improvements to
the transformer architecture, such as encouraging cross-layer knowledge sharing.
Furthermore, we demonstrate that for a challenging reasoning task with a large
search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory
fail badly regardless of prompting styles or retrieval augmentation, while a fully
grokked transformer can achieve near-perfect accuracy, showcasing the power of
parametric memory for complex reasoning.2

1 Introduction

Large language models (LLMs) have been shown deficient in implicit reasoning with their parametric
memory of knowledge and rules. For example, a range of LLMs are found to be incapable of robustly
composing internalized facts [48, 71], and even GPT-4 [42] cannot adequately compare entities’
attributes despite knowing them [1].

Deficiency in implicit reasoning has profound implications. It implies the models’ limitations in induc-
ing structured and compressed representations of facts and rules, which lead to redundant knowledge
storage and difficulty in propagating knowledge updates [76], and importantly, fundamentally impede
the model from systematic generalization over knowledge [25]. While explicit verbalizations of
reasoning steps (e.g., chain-of-thought rationales) can improve task performance [67, 64, 73, 55, 31],
they are not available during large-scale (pre-)training where the model’s core capabilities are
acquired [77, 29].

Is implicit reasoning doomed given that even the most capable models struggle? Can it be resolved
by further scaling data and compute, or are there fundamental limitations of the transformer [62]
that prohibit robust acquisition of this skill?

∗Project started when at OSU.
2Code and data: https://github.com/OSU-NLP-Group/GrokkedTransformer.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

wife
Barack Michelle

born in
Michelle 1964

wife
Barack

born in
[1964]

[younger]

age
Trump

age
Biden

Trump Biden

78 82

Figure 1: We find that transformers can learn to reason implicitly, but this skill is only robustly
acquired through grokking, i.e., an extended period of training far beyond overfitting. Moreover,
the transformer fails to systematically generalize for composition, yet succeeds for comparison. We
conduct a mechanistic study into the model internals throughout grokking, which reveals distinct
generalizing circuits across the two tasks (Figure 4, 5) that explains the variations in systematicity.

In this paper, we rigorously study these questions by constructing synthetic training and evaluation
datasets, training transformers from scratch, and examining their generalization. We conceptualize
reasoning as the induction and application of inference rules, and expose the model to a mixture of
“atomic facts” and “inferred facts” (which are deduced from the atomic facts via a set of latent rules),
resembling “axioms” and “theorems” in a formal system. To evaluate how well the model learns
the rules, we test its ability to make novel deductions (i.e., completing unseen inferred facts) in both
in-distribution (ID) and out-of-distribution (OOD) scenarios.3 This approach allows us to control
the training data and perform clean evaluations, which would be challenging when studying existing
LLMs trained on uncontrolled data.

Our experiments reveal that transformers can learn to perform implicit reasoning, but this skill is
only robustly acquired through extended training far beyond overfitting (Figure 1), a phenomenon
known as grokking [47]. We find that the speed of improvement in generalization correlates with
the ratio between inferred and atomic facts in training, and depends little on the absolute size of
the training data (Figure 2). This suggests a correction of prior explanations of grokking based on
critical data size [33, 61, 78, 21], in that it should instead be the critical data distribution that decides
the characteristics of grokking. Our findings extend prior observations of the grokking phenomenon
primarily in algorithmic and linguistic tasks [47, 38] to the domain of knowledge-based reasoning,
and deepen our understanding of the grokking phenomenon.

Moreover, we find that the transformer exhibits different levels of systematicity across reasoning
types. While ID generalization is consistently observed, in the OOD setting, the model fails to
systematically generalize for composition but succeeds in comparison (Figure 1). To understand why
this happens, we conduct mechanistic analysis of the internal mechanisms of the model. The analysis
uncovers the gradual formation of the generalizing circuit throughout grokking and establishes the
connection between systematicity and its configuration, specifically, the way atomic knowledge
and rules are stored and applied within the circuit. Our findings imply that proper cross-layer
memory-sharing mechanisms for transformers such as memory-augmentation [54, 17] and explicit
recurrence [7, 22, 57] are needed to further unlock transformer’s generalization.

Finally, to demonstrate the power and potential of parametric memory for complex reasoning, we
show that for a reasoning task with a large search space, a fully grokked transformer can achieve
near-perfect accuracy, while state-of-the-art LLMs like GPT-4-Turbo [43] and Gemini-1.5-Pro [16]
based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation.

3Definitions of ID/OOD are introduced in §2.

2

2 General Setup

Training data & ID/OOD evaluation. As stated in §1, we are interested in whether transformers
can induce and apply latent rules over knowledge implicitly in a generalizable way. We create a data-
generating process consisting of 1) sampling a set of basic atomic facts, and 2) using the atomic facts
and latent rules to deduce inferred facts. To better characterize the level of generalization acquired by
the model, we evaluate the model’s in-distribution (ID) and out-of-distribution (OOD) performance.
We prepare two separate sets of atomic facts: atomicID and atomicOOD. Our training set includes
all the atomic facts and a uniformly random portion of the inferred facts deduced from atomicID,
which we call train_inferredID. For evaluation, (1) ID generalization aims to evaluate whether
the model learns the latent rules correctly, by testing its ability to complete unseen inferred facts
also deduced from atomicID, which we denote by test_inferredID. (2) OOD generalization
aims to evaluate the systematicity [25] acquired by the model, namely, the ability to apply rules over
knowledge regardless of its distribution. To do this, we test the model on the facts deduced from
atomicOOD, denoted by test_inferredOOD.

Model & optimization. We use a standard decoder-only transformer model as in GPT-2 [50] with
8 layers, 768 hidden dimensions and 12 attention heads (we explore the impact of different model
scales in Appendix B). Optimization is done by AdamW [34] with learning rate 10−4, batch size
512, weight decay 0.1 and 2000 warm-up steps. Notably, models are trained for a large number of
epochs/steps beyond the point where training performance saturates. More details are in Appendix A.

3 Composition—Delayed Generalization without Systematicity

We begin our investigation with composition, where a model needs to “chain” different pieces of
facts, e.g., “Barack’s wife is Michelle” and “Michelle is born in 1964”, to successfully complete
a compositional sentence, e.g., “Barack’s wife is born in [1964]”. Prior work extensively studied
whether transformer-based language models can perform implicit composition, and negative results
are consistently reported [48, 1, 71]. Specifically, there exists a “compositionality gap” [48], i.e.,
the frequency at which the model knows all the underlying basic facts but fails to compose them,
which is considerable across different LLMs and does not decrease as models scale. Are transformers
doomed to fail on such kind of reasoning, and if so, why?

3.1 Setup

We focus on two-hop composition in this work. For atomic facts, we generate a random knowledge
graph G consisting of |E| entities and |R| = 200 relations, where each entity (as the subject) has 20
random distinct relations that each connects to another random entity (as the object). The atomic
facts are then the edges, i.e., (subject, relation, object) triplets in G, which we partition disjointly into
atomicID and atomicOOD (95%: 5%). The rule of (two-hop) composition is

∀h, b, t ∈ E , ∀r1, r2 ∈ R, (h, r1, b) ∧ (b, r2, t) =⇒ (h, r1, r2, t), (1)

which is used to deduce the ID and OOD inferred facts from atomicID and atomicOOD, respectively.
For convenience, in the above rule, we will call h the head entity, b the bridge entity, and t the tail
entity. For both atomic and inferred facts, training/testing is done by having the model predict the
final tail entity. We assign a unique token to each relation/entity by default, and also find that the
results are robust to different tokenizations (details in Appendix C).

We study the influence of the following two aspects on the model’s learned behaviors:

• Ratio between inferred and atomic facts. By varying the amount of inferred facts included in
training, we study the effect of the ratio φ = |train_inferredID|/|atomicID| on the model.

• Training data size. We study the impact of the training data size by varying |E|, the total number
of entities, while controlling the ratio φ. Note that the size of training data (both atomic/inferred
facts) scales linearly with |E|.

3.2 Results

Grokking observed in ID generalization but not in OOD generalization. Figure 1(left) shows the
model’s accuracy on the train and test facts throughout optimization, with |E| = 2000 and φ = 7.2.

3

We find that the model can generalize to ID test examples, but high performance is only achieved
through extended training far beyond overfitting, a phenomenon called grokking [47]. Specifically, the
training performance saturates (over 99% accuracy on both atomic and inferred facts) at around 14K
optimization steps, before which the highest ID generalization accuracy is merely 9.2%. However,
generalization keeps improving by simply training for longer, and approaches almost perfect accuracy
after extended optimization lasting around 50 times the steps taken to fit the training data. On the
other hand, OOD generalization is never observed. We extend the training to 2 million optimization
steps, and there is still no sign of OOD generalization.

Inferred/atomic ratio φ correlates with generalization speed. Figure 2(a) shows the ID test
accuracy across different φ. We omit the other splits since for all settings, the training performance
saturates quickly and the OOD test accuracy remains at zero as earlier.4 It could be seen that the ratio
φ strongly correlates with the speed of generalization. A very large ratio can push generalization to
improve at a similar pace as the model fits the training data, reducing the need for extended training.5

10
4

10
5

Optimization Step (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Ratio (Inferred/Atomic)
3.6
5.4

7.2
9.0

12.6
18.0

(a) Effect of changing ratio φ (|E| = 2000).

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

| |: 10K
| |: 5K
| |: 2K

Train (ID)
Test (ID)
Test (OOD)

(b) Effect of changing |E| (φ = 9.0).

Figure 2: The speed of grokking on the in-distribution (ID) test performance (a) correlates with the
ratio between inferred and atomic facts, and (b) is not influenced by the size of training data.

Training data distribution, instead of training data size, qualitatively influences generalization
behavior. When φ increases and |E| holds constant, the size of training data also gets larger. Prior
studies hypothesize that training data size plays a central role in order for grokking to happen. In
particular, previous work connects grokking with the notion of critical data size (CDS) [33, 61, 78, 21],
where it is hypothesized that CDS marks the shift from memorization to generalization (via grokking),
and the speed of generalization improves as the training data further scales. However, results from
our controlled experiments seem to contradict such a hypothesis. Figure 2(b) shows the results
of varying |E| with a fixed φ = 9.0, where we change the horizontal axis from optimization
step to epoch for better visualization.6 When fixing the ratio φ, the training data size does not
qualitatively affect the model’s generalization. Specifically, scaling the data affects neither the
relative speed of ID generalization and training improvement (as seen by the rather constant “gap”
between train_inferredID and test_inferredID curves), nor the systematicity level (OOD
performance stays zero). We also run the experiments across different φ and find the results to be
consistent. This suggests that critical data “distribution”, not size, may be the actual deciding factor
behind grokking and generalization. In addition, we find that scaling up the model size also does not
qualitatively change the generalization behaviors observed here (Appendix B), and the main pattern
is that larger models converge in fewer optimization steps, which shares with prior findings [60, 28].

Summary. We have shown that transformers are capable of acquiring the rule of composition through
grokking, with controlled experiments suggesting the crucial factor of data distribution (e.g., the
inferred/atomic ratio φ) in characterizing the model’s generalization. However, important questions

4The training performances of all settings saturate within 25K steps, where larger φ takes more steps.
5When φ = 18.0, the model achieves 96.7% accuracy before training performance saturates.
6The optimization steps for each epoch scale linearly with the training size since we use a fixed batch size.

4

still remain: what happens during grokking, why does it happen, and why do transformers struggle
with OOD examples? Answering these questions requires a deeper understanding of (the changes in)
the model’s inner workings, which we investigate next.

3.3 Analyzing the inner workings of the model throughout grokking

We analyze the internal mechanisms within the model via a combination of two prevalent approaches:
logit lens and causal tracing. We apply our analysis to the setting with |E| = 2000, φ = 9.0 on 300
random examples from train_inferredID.

… …

… …

ℎ 끫殾1 끫殾2

… …

… …

ℎ 끫殾2끫殾1′

끫毂′(≠ 끫毂) 끫毂

(3) Intervention

?

……

Measure change

Input & Output

Embeddings

Final

LayerNorm

Position

Encoding

끫殾1 끫殤8 끫殤5
(1) Normal run(2) Perturbed run

Layer 0

Layer 1

Layer 4

Layer 5

Layer 8

…
…

Logit Lens

ℎ 끫殾1 끫殾2

끫殾2
끫毂

끫殞
끫殜 끫殤1 끫殤2

끫毆2
끫毂

끫毆1

끫殜< 끫殜= 끫殜>

Activations in

Normal run

States Affected

by Intervention

Figure 3: Illustration of our circuit analysis approach (on the composition task). We use logit lens
to interpret individual states, and use causal tracing to measure the strength of connections between
states. Details are in the main content.

Logit lens. We interpret individual hidden states via logit lens [40, 15, 71], where the activation is
converted into a set of logits for each vocabulary token by multiplying with the output embedding
matrix. We follow the recent practice [71] where the activation first goes through the transformer’s
final normalization layer before multiplying with the output embedding (Figure 3, top right).

Causal tracing. The transformer could be viewed as a causal graph [46] that propagates information
from the input to the output through a grid of intermediate states, which allows for a variety of causal
analyses on its internal computations [63, 35, 19, 65, 12]. For convenience, we will refer to a hidden
state by S[i, a], where i is the layer index and a marks the role of the input token at the same position
as the state (one of {h, r1, r2}). We illustrate our method in Figure 3, where the hidden state of
interest is S[4, r1] and the target is the model’s prediction state S[8, r2]. There are in total three steps:

1. The normal run records the model’s hidden state activations on a regular input (h, r1, r2).
Note that since the model maintains perfect training performance throughout grokking, the final
prediction is always the ground truth tail entity t.7

2. In the perturbed run, a slightly perturbed input is fed to the model which changes the prediction,
where again the hidden state activations are recorded. For the perturbation, prior work has explored
adding noise to the input [35] and replacing key tokens with semantically close ones [63, 12]. We
adopt token replacement which avoids unnecessary distribution shifts [74]. Specifically, for the
hidden state of interest, we replace the input token at the same position as the state to be a random
alternative of the same type (e.g., r1 → r′

1
) that leads to a different target prediction (e.g., t → t′).

3. Intervention. During the normal run, we intervene the state of interest by replacing its activation
with its activation in the perturbed run. We then run the remaining computations and measure if
the target state (top-1 token through logit lens) is altered. The ratio of such alterations (between 0
and 1) among the examples quantitatively characterizes the causal strength between the state of
interest and the target.

7For convenience, when we refer to a state as a token, we mean the top token of the state via logit lens.

5

ℎ 끫殾1 끫殾2

끫殾2 …

Layer 0

Layer 5

Layer 8

끫毂
…

끫殞 … …

(a)

h r1 r2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Optimization step (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Grokking starts

MRR(b) at S[5, r1]
MRR(r2) at S[5, r2]
Test (ID)
Test (OOD)

(c)

Figure 4: The (evolution of) generalizing circuit for composition. (a) The generalizing circuit. (b)
The change in causal strengths during grokking, where the target is the prediction state. (c) Mean
reciprocal rank (via logit lens) of the bridge entity b at S[5, r1] and second relation r2 at S[5, r2].

The generalizing circuit. We run a set of causal tracing and logit lens experiments across different
model checkpoints throughout training. The discovered generalizing circuit (i.e., the causal com-
putational pathways after grokking) is illustrated in Figure 4(a). Specifically, we locate a highly
interpretable causal graph consisting of states in layer 0, 5, and 8, where we have pruned away the
weak nodes/connections (details in Appendix D). Layer 5 splits the circuit into lower and upper
layers, where 1) the lower layers retrieve the first-hop fact (h, r1, b) from the input h, r1, store the
bridge entity b in S[5, r1], and “delay” the processing of r2 to S[5, r2]; 2) the upper layers retrieve the
second-hop fact (b, r2, t) from S[5, r1] and S[5, r2], and store the tail t to the output state S[8, r2].

What happens during grokking? To understand the underlying mechanism behind grokking, we
track the strengths of causal connections and results from logit lens across different model checkpoints
during grokking (the “start” of grokking is the point when training performance saturates). We
observe two notable amplifications (within the identified graph) that happen during grokking. The
first is the causal connection between S[5, r1] and the final prediction t, which is very weak before
grokking (Appendix D) and grows significantly during grokking (Figure 4(b)). The second is the r2
component of S[5, r2] via logit lens, for which we plot its mean reciprocal rank (MRR) (Figure 4(c)).
Additionally, we find that the state S[5, r1] has a large component of the bridge entity b throughout
grokking (Figure 4(c)). These observations strongly suggest that the model is gradually forming
the second hop in the upper layers (5-8) during grokking. This also indicates that, before grokking,
the model is very likely mostly memorizing the examples in train_inferredID by directly
associating (h, r1, r2) with t, without going through the first hop.

Why does grokking happen? These observations suggest a natural explanation of why grokking
happens through the lens of circuit efficiency [61]. Specifically, as illustrated above, there exist both
a memorizing circuit Cmem and a generalizing circuit Cgen that can fit the training data. While
Cmem is learned first (which causes training performance to saturate quickly), Cgen is relatively more
efficient, in the sense that it could fit the data with a lower complexity. To see this, we can compare
the amount of facts Cmem and Cgen need to store (denoted as Nmem and Ngen) as a proxy for their

complexity.8 Cmem stores both atomic facts and inferred facts in the weights. Cgen (Figure 4(a))
stores the atomic facts in the lower layers, and another copy of the atomic facts that appear as the
second hop in the inferred facts in the upper layers. As the inferred/atomic ratio φ increases, Nmem

would increase rapidly while Ngen increases slowly and is always bounded by two times the total
amount of atomic facts, and hence, the relative efficiency of Cgen increases. In the long run, the model
will be incentivized to transition from Cmem to Cgen due to implicit bias of the optimization [53] and
explicit regularization such as weight decay which prefers more efficient circuits, and the transition
would happen faster as φ increases. This also explains why the training data size does not affect the
speed of grokking, since solely increasing the size does not change the relative efficiency of Cmem

and Cgen. The explanation also implies that a larger regularization factor should accelerate grokking
(and vice versa), which we confirm by varying the degree of weight decay (Appendix E.1).

8While the circuits also consist of other components, they pale in comparison as the number of facts scales.

6

Explaining and mitigating the deficiency in OOD generalization. The configuration of Cgen also
has another important implication: while the model does acquire compositionality through grokking,
it does not have any incentive to store atomic facts in the upper layers that do not appear as the
second hop during training. This explains why the model fails in the OOD setting where facts
are only observed in the atomic form, not in the compositional form—the OOD atomic facts are
simply not stored in the upper layers when queried during the second hop.9 Such issue originates
from the non-recurrent design of the transformer architecture which forbids memory sharing across
different layers. Our study provides a mechanistic understanding of existing findings that transformers
seem to reduce compositional reasoning to linearized pattern matching [10], and also provides a
potential explanation for the observations in recent findings that LLMs only show substantial positive
evidence in performing the first hop reasoning but not the second [71]. Our findings imply that proper
cross-layer memory-sharing mechanisms for transformers such as memory-augmentation [54, 17] and
explicit recurrence [7, 22, 57] are needed to improve their generalization. We also show that a variant
of the parameter-sharing scheme in Univeral Transformer [7] can improve OOD generalization in
composition (Appendix E.2).

4 Comparison—Systematic Generalization via Parallel Circuit

We have just shown that the vanilla transformer fails to achieve OOD generalization for composition,
but is the vanilla transformer generally incapable of acquiring systematic implicit reasoning skills?
We show that for comparison, a task where SoTA LLMs such as GPT-4 also struggle [1], the vanilla
transformer does have the capability to acquire systematic generalization, again through grokking. On
the surface, it seems that the comparison task is no different than the composition task—both require
retrieving and reasoning over two pieces of facts. However, as it turns out through our analysis, the
comparison task emits a “parallel circuit” that is learned by the transformer during grokking, which
allows atomic facts to be stored and retrieved in the same region and enables systematicity to happen.

Setup. The comparison task involves comparing the attribute values of entities. We assume there
are |E| = 1000 entities, |A| = 20 attributes and |V| = 20 ordinal values for the attributes. Each
attribute a ∈ A has a label space {a<, a=, a>}, a set of relations specifying its comparative form. For
example, an attribute age would have a<, a=, a> to be younger, contemporary, older, respectively.

The atomic facts are (entity, attribute, value) triplets, where we assign a random value v ∈ V for
each (e, a) ∈ E ×A. Again, we randomly partition the atomic facts into atomicID and atomicOOD
(90%: 10%). The rules of comparison are:

∀e1, e2 ∈ E , ∀a ∈ A, ∀v1, v2 ∈ V, (e1, a, v1) ∧ (e2, a, v2) ∧ v1 < v2 =⇒ (a, e1, e2, a<),

∀e1, e2 ∈ E , ∀a ∈ A, ∀v1, v2 ∈ V, (e1, a, v1) ∧ (e2, a, v2) ∧ v1 = v2 =⇒ (a, e1, e2, a=),

∀e1, e2 ∈ E , ∀a ∈ A, ∀v1, v2 ∈ V, (e1, a, v1) ∧ (e2, a, v2) ∧ v1 > v2 =⇒ (a, e1, e2, a>).

(2)

Take the attribute age as an example, the first rule means if the age of e1 is smaller than the
age of e2, then we can infer “In terms of age, the relation between e1 and e2 is younger”. Each
entity/attribute/value/label is assigned a unique token, and training/testing is done by having the
model predict the last token (attribute value for atomic facts; comparative relation for inferred facts).

Results & analysis. Figure 1(right) shows the results for φ = 7.2, and we include more results in
Appendix E.3. It can be seen that 1) the model again acquires robust generalization only through
grokking; 2) surprisingly, the model also achieves systematicity in generalization, different from the
case of composition.

Analyzing the model’s internals similarly as in §3.3 (details in Appendix D), we find the generalizing
circuit for comparison illustrated in Figure 5(a). On a separate stream, the model prepares the label
space {a<, a=, a>} from a and stores it in S[7, a]. In the lower layers (0-5), the model retrieves
the two atomic facts and stores the attribute values v1 and v2 at S[5, e1] and S[5, e2]. Then, the
upper layers (5-8) compare v1, v2 and fetch the label from S[7, a] based on the comparison result.
Importantly, there is a major difference compared with the circuit for composition: the two atomic
facts are retrieved in parallel, which suggests that the atomic facts are stored solely in the lower layers,
without having separate copies across different regions as in the circuit for composition. This explains
why systematicity could happen: OOD facts are now stored and accessed in the same way as ID

9We verified that in the OOD setting, S[5, r1] and S[5, r2] encode b and r2 respectively as in the ID case.

7

facts. Tracking the changes in the model throughout grokking, we observe significantly strengthened
causal connections from S[7, a] and S[5, e1] to the final prediction (Figure 5(b)). We also find that
throughout grokking, S[7, a] always encodes the label space and S[5, e1], S[5, e2] gradually encode
the two attribute values (Figure 5(c)). This confirms that a similar transition from Cmem to Cgen

happens during grokking.

ℎ 끫殾1 끫殾2ℎ 끫殾2끫殾1′

끫毂′ ≠ 끫毂 끫毂

끫殾1 끫殤8 끫殤5

ℎ 끫殾1 끫殾2

끫殾2
끫毂

끫殞
끫殜 끫殤1 끫殤2

끫毆2 …

Layer 0

Layer 5

Layer 8

끫毂
…

… …

Layer 7

끫毆1

끫殜< 끫殜= 끫殜>
(a)

a e1 e2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

0 1 2 3 4 5
Optimization step (1e5)

0.2

0.4

0.6

0.8

1.0
Grokking starts

MRR(v1) at S[5, e1]
MRR(v2) at S[5, e2]
Test (ID)
Test (OOD)

(c)

Figure 5: The (evolution of) generalizing circuit for comparison. (a) The generalizing circuit. (b)
The change in causal strengths during grokking, where the target is the prediction state. (c) Mean
reciprocal rank (via logit lens) of the two attribute values (v1, v2) at S[5, e1] and S[5, e2].

The findings here showcase transformer’s ability to learn parallel solutions to seemingly sequential
problems, akin to the findings in Liu et al. [30] where it is shown that transformers can learn
“shortcuts” to automata. The difference in the acquired generalization across the two tasks that
we study also emphasizes the need for controlled and mechanistic study on understanding the
transformer’s reasoning before making general claims on its limitations.

5 The Power of Parametric Memory for Complex Reasoning

At the high level, our study so far paves the way towards better understanding and improving
transformer’s reasoning with parametric representation of knowledge and rules. But why is parametric
memory practically important? Can we not simply enhance LLMs with non-parametric memory, e.g.,
by using their long-context modes and/or doing explicit retrieval, to solve the tasks at hand?

We believe parametric memory has its unique capability to perform deep compression and integration
of information for complex reasoning. To showcase the potential of parametric memory for complex
reasoning, we create a difficult reasoning task with a large search space, and show that 1) it is far out
of reach even for current SoTA models (e.g., GPT-4-Turbo [43] and Gemini-Pro-1.5 [16]) based on
non-parametric memory; 2) a fully grokked transformer can solve the task with near-perfect accuracy.

Our task is a variation of the comparison task above where we use a simple way to massively expand
the search space, based on an additional set of rules that are already contained within the task itself,
namely, the (anti-)symmetry and transitivity of comparison:

∀e1, e2 ∈ E , ∀a ∈ A, (a, e1, e2, a</a=/a>) =⇒ (a, e2, e1, a>/a=/a<),

∀e1, e2, e3 ∈ E , ∀a ∈ A, ∀y ∈ {a<, a=, a>}, (a, e1, e2, y) ∧ (a, e2, e3, y) =⇒ (a, e1, e3, y).
(3)

In the original setting (§4) of the task, for the OOD test set, one can simply retrieve the two OOD
facts and compare the attribute values, which requires no further search. We change the task setting
via the following. For each attribute, 1) we do not add the OOD atomic facts into training, and 2) we
add a random portion of the comparisons between ID entities and OOD entities into training. We test
the models on queries consisting of derivable (from all training facts) comparisons between OOD
entities where any possible proof would involve rules from both Eqs.(2) and Eqs.(3). Consequently,
answering a test query would require the model to successfully locate two ID bridge entities which
can connect the two query entities into a proof (Figure 6). We select a balanced (by a<, a=, a>)
subset from these queries for evaluation. More details are included in Appendix F.

The difficulty of such a task is two-fold. First, the search space is large. For example, on average,
each query entity connects with more than 50 facts, and each bridge entity in the ground truth proof

8

John Rick

Leo

Sam

Ben

EveBob

Max

Joe

Tom

10

Mia

13

5

Query Entity

Bridge Entity

Gold Proof

Figure 6: Illustration of the complex reasoning task, which involves comparing the attributes of two
query entities based on a set of facts encompassing a large search space.

connects with more than 900 facts. Second, there are no surface form clues to exploit and bias the
search towards the ground truth proof, unlike most conventional QA benchmarks where the proof
steps are transparent from the query.

To test LLMs based on non-parametric memory, we translate the facts into natural language by simple
templates (Appendix F). Facts/queries for each attribute are grouped/tested separately.10 We test
both the vanilla setup where all facts (28.2K on average) are loaded into the LLM context, and the
retrieval-augmented setup (5.4K facts retrieved on average) where the two-hop neighborhoods of the
two query entities are retrieved, which includes enough facts to deduce the answer. We also try both
standard prompting where the model answers directly, and chain-of-thought (CoT) prompting where
the model is prompted to verbalize the reasoning. We test GPT-4-Turbo and Gemini-Pro-1.5, where
for GPT-4-Turbo we only test the retrieval-augmented setup due to context length limit.

Table 1: Results on the complex reasoning task. Direct/CoT: predict the answer directly/verbalize the
reasoning steps. “+R”: retrieval augmentation.

GPT-4-Turbo Gemini-Pro-1.5
Grokked Transformer

Direct+R CoT+R Direct CoT Direct+R CoT+R

Accuracy (%) 33.3 31.3 28.7 11.3 37.3 12.0 99.3

Results. As shown in Table 1, all models based on non-parametric memory fail badly, where the only
setting that surpasses random guess (33.3%) is the retrieval-augmented setting with Gemini-Pro-1.5
and direct answer prediction. Intriguingly, LLMs perform worse (especially Gemini) when prompted
to reason verbally. Through closer examinations, we find that with CoT, 70.7% of Gemini’s responses
conclude that the answer cannot be decided (which we treat as wrong since the answer can be decided)
after a series of search steps.11 More shockingly, most of the CoT rationales that achieve the correct
final answer are actually wrong due to either hallucinating underivable facts or logical errors. This
illustrates the current models’ inability to reason deeply with non-parametric memory. On the other
hand, a grokked transformer, which is trained extensively on the given facts to compress and integrate
the information to the extreme, could achieve near-perfect accuracy. By examining the model, we
find that it acquires the same generalizing circuit as in Figure 5(a), and remarkably, even though
not explicitly encouraged/trained to do this, the model successfully infers most of the OOD entities’
attribute values by integrating the observed training facts (Appendix F).

6 Related Work

Knowledge and reasoning in language models. Numerous work finds that transformer language
models, even SoTA ones such as GPT-4, struggle in implicit reasoning over their parametric knowl-
edge [56, 23, 52, 51, 48, 1, 71], suggesting their limitations in inducing structured and compressed
representations of facts and rules during training. A series of efforts try to understand transformer’s
knowledge and reasoning through controlled experiments [24, 49, 10, 66], which is also our focus. We

10This could also be thought of as performing a retrieval step into the memory based on the attribute.
11The ratio drops a bit to 58.7% when augmenting with retrieval.

9

find that transformers can learn implicit reasoning over knowledge through grokking, and characterize
the connection between the acquired systematicity level and the inductive bias of transformer.

“Chain-of-Thought” and verbalized reasoning. A series of studies prompt/fine-tune language
models to verbalize (i.e., generate) the intermediate knowledge and reasoning steps [67, 64, 73, 55,
31, 72] during inference, which has been shown to improve performance especially for large models
with strong generation capabilities. There are also theoretical results showing the benefits of such
verbalizations [11, 27]. Our focus here on implicit reasoning is orthogonal, and it is an interesting
open problem to have principled understandings of the role of such verbalizations in reasoning
problems, and also develop methods that can decide the appropriate balance between implicit and
explicit reasoning to handle challenging problems with large intrinsic complexity. Relatedly, recent
work also finds that explicit verbalizations could be a useful medium for teaching models to reason
implicitly via distillation or curriculum [9, 8].

Grokking is first discovered by Power et al. [47] on a set of small algorithmic reasoning tasks. The
intriguing phenomenon inspired follow-up works proposing different explanations and expanding the
set of tasks where grokking is observed [59, 32, 6, 41, 39, 61, 36, 38, 33, 78, 21]. To our knowledge,
we are the first work to observe grokking in the domain of knowledge-based reasoning, and our
controlled experiments suggest potential corrections of prior hypotheses based on critical data size.
Our formulation of rule induction from atomic and inferred facts is general, which we hope could
inspire future work on understanding grokking and generalization in deep learning.

Analyzing the inner workings of neural models. Recent work tries to open up the “black box” of
neural models through a wide range of techniques; see survey in Ferrando et al. [13]. We apply causal
tracing [63, 35, 19, 65, 12] and logit lens [40, 15, 71] to discover interpretable circuits in the model
to understand the grokking process and how/why generalization happens.

Parametric and non-parametric memory. Our focus in this work is on parametric memory in
language models, and an orthogonal direction is to enhance models with non-parametric memory,
such as extending the effective context length [70, 43, 14, 16] and augmenting with retrieval [18, 26, 3,
58, 75, 37]. The two types of memory are largely complementary to each other—parametric memory
has its unique ability to compress and integrate information but is also inevitably lossy and subject to
hallucination, while non-parametric memory is lossless and could also provide attribution. Similarly
for humans—a human acquires expertise in a domain by acquiring and structuring knowledge in
the brain (parametric), but he/she also wouldn’t memorize all pieces of details and could refer to
the source when necessary (non-parametric). How to decide the tradeoff between parametric and
non-parametric memory (or, how to define the objective for such a tradeoff) is another interesting
open problem for future work.

7 Conclusion

We find that transformers are capable of learning to implicitly reason over parametric knowledge,
however, such a skill is only robustly acquired through extended training far beyond the point of
overfitting, or grokking. Mechanistic analysis into the model’s internals reveals the configuration and
gradual formation of the generalizing circuit, and also explains the different levels of systematicity
the model acquires across tasks. These findings guide data and training setup to better induce implicit
reasoning, and suggest potential improvements to the transformer architecture to further unlock its
generalization. We conclude by showcasing the unique power of parametric memory on a challenging
reasoning task with a large search space.

Limitations

Scope of our task formulation. As mentioned in §1, we formulate the implicit reasoning problem as
induction and application of inference rules from a mixture of atomic and inferred facts. This may not
apply to the full spectrum of reasoning which has a range of different types and meanings [20]. Still,
our formulation could capture the nature of a wide range of reasoning problems, and crucially, we
believe that it is a good conceptualization of certain aspects of language model (pre-)training, where
the model needs to both memorize the “atomic” world knowledge and also induce generalizable rules
from the massive amount of records of human activities, which allow the model to connect and reason
over knowledge, and ultimately help with humans.

10

Abstract nature and connection with practice. Our study has an abstract nature, which is required
for the complete solidity and rigor of our experiments and evaluation. We also strive to make
sure that the results are robust to different setups closer to practice through additional experiments
(Appendix B,C,E). Still, there are certain distances from our settings to those in practice. However,
we believe that it is far more important to build solid understandings, even having distances with
practice, than to draw conclusions or make claims that are closer to practice but questionable due to
insufficient control over data and evaluations.

Acknowledgement

The authors would like to thank colleagues from the OSU NLP group and CMU NeuLab for
their thoughtful comments. This research was supported in part by NSF CAREER #1942980,
ARL W911NF2220144, NSF OAC 2112606, and Ohio Supercomputer Center [5]. The views and
conclusions contained herein are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notice herein.

References

[1] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipula-
tion. In arXiv preprint: abs/2309.14402, 2023.

[2] Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney,
Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the
tuned lens. In arXiv preprint: abs/2303.08112, 2023.

[3] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
et al. Improving language models by retrieving from trillions of tokens. In International
conference on machine learning, pages 2206–2240. PMLR, 2022.

[4] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
arXiv preprint: abs/2401.10774, 2024.

[5] Ohio Supercomputer Center. Ohio supercomputer center, 1987.

[6] Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent.
In NeurIPS ML Safety Workshop, 2022.

[7] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Uni-
versal transformers. In International Conference on Learning Representations, 2019.

[8] Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to
internalize cot step by step. In arXiv preprint: abs/2405.14838, 2024.

[9] Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and
Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. In arXiv preprint:
abs/2311.01460, 2023.

[10] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin,
Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya
Sanyal, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits
of transformers on compositionality. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[11] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

11

[12] Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? In The
Twelfth International Conference on Learning Representations, 2024.

[13] Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R. Costa-jussà. A primer on the
inner workings of transformer-based language models. In arXiv preprint: abs/2405.00208,
2024.

[14] Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao
Peng. Data engineering for scaling language models to 128k context, 2024.

[15] Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pages 30–45, Abu Dhabi,
United Arab Emirates, December 2022. Association for Computational Linguistics.

[16] Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
2024.

[17] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471–476, 2016.

[18] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In International conference on machine learning,
pages 3929–3938. PMLR, 2020.

[19] Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-
than?: Interpreting mathematical abilities in a pre-trained language model. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[20] Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A
survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the
Association for Computational Linguistics: ACL 2023, pages 1049–1065, Toronto, Canada, July
2023. Association for Computational Linguistics.

[21] Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of
grokking, double descent and emergent abilities: A perspective from circuits competition. In
arXiv preprint: abs/2402.15175, 2024.

[22] DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

[23] Nora Kassner, Benno Krojer, and Hinrich Schütze. Are pretrained language models symbolic
reasoners over knowledge? In Proceedings of the 24th Conference on Computational Natural
Language Learning, pages 552–564, Online, November 2020. Association for Computational
Linguistics.

[24] Nora Kassner, Benno Krojer, and Hinrich Schütze. Are pretrained language models symbolic
reasoners over knowledge? In Proceedings of the 24th Conference on Computational Natural
Language Learning, pages 552–564, Online, November 2020. Association for Computational
Linguistics.

[25] Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International conference on machine
learning, pages 2873–2882. PMLR, 2018.

[26] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

12

[27] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024.

[28] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gon-
zalez. Train big, then compress: Rethinking model size for efficient training and inference of
transformers. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 5958–5968. PMLR, 13–18 Jul 2020.

[29] Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi
Chandu, Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base LLMs: Rethinking
alignment via in-context learning. In The Twelfth International Conference on Learning
Representations, 2024.

[30] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. In The Eleventh International Conference on Learning
Representations, 2023.

[31] Jiacheng Liu, Ramakanth Pasunuru, Hannaneh Hajishirzi, Yejin Choi, and Asli Celikyilmaz.
Crystal: Introspective reasoners reinforced with self-feedback. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11557–11572, Singapore, December 2023. Association
for Computational Linguistics.

[32] Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[33] Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[35] Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

[36] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as
competition of sparse and dense subnetworks. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

[37] Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-tau Yih, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Nonparametric masked language modeling. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational Linguistics:
ACL 2023, pages 2097–2118, Toronto, Canada, July 2023. Association for Computational
Linguistics.

[38] Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of
hierarchical structure in vanilla transformers. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 439–448, Toronto, Canada, July 2023. Association
for Computational Linguistics.

[39] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations, 2023.

[40] nostalgebraist. interpreting gpt: the logit lens. 2020.

13

[41] Pascal Jr. Tikeng Notsawo, Hattie Zhou, Mohammad Pezeshki, Irina Rish, and Guillaume
Dumas. Predicting grokking long before it happens: A look into the loss landscape of models
which grok. In arXiv preprint: abs/2306.13253, 2023.

[42] OpenAI. Gpt-4 technical report. In arXiv preprint: abs/2303.08774, 2023.

[43] OpenAI. New models and developer products announced at devday. 2023.

[44] Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Antici-
pating subsequent tokens from a single hidden state. In Jing Jiang, David Reitter, and Shumin
Deng, editors, Proceedings of the 27th Conference on Computational Natural Language Learn-
ing (CoNLL), pages 548–560, Singapore, December 2023. Association for Computational
Linguistics.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[46] Judea Pearl. Causality. Cambridge university press, 2009.

[47] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. In arXiv preprint: abs/2201.02177,
2022.

[48] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 5687–5711, Singapore, December 2023. Association for Computational Linguistics.

[49] Ben Prystawski, Michael Y. Li, and Noah Goodman. Why think step by step? reasoning
emerges from the locality of experience. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[51] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language
models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446,
2021.

[52] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we
know about how BERT works. Transactions of the Association for Computational Linguistics,
8:842–866, 2020.

[53] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on
separable data. In International Conference on Learning Representations, 2018.

[54] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances
in neural information processing systems, 28, 2015.

[55] Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented
language models. In The Eleventh International Conference on Learning Representations, 2023.

[56] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics-on what language
model pre-training captures. Transactions of the Association for Computational Linguistics,
8:743–758, 2020.

[57] Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse universal
transformer. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 169–179, Singapore,
December 2023. Association for Computational Linguistics.

14

[58] Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai
Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and Donald Metzler. Transformer
memory as a differentiable search index. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[59] Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
In arXiv preprint: abs/2206.04817, 2022.

[60] Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

[61] Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. In arXiv preprint: abs/2309.02390, 2023.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[63] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. Advances in neural information processing systems, 33:12388–12401, 2020.

[64] Boshi Wang, Xiang Deng, and Huan Sun. Iteratively prompt pre-trained language models for
chain of thought. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 2714–2730, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics.

[65] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

[66] Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, and
William Yang Wang. Understanding the reasoning ability of language models from the perspec-
tive of reasoning paths aggregation. In arXiv preprint: abs/2402.03268, 2024.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[68] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[69] Wilson Wu, John X. Morris, and Lionel Levine. Do language models plan ahead for future
tokens? In arXiv preprint: abs/2404.00859, 2024.

[70] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models,
2023.

[71] Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
language models latently perform multi-hop reasoning? In arXiv preprint: abs/2402.16837,
2024.

15

[72] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking. In arXiv preprint:
abs/2403.09629, 2024.

[73] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[74] Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. In arXiv preprint: abs/2309.16042, 2024.

[75] Zexuan Zhong, Tao Lei, and Danqi Chen. Training language models with memory augmen-
tation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 5657–5673, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics.

[76] Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 15686–15702, Singapore, December 2023.
Association for Computational Linguistics.

[77] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer
Levy. LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[78] Xuekai Zhu, Yao Fu, Bowen Zhou, and Zhouhan Lin. Critical data size of language models
from a grokking perspective. In arXiv preprint: abs/2401.10463, 2024.

16

A Training Details

All implementations were done with PyTorch [45] and Huggingface Transformers [68]. All model
training runs are done on NVIDIA A6000 and A100 GPUs and last 96 hours at maximum.

B Effect of Model Scale

We run the experiments on composition with larger model scales with |E| = 2000 and φ ∈
{5.4, 9.0, 18.0}. The results are shown in Figure 7. Overall, it could be seen that scaling up
the model won’t qualitatively change the model’s generalization behaviors, and the main pattern is
that larger models converge in fewer optimization steps, which shares with prior findings [60, 28].

5000 10000 15000 20000 25000 30000
Optimization step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy 8 Layers, 768 Dim

24 Layers, 1024 Dim
36 Layers, 1280 Dim
Train (ID)
Test (ID)
Test (OOD)

(a) φ = 18.0.

2500 5000 7500 10000 12500 15000 17500 20000 22500
Optimization step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy 8 Layers, 768 Dim

24 Layers, 1024 Dim
36 Layers, 1280 Dim
Train (ID)
Test (ID)
Test (OOD)

(b) φ = 5.4.

5000 10000 15000 20000 25000 30000
Optimization step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

8 Layers, 768 Dim
24 Layers, 1024 Dim
36 Layers, 1280 Dim
Train (ID)
Test (ID)
Test (OOD)

(c) φ = 9.0.

Figure 7: Results for different model scales across different φ. Larger models converge in fewer
optimization steps, but have no qualitative changes on the learned behaviors.

C Effect of Tokenizations

In the experiments in our main content, tokenization is done by having a unique token for each
entity.12 This is different from how real-world entities are typically tokenized—in practice, entities
are usually multi-token, and different entities could share tokens at different positions. We investigate

12Preliminary experiments show that tokenization of the relations does not exhibit notable impacts, which is
expected since relations are always explicitly given.

17

the effect of tokenizations on the composition task by having two tokens for each entity (resembling
the first name and last name of a person) in the setting with |E| = 2000 and φ = 12.6. We generate a
set of unique first names and a set of unique last names with equal size from which the two tokens for
each entity are randomly chosen (we make sure each entity gets a unique ordered pair of tokens). We
define token multiplicity to be the number of entities that share the same first/last name. For example,
when the size of the set of first/last names is 50, the token multiplicity would be 2000/50 = 40.

Figure 8(a) shows the ID test results, where the training and OOD results are the same from earlier
(training performance saturates quickly, OOD result remains zero). It can be seen that a larger token
multiplicity would delay the generalization, which is expected to a certain degree since the scale
of the model is effectively smaller due to having fewer tokens in the vocabulary. Nevertheless, ID
generalization always happens. We also run linear probing on S[5, r1] throughout training to predict
the second token of the bridge entity b in the setting with token multiplicity 40,13, where the results
are shown in Figure 8(b). It can be seen that the second token of b can be perfectly decoded from
S[5, r1] after grokking, and the decodability improves throughout grokking. This suggests that for
the multi-token case, the model is additionally storing the second token of b into S[5, r1] throughout
grokking, which may be another factor that further delays the speed of grokking. These results also
share with recent findings that in many cases, tokens beyond the immediate next token are linearly
encoded in the hidden states [69, 44, 2, 4].

In summary, different tokenizations affect the results in rather expected ways, and do not influence
our main findings and conclusions.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Optimization step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Multiplicity: 1
Multiplicity: 4
Multiplicity: 8
Multiplicity: 16
Multiplicity: 40

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Optimization step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Test (ID)
Probing accuracy

(b)

Figure 8: (a) ID generalization across different token multiplicity. (b) Probing accuracy on the second
token of b at S[5, r1].

D More Details on Circuit Analysis

D.1 Composition

We run causal tracing on hidden states in layer 1-7 and every position, where the target is the final
prediction state S[8, r2]. The changes in the strengths are monotone and smooth, and we show in
Figure 9 the strengths for the model checkpoint at the start and end of grokking, and also their
difference (same as Figure 4(b)). We also find that after grokking, the state S[5, r2] (which encodes
r2) is not affected by perturbing the input h or r1.

Deriving the generalizing circuit. Starting from the 9 states in layers 0, 5, 8 we can directly eliminate
S[8, h] and S[8, r1] since they have no computational paths connecting to S[8, r2]. S[5, h] can be
eliminated as could be seen by Figure 9(c). The connections from S[0, h] and S[0, r1] to S[5, r2]
could be eliminated as mentioned earlier.

13Recall that S[5, r1] is the state that encodes the bridge entity in the generalizing circuit (Figure 4(a))

18

h r1 r2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

h r1 r2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

h r1 r2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c)

Figure 9: Causal strengths on composition task, with the final prediction S[8, r2] as the target. (a)
Start of grokking. (b) Change during grokking. (c) End of grokking.

D.2 Comparison

Figure 10 includes the causal tracing results where the target is the prediction state S[8, e2], and
Figure 11 includes the results with the target state S[5, e2]. It can be seen that after grokking, S[5, e2]
does not depend on e1, which gives the generalization circuit in Figure 5(a).

Figure 12 shows the rank (via logit lens) of the three relations {a<, a=, a>} in the label space at state
S[7, a], where we use Recall@3 as the measure. It can be seen that S[7, a] encodes the label space
throughout grokking.

a e1 e2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

a e1 e2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

a e1 e2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c)

Figure 10: Causal strengths on comparison task, with the final prediction S[8, e2] as the target. (a)
Start of grokking. (b) Change during grokking. (c) End of grokking.

E Additional Results

E.1 Weight decay

Figure 13 shows the ID generalization performance when varying the degree of weight decay
(|E| = 2000 and φ = 9.0). It can be seen that a larger weight decay can improve the speed of
grokking, and vice versa.

19

a e1 e2

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

a e1 e2

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

a e1 e2

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c)

Figure 11: Causal strengths on comparison task, with S[5, e2] as the target. (a) Start of grokking. (b)
Change during grokking. (c) End of grokking.

0 1 2 3 4
Optimization step (1e5)

0.5

0.6

0.7

0.8

0.9

1.0

Recall@3
Test (ID)
Test (OOD)

Figure 12: For the comparison task, S[7, a] encodes the label space throughout grokking.

E.2 Transformer with parameter sharing

We share the parameters of the first 4 layers and the last 4 layers, similar as in Universal Trans-
former [7]. This would allow the model to share the knowledge in the upper and lower layers. The
results on the setting with |E| = 2000 and φ = 12.6 are shown in Figure 14. It could be seen that
the parameter-sharing scheme can unlock OOD generalization, even though it is gained much more
slowly than ID generalization during grokking.

E.3 Comparison task across different inferred/atomic ratio

Figure 15 includes the result for φ ∈ {3.6, 7.2, 9.0, 12.6} for the comparison task. It can be seen
that a higher ratio φ would give a higher generalization speed, consistent with the results in the
composition task.

F Complex Reasoning Task

For the complex reasoning task, for each attribute, we include 3% random facts from the comparisons
between ID and OOD entities and the comparisons between ID and ID entities. In total, the training
set contains 18K ID atomic facts, 437K (ID, ID) comparisons, and 108K (ID, OOD) comparisons,
altogether 563K facts (28K on average for each attribute). For translating the facts into natural

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Optimization step (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

weight decay: 0.03
weight decay: 0.1
weight decay: 0.3

Figure 13: Effect of weight decay. A larger weight decay can improve the speed of grokking, and
vice versa.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Optimization step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Test (ID)
Test (OOD)

Figure 14: OOD accuracy of the shared-parameter transformer model.

language for testing LLMs with non-parametric memory, we always use the attribute age
14 (we find

that the choice of attribute does not exhibit notable impact) and the templates “The age of {entity} is
{attribute value}.” and “{entity 1} is {younger than/older than/in the same age as} {entity 2}.” for
atomic facts and comparisons. The entities are mapped to distinct random names generated by a
random generator.15 We also try different mappings (e.g., unique IDs) and templates, and find the
results to be consistent. All (retrieved) facts are randomly permuted and concatenated before being
loaded into the LLM context.

The train/test accuracy, and also the accuracy of inferring the attribute values of the query entities
(which we test using the same format as the atomic facts in training) are included in Figure 16. It
could be seen that, during grokking, the model gradually locates the ground truth attribute values of
the query entities (note that the model is not explicitly encouraged or trained to do this), allowing the
model to solve the problem efficiently with near-perfect accuracy.

14Recall that we test each attribute separately by grouping the facts/queries.
15https://pypi.org/project/names/

21

0 1 2 3 4 5
Optimization step (1e5)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

: 12.6
: 9.0
: 7.2
: 3.6

(a) ID accuracy.

0 1 2 3 4 5
Optimization step (1e5)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

: 12.6
: 9.0
: 7.2
: 3.6

(b) OOD accuracy.

Figure 15: Results for the comparison task across different ratio φ.

0 1 2 3 4 5 6 7
Optimization step (1e5)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train
Test
Atomic (OOD)

Figure 16: Accuracy on the train and test split, and also the accuracy of inferring the attribute values
of the query entities (Atomic (OOD)) for the complex reasoning task in §5.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the findings and claims that we make are based on evidence from a set of
controlled experiments, as presented in the different main sections §3,4,5. We also strive to
make sure that the results are robust to alternative setups through additional experiments
included in Appendix B,C,E.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

22

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the potential limitations of our work in Appendix 7. We do
not include it in the main content for the submission due to space limits, and will add it to
the main content in the final version (if the paper is accepted).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not include theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

23

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full details on our data, model and training configurations, and
evaluation setup in §2,3,4,5 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the data and code with sufficient documentations alongside
the release.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

24

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full details on our data, model and training configurations, and
evaluation setup in §2,3,4,5 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All of our experimental results are obtained with specified random seeds for
reproducibility. We do not perform extensive additional re-runs of the experiments, however,
we find preliminarily that the results are very robust to randomness in the setup. In addition,
our results exhibit strong patterns from controlled variations in the parameter settings, which
we believe is a side-proof that the results are statistically significant.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

25

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on computing resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe our research conforms with the Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our research is at the foundational level which is not tied to particular applica-
tions or deployments, and hence we believe there are no negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

26

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited the original creators of assets such as the code framework in
Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

27

Justification: We have documented our assets alongside the release.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work is not involved with such subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work is not involved with such subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	General Setup
	Composition—Delayed Generalization without Systematicity
	Setup
	Results
	Analyzing the inner workings of the model throughout grokking

	Comparison—Systematic Generalization via Parallel Circuit
	The Power of Parametric Memory for Complex Reasoning
	Related Work
	Conclusion
	Training Details
	Effect of Model Scale
	Effect of Tokenizations
	More Details on Circuit Analysis
	Composition
	Comparison

	Additional Results
	Weight decay
	Transformer with parameter sharing
	Comparison task across different inferred/atomic ratio

	Complex Reasoning Task

