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Abstract

Label Distribution Learning (LDL) has been extensively studied in IID data appli-
cations such as computer vision, thanks to its more generic setting over single-label
and multi-label classification. This paper advances LDL into graph domains and
aims to tackle a novel and fundamental heterogeneous graph label distribution
learning (HGDL) problem. We argue that the graph heterogeneity reflected on node
types, node attributes, and neighborhood structures can impose significant chal-
lenges for generalizing LDL onto graphs. To address the challenges, we propose a
new learning framework with two key components: 1) proactive graph topology
homogenization, and 2) topology and content consistency-aware graph transformer.
Specifically, the former learns optimal information aggregation between meta-paths,
so that the node heterogeneity can be proactively addressed prior to the succeeding
embedding learning; the latter leverages an attention mechanism to learn consis-
tency between meta-path and node attributes, allowing network topology and nodal
attributes to be equally emphasized during the label distribution learning. By using
KL-divergence and additional constraints, HGDL delivers an end-to-end solution for
learning and predicting label distribution for nodes. Both theoretical and empirical
studies substantiate the effectiveness of our HGDL approach. Our code and datasets
are available at https://github. com/Listener-Watcher/HGDL.

1 Introduction

Definite supervision signals are often postulated in learning settings [3, 4]; yet, data generated from
the real world tend to present inherent ambiguity, imposing challenges on assertive classifiers that
predict instances into single or multiple classes. Label Distribution Learning (LDL) [5, 6, 7, 8, 9] has
emerged to navigate label ambiguity by pursuing a mapping from instances to their class distributions.
Each distribution quantifies the descriptive degrees of various classes given a specific instance.

However, the existing LDL studies mainly [10, 6, 7, 11] focus on independent and identically
distributed (IID) data, such as images or texts, which do not generalize well on graphs. In fact, the
topological structure underlying instances may provide invaluable information for label distribution
learning. For example, in the task of urban planning, recent learning models have been employed to
predict the point of interests (POIs) of local regions [12, 13, 14, 15]. LDL can further extend this task
by providing the regional distributions over all POIs, which lends a finer-granular delineation of urban
regional functionality instead of single- or multi-class classification. To wit, for a region that mixes
four POIs (classes): housing, healthcare, education and worship, unlike other models assertively
classify it into one or multiple POI(s), LDL model can provide insights of the functional degrees of
all four POlIs in this region, as shown in Figure 1. Nevertheless, existing LDL studies overlook the
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urban topology, which can be rendered from, e.g., the taxi services across regions [2], missing out
critical city traffic patterns that are highly correlated with regional functionalities. For instance, the
regions with balanced POI distributions (e.g., Ry and R3) are less likely to form connections with
other nodes compared to regions heavily skewed towards a single class (e.g., Ry), as their residents
enjoy fewer needs to travel to other regions for services such as education and healthcare.

In this paper, we aim to enable and generalize the label || g residence I _

distribution learning paradigm in networked data. Two  ¢1 ¢ ¢3¢y C1©2¢3¢4
technical challenges confront our study. First, real-world ~ residence
graphs are mostly heterogeneous, comprising diverse types
of nodes for better expressiveness. Graph heterogeneity
complicates the message-passing between nodes of a spe-
cific type (e.g., residence), as the label distributions of
those nodes are influenced by their neighboring nodes that
may vary in terms of types, content, and topological fea-
tures. Simply leveraging node embeddings generated from
message-passing for LDL will thus not work well [16, 17].

C1 3¢y
residence

To aid, although meta-path aggregation [18] is seemingly Classes (POIs)
viable, it necessitates extensive domain knowledge and ex- C1
pertise to craft meta-paths for each node type with respect  Leisure in %) Healthcare
to their label distributions; given the combinatorial num- 1234 c3

ber of possible meta-paths in large heterogeneous graphs, c4

searching for the optimal meta-path for LDL is costly,

laborious, and time-demanding. Figure 1: Motivating example of HGDL

study, where each node is a local urban re-
gion [1] and edges represent taxi services [2]
commuting between regions. Heterogeneous
node types indicate disparate land use, includ-
ing residence (R), service (S), leisure (L), and
transit (T), among which R nodes are of our
interest. Colored R nodes are with ground
truth, which delineate their distributions over
multiple point-of-interests (POIs), and each
POI is deemed as a class/label. Our HGDL
problem is to predict the label distribution of
uncolored R nodes, enabling a precise delin-
eation of regional urban functionality.

Second, graph topology and nodal features may suggest
inconsistent label distributions, where nodes sharing simi-
lar contents are positioned far apart on the graph topology.
The inconsistency is furthered in heterogeneous graphs,
where nodes of the same type often connect through other
intermediary types, resulting in substantial topological
distances between them. Unlike traditional LDL that fo-
cuses on instance vectors only, an effective LDL model on
graphs require harmonizing nodal contents with topolog-
ical structures for a unified representation. The impact of
distantly positioned nodes within a graph is substantially
diminished, consequently steering the LDL model to pri-
oritize individual nodal vectors, leading to compromised
node representations in which the informative patterns embedded in their neighborhood structures
are overlooked. Such patterns, which may significantly enhance label distribution predictions as
illustrated in Figure 1, are neglected, undermining the LDL model effectiveness.

To overcome the challenges, we propose a new learning framework, coined Heterogeneous Graph
label Distribution Learning (HGDL). Specifically, to tame the graph heterogeneity, HGDL learns the
optimal graph topology of the target nodes from multiple homogeneous structures searched with
various meta-path schemes through a tailored attention mechanism. The node embeddings are then
generated by harmonizing the nodal features and the learned meta-path graph using a transformer
architecture. A joint optimization objective is crafted based on the distance between true and predicted
label distributions of the target nodes from their resultant embeddings, which unifies the learning of
meta-path graph topology and the feature-topology harmonization function in an end-to-end fashion.

A key innovation of HGDL is that it changes existing heterogeneous graph learning paradigm from
reactive (meaning that aggregation of different meta-paths are done after embedding learning from
individual meta-path), to be proactive (meaning that aggregation are done before embedding learning).
Combined with attention and transformer mechanisms to adjust individual meta-paths’ interplay,
and align with nodal features, HGDL deliver significantly better performance over alternatives. Our
theoretical analysis assures that HGDL outperforms that of using an arbitrary meta-path graph, and
HGDL’s topology and feature consistency learning sparsifies network connectivity, intermediately
encouraging tightens the error-bound, resulting in better model generalization.

Specific contributions of this paper are as follows:



1. This study pioneers the exploration of LDL problem in heterogeneous graphs. The learning
problem enjoys practical implications such as for urban functionality delineation (presented
in Sec 6.1) and, to our knowledge, has not yet been explored by any contemporary research.

2. We propose an end-to-end HGDL learning approach to jointly learn an optimal meta-path
graph topology and align it with nodal features for consistent message-passing. Our ap-
proach is surprisingly simple yet effective, with its performance evidenced by theoretical
underpinnings. Our approach and its analysis are presented in Sections 4 and 5, respectively.

3. Empirical study has been carried out over five graph datasets that span domains of bio-
medicine, scholarly network, business network, and urban planning. Experimental results
substantiate the effectiveness of our approach over rival models, documented in Section 6.

2 Related Work

Label Distribution Learning (LDL) strives to learn a mapping from input to a distribution that
profiles the descriptive degrees of classes associated with it [5, 10, 6, 7, 11]. Existing LDL methods
fall into three categories, namely, problem transformation (PT), algorithm adaption (AA), and
specialized algorithm (SA). PT methods transform LDL as multiple single-label learning tasks, using
with label probabilities [19], and AA approaches revise mainstream learning algorithm to fit the LDL
loss. SA algorithms are most commonly used because LDL learning is driven by new algorithm
designs. Label correlation has been found to benefit the label distribution learning, where approaches
were proposed to encode label correlation to a distance to measure the similarity of any two labels [6].
Later, low-rank approximation is used to construct label correlation matrix to capture the global label
correlations [7] Instead of exploring common features for all labels, label-specific features [10] for
each label are used to enhance the LDL model. Exploring feature-label and label-label correlation [9]
has recently been studied in generalizable label distribution learning for cross domain learning. A
Gaussian label distribution learning method [11] employs a parametric model underpinned by an
optimization strategy assessing KL-divergence distance between Gaussian distributions, followed by a
regression loss to normalize the KL-divergence distance. Noticing the difficulty to obtain ground-truth
label distributions, Label Enhancement [20] is commonly used to recover label distributions from
logical labels. Our research further push LDL to be generalized onto heterogeneous graphs, which
have been overlooked by existing research. Although a recent study [21] explored using LDL in
topological spaces, it focused on homogeneous graphs only and cannot work in the setting of more
than one node type. Thus, the studied problem in [21] and its challenges differ from ours.

Heterogeneous Graph Neural Networks have drawn extensive attention in graph learning [16,
17, 22, 18, 23, 24], because the graph heterogeneity imposes considerable challenge to model the
interplay among various node types, features, labels, and network topology. Using meta-path to
aggregate information from different types of nodes/edges is a common approach for heterogeneous
graph learning. HetGNN [17, 18] designs graph neural networks to encode features for each type
of neighbors and then aggregates neighbors’ representation with respect to different types. This
provides a way for GNN to deal with heterogeneous graph structures and node attributes. HAN [25]
introduces attention mechanisms to heterogeneous graph learning, where attentions are applied to
embedding features learned from homogeneous networks, each created from a meta-path. By doing
S0, attentions serve as a weighting mechanism automatically determining the importance of each
meta-path for learning. Using transformers for heterogeneous networks has also been investigated
recently. For example. HGT [26] designs node- and edge-type dependent parameters to characterize
the heterogeneous attention over each edge, allowing this method to learn representations for different
types of nodes and edges. SeHGNN [27] proposes a transformer based semantic fusion module,
allowing feature fusion from different meta-paths. Our research is fundamentally different from
existing work in two aspects: 1) we study LDL learning for heterogeneous networks, and 2) we
propose a new way to aggregate and align information for heterogeneous network.

3 Preliminaries

Notations. A heterogeneous graph is denoted by G = {V, E, X, Y } associated with a node type
mapping ¢ : V — T and an edge type mapping ¢ : E — T ¢, with 7 and 7° the predefined
and finite sets of nodes and edges, respectively, and |77 > 2. Denote ¢, € TV as the node type
of our interest, and suppose in total n nodes are of this type. Without loss of generality, we have
p(v1) = ... = ¢(v,) = t,, and V;, = {v1,...,v,} C V. We deem these n nodes as our farget
nodes, using a feature matrix X € R™*™ to describe their nodal contents, where each node contains



A R R, Ry R, Target Node Vectors

meta-path .@ E’ 7 2 i 1 Feature Attention Adjacency
: R-S-| Meta-Path / 2
PrRs® Attention A Ry[1]1 R, R, Ry R,
Scores 1j0.1J0.7[0.1

1)0.030.030.8

A R R RR, :
|L_o7]os Ground Truth Y
_< @D_> R 917 i P.zlo.].]o6|o.1|o‘
0s5]1
| . Sec 45 | PoBAe P
Sec 4.2 A @ e ]_l
Filpaoao o

T O[:,k] - LapNorm(Ak) ¥
A TR W KL-divergence
/L] |60vto]|—|edkaelsle] |~ [a=budv]

RIT ees
o cecmmnnsns s Y|
R, Predicted Distributions Y

4

—>| he™Pi(© [ 71| UL, kD)

Attention Regularizer

Ry[1 T
l 2 Ro[0.10.8005007
: O[:,1] - LapNorm(Az1) Z GON(4; X> 07 0502200

Pk: R-L-T-L-R
meta-path
Ay

Figure 2: The proposed HGDL framework. Using k£ meta-paths, the heterogeneous network in (I) is
converted to £ homogeneous meta-path graphs in 2). Topology homogenization in (3) proactively
aggregates all k meta-path graphs, through learnable weight matrix W¢ € R™* for each graph, and
finally obtain attention © € R™** across all graphs. Topology and feature consistency-aware graph
transformer in @) harmonizes the local and global consistencies. The objective function in Q) unifies
loss and regularization terms to guide nodal label distribution learning.

an m-dimensional feature vector. A meta-path P is defined as a relational sequence in form of
t1 Sty 55t B 4 L.ty (abbreviated as P = (t1ta ... Lty . . . t;), where (tit;41) € T¢
describes the composite relation between a pair of node types. By defining a meta-path P with
same first and last node type as the target node type, i.e. t;1 = t; = t,, we can use P to convert a
heterogeneous network as a meta-path graph concerning only the target node type, which shall be
discussed later in Section 4.1.

Problem Statement. In our HGDL problem, the goal is to learn a predictive mapping /i : (G, X) —
Y, where Y € [0,1]7 is a distribution of descriptive labels over ¢ classes. Let y; ; € [0, 1] be the
probability that the node v; belongs to the j-th class, we have Z ‘1 Yi,; = 1. In this work, we follow
a transductive learning regime [28] to allow the ground-truth label distributions known for a subset of
target nodes V;,. C V;, during training. Our learned mapping £ is expected to generalize well so can
make accurate prediction on the remaining target nodes V4, \ V4.

4 HGDL: The Proposed Approach

Overview. The proposed HGDL approach comprises three key components, as illustrated in Fig-
ure 2. First, for the target nodes belonging to the node type ¢, of interest, HGDL generates multiple
homogeneous meta-path graphs based on their original locations on the heterogeneous graph through
meta-paths; the optimal graph topology of this node type is then learned from the homogeneous
graphs via attention mechanism (Sec 4.1). Second, HGDL learns the embeddings of the target nodes by
harmonizing the information sourced from their feature space and the learned optimal topology using
a transformer-like neural architecture (Sec 4.2). Third, HGDL minimizes the distance between the
predicted and ground-truth label distributions based on the learned node embeddings. We tailor an
objective function to unify the three components into one end-to-end optimization problem, in which
the optimal graph topology, the harmonization function of the feature and topological information,
and the target node label distribution are jointly learned (Sec 4.3).

4.1 Optimal Graph Topology Homogenization

For a heterogenous graph, by leveraging meta-path idea, multiple different meta-path homogeneous
adjacency matrix can be obtained and they can be treated as multiple sources. Graph learning is
about exchanging and updating information from neighbor nodes. A proper neighbor set is therefore
important for a target node to learn correct distribution. Given multiple sources, each node will have



multiple neighbor sets to choose from for updating. Traditionally, embeddings are learned for all the
neighbor sets, and then aggregation over embeddings is learned. Semantics over embeddings are hard
to interpret and learn compared with directly learned from different neighbor sets.

To generate a meta-path graph from the original heterogeneous graph, interactions between the meta-
path and the heterogeneous graph path are used. Two nodes v; and v; are connected in the meta-path
graph, if there exists a path connecting them in the heterogeneous graph, and the path follows the meta-
path. Given a meta path P = (¢1 ... ¢;t;41...¢;), we say thata path p = (v, ..., 0, Vig1, .. .,0])
in graph G follows the meta-path P, if Vi, ¢(v;) = t;. Take graph in Fig. 1 as an example. Given
meta-path P = (r s r), which defines node type t; = r,to = s,t3 = r. Path p = (72, s1,73) in the
heterogeneous graph follows P because all nodes in the path p satisfy ¢(r2) = t1 =7, d(s1) = ta =
s,¢(rs) = t3 = r. Because path p = (3, s1, 73) follows the meta-path P, an edge is used to connect
ro and r3 in the homogeneous meta-path graph constructed from P. Indeed, each meta-path defines a
specific way of information propagation in a heterogeneous network, with resulted meta-path graph
capturing unique relationships between target nodes. While defining a single meta-path is relatively
easy, there often exists many meta-paths; aggregating a variety of meta-path graphs to support the
downstream learning task is non-trivial.

After searching the meta-paths connecting the nodes of target type ¢,, we generate a set of graphs
A = {A;1,... Ay}, in which each adjacency A; € {0,1}"*™ captures the topological structure of
the i-th meta-path-based homogeneous graph. Denoted by A;[p, ¢] = 1 means that two target nodes
vp and vy, with ¢(v,) = ¢(vg) = t,, are connected by a meta-path; otherwise, A;[p, g] = 0. Unlike
existing studies [25] that yield target node embeddings through reactive meta-path aggregation, where
they aggregate local neighborhood information for each A; € A to capture k separate meta-path
topologies, our HGDL learns the optimal graph topology from A in a proactive fashion. Intuitively,
HGDL learns node-level attention scores for various homogeneous graphs A;, to respect the fact that
the neighboring nodes may pass messages with varying importance levels in local neighborhoods,
while the meta-paths walking across nodes of types other than the target ¢,. Revisit the motivating
example demonstrated in Fig 1 where the residence nodes are deemed as the target, the meta-path
linking through the service nodes dominates, as the residence nodes are more likely to be linked
through service nodes instead of Transit and Leisure nodes. Specifically, the attention scores for the
nodes in every A; € A are learned in a GAT regime [29], defined as:

0= softmax(

k
y\AieA{LapNonn(Ai)Wg}Wg), fl:Z@[:,i]-LapNorm(Ai), (1)
=1

1

1

where LapNorm(4;)= D, 2 (A; + I)D, > € R™*™ denotes Laplacian normalization of A;, with
D; being A;’s degree matrix and [ is an identity matrix. This term mitigates the imbalanced degree
distribution of the meta-path graphs. Denoted by W and W(; are the learnable GAT parameters,
where W{ € R™*f maps the meta-path topology of A; onto an f-dimensional semantic space. The
operator || 4,e4{-} concatenates all k resultant node embedding matrices from meta-path graphs A,
thereby producing an R"**"f lookup matrix, where each node is associated with a k- f-dimensional
embedding representation, and each latent f-dimension captures the local neighborhood structure of
this node. Then, W, € R¥/*¥ summarize the f-dimensional latent space into one coefficient through
convex combination, resulting in attention logits, which are fed into softmax(-) = exp(-)/ >, exp(-)
to yield the attention matrix © = [0, 1]"**. Take the i-th column vector of ©, denoted by O[:, ] €
[0,1]™, we have the attention scores of n target nodes for message-passing in the i-th meta-path graph
A;. We thus can deem A in Eq. (1) as the learned optimal graph topology, which is an element-wise
linear combination of k£ meta-path topologies with the attention scores broadcast onto all n nodes.
Note, A is asymmetric, namely A[p, q] # Alq, p], Vp # ¢. This is because that the attention score
of information aggregation from node v,, to v, may be different from that from v, to v, as their
respective local neighborhood topologies naturally differ.

4.2 Local Topology and Global Feature Consistency-Aware Graph Transformer

After obtaining the optimal topology A from all meta-path graphs A;, the next question is how to
harmonize it with the feature information to better the target node embeddings. The benefit of such
harmonization is evident. Revisiting the urban network in Fig 1, we can envision that a pair of
residence nodes tend to be associated with similar embedding vectors because they enjoy two types



of consistencies: 1) local neighborhood topology: their residents tend to travel to similar functional
regions for leisure or service purposes, and ii) global feature space: they share similar contents such
as house types and number of residing families. These local and global consistencies complement
with each other, as the residence nodes having similar contents can be topologically faraway from
each other on the urban network, and vice versa.

To harmonize the local and global consistencies, we are inspired by the recent graph transformers [30]
and observe that the feature attention suggests a global adjacency matrix, which can be incorporated
into the message-passing process. We define the graph transformer block as follows.

Z =ReLU(AXW;), As = LapNorm (softmax((ZQ)(ZK)T ® A)), )

where Z € R™" is the node embeddings learned from the optimal graph topology A through
local information aggregation, parameterized by W; € R™*". Denoted by Ay € [0, 1]™*™ is the
normalized feature attention adjacency, where @ and K € R"*" map the embedding matrix Z onto
the latent query and key spaces, respectively, such that (ZQ)(ZK)T calculates an n x n node-level
attention matrix with respect to the feature space information. Instead of normalizing the attention
score by the hidden dimension h, we penalize the feature attention adjacency through an element-wise
production  with the optimal meta-path topology A. The intuition behind Eq. (2) is that, for each
target node, it aggregates information from those neighboring nodes only if their meta-path topology
and feature space are both with high attention scores. In addition, Eq. (2) functions similarly to the
edge dropout [31]; in lieu of randomly removing edges, we enforce a neighbor-set intersection, where
the information is only propagated from the neighbors on which the feature space and meta-path
topology both agree. Such an intersection sparsity thus lowers the degree of the resultant attention
adjacency, thereby uplifting the learning efficacy, which will be substantiated later in Sec 5. Finally,
denoted by H = LeakyReLU(AQ ZWs,) € R™*" are the resultant node embeddings, capturing both
local topology and global feature consistencies, which is parameterized by weight W, € RP*",

4.3 An End-to-End HGDL Objective Function

Based on the resultant target node embeddings H, we can predict their label distributions as Y =
softmax(Ay HW3) € [0,1]"%9, where Y; = {§; }9—, is the predicted label distribution of node v;,
among which §j; ; denotes its predicted probability of belonging to the class j. The unified objective
of our HGDL framework is defined as follows.

_ min tuoor = D (YY) =7 - Q,
{WEYe_ | Wy, W1, W2, W3, K,Q
k(YY) = ZZy” log y”’ Q= ZDKL J UL, &), (€)
=1 j=1

where the KL-divergence Dk (Y'||Y) gauges the discrepancy between the predicted and groundtruth
label distributions of the target nodes [32]. The regularization term €2 gauges the distance between
the attention scores of the i-th node across k meta-path typologies (denoted by ©][i, :]) and a uniform
distribution U[1, k]. We note the minus sign before 2, thus minimizing this term encourages a larger
KL-distance, thereby avoiding the trivial uniform attention distribution (meaning that for each node,
the learned attention weights from different meta-paths are encouraged to be as different as possible).
v is a tuned parameter to balance the two terms.

S Analysis

We follow the PAC-Bayes regime to analyze the theoretical performance of our HGDL algorithm by
deriving its generalization error bound. We proceed analysis based on the meta-path graph adjacency
matrices A = {41, ... A}, which are searched from the heterogeneous graph G. Throughout the
analysis, we assume the nodal feature representations to be residing in an ¢»-ball of radius B. We
argue this a mild assumption, because in implementation we can leverage the batch-norm layers to

normalize the resultant node embeddings, such that ||h? ||, < B, where h? denotes the i-th node’s
embedding resulted from the j-th hidden layer.



Let Lg(h) and Ly z,(h) denote the generalization risk over a graph distribution G and the empirical
risk on the target node samples and the learned meta-path topology (X, fl), respectively, where
(X,A) eq % G. We can define:

Lg(h) = E(X,A)NgEyiNY [é(h(X7 A)[Z]a yl)] 9

n

1 T
i=1
where £(-, ) is a convex distance metric between two distributions that follows [£(u,p) — £(u,q)| <
(vp+ Dllp — g2, Yu,p,q € R™. Denoted by i(X, A)[i] € R? and y; € [0, 1]7 the predicted and
ground-truth label distribution of the i-th target node, respectively. Implementing KL-divergence, we
have ¢(R(X, A)[i],y;) = Y7 W(X, A)[i, j] In(A(X, A)[i, j]/vi ;) where the predicted probability

j=1 g
that node i belongs to the j-th class is denoted by (X, A)[i, j]. By analyzing the performance of the
learned meta-path graph topology A, we find that:

Theorem 1. Let E[L(x a,)(h)] be the empirical risk of using the i-th meta-path graph A; € A for
label distribution prediction. With the SGD step-size 1, we have

Remark 1. Theorem 1 indicates that the empirical risk of HGDL is no larger than the minimum
empirical risk incurred by training label distribution learner on the optimal meta-path graph, as
the error bound on the RHS reduces to O(1/n) with constant &k and 7. With Stochastic Gradient
Descent (SGD) optimizer, larger number of target nodes n will lead to more training updates over
them, diminishing the O(1/n) bound faster. This finding substantiates the tightness of our meta-path

learning strategy for the optimal graph topology A.

Due to page limits, we defer the proof of Theorem 1 and the rest analysis to the Supplement. We then
analyze the generalization error bound of HGDL and find that:

Theorem 2. Let h € H : X x G — RY? be an l-layer message-passing neural network with maximum
hidden dimension k, of which the i-th layer is parameterized by W;. Then for any §,v, B > 0 and
I > 1, with probability at least 1 — 0 we have

2(v/2q +V2)q :
Lg(h)— L,y 57y (h) < ————= max ’ hg
g (h) = Lx.a) (7) NG ielnl,jell] 2

log2/6 24l—1]2 ) nl
gy, [los?/ +O<\/B 4T 1og(K)D(W:) Hlog % )7
2n R

where D(W;) = Hlizl HWZHE . 22:1 ( ||Wl||2F / ||W1H§) bounds the hypothesis space and b is a

constant.

Remark 2. We remark several key observations from Theorems 1 and 2. First, the generalization
capability of the algorithm is negatively impacted by a higher dimensional label space g. Second,
the robustness of HGDL decreases with larger B values, which gauges the magnitude of perturbations
thus the inherent high data variance. Third, as the graph neural network architecture becomes deeper
(larger !) or wider (larger k), the generalization risk increases, suggesting the potential risk of model
overfitting. Forth, with larger n, the generalization error bound diminishes, which indicates that the
meta-path topology can be better delineated with an increased number of target nodes on the graph.

Remark 3. By combining Theorems 1 and 2, we observe that the generalization error bound of
HGDL using A outperforms that of using an arbitrary meta-path graph A;. Further, it is easy to
verify that the maximum degree of A, denoted by d, is smaller than that of A;, denoted by d;, i.e.,
d < d;. Vi € [k]. This rationalizes our graph transformer design in Sec 4.2, where the enforced
topology and feature consistency in Eq. (2) sparsifies network connectivity, thereby intermediately
encourages better model generalization.



Dataset | #node type  # nodes #edges # features # labels
. DRUG 4 40,786 1,737,890 191 28
6 Experiments ACM 5 20200 104976 1903 14
DBLP 4 27325 148246 8920 4
. YELP 4 8,052,542 7,905,197 19 9
6.1 Experiment Setup URBAN 4 1434 42,857 155 10

Benchmark Datasets To our best Table 1: Summary of dataset statistics.

knowledge, no heterogeneous graph dataset with ground-true label distributions currently exists.
To level the comparison study, we prepare five datasets with ground-truth node label distributions
using existing heterogeneous graphs, including DBLP [33], ACM [33], YELP, DRUG [34], and
URBAN [1]. Table 1 summarizes the data statistics. A detailed description on the dataset creation
and preprocessing, as well as their domain and label semantic meanings, has been deferred to the
Supplement B due to space limitation.

Compared Models In total six competitors are identified for comparative study. As no model
directly resolving the HGDL problem exists, we employ the state-of-the-art heterogeneous graph neural
networks and integrate them KL-divergence loss to learn label distributions of nodes. They include:
1) GCNgy: A baseline that uses graph constructed from each meta-path to train a vanilla GCN [35],
using KL-divergence as loss function, and reports the best meta-path result; 2) HANgy : This baseline
uses HAN [25] to integrate embedding from different meta-paths; and 3) SSHGNNyy : This baseline
uses SeHGNN [27], a transformer based approach, to aggregate meta-paths embedding with KL-
divergence loss function. For ablation study, we further include three variants reduced from our
proposed HGDL method, which include: 4) HGDL _ty: it removes HGDL’s topology homogenization
(Sec 4.1), which learns embedding from each meta-path graph and reports the best meta-path result;
5) HGDL _ ansformer: it uses GCN instead of the transformer (Sec 4.2) to learn embedding to validate
HGDL’s transformer for embedding learning; and 6) HGDLgp: it replaces HGDL’s topology and feature
consistence-aware graph transformer (Sec. 4.2) by using a random edge dropout method [31].

Evaluation Metrics To measure the discrepancy between two distributions, i.e., the predicted and
true label distributions of target nodes, we identify six metrics: Cosine Distance (COD), Canberra
Distance (CAD), Chebyshev Distance (CHD), Clark Distance (CLD); Intersection Score (IND), and
Kullback-Leibler Divergence (KL). Their definitions and calculations are deferred to Supplement B.

Dataset Model cop} CADJ CHD,, CLD, INDT KL| Win/Tie/Lose
GCNkL 0.220+ 025 9.209+ 740 0.2452 031 1,963+ 134 0.676 020 0.484+ 075 412/0
HANkL 0.2794 023 10.084 823 0.2684 027 2.1554 148 0.6324 025 0.579+ 055 6/0/0
SeHGNNg. 0.2864 018 10.1784 781 0.267+ 020 2.166+ 143 0.640+ 016 0.600+ 059 6/0/0
DRUG HGDL 0.1681 019 9.1794 574 0217+ 017 1957+ 114 0.710= 020 0.392- 044 -
HGDL - ransformer 0.1994+ 014 9.371+ 679 0.235+ 017 2.004+ 137 0.687+ 021 0492~ 059 4/2/0
HGDL -1 0.2124 023 9.510+.602 0.240+ 018 2.029+ 110 0.671+.020 0.462+ 050 4/2/0
HGDLgp 0.2044 026 9.602.+ 582 0.2394 028 2.040+ 162 0.681+ 030 0.5744 085 4/2/0
GCNkL 0.217+ 007 13.101+ 014 0.337+.012 3.527+ 057 0.652+ 013 0.842+ 072 5/1/0
HANkL 0.212 005 13.114+ 000 0.371+.008 34852 023 0.618+.008 0.765+.015 5/1/0
SeHGNNkL 0.247 4+ 061 13.141+ 052 0.371+.082 3.492 061 0.617+.090 0.9244 166 4/2/0
ACM HGDL 0.2032 o4 13.098- 006 0.351+ 004 3.408+ 035 0.637+ 004 0.753+ 025 -
HGDL - ansformer 0.2114 008 13.099+ 010 0.358+ 011 3.403+ 027 0.630+.012 0.777 +.031 1/5/0
HGDL -y 0.2231 006 13.130+ 015 0.361+ 019 3.423+ 022 0.631+ 020 0.879+ 034 3/3/0
HGDLgp 0.2164.007 13.106-+.005 0.364+.006 3375+ 001 0.624 4+ 007 0.801+.020 5/1/0
GCNkL 0.031+ 004 2.852+.000 0.091+.006 1.647+ 002 0.908+.006 0.114+ 011 6/0/0
HANkL 0.025+ 002 2.819+ 012 0.071+ 004 1.633+ 007 0.929~+ 004 0.082+ 008 5/1/0
SeHGNNkr 0.086+.140 2.887+.170 0.155+ 208 1624+ 049 0.842+ 214 0.252+ 397 0/6/0
DBLP HGDL 0.019-1 902 2.796.. 014 0.057 005 1.633 005 0.943.. 005 0.057+ 011 -
HGDL - ransformer 0.025+ 002 2.828+ 004 0.074+ 005 1.642+ 001 0.925+ 005 0.090=+ 008 6/0/0
HGDL-n 0.0204 002 2.808+.013 0.062+.005 1.637+.005 0.937+ 005 0.070+ 011 3/3/0
HGDLgp 0.023+ 001 2.819+ 005 0.070+.003 1.639-+ 003 0.929~+ 003 0.082+ 006 6/0/0
GCNkL 03424 014 7.180+.125 0.458+ 015 2.558+ 031 0.456+ 016 1.037+ 044 0/6/0
HANkL 0.4534 163 5.894 11 808 0.569+ 158 2.226+ 461 0.379+ 118 5.83216.577 3/2/1
SeHGNNg. 0.404+ 106 6.29811 757 0.522+ 111 2.343 438 0.413+ o78 3.99315.426 0/6/0
YELP HGDL 0.3421 015 71774128 0457 016 2.558+ 031 0.459. 015 1034 041 -
HGDL - ansformer 0.3424 014 71754128 0.458-+ 016 2.557+.031 0.458+ 015 1.035+.039 0/6/0
HGDL -y 03421 015 71734 126 0.458+ 017 2.556+.031 0.458+ 016 1.046-+ 051 0/6/0
HGDLEp 0.3484 021 7.2214.174 0.463+.020 2.565+.038 0.453+ 019 1.070+.07s 0/6/0
GCNkL 0.4854 025 8.3184.037 0.536+.014 2.773~ 009 0.331+.011 1.386+.069 2/4/0
HANkL 0.497+ 017 8.337+.020 0.538+ 010 2.777+ 008 0.326+ 005 1.407+ 054 4/2/0
SeHGNNk1 0.497 4 019 8.3364+.029 0.537+.011 2.776+.00s 0.327+.006 1.409+ 061 42/0
URBAN HGDL 0.4671 023 8.3151 41 05174 012 2.775+ 009 0.356- 010 1.340- 065 -
HGDL - ransformer 04974 013 8.340+ 032 0.537+ 006 2.777+ 008 0.3254 006 1.409+ 041 4/2/0
HGDL - n 0.5004.016 8.3384.028 0.540+.010 2.776+.00s 0.321+.004 1.4144 046 42/0
HGDLgp 0.481+ 028 8.325+ 031 0.527+ 012 2.775+ 007 0.340+ 017 1.375+ 067 1/5/0

Table 2: Mean =+ standard deviation results of seven models on five datasets. Best results are bold, and
71 (or |) indicates the higher (or lower) the better. Results are taken from 5 repeats. The win/tie/loss
counts are suggested by the paired t-test at 90% confidence level.
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Figure 3: Comparisons between HGDL vs. results from a single meta-path (CAD and CLD are
calculated in natural log for better visualization) for five datasets.
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Figure 4: KL and CLD tradeoff function example. The estimated probability distribution is [z, Z2,
0.9] and true probability distribution is [0.05,0.05,0.9], with 1 4+ 22 = 0.1. Horizontal axis is the x1
value and vertical axis is the loss for both CLD and KL divergence. Green dashed lines cover the
tradeoff region where the CLD loss monotonically increases and KL-divergence decreases.

6.2 Results

Table 2 summarizes results of all methods. Overall, our HGDL wins in 99 out of 180 settings, among
which on average 20 out of 30 settings excel in COD, CHD, IND, and KL metrics, 11 out of 30 in
CAD, and 8 out of 30 in CLD. On DURG, ACM, DBLP, and URBAN datasets, HGDL outperforms its
competitors in 83% settings in COD, CHD, IND, and KL metrics 46% in CAD, and 20% in CLD.
Beyond its overall better comparative performance, we make the following observation on HGDL.
First, HANk; and SeHGNNg, achieve better performance on YELP and DBLP dataset for CAD
and CLD metrics, but not on the other datasets and metrics. This shows that existing meta-path
based methods cannot learn distribution prediction well. In general, these models show similar
performance on YELP dataset. We hypothesize that this is due to the lack of rich feature information
on YELP, of which the dimension of nodal features is 19 which is minimum across all datasets.
Second, HGDL achieves the best results in KL-divergence by a large margin across all settings. On
average, HGDL have a 15% improvement compared with the second best result across all datasets in
KL-divergence. Given that KL-divergence is the loss objective in our framework, we extrapolate
that HGDL converges well in terms of minimizing the distribution distance. Same observation can



be drawn from the validation loss curve as shown in Supplement C Figures 5, 6, and 7. In addition,
on metrics being strongly related to KL divergence including COD, CHD, and IND, our HGDL also
enjoys significant performance improvement over other models. Among the metrics, CLD metrics
shows a different patterns in terms of KL divergence, we show in Figure 4 that CLD and KL has a
tradeoff region in small probability distribution and therefore caused such difference.

Third, the ablation study between HGDL and its variants, i.e., HGDL_ansformer, HGDL -y and
HGDLgp, demonstrate clear benefits of topology homogenization and consistency-aware graph
transformer in aggregating meta-paths and nodal features for LDL learning for heterogeneous graphs
(more results are deferred to the Section E.1 in Supplement C; there, we observe that HGDL.4 has no
improvement in KL-divergence with different edge drop rates compared to HGDL _ansformer, Which
is the model with 0 edge drop rate). We observe in Table 2 that HGDL _ansformer Shows comparable
performance on ACM and YELP by tying HGDL in five and six metrics, respectively; however, HGDL
outperforms it in all settings in other three datasets. Likewise, HGDL_ty ties HGDL across all metrics
in YELP but is inferior to HGDL in all settings in other four datasets. HGDLgp, ties HGDL in six and
five settings on YELP and URBAN, respectively, but is outperformed by HGDL for all other three
datasets in all settings. The robust performance of HGDL can be attributed to two aspects. On the one
hand, the improved results over those ablation variants suggest that our devised model components
for proactive meta-path learning and attention modeling are indispensable. On other other hand, it
substantiates the usefulness of our design that lets HGDL learn semantic fusion before the embedding
learning. This end-to-end learning design provides a larger search space for embedding learning
to find optimal solutions, whereas other methods that learn embedding and perform fusion in two
independent stages may result in suboptimal node embeddings thus inferior LDL performance.

Fourth, even though the optimal meta-path choice may vary across different metrics and datasets, our
HGDL that proactively learns to aggregate multiple meta-path graphs leads to the best performance in
most cases. Figure 3 illustrates the performance from single meta-path graph and we can observe that
our method outperforms the single best path results in all five datasets, with a larger improvement
when the meta-path results are close (indicating each meta-path has similar information, e.g., ACM
dataset in Figure 3 (b)) and a smaller improvement when one meta-path is significantly inferior to
others (e.g., DBLP dataset Figure 3 (c) where p; outperforms p, with a large margin). These results
validate the tightness of Theorem 1 by demonstrating the optimality of the learned meta-path graph
in our HGDL method.

6.3 Scalability Analysis

Denote the total number of nodes, hidden dimension size, and number of meta-path by n, f, and
k, respectively. The number of learnable parameters is O(n) for graph topology homogenization,
because HGDL requires learning an adjacency matrix from all meta-path, which involves kn f + k2 f
training parameters (i.e. O(n) complexity). Inducing adjacency matrix from features, i.e. the
2nd stage, only requires O(1) number of learnable parameters, same as vanilla GCN. As a result,
HGDL has O(n) complexity. The runtime performance is detailed in Appendix H.3.

7 Conclusion

This paper explored a novel graph learning setting, namely, heterogeneous graph label distribution
learning. Our goal is to predict label distributions of target nodes in a heterogeneous graph, which
cnables a finer-granular delineation of node properties compared to traditional single- or multi-
class node classification. We demonstrated that the topological heterogeneity and inconsistency
impose unique challenge for generalizing LDL into networked data, and proposed HGDL to overcome
them. Specifically, HGDL proactively aggregates meta-paths to achieve optimal graph topology
homogenization through attention mechanism, followed by a transformer-based approach to ensure
topology and feature consistency for learning node label distributions. We analyzed the PAC-Bayes
error bound of HGDL, and the result suggests the superiority of our design over those models learned
from a single meta-path graph. Empirical results on five benchmark datasets validated the tightness
of our analysis and substantiate that HGDL significantly outperformed its competitors.
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