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Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets.
However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the
interface designer’s desired latency expectations and resource constraints. Cloud DBMSs, while optimized
for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and
optimization techniques for data interfaces. This involves manually navigating a huge optimization space
that is sensitive to interface design and resource constraints, such as client vs server data and compute
placement, choosing which computations are done offline vs online, and selecting from a large library of
visualization-optimized data structures.

This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from
system design to provide design independence. Given an interfaces underlying data flow, interactions with
latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and
instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations.

To this end, this paper presents JADE, the first prototype PVD tool that enables design independence. JADE
proposes an intermediate representation called DIFFPLANS to represent the data flows, develops cost estimation
models that trade off between latency guarantees and plan feasibility, and implements an optimization
framework to search for the middleware architecture that meets the guarantees. We evaluate JADE on six
representative data interfaces as compared to Mosaic and Azure SQL database. We find JADE supports a wider
range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and
resource conditions.
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1 Introduction

Users rely on interactive visualization interfaces (data interfaces for short) to rapidly analyze,
explore, and make sense of data. If the dataset is small (say, a few hundred records), the client
can simply load the dataset into an embedded database like DuckDB [55] which can execute the
corresponding SQL queries in milliseconds.

Unfortunately, as data continues to grow, it is typically stored in cloud DBMSs, which makes it
increasingly difficult to build data interfaces that meet interface designers’ latency expectations and
resource constraints. A major reason is that cloud DBMSs are optimized for scale and not latency—
communicating with the cloud DBMS at all is too slow for low-latency interactions—and so building
a data interface effectively requires developing bespoke query execution optimizations and logic
outside of the cloud DBMS. This involves manually navigating a huge optimization space that is
sensitive to the interface design and resource constraints, such as client vs server data and compute
placement, choosing which computations are done offline vs online, and selecting from a large
library of visualization-optimized data structures [16]. The entire process requires interface design,
backend development, and system architecture design, which involves a significant amount of work.
These tasks are typically delegated to three distinct roles: interface designers, backend developers,
and system architects. However, this approach often incurs substantial communication overhead
and effort, especially since the interface designers may frequently adjust the interface design to
accommodate evolving user needs. On the other hand, assigning all of these responsibilities to
an individual, say the designer, would be overly demanding. In short, there is a lack of Design
Independence to insulate data interface design and requirements from how the underlying system
needs to be designed and optimized to support it. Design Independence allows interface designers
to rapidly iterate without being bottlenecked by checking about with developers and architects
about feasibility. Below shows an example:

ExaMPpLE 1. Figure 1 visualizes vote counts for different members of congress. Suppose the dataset
has grown over time and is stored in a cloud DBMS. The designer feels the DBMS latency is too high,
and embarks on implementing a client-server system to reduce interaction latencies while trying three
possible interaction designs.

Figure 1(a) lets users click on one of two decades, and can be optimized by precomputation e.g.,
per decade statistics. Figure 1(b) lets users choose a date range. It may be infeasible to pre-compute
the results for the quadratic number of queries, but if the statistic is distributive, a cumulative data
tile is an optimization that can be compactly stored [26]. Figure 1(c) additionally lets the user choose
the chamber in congress, but now requires computing a separate data tile for each chamber. If the
client has sufficient resources, caching all or portions of these data structures on the client is another
optimization choice; if the designer wants all of the interactions to respond within a few milliseconds,
then client-caching may be necessary.

Although these interfaces in example 1 are similar, the appropriate optimizations and system
design for each interface greatly vary due to an interlocking set of requirements and constraints:
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Fig. 1. Three variations of a data interface to analyze vote counts by congressional members. Users can
choose (a) the decade, (b) a date range, or (c) a date range and chamber. Each design requires a different set
of optimizations.

the queries triggered by user interactions, interaction latency expectations, database size, system
architecture, and available resources. For instance, changing the interaction from buttons to a
slider required changing the system architecture to pre-compute and use a visualization-optimized
implementation of a data cube [50] instead of pre-computing a query subplan. Similarly, relaxing the
latency requirements so each interaction can take several seconds would simplify the architecture
because each query can simply run on the source database.

This complexity is challenging for a designer to manage. Given a prospective interface design, it
is hard for a designer to even answer basic questions such as: how do I implement this interface?
Will it meet my latency expectations? And stay within the resource budget? What if the dataset grows
10x or my resources change?

Unfortunately, no tools exist to answer these questions. Physical database design (PDD) tools (e.g.,
AutoAdmin [? ], Azure SQL Database [47]) recommend indexes and materialized views to speed up
a query workload and do take resource constraints into account; however, they do not reason about
interactions nor provide latency guarantees. PDD is fundamentally designed for internal DBMS
optimizations, whereas visualizations are sensitive to even milliseconds of latency and rely on
bespoke data structures that are each optimized for specific query patterns and interaction types.

Thus, designers rely on visualization frameworks that are each designed around a specific
visualization optimization. For instance, Kyrix [60] is designed for pan-zoom interfaces by leveraging
PostgreSQL indexes, Falcon [50] specializes in data tiles for cross-filtering, VegaPlus [63] pushes
Vega transformations to a database and caches the database results, and Mosaic [38] runs DuckDB
in the browser or server to pre-aggregate group-by queries, while Cube.js [30] is designed around
data cubes. Unfortunately, each framework constrains the designer to designs that stay within its
optimization’s narrow sweet spot.

We believe the dearth of tools is due to a confluence of reasons. First, there lack good represen-
tations of the interface’s data flow, nor are there ways to express interaction latency constraints.
Second, existing physical design tools, along with visualization frameworks, explicitly avoid model-
ing latency in terms of wall-clock time, making them unsuitable for interface design. Third, each
visualization framework only supports one specific optimization. Fourth, these physical design
tools are designed to reside within the DBMS, yet for data interfaces, the cloud DBMS is the slow
path and simply speeding up cloud DBMSs is not enough.

For this reason, we advocate for a Physical Visualization Design (PVD) tool that decouples
interface design from system design to provide Design Independence. Given an interface’s underlying
data flow, interactions with latency expectations, and resource constraints, PVD checks if the
interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the
client, server, and cloud DBMS that meets the expectations. If infeasible, PVD should find a minimal
relaxation to the resource requirements to meet the desired latencies. The tool should also be
extensible to new visualization-specific data structures and solve the optimization problem quickly
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Fig. 2. (a) Interactions in running example, (b) logical DIFFPLAN, and execution plans that (c) send the query
to the cloud DBMS, (d) pre-compute and evaluate interactions using cubes on the server, and (e) caches cubes
on the client.

enough to support iterative interface design. Such a tool can be used to verify interface feasibility,
plan for data growth, and quickly iterate on design choices while understanding the systems and
resource implications.

Intuitively, PVD should not be possible because it makes stronger guarantees than physical

database design (PDD)—widely considered difficult. PDD only attempts to reduce expected workload
latency due to challenges of cost estimation, while PVD seeks to guarantee the wall-clock latency
from when the interaction’s query is issued to when results are available to be rendered.
In addition, there does not exist a representation of an interface’s data flow that is useful for
expressing data interfaces yet amenable to optimization—PDD query workloads are retrospective
and do not exist when designing a new interface. Parameterized queries are too limiting to literal
values: even modestly complex visualizations need to change query structures like expressions,
grouping attributes, and potentially subqueries. Further, it is non-trivial to search the combinatorial
space of physical plans while supporting bespoke data structures, cache placement policies, and
split execution Choosing the best data structures and plans that meet constraints is also an NP-hard
problem. Finally, we wish end-to-end optimization latency to be within a few seconds.

To this end, this paper presents the first prototype PVD tool called JADE. Inspired by recent
work [23], JADE models the interface as a set of structurally parameterized query plans called
D1rrpPLANS (Section 3). In addition to parameterized literals supported by SQL parameterized
queries, DIFFPLANS can parameterize attributes, expressions, and operators; we call each parameter
a Choice. This provides a greater level of expressiveness while still remaining amenable to analysis.
Interface interactions and widgets are responsible for binding these choices to their values in
response to user interactions. This abstraction makes it easy for designers to specify per-interaction
latency constraints while allowing JADE to analyze how those interactions translate to queries, e.g.,
the slider should update the bar chart within 20 ms.

ExaMmPpLE 2. Figure 2(b) presents a simplified version of the DIFFPLAN for Figure 1(c). The DIFFPLAN
uses Choice expressions to parameterize the range of the date predicate and the chamber of congress,
followed by a count aggregation. Each arrow corresponds to an interaction labeled with its expected
latency: the date slider should take no more than 10 ms, while choosing the chamber can take up to
500 ms. When the user interacts with a widget, it updates a set of parameter bindings, a dictionary
mapping parameters to their bound values, which are sent to the physical plan.

Given a set of DIFFPLANS, constraints, and database statistics, JADE extends rule-based optimiza-
tion to find physical DirrpLANS composed of relational operators, along with operators for custom
data structures, network communication, and caching policies. JADE finds the best combination of
physical plans that minimize expected interaction latencies and/or resource usage by encoding the
problem as an integer programming problem (IP).
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EXAMPLE 3. Figure 2(c-e) are three physical plans JADE may consider when optimizing Figure 2(b).
Figure 2(c) is a SQL operator that uses the parameter bindings $a, $b, $c to generate and send a query
to the cloud DBMS. It requires no client and server memory, but is slow. Figure 2(d) scans table T on the
cloud DBMS, filters by chamber on the server, and builds a data cube on name and date. The cube is
stored in a dynamic cache (DCache) on the server that is sized to store one data structure. The cube
will be replaced if the chamber changes, but will be reused if the date changes. It uses no client memory
and minimal server memory. Figure 2(e) differs in two subtle but important ways: the cache is static
(SCache), meaning it enumerates all parameters below it and caches all resulting subplans i.e., cubes
for both chambers. The cache is on the client to avoid network latency. It requires memory on the client
but offloads data structure construction to the server.

JADE uses per-operator cost models to estimate interaction latency and provides knobs to trade
off between conservative estimates, which guarantee latency constraints at the expense of fewer
feasible plans, and aggressive estimates, which may sometimes violate latency constraints but
are more likely to find feasible plans. Furthermore, JADE instantiates the physical plans and data
structures as a middleware that accelerates the data interface.

In summary, we make the following contributions:

e We design the first PVD system called JADE that enables Design Independence, so the designer
can focus on the interface and not on how the underlying infrastructure is architected,;

e We propose DIFFPLANS to model the data-flows affected by interactions in a way that is amenable
to analysis and optimization;

e We formalize PVD as a cost-based query optimization problem that considers visualization-
optimized data structures, client vs. server data and compute placement, and cache policies. We
leverage existing rule-based optimizer design and solve the problem by combining rule-based
plan enumeration with effective pruning heuristics and integer programming;

e We develop cost estimation models that enable designers to trade off between latency guarantees
and plan feasibility;

e Surprisingly, we find that low latency constraints (e.g., milliseconds to seconds) simplify the
optimization problem by invalidating plans with unbounded intermediate result sizes, including
joins whose fan-outs are not bounded [12]. Intuitively, unless a join is guaranteed to be fast (i.e.,
its result is small), it cannot be executed in response to a user interaction. This lets JADE sidestep
the hardest part of query optimization: join ordering.

e We evaluate JADE on six representative data interfaces as compared to a state-of-the-art visu-
alization framework Mosaic [38] and a commercial PDD tool [47]. We find that JADE supports
a wider range of interfaces than Mosaic, successfully meets latency guarantees, makes better
use of available resources, and can meet a wider range of data, latency, and resource conditions.
Only JADE can meet the corresponding guarantees for a database of 100M rows with only 100MB
client and 1GB server memory.

Scope. The interfaces in this paper refer to predefined dashboard-like interfaces, such as BI dash-

boards or data journalism visualizations [5, 33], which are not open-ended like Jupyter Notebook [1]
or Hex [7] but still support a space of analyses that is difficult to design and optimize. The interfaces
are not constrained by query complexity, as many other tools (such as Tableau [6], Metabase [2],
and Retool [3]) are, and can leverage an extensible library of data structures to optimize new
structural patterns in the analysis queries.

This paper focuses on defining an interface representation that is amenable to analysis, and an
optimization framework to support highly interactive data interfaces. Although we sketch an API
for designers to specify the inputs to JADE, we leave the development of a comprehensive library
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to future work. JADE does not consider optimizations based on approximation because it changes
the semantics of the interface and is confusing to users [54], and focuses on read-only analytics
interfaces. The optimizations are external to the cloud DBMS.

2 Use Case and System Overview

This section introduces an end-to-end use case as a way of introducing the system.

2.1 Use Case

We describe how a designer would use JADE to design, optimize, and deploy the data interface in
Figure 1. By interface design, we refer to the queries the interface can generate and the latency
bound designers expect for each interaction. While our focus is the optimization framework, we
sketch a dataframe-like API and how it is used to specify and deploy the interface.

The designer first uses the JADE library to define the DirrpLAN and interactions that populate the
bar chart. She defines three value-based choice variables, which can take values from their associated
attribute domains, e.g., ¢ can be any chamber, dmin can be any value of date. JADE supports many
choice types including numeric ranges, subsets, optional, enumeration of expressions, table and
attribute names, and operator subplans (Section 3.1). The designer then specifies the query using
query builder notation.

dmin, dmax = pvd.val('date'), pvd.val('date')

¢ = pvd.val('chamber")

g = pvd.query.select('name', count()).from('T")

.where(and(between('date', dmin, dmax), eq('chamber', c)))
.groupby('name")

She now makes two interactions. i1 binds values to dmin,dmax; interacting with the sliders will
rapidly update their bindings and q’s result should update within 20ms; we call this the continuous
latency bound. Motivated by prior work [50], the system is allowed to take up to 2sec to update
when the user first switches to the slider from a different interaction (e.g., the radio buttons); we
call this the switch-on latency bound. i2 binds ¢ and should take 200ms for both continuous and
switch-on latencies.

i1 = g.iact([dmin, dmax], 20, 2000)

i2 = g.iact([c], 200)

Finally, the designer specifies the memory constraints and network properties, and calls JADE using
the approximate solver (Section 4.3.2) to quickly return a feasible solution (say, Figure 2(e)). If JADE
was previously run with the same inputs, it returns the cached solution. Finally, she initializes the
solution to precompute data structures and runs the application on localhost.

pvd.memory({ client: '100', server: '1000'})

pvd.network({ latency: '20', throughput: '10'})

app = pvd.optimize({ solver: "approx" })

app.init()

app.run('localhost:8000')

If there is no feasible solution, JADE finds a plan that meets the latency bounds and minimizes
memory usage. The designer can decide whether to allocate more resources or redesign the interface.

2.2 Problem Setup

JADE takes as input a cloud database instance, the interface’s DIFFPLANS, interactions with their
latency constraints, and resource constraints. It then generates a physical execution plan spanning
a client-server architecture that meets these constraints.

Since JADE focuses on the data layer, it models the interface as a set of DiFFpPLANS (one for
each chart), interactions, and their latency constraints. A DIFFPLAN 9§ is a plan that contains
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choices 8.C = {ci,...,cn}, implicitly representing a set of query plans. A DirrpLAN therefore
generalizes normal query plans with the addition of choice expressions and operators (collectively
called choices, see section 3.1 and section 3.2 ) that dynamically change expression and operator
subtrees at runtime in response to user interactions. DIFFPLANS are amenable to static analysis and
optimization. Similarly to parameterized queries, binding concrete parameter values resolves to a
concrete query plan, but DIFFPLANS generalize choices from mere parameter values to expressions
and sub-plans. To summarize, DIFFPLANS execution first passes bindings top-down to resolve
choices and then bottom-up to execute the resolved plan.

In addition to choices, JADE introduces three classes of physical operators. The cloud operator is a
source that issues queries to the cloud DBMS. Identity operators manage data movement but do not
change contents, and include network and caching operators. Finally, data structure operators are
an extensible abstraction to support custom visualization-specific data structures. When combined
with identity operators, they enable JADE plans to control pre-computation, caching, and placement
decisions between the server and client. Section 3.2 describes these operators in detail.

An interaction x = ({(81, C1), (82, C2), ...}, L, Lgw) can affect multiple charts, i.e., DIFFPLANS, and is
expected to meet continuous (L;) and switch-on (Lgy) latency constraints. To simplify the notation,
we will treat x as a set of its D1FrFPLANS. Thus, for each §; € x, the interaction specifies a subset
of choices Cj C §;.C that it will bind, and 8;.1.(x) and 8;.lgy(x) are the interaction’s continuous
and switch-on execution latency for ;. The interaction’s estimated overall continuous latency
is the maximum across its DIFFPLANS 1¢(x) = maxgey0.1c(x), and similarly for switch-on latency,
indicating the most the user would have to wait for any of the charts(i.e., DIFFPLANS) to update.

ExampLE 4. Continuing the previous example in Section 2.1, the DIFFPLAN for the bar chart is
illustrated in Figure 2(b). In other words,

5= Yname,count() (cdatee [$a,$b] (0 chamber=$c(votes))

Here, 5.C = [$a,$b,$c] has three choices, and binding them resolves into an executable query
€.8-» Y(Odatee[9/10,10/10](Cchamber="house’ (Votes)). The range slider interaction Xrange consists of a pair
(5, {$a, $b}) with latency constraints L, = 20 and Lgy = 2000; the radio button X;,gio has a pair (5, {$c})
with L¢ = Lgw = 200.

Since the execution latencies are not known during optimization, they must be estimated. This
raises the natural question of whether JADE should optimize for the expected or upper-bound
latency estimates. To this end, JADE uses both: it uses the upper-bound estimates to meet the
designer’s latency bounds and minimizes the expected latency, denoted with superscripts lgp P and
IEVg respectively, where O € {c, sw}. Finally, M(8) and M(8) denote the client and server memory
needed for the plan.

Finally, an interface I = (A, X) is a set of D1FFPLANS A and interactions X. The total client memory,
Mc(1), is the sum of M(3) for all § € A, excludmg the possibly shared cache among different s
(similarly for the server). We use 1y, M, M; to denote estimates, and drop the argument () if it is
clear from the context.

2.3 Problem Definition
We now formally state the main PVD problem:
PROBLEM 1 (PHYSICAL VISUALIZATION DESIGN). Given an interfacel = (A, X), client/server memory

constraints M, Ms, and network latency lnet and throughput tyet, return optimal physical plans A* to
execute each interaction’s corresponding query such that:

o IPP(x) < xLe AL (x) < xLgw Vx € X
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Fig. 3. JADE’s two phases of usage.

o Mc(A*) < M A Mg(A*) < M
avg . L
o maxyexle “(x) is minimized.

When JADE cannot find a feasible solution, we relax the problem to find a solution that meets the
latency guarantees and minimizes the weighed average of the relative client and server memory
usage:

PROBLEM 2 (MINIMAL RESOURCE SEARCH). GivenI = (A, X), Mc, Mg, lyhet, and tyet, as well as a
preference a. € [0, 1], return physical plans A* such that:
o [P (x) < xLe A I (x) < x.Lgw Vx € X
o aX %é*) +(1-a)x %A:) is minimized.

2.4 System Overview

Figure 3 illustrates the two phases of JADE usage. The interface optimization phase (blue) translates
the user’s interface I = (A, X), constraints, and network properties into a feasible solution; the inter-
face usage phase (yellow) deploys the solution by materializing data structures offline, instantiating
a server that runs the portions of the physical plans below the network operator, and generating
client-side JavaScript code that executes the portions of physical plans above the network operator.

The interface optimization phase uses rule-based search to find candidate physical plans that
individually satisfy the constraints for each interaction and its affected DIFFPLAN pair - (x, §), and we
developed a suite of heuristic optimizations to accelerate search. Each physical plan includes data
structures, materialization policies based on dynamic or static caching, and network communication.
Using these candidates, the global optimizer formulates an integer programming (IP) problem to
find a combination of physical plans that 1) meet each interaction’s latency constraints, 2) maximize
data-structure sharing opportunities between plans, and 3) keep within global resource constraints.

The Library stores optimizer rules, an extensible set of data structures, and trained cost models.
The rules include relational transformations (e.g., predicate push-down), choice-specific transforma-
tions, and rules to match subplans to data structures. Each operator has a cost estimation function
which takes in standard database statistics and input cardinality estimates, and estimates the upper
bound or average latency and memory usage.
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The interface usage phase first computes or loads pre-computed static data structures into
client/server memory. JADE then allocates a server and initializes the physical plans across the server
and client. Each interaction sends bindings—a dictionary that maps choices to their corresponding
values—to the appropriate physical operators. These operators execute the rest of the plan and pass
the results to the interface renderer.

3 Library

A DIFFPLAN generalizes normal query plans with the addition of choice expressions and operators.
Data structures are modeled as operators. JADE has extensible libraries on data structure operators,
rules, and cost estimation.

3.1 Choices

We now introduce the choice expressions and operators that JADE supports. All choices are nodes
in a DIFFPLAN, and serve to select a subset of its children or choose a literal from a domain. One
perspective is that choices are a compact representation of a (possibly infinite) set of possible
queries; binding the choices resolves the DIFFPLAN to an element in the set, and interactions that
change these bindings explore this space of possible queries.

3.1.1 Choice Expressions. JADE supports four choice expression nodes: ANY chooses one of its
children, OPT toggles the presence of its child, VAL selects a value from a pre-defined domain, and
SUBSET selects a subset of its children. A binding b is a dictionary that maps a node id to the bound
value; the syntax N(id; ..)[b] binds node N with b. Once N resolves itself, it recursively passes b
to its child expression(s) using the following rules. Below, id refers to the node’s unique id.

e ANY(id; c:Expr+) has n children, and resolves binding b[id] € [0,n) to its b[id]* child. For
instance, (a=ANY(0;1,3,5))[{0:1}] resolves to a=3.

e OPT(id; c:Expr+, default) toggles its child. It resolves b[id] € (0, 1) to c if b[id] and default
otherwise.

e VAL(id; d:Domain) checks that b[id] € d is within the domain d, and if so, resolves to b[id].
JADE supports two common domain types: an attribute A’s active domain (e.g., VAL (id; A)) and
a numeric range VALR(id; [start, end, step?]) with optional step.

e SUBSET(id; d:Domain, p) is similar to VAL but resolves its binding b[id] € d to a subset
of its domain that will be used to construct an expression tree rooted at its parent p!. Our
implementation supports three domain types: SUBSETa(id; A) uses an attribute’s active domain;
SUBSETR(id; [min, max, step?]) uses a numeric range, defined by a minimum, maximum, and
optional step; (SUBSETE(id; Expr+) uses a set of expressions. SUBSET is useful to choose grouping
expressions, projection expressions, lists, and filter clauses. For example, SUBSET (id; a=1, b=2,
AND) can express a=1 or b=1 or a=1 AND b=1.

3.1.2  The Anyop Choice Operator. The AnyOp(Op+) choice operator is analogous to the ANY expres-
sion, but it and its children are operators. This allows it to dynamically change query substructures
as long as they are pre-defined—for instance, to choose from a set of source tables. Nesting AnyOP
defines a combinatorial set of plans. AnyOp is considered both a logical and physical operator.

3.2 Physical Operators

JADE introduces a suite of physical operators for constructing execution plans. Unlike typical
operators, a JADE operator takes a table or a binary blob typed to a data structure (Blobgs) and an

1JADE implements AND and OR as parents because they are sufficient for the experiments. Any commutative and
associative expression can be a parent.
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expression list as input. It is bound to bindings b (non-choice operators may ignore the bindings)
and returns a table or a typed blob.

Op(input:Table|Blobys, es:Expr*)[b:Bindings] — Table|Blobys

Physical operators are executable on the server, client, or both. In addition to AnyOp, JADE
introduces two classes of physical operators: Identity operators and Data Structure operators.

3.2.1 Identity Operators. Identity operators do not change data contents; instead, they are used
to manage data movement. Network, cloud, and cache operators are used to express materialized
views and control data placement and caching.

The network operators Send(input) and Receive(input) follow the exchange operator [34] design
to manage network communication and allow for split execution across the client and server.

The cloud operator is a unary operator with a logical DIFFPLAN as its child. For instance,
Cloud(ANY(T1, T2))’s child chooses between two tables. Whenever its child is resolved to a
concrete plan through interaction bindings, the operator generates the corresponding query string
and sends it to the cloud DBMS. Results are forwarded to its parent operator. The main restriction
is that the child DIFFPLAN cannot contain identity or data structure operators.

The cache operators are in-memory hash tables: the keys are bindings of its descendant choices,
and the value is the result of its child operator given that binding. If there is a cache hit, the cached
value is returned and the rest of the subplan is logically truncated. Otherwise, it passes the bindings
to its child operator and adds its output to the cache following the replacement policy.

We implemented two popular types of caches. SCache is a static cache that allocates sufficient
memory for all possible bindings of all choices in its subplan and pre-populates the cache offline. It
essentially truncates its subplan. DCache is a dynamic cache that allocates memory for the most
recent input table/blob and does no pre-population. When the input table/blob changes, it replaces
the cache. Future work can explore other caches and policies, such as disk caches and dynamic
caches with multiple slots.

3.2.2 Data Structure Operators. JADE supports an extensible library of data structures that are relied
upon to accelerate interactions and meet latency guarantees. For our experiments, we implemented
seven data structures: HashTable, B+ tree, R-tree, data cube, 1D and 2D cumulative data tiles [50],
and materialized views.

Each data structure implements a match(Operator)—matchState function used during query
optimization to check if it expresses a subplan. It returns a binary blob matchState used to initialize
the data structure if there is a match and null otherwise. It also implements physical operators to
create, use, and communicate the data structure during interface usage:

e build(Table, matchState)—Blobps uses an input table and match state to construct a binary
blob that encodes the data structure.

e eval(Blobps, matchState)[b:Bindings]—Table uses the blob from build(), matchState, and
bindings to return a result table.

e de/serialize(input:blob)—bytes ensures that the data structure can be sent over the network.
Otherwise, build and eval must be co-located.

Like other physical operators, each data structure also provides average and upper-bound cardinality,

memory, and latency estimates.

Combining Identity and Data Structure Operators Identity operators can be interleaved with

build and eval operator pairs to make fine-grained placement and caching decisions. For example,

simply using DCache reproduces the caching strategy used by Falcon [50] to optimize the active

widget, while SCache at the top of the plan full pre-computes all possible query results. Inserting a
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network operator between build and eval offloads expensive data structure creation to a server. In
short, combining identity and data structure operators creates a rich optimization space.

3.3 Optimizer Rules

JaDE follows standard rule-based optimizer design [17, 22] to search the logical and physical plan
space. Each rule consists of a pattern that matches a subplan, and a function to transform the match
into a semantically equivalent subplan. JADE supports three classes of rules.

3.3.1 Adapted Rules. Existing transformation rules can be adapted to subplans with choices under
straightforward semantics: a rule is valid if it is valid in all subplans encoded by the choices. In
our implementation, we adapted three logical transformations: splitting conjunctive predicates,
swapping the order of two filter operators, and swapping filter and group-by operators.

3.3.2 Data Structure Rules. Each data structure implements the match(Operator) method (Sec-
tion 3.2) that the optimizer calls on each node in a candidate plan. If there is a match, the optimizer
replaces it with a pair of build and eval operators with a logical cache operator sandwiched between
them. The optimizer later chooses the physical cache operator (SCache or DCache).

3.3.3 Choice Rules. We designed specialized rules to push choices up or down the plan, specifically
the AnyOp operator and Any expression?). We will describe the push up rules as other variations,
and push down rules are straightword extensions.

For the AnyOp operator, pushing it above its parent operator P involves adding its parent to each
of its children:

P(AnyOp(c1,...,cn)) — AnyOp(P(cq) -+ ,P(cp))

For the Any expression, rather than reorder it within an expression tree, we push it out of the
expression into a choice operator. Here, the operator P has a child operator c and a choice expression
with n subexpressions. When we push the Any up, it results in n parent operators, each containing
one of the subexpressions.

P(c,Any(eq,...,en)) — AnyOp(P(c;e1),...,P(c;en))

Note that the choice expression can be anywhere in the expression tree and not just its root. While
more sophisticated rules are possible, such as splitting a domain, we find these simple rules to be
effective and leave a detailed analysis of the rule space to future work.

3.4 Cost Models

The latency and memory estimation for interactions differ from the traditional estimation in three
ways. First, costs are interaction-centric rather than plan-centric because the same DIFFPLAN can be
bound by multiple interactions, so the same plan can have different latency estimates. Second, we
distinguish between the first time the user manipulates an interaction (switch-on latency) and the
latency during continuous interaction (continuous latency). Third, we strive to meet guarantees, so
estimating expected latency and memory usage is insufficient: we need to estimate upper bounds.

In this subsection, we describe our approach to estimate the upper-bound continuous I;?" (x) and

switch-on l?g,per(x) latency for an interaction x, as well as the expected latencies lng(x) and lgz,’vg(x).

We start with per-operator estimation and then extend to a plan. The principles for estimating
memory usage are the same.

2All choice expressions reduce to Any, so we focus on it.
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3.4.1 Operator Estimation. Given an operator o, we estimate its execution time o.t by fitting
a simple linear regression model whose features are the number of input and output columns,
cardinality, size in bytes, and column types. We generate training data by executing 1,000 randomly
generated execution plans for the six applications of all data size in section 5.1 covering all these
operators for 20 times and collecting the ground-truth execution time along with the corresponding
features. When the optimizer uses the model to estimate an operator’s latency, we control how
conservative or aggressive the cardinality estimates are to estimate the upper-bound or expected
latency. Concretely, we control the conservativeness of the cardinality estimates by setting different
types of predicate selectivity referring to the histogram statistics. For example, for upper bound
estimates, we use the selectivity of the most common value. If there are multiple-attribute selections
in conjunction, we use the smallest selectivity among them. For the average estimates, we use the

selectivity of These result in 0.t"PPeT and 0.t2V8 for the operator.

1
[unique values|*

3.4.2  Plan Estimation. We first describe how to estimate the upper-bound latency of a plan, and
then describe the minor change to estimate the expected latency. Briefly, we sum the upper-bound
operator latencies 0.tupper along each path from root to leaf operator, and take the maximum. The
only exception is that if the operator is a cache and there is a known cache hit, then it is treated as
a leaf. Cache hits occur if the operator is an SCache or if we estimate the continuous interaction
latency for a DCache operator. Otherwise, the cache operator is a no-op. To estimate the expected
latency, we average over every path rather than take the maximum.

ExaMpLE 5. Figure 4 shows another DIFFPLAN § for the interface in addition to the three DIFFPLANS
in Figure 2(c-e). 8 can calculate the interaction results for the slider () and the radio 2). It builds a
SCache to store the materialized view of the table T on the client, calculate the filter over chamber,
and build a dynamic cache of a cube.

8.1sPP" (D)) will assume the DCache is not populated and thus equals to the summation of all

upper
c

operators’ latency till the SCache - 16ms = 1 + 10 + 5ms. 8.1 (@) equals to 1 ms which will only

need to run the Cube. eval. Here, 1500 (2)) and 8.1.°P'((2)) are both 16ms since the plan executes
from o to the root.

0. tupPPer
€ Cube. emlzl($a, $)D 1
§ DCalche 0
Cube. build
name (name, date, count) 10
Date Ochamber=$c @ 5
|
@) SCache
vork
Chambers Networ
® House Clolud
O Senate T

Fig. 4. Interface and its DIFFPLAN: rightmost column shows the upper bound execution time of each operator.

4 JAbpEe Engine Design

Recall that the input to Problem 1 is an interface I = (A, X), client and server memory constraints
M, M, network latency lpet and throughput tpet, and the library of transformation rules R. A is the
set of logical D1FFpPLANS and each interaction x = ({(3, Cj), . . . }, Lc, Lsw) € X specifies the choices in
a set of DIFFPLANS that the interaction will bind, along with the latency constraints. The structure
of our solutions is as follows: for every pair of interaction and logical DIFFpPLAN that it binds (x, §),
choose an optimal physical DIFFPLAN that meets the interaction’s latency constraints, such that
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the total resources across all chosen physical DIFFPLANS meet constraints. We will first describe
an exhaustive baseline approach, then describe pragmatic optimizations to run the optimizer
interactively.

4.1 Exhaustive Baseline

The baseline runs two very slow steps—Candidate Search and Optimal Selection—that we will opti-
mize in the subsequent subsections. Candidate search (Algorithm 1) loops through each interaction
x€X and each diffplan §; that the interaction will bind, and finds all viable physical plans Ay ; using
the following steps. It exhaustively applies the rules in R, and for each plan, tries all assignments of
static or dynamic cache between eval and build operators as well as other valid cache placements,
enumerates all valid placements of cloud and network operators, and only keeps viable plans that
satisfy the latency constraints - (L¢,Lsw)-

Algorithm 1 Baseline Candidate Search

for x € X do
for §; € x do

1:
2
3: Axi = {}
4
5

for dpys € exhaustive enumeration do
Insert 8ppys into Ay if Sppys is viable.

Next, optimal selection finds the best 6;{‘1 € Ay for each pair of interaction and DIFFPLAN, so
that the combination satisfies the memory constraints and minimizes the average latency estimates.
It simply enumerates every combination.

4.2 Candidate Search Optimizations

Candidate search trivially parallelizes over every interaction, DIFFPLAN pair (x, §); We also developed
two effective pruning heuristics.

4.2.1  Work Sharing. Exhaustive enumeration for every (x, 8) pair can be wasteful because for a
given DIFFPLAN §, almost all search steps are independent of the interaction x. The only dependent
decision is that the dynamic cache should never be above the choices that x will bind, because the
cache would never be reused.

Thus, we run candidate search for each 6 to enumerate all reachable physical plans; these plans
insert a cache placeholder between each data structure Build and Eval pair and also enumerate other
viable places. For each interaction x that binds §, we try all static and dynamic cache assignments,
and enforce that the DCache is above the choices that x binds. We add every viable plan as a
candidate for (x, d). If each D1rFPLAN is bound by N interactions, this reduces search cost by Nx.

4.2.2  Push-ups First. Traditional query optimizers[22] are often staged so rules that almost always
improve the query (e.g., predicate push-down) are applied before more general rules. Similarly,
we first heuristically apply push-up rules so that all AnyOp and Any choices whose domains are not
literals are at the top of the resulting plans. We do this because data structures typically do not try
to match AnyOp and Any choices that are not literals, so their presence will cause false negatives,
and moving them to the top makes matching data structures more likely. In addition, it is possible
to search for candidates of an AnyOp’s child subplans in parallel, so pushing them up to the top
maximizes parallelization opportunities.

We refer to each subplan under the AnyOps as a basic plan f3; because they only contain param-
eterized literals, which are familiar to traditional matching patterns. For each basic plan f;j, we

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 197. Publication date: June 2025.



197:14 Yiru Chen et al.

enumerate its set of viable physical plans Ay ;j by exhaustively applying the rules and parallelize
search across the basic plans. Joins are always pushed to the bottom and materialized using a
cache operator to avoid computing joins during user interactions. We avoid join optimization, so
exhaustive enumeration is manageable.

EXAMPLE 6. Below shows an example where the filter predicate contains ANY($1; a, b) and VALR($2; [1, 5]).
We push the ANY operation out of the expression tree into the AnyOp operator at the top. The transfor-
mation results in two basic plans—one for each ¢ plan:

OANY($1;a,b)=VALR($2;[1,5]) — AnyOp($1; Oa=VALg($2;[1,5])> Gb=VALR($z;[1,5]))
We preserve the ids of the choice nodes and do not flatten them so that the original bindings still apply.
For instance, the binding {$1:0,$2:2} chooses 6,=2 in both the original and transformed DIFFPLANS.
Note that if the two choices had different latency constraints (e.g., $1 was 20ms and $2 was 200ms),
then the latency of all plans is now 20ms.

4.2.3 Additional Pruning Heuristics. First, we restrict each DIFFPLAN to at most one static cache;
once it is placed, we do not consider any static or dynamic caches under it. Second, if a given
static cache for a data structure exceeds the resource constraints M or M, we prune any plan that
contains that static cache.

ExAMPLE 7. Figure 5 shows an example of candidate searching for basic plans. In this example, we
search for physical candidates Agy ;o of the basic plan By for interaction $2. By applying rules, here are
two candidates among all the candidates the searcher finds: the candidate (D) statically caches the raw
table and calculates the filter operation on the server, while the candidate (2) builds a hash table for
attribute b on the server and statically caches it on the client for future queries. Although the second
candidate requires slightly more memory due to the hash table, it offers significantly lower latency.

AnyOpg,
NEtliVOTk HashTable.eval(Vals,)
Oa=Valg, 1 Ob=Valg, a”::/"’u SCalche
7 Network
| | SCache |
T T Cloud HashTable. build(b)
T Cloud
|
Bk . ¢

@)
Fig. 5. Two candidates (D and Q) for the basic plan Bs.

4.3 Optimal Selection

The output of candidate selection is a set of viable plans Ay ;; for every interaction x and every
basic plan Bj in each DIFrFPLAN §; € x after push-ups. Since all viable plans satisfy the interaction
latency constraints, following Problem 1, our goal is to choose an optimal S:ij € Ay such that

the maximal 15'8(x) across all interactions is minimized. We structure the problem around two
constraints: () for every interaction and basic plan pair, one plan is selected, and @) the total
resource consumption over all plans is within server and client memory constraints M, and M.

Unfortunately, this problem is NP-hard because the optimal plan selection for different interac-
tions and basic plans are not independent and may share data structures. This can be shown via a
polynomial-time reduction from the NP-complete hitting set problem to optimal selection; we omit
the proof due to space constraint.

We solve the optimal selection problem using integer programming, by translating () and
(@ above into two sets of constraints. We model all dynamic and static caches in the candidate
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plans using binary variables D = {D1...Dg} and C = {C;...Cy}, respectively. Setting a variable to 1
chooses the corresponding static/dynamic cache. C;.m and Dj.m denote the cache’s memory usage
(Section 3.4). We define a variable avglatency to denote the maximal I5"8(x) across all interactions.
The objective function is: minimize (avglatency).

To instantiate 3, each candidate set Ay ;j in (D) must choose 1+ candidates § € Ay ;; whose caches
are built. This is expressed by the two II terms, where Cg and Dg denote the set of static and
dynamic caches in 8. The indicator function I() ensures that the estimated interaction latency

1%VE(x;) is smaller than avglatency.

Z {l_l ¢ X l_l d xI(3.1*8(x) < avglatency)} > 1 VAyj; )

Sely;; ceCs deDs

Constraint (2) ensures that the total memory across all selected plans is within client and server
memory constraints (Mc, Ms). An SCache Cj pins its data structures, so its use is a constant C.m.
However, an interaction x may materialize multiple DCache instances simultaneously and then be
evicted when the user uses a different interaction. Thus, we only allocate the maximum DCache
required for an interaction. We model server-side memory of static MgCache

MDCache
S

and dynamic cache

as below, where Cg (Dy s) is the set of static (dynamic caches used by x) on the server.

MgCache _ Z C; x Cy.m M]S)Cache _ mfx Z D; X Di.m ®
C;eCs Di€Dys

The total server memory consumption Mg = MgcaChe + MPCache and jts constraint is Mg < M.

The similar holds for the client memory Mc¢ = M?:C‘“he + MgcaChe < M.

4.3.1 Implementation Details. JADE uses Z3 [28], but the indicator function I() in O) causes Z3 to
time out. To address this, we introduce an average latency threshold Tayg to remove all candidates
in Ay;; whose average latency is larger than Tayy; this lets us remove I() and quickly find a solution.
We use an outer loop that performs a binary search over the Tayg values between 0 and the largest
latency constraint to find the smallest Tayg that produces a solution. The final value of Tayg is
equivalent to minimizing avglatency.

The above formulation solves Problem 1 in Section 2.3 If no solution is found, we relax the
hard memory constraint and instead optimize to minimize a weighted average of server and client
memory usage, as described in problem 2. This approach helps the designer understand how much
additional memory is necessary to meet the latency requirements.

4.3.2  Approximation. We also introduce an approximate variant by terminating the search after S
seconds and choosing the top-K candidates with the smallest memory usage for each basic plan,
where S and K are hyperparameters that control the trade-off between the quality and size of
the candidate sets passed into the IP program. A larger S potentially finds better plans or more
sharable subplans, while a larger K increases the accuracy of the results at the cost of slower
integer programming. We evaluate this approach in section 5.6 and find that it greatly accelerates
optimization without discernible impact on the final solution or application.

5 Evaluation

We compare JADE to visualization frameworks and PDD tools in how well they optimize a variety
of data interfaces, latency bounds, and resources. JADE is more expressive than visualization
frameworks because it can mix-and-match optimizations, and interactively finds feasible plans
over a wider range of constraints than PDD.
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5.1 Setup

Setup. We implemented our execution engine by connecting off-the-shelf components, such as
the Acero operator for traditional query operator execution [11], open-source data structures like
R-trees [52], and some manually implemented data structures. We used a client-server setup where
each machine runs Ubuntu 22.04, with 2.4GHz Intel CPUs and 128GB of memory (we restrict their
memory in the experiments). The server communicates with Azure SQL Database [48] 3 that stores
the base data. The network latency is Oms and throughput is 10MB/s.

country | Ireland > 5000
1 avg(temperature_celsius)
4,000
@
3,000
15— E
© 2,000
10— 1,000
5— o
May 22 May26 May30 Jun03 Jun07 Jun11 Jun15 Jun19
date
0-
‘ . , cases v May22 Jun19
Oct Jan Apr o—0
2023 2024 date — California v
Weather Covid

I
sl

Brightkite Flight Liquor

Fig. 6. Screenshots of the six representative data interfaces.

Interface Complexity V I I/V V/I C/§ Description
Weather Easy 1 1 1 1 1 Temperature changes by country.
SDSS Easy 1 1 1 1 4 Zoomable scatterplot of stars.
Covid Medium 1 3 3 1 3 Covid case/death trends of different counties.
Brightkite Medium 4 4 1 3 7 Geographical distribution of Brightkite user check-ins changes by

month, day, and hour, with month, day, and hour distribution patterns
varying across different locations and time periods.

Flight Hard 5 5 4 4 8 Binned aggregate counts are computed for departure time, arrival time,
distance, and airtime. A heatmap visualizes the counts across arrival
and departure times. Each chart features a linked brush that enables
cross-filtering across all other charts.

Liquor Hard 4 4 3 3 4 Study the liquor sales trends along packs, county, categories and date.

Table 1. Visualization applications ported to JADE. Attributes include numbers of views (V), interactions (1)
interactions per view (I/V), views per interaction (V/I), choices per DiFrpLAN (C/3).

Baselines. Mosaic [38] is a state-of-the-art Javascript visualization framework that leverages data
cubes and DuckDB [42] to accelerate interactive visualizations. We run the DuckDB on the server
side. Azure SQL Database [47] (Azure) implements a state-of-the-art physical database design
system. Given a query workload, it requires between 30 minutes and 72 hours [47] to propose
optimized data structures for query execution. Prior to latency evaluation, we employed a simulator
that mimics human interactions with interfaces to generate a query workload representative of
each data interface. These queries were submitted to Azure SQL Database, allowing the automatic
tuning feature sufficient time to construct its preferred data structures. Finally, interface queries

3We do not enable the automatic tuning when using Azure SQL Database as JADE’s cloud database.
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were executed against the database to formally benchmark the interaction latency. Neither system
supports latency constraints, so we run their optimizations and report the resulting query latencies.

Data Interfaces. JADE is the first system to express and automatically optimize a wide range of
data interfaces, and so we lack a preexisting workload to evaluate. Thus, we sought out a set of
representative data interfaces that varied in domain and interface complexity. This survey resulted
in six representatives: weather analysis from Kaggle [56], Sloan Digital Sky Survey [58], Google’s
Covid visualization [33], interactive cross-filtering interfaces to analyze Brightkite check-ins [35]
and Flight delays [50] from academia, and a cross-filter visualization that analyzes Iowa liquor
sales on Observable [40]. These representatives also subsume the multitude of interfaces created
by frameworks such as Streamlit [8] and Hex [7].

While the data for all interfaces was available, we manually translated each interface into
DirrrLANs. We define complexity based on if (1) each interaction affects one view, and (2) each view
is affected by one interaction. An interaction that affects >1 views must schedule and concurrently
execute queries. A view affected by >1 interactions means a DIFFPLAN contains multiple choices and
may need dynamic caching to avoid a combinatorially large static cache. We say an easy interface
satisfies (1,2), a medium interface satisfies either, and a hard interface satisfies neither (Table 1).
Figure 6 shows the screenshots of these interfaces.

We scaled each interface’s database to vary between 1-100M records (10M default) using Synthetic
Data Vault [62]. Based on prior HCI and visualization work [13, 15, 31, 43, 44, 50, 51, 60], we chose
three latency bounds: fast (20ms), medium (200ms), and slow (2s). Widgets such as brush and
range slider interactions are set to fast because they rapidly generate many queries per second
and are sensitive to latency fluctuations [43]; all other interactions were set to medium. We set the
switch-on latency to slow for all interactions. This is denoted by the default latency setting L1.

5.2 Comparison with Baselines

We first compare how JADE, Mosaic, and Azure optimize each interface under varying latency
and resource constraints. In addition to the default L1 latency setting, let L2 and L3 be where all
continuous latency bounds are respectively fast and slow; switch-on bounds are always set to
slow. RS1 (100MB client, 1GB server) and RS2 (1GB client, 10GB server) represent lower and higher
Imemory resources.

Table 2 summarizes whether each system found a feasible solution. With low resources (RS1),
Mosaic only runs the Flight interface (which it was designed for), while Azure only supports the
Liquor interface, but only if all latency bounds are 2s (L3). With high resources (RS2), Azure did not
improve, while Mosaic only supports 55% of the settings. In contrast, JADE found feasible plans for
all interfaces—even Brightkite—under RS1. Under RS2, JADE supported all settings because it can
mix and match optimizations, placement, and caching policies in a more flexible way than Mosaic.

5.3 Is Feasible Really Feasible?

Since JADE evaluates feasibility using cost models, we first empirically study whether feasible designs
actually meet the desired constraints. We then study the trade-off between how conservative the
cost model is and the likelihood JADE finds a feasible plan.

5.3.1 Do Feasible Plans Really Meet Constraints? We answer in the affirmative by reporting the
resource and latency constraints compared with the actual memory usage and interaction latency*.
We use L1 and all pairs of client (M, € [100MB, 1GB]) and server (Mg € [1GB, 10GB]) memory.

4Actual latency is measured as the time between issuing the query on the client and receiving the results on the client.
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Figure 7(top) reports, for each interface (y-axis) and interaction (points), the ratio of actual latency
over the latency constraint (x-axis). We see that all ratios are below 1, meaning the produced plans
meet the constraints. Figure 7(bottom) reports the percent of client and server resources actually (
o for client, A for server), and we find that JADE consistently meets the resource bounds. In fact,
the simpler interfaces (e.g., Weather, SDSS, Covid) take negligible resources. These results hold for
L2 and L3 settings as well.

Weather SDSS Brightkite Covid Flight Liquor Optimized
L1 L2 I3|L1 L2 L3 |L1 L2 L3|L1 L2 L3 |L1 L2 L3 |L1 L2 L3 %
PVD RS1 |V VvV V|V Vv V - - Vv v vV v V|V v 88%
RS2 |V Vv V|V V V|V Vv VIV VvV VIV Vv V|V VvV V 100%
Mosaic BSU| -~ — |- -~ - |- v /] ] e
el N N A Y T A A 55%
RS1| - - - |- - - |- = “1-"= “91-"=""1T-""V 5%
R S e (Y 5%
Table 2. Can JADE, Mosaic, and Azure find feasible solutions?
Server: 1 GB Client: 1 GB Server: 10 GB Server: 10 GB
Client: 100 MB Client: 1 GB Client: 100 MB Client: 1 GB
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Fig. 7. The ratio of each interface’s (top) actual latency to latency constraint, where each interaction is
a separate point, and (bottom) percent of available memory used. The actual latency and memory use is
empirically always lower than the constraint.

5.3.2  Cost Model and Feasibility. Our cost models are trained to predict latency or memory from
input cardinality, and JADE by default uses the conservative Upper-bound cardinality estimate that
uses attribute statistics (Section 3.4.1). However, an overly conservative estimate will likely lead
to fewer feasible plans because the estimated latency or memory is more likely to exceed the
constraints, while an aggressive estimate will have more feasible plans but the actual latency or
memory usage is likely to exceed the constraints. We study this trade-off by using three additional
estimators. NoFilter assumes all selectivity is 1 and ignores data statistics, Avg estimates the average
cardinality by assuming uniform value distributions, while Avgo.5 divides Avg by 2.

Figure 8 reports a microbenchmark that compares the estimated and actual latencies for each of
the four cost models; the diagonal is where the estimate and actual are the same. After running
JADE under L1 and all nine resource constraints, we recorded every operator’s real and estimated
execution times, and repeated this for 20 runs. We color code points by whether they are above
or below the diagonal. All points to the left of 20ms are colored red because they are already
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Avg Avg0.5 Upper NoFilter

Estimated Exec Time (ms)
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e
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Actual Execution Time (ms)
Fig. 8. Actual execution time vs. estimated execution time using four different cost models. Red points are
either above the diagonal or correspond to actual execution times less than 20 ms. These indicate that the
estimated execution time is greater than the actual execution time, or that the actual execution time is very

fast, making it acceptable even if the estimate is smaller. The blue points represent all other cases.

fast irrespective of the estimate; the points of concern are those that are estimated to be fast but
are actually slow. NoFilter and Avgo.5 wildly over- and under-estimate the latency, respectively.
Upper and Avg are both near the diagonal, however Upper tends to slightly over-estimate, which is
preferable for meeting constraints.

Cost estimates also affect whether
JaDE finds a feasible plan at all and Avg0.5
whether the feasible plan violates any Avg

-
o

constraints. To test this, we fixed latency 2 (g. Upper
constraints to L1, and generated all com- §

binations of resource constraints where & o6-

cliente  {0,100MB, 1GB} and servere NoFiier
{500MB, 1GB, 4GB}. Note that JADE can ei- 06 08 10
ther return (C1) no feasible plan, (C2) a Acouracy

feasible solution that meets constraints, or  Fig. 9 Accuracy-solvability trade-off for four cost models.
(C3) a feasible solution that violates some constraint. We count the number of each case to calculate
measures for feasibility (%) and accuracy (%) Figure 9 shows that Avg (Avge. 5) find more
feasible plans, but only <65% met the constraints. NoFilter always meets constraints but only finds
solutions for <50% of problems. Upper balances accuracy and feasibility, so that 80% of problems are
solvable, and nearly all feasible plans meet constraints. Thus, the rest of the experiments continue

to use Upper as the default.

5.4 Scalability to Large Databases

We scaled the database for each application from 1M to 100M records under the default L1 and
RS2 constraints. Figure 10 reports the interaction latency for 9 representative interactions from
across the interfaces to highlight the range of scalability trends. The dotted line is the interaction
constraint, and we report Mosaic and Azure as baselines. JADE can always meet the latency bound
irrespective of database size because it properly caches the necessary data structures. Azure’s line
reinforces the fact that Cloud DBMSes are the slow path. Mosaic exceeds the latency constraint in 5/6
interfaces for different reasons. For Weather and Liquor, it proposes no data structures, it cannot
express the Covid interface (its line is not shown), and it proposes data structures for Brightkite
and Flight that still require executing queries over increasingly large datasets.

5.5 The Pareto Curve for Resource vs Feasibility

JADE makes it possible to identify the Pareto curve of the minimum resources needed to meet
latency constraints. This is akin to a resource profile for a designer’s interface. Under L1 constraints,
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Fig. 10. Interaction latency as database size grows.
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Fig. 11. The minimum resources needed to meet each interface’s latency constraints.

we vary client memory from 0 to 2GB; for each client setting, we find the minimum server memory
that finds a feasible solution.

Figure 11 shows three resource profiles. Interfaces that don’t require resources exhibit a flat line
(weather). Those that simply require a fixed-size data structure exhibit a "\ shape because the
main decision is whether to cache on server or client (e.g., Liquor, SDSS, Covid, Flight). Brightkite
exhibits a smooth shape because it balances different usable data structures and their placements.
If the network is fast, the client can often have no memory as long as the server has sufficient
resources; this is not the case for Brightkite because even with unbounded server memory, the
network alone violates latency constraints.

5.6 Optimization Runtime

We now report the optimization time needed to find a feasible plan when using L1 and RS2
constraints. We compare the full optimization algorithm and the approximate solution described
in Section 4.3.2, which stops search after S = 2 seconds 5 and uses the K=100 candidates with the
smallest memory requirements for each DIFFPLAN as inputs to the IP. The feasible plans found by
both approaches exhibit similar average interaction latencies (e.g. 2.3243 ms vs 2.3244 ms for full
and approximate) and the actual memory usage stays within resource constraints.

SFor liquor application, it appears to be longer than 2s because there needs some time to exit the search.
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Figure 12 reports the search and IP runtimes for both methods. While most interfaces are solved
well within 250ms, approximation speeds up optimization for the Liquor interface by around 3x
(18.4s — 5.6s) because it places a hard time cap on the search procedure, and also bounds the size
of the IP problem to be linear with the number of DirrpLANs. The ability to return designs within
seconds, and often in a few hundred milliseconds, can empower designers to incorporate JADE
within the design loop.

204 1 Integer Programming (Approx, Top-100) 18.38
[ Search Candidates (Approx, 2s)

W Integer Programming

151 mmm search Candidates

1 7.58
5.90 5.59
5
, 011010 010010 0230.23 0.120.13 ml P‘

weather sdss brightkite covid flights liquor

Time (s)

Fig. 12. JADE Runtime with or without approximation.
5.7 Case Study

This section will show case how PVD optimizes the NYTimes Covid interface [4]. We will use the
“Hot Spots” part of the NYT interface described next as an example of how JADE can reproduce
their optimizations and flexibly re-optimize the architecture in response to interface changes.

Figure 13 visualizes county-level Covid-related statistics aross the U.S. The top tab changes the
statistics shown: 1) Hot spots (avg cases/100K people in the past week); 2) hospitalizations per
100K people); 3) Vaccination rates; 4) Cases per capita; and 5) Deaths per capita. Hovering over a
county renders a tooltip with details. The toolip for "Hot spots", for instance, shows two statistics
(# cases/day, # cases/100K people) and the past 14-days as a line chart.
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Fig. 13. The New York Times Covid interactive map shows five different distributions over U.S. controlled by
the tab interaction. The tooltip interaction on each chart will show more specific information.
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NYT Implementation. The above interactions are designed to respond within dozens of millisec-
onds. The hot spots chart is precomputed as an image, the two tooltip statistics are cached on the
client, and the precomputed 14-day trends are cached on the server and fetched on hover.

Using the JApE Optimizer. The above system design can be easily reproduced via optimization;
the other visualizations follow similarly. Hot spots consists of four queries to calculate each of the
statistics described above, and they reference one VAL choice node that specifies the county:
c = pvd.val('county')
ql = pvd.query.select('county', 'avg(cases/pol*100000)"')
.from('covid').where(gt('date', today() - '7 days'))
.groupby('county"')
g2 = pvd.query.select('avg(cases)').from('covid')
.where(and(gt('date', today() - '7 days'), eq('county', c)))
. // the #cases per 100K query is similar to g1 and omitted
pvd.query.select('date', 'cases').from('covid')
.where(and(eq('county', c), gt('date', today() - '14 days')))
The tooltip interaction should respond within 20ms (the tab interaction is omitted), and we specify
the expected memory available and network properties.
i1 = iact(c, 20)
pvd.memory({client: 1, server: 1000})
pvd.network({latency: 10 , throughput: 13})

q3
q4

Figure 14 shows that JADE reproduces the manually optimized plans for each of the three queries
above (6:'r for qi). 87 precomputes the map visualization’s data in the cloud DBMS and caches
them on the client. To show the tooltip statistics for a selected county, 8} precomputes all counties’
statistics, builds a hash table on county, and caches it on the client. 54* precomputes the 14-day
trends, caches an index over them on the server. Thus, the 14-day trend data incurs a network
roundtrip but no computation cost.

HashTable. eval($c)
\ \

SCa‘che Network
SCa‘che Netu‘/ork HashTabl‘e. eval($c)
Netm‘/ork HashTable. b‘uild(county) SCa“che
C lo‘ud C lo‘ud HashTable. build(county)
Y county,avg(“22524100000) Yeounty,avg(cases) Clo‘ud
Uaa:e>to‘day—7days Udate>tod‘ay—7days Uda:e>:od‘ay—14days
S a‘zn Sc‘an S clzn
5 5 6

Fig. 14. JADE optimized plan 87, 8}, 8] forq1, 2, g4 respectively. The grey part represents the computation
on the database, the yellow is the server, and the green is the client side.
JADE Supports Iterative Design. The designer wants users to see historical statistics by choosing

a desired date using a slider. Unfortunately, the previous optimizations are no longer applicable
because they display fixed recent statistics instead of the historical data that users can specify using
the slider. With JADE, the designer simply defines a new choice d to represent the selected date and
include it in the affected queries (e.g., g1 shown below, and states its latency should be 200ms.

d = pvd.val('date')
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gl = pvd.query.select('county', 'avg(cases/polx100000)"')

.where(between('date', sub(d, '7 days'), d))

.groupby('county"')
i2 = iact(d, 200)
JADE updates the system architecture in seconds. Now JADE outputs per-interaction optimal physical
plans A*. For the tooltip interaction i1, JADE proposes a B+ tree index on a composite key (county,
date) cached on the server side. When the county changes, it will fetch the corresponding data for
g2-4 respectively and do the following computation of q2-4 on the fly and return the results. The
returning data is small - one integer for g2, g3 and 14 integers for g4, so the network is fast and
it satisfies the fast latency contraints. For the date slider, JADE proposes a cumulative data tile to
accelerate the recent 7 days case computation for all the counties on the server. When the date
changes, it will query the data tile and return the map over the network. The map is relatively large,
so the interaction is not that fast, but is still within <200ms. When the date changes, q2-4 still
use the B+ tree to accelerate the query execution. As we can see, JADE quickly helps redesign the
system architecture in seconds, whereas manual redesign and reimplementation could take days.

6 Related Work

Visualization Interface Query Representation Most interactive, SQL-based dashboarding tools,
including Tableau, VizQL, Vega-lite, and Mosaic [36-38, 57, 59], can dynamically generate SQL that
is executed in a DBMS. However, they do not specialize optimizations for each interface design,
nor do they synthesize an end-to-end client-server execution plan to meet latency guarantees.
Prior works PI2 [24, 25] and DIG [23] introduced a compact representation for analysis tasks, re-
spectively termed DIFFTREE and data interface grammar. This representation statically encapsulates
query analysis while maintaining the correspondence between user interactions and queries using
Choice nodes. However, these approaches are focused on syntactic strings and do not consider the
execution query plan. This paper extends this concept by introducing DirrPLAN, which mimics a
query plan and can be programmatically expressed using a query builder API common in data-frame
systems like Spark, Pandas. DIFFPLAN retains the choice-based abstraction between interactions
and queries, but can be easily integrated into a standard query optimizer and executor framework.

Visualization-specific Optimizations Faster engines [27, 41, 53], data cubes [44], query rewriting
and materialized views[63], precomputation / pre-aggregation[38], spatial indexes[60] all reduce
query latencies for narrow classes of queries. JADE is designed to be extensible and, by specifying a
matching pattern and cost model, can incorporate these techniques into the optimization framework.
The main exceptions to this are sampling and approximation techniques [9], which we do not
consider because they change the semantics of the output visualization, and pre-fetching [14, 49],
which is orthogonal to choosing data structures and execution plans. We leave incorporating these
techniques into JADE to future work.
Parameterized Query Optimization or PQO [18, 39, 61] enumerates query templates to be com-
piled by databases, with desirable query plans cached across a range of potential parameterizations.
JaDE differs in two key ways; first, it allows safe parameterizations beyond simple literals extending
into whole expressions and subqueries. Second, JADE encodes program-level context to guide data
structure selection, while PQO is strictly concerned with query planning, not physical design.
Physical Database Design (PDD): PDD also uses access patterns in a query workload to choose
indexes, partitions, and views to accelerate the queries [10, 21, 32, 45, 64]. Online database design
(ODD) [19, 47? ] monitors queries over time and balances reconfiguration and future query benefits.
However, they are not applicable here because 1) they do not provide latency guarantees, 2) they
operate internal to the cloud DBMS yet the DBMS is the slow path, particularly for low latency
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interactions, and 3) ODD time scales are on the order of hours and the user experience suffers
before optimization and during reconfiguration.

7 Limitations

We now describe current limitations and future directions.

Choice Independence. JADE assumes that choices are independent (e.g., choosing state doesn’t
affect the county dropdown), so the query space for a DIFFPLAN is the cross-product of the domains
of all choices. This forces JADE and the data structures to be more conservative than needed, and
removing this independence assumption can expand the set of feasible plans that JADE can find.

Fast Rendering. JADE assumes that rendering time is negligible. While valid in data visualization,
rendering can be expensive in domains like scientific visualizations [29].

Read-only Data. While JADE currently assumes read-only data, if the data structures were in-
crementally maintainable, then using Differential Dataflow [46] or DBSP [20] can maintain the
DIFFPLANS. JADE supports capacity planning where designers change statistics to check feasibility.

8 Conclusion

Physical Visualization Design (PVD) introduces design independence for interactive data visualiza-
tion applications by decoupling the design, logic, and interactivity requirements of an interface
from the system optimizations and execution architecture needed to meet interactivity and resource
requirements. This paper formalized the PVD problem and described the first such system called
JADE. Despite making stronger latency guarantees than physical database design, we surprisingly
find that these guarantees eliminate a large class of difficult query optimization problems—namely
join ordering—and thus make the problem tractable.

The core abstraction centers around the DIFFPLAN—a compact representation of the queries
that supply data for a view or chart in the interface. By extending logical query plans with Choice
operators and expressions, they serve as targets for interactions to bind, but have well-defined
domains and semantics that are amenable to analysis. JADE shows that rule-based optimization
is effective at finding feasible physical execution plans that satisfy latency constraints, and uses
integer programming to find a set of feasible plans that meet global resource budgets. Simple
heuristics enable JADE to find feasible solutions within seconds. Further, JADE only needs to fit cost
models for a given operator once, and can then use different cardinality estimators to control how
aggressively or conservatively to estimate an operator’s execution time.

Across a diverse range of six data interfaces, we demonstrate that as compared to state-of-the-art
visualization systems like Mosaic and physical database design tools like Azure’s SQL Database,
only JADE can find feasible solutions under a wide range of latency and resource constraints. Feasible
solutions nearly always meet latency and resource constraints in practice, and are often much faster
and use fewer resources than estimated. For these reasons, we believe JADE can be an essential tool
in a designer’s toolbox.
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