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Interactive visualization interfaces enable users to e�ciently explore, analyze, and make sense of their datasets.

However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the

interface designer’s desired latency expectations and resource constraints. Cloud DBMSs, while optimized

for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and

optimization techniques for data interfaces. This involves manually navigating a huge optimization space

that is sensitive to interface design and resource constraints, such as client vs server data and compute

placement, choosing which computations are done o�ine vs online, and selecting from a large library of

visualization-optimized data structures.

This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from

system design to provide design independence. Given an interfaces underlying data �ow, interactions with

latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and

instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations.

To this end, this paper presents Jade, the �rst prototype PVD tool that enables design independence. Jade

proposes an intermediate representation called Diffplans to represent the data �ows, develops cost estimation

models that trade o� between latency guarantees and plan feasibility, and implements an optimization

framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six

representative data interfaces as compared to Mosaic and Azure SQL database. We �nd Jade supports a wider

range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and

resource conditions.
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1 Introduction

Users rely on interactive visualization interfaces (data interfaces for short) to rapidly analyze,

explore, and make sense of data. If the dataset is small (say, a few hundred records), the client

can simply load the dataset into an embedded database like DuckDB [55] which can execute the

corresponding SQL queries in milliseconds.

Unfortunately, as data continues to grow, it is typically stored in cloud DBMSs, which makes it

increasingly di�cult to build data interfaces that meet interface designers’ latency expectations and

resource constraints. A major reason is that cloud DBMSs are optimized for scale and not latency—

communicating with the cloud DBMS at all is too slow for low-latency interactions—and so building

a data interface e�ectively requires developing bespoke query execution optimizations and logic

outside of the cloud DBMS. This involves manually navigating a huge optimization space that is

sensitive to the interface design and resource constraints, such as client vs server data and compute

placement, choosing which computations are done o�ine vs online, and selecting from a large

library of visualization-optimized data structures [16]. The entire process requires interface design,

backend development, and system architecture design, which involves a signi�cant amount of work.

These tasks are typically delegated to three distinct roles: interface designers, backend developers,

and system architects. However, this approach often incurs substantial communication overhead

and e�ort, especially since the interface designers may frequently adjust the interface design to

accommodate evolving user needs. On the other hand, assigning all of these responsibilities to

an individual, say the designer, would be overly demanding. In short, there is a lack of Design

Independence to insulate data interface design and requirements from how the underlying system

needs to be designed and optimized to support it. Design Independence allows interface designers

to rapidly iterate without being bottlenecked by checking about with developers and architects

about feasibility. Below shows an example:

Example 1. Figure 1 visualizes vote counts for di�erent members of congress. Suppose the dataset

has grown over time and is stored in a cloud DBMS. The designer feels the DBMS latency is too high,

and embarks on implementing a client-server system to reduce interaction latencies while trying three

possible interaction designs.

Figure 1(a) lets users click on one of two decades, and can be optimized by precomputation e.g.,

per decade statistics. Figure 1(b) lets users choose a date range. It may be infeasible to pre-compute

the results for the quadratic number of queries, but if the statistic is distributive, a cumulative data

tile is an optimization that can be compactly stored [26]. Figure 1(c) additionally lets the user choose

the chamber in congress, but now requires computing a separate data tile for each chamber. If the

client has su�cient resources, caching all or portions of these data structures on the client is another

optimization choice; if the designer wants all of the interactions to respond within a few milliseconds,

then client-caching may be necessary.

Although these interfaces in example 1 are similar, the appropriate optimizations and system

design for each interface greatly vary due to an interlocking set of requirements and constraints:
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Example 3. Figure 2(c-e) are three physical plans Jade may consider when optimizing Figure 2(b).

Figure 2(c) is a SQL operator that uses the parameter bindings $a,$b,$c to generate and send a query

to the cloud DBMS. It requires no client and server memory, but is slow. Figure 2(d) scans table T on the

cloud DBMS, �lters by chamber on the server, and builds a data cube on name and date. The cube is

stored in a dynamic cache (DCache) on the server that is sized to store one data structure. The cube

will be replaced if the chamber changes, but will be reused if the date changes. It uses no client memory

and minimal server memory. Figure 2(e) di�ers in two subtle but important ways: the cache is static

(SCache), meaning it enumerates all parameters below it and caches all resulting subplans i.e., cubes

for both chambers. The cache is on the client to avoid network latency. It requires memory on the client

but o�oads data structure construction to the server.

Jade uses per-operator cost models to estimate interaction latency and provides knobs to trade

o� between conservative estimates, which guarantee latency constraints at the expense of fewer

feasible plans, and aggressive estimates, which may sometimes violate latency constraints but

are more likely to �nd feasible plans. Furthermore, Jade instantiates the physical plans and data

structures as a middleware that accelerates the data interface.

In summary, we make the following contributions:

• We design the �rst PVD system called Jade that enables Design Independence, so the designer

can focus on the interface and not on how the underlying infrastructure is architected;

• We propose Diffplans to model the data-�ows a�ected by interactions in a way that is amenable

to analysis and optimization;

• We formalize PVD as a cost-based query optimization problem that considers visualization-

optimized data structures, client vs. server data and compute placement, and cache policies. We

leverage existing rule-based optimizer design and solve the problem by combining rule-based

plan enumeration with e�ective pruning heuristics and integer programming;

• We develop cost estimation models that enable designers to trade o� between latency guarantees

and plan feasibility;

• Surprisingly, we �nd that low latency constraints (e.g., milliseconds to seconds) simplify the

optimization problem by invalidating plans with unbounded intermediate result sizes, including

joins whose fan-outs are not bounded [12]. Intuitively, unless a join is guaranteed to be fast (i.e.,

its result is small), it cannot be executed in response to a user interaction. This lets Jade sidestep

the hardest part of query optimization: join ordering.

• We evaluate Jade on six representative data interfaces as compared to a state-of-the-art visu-

alization framework Mosaic [38] and a commercial PDD tool [47]. We �nd that Jade supports

a wider range of interfaces than Mosaic, successfully meets latency guarantees, makes better

use of available resources, and can meet a wider range of data, latency, and resource conditions.

Only Jade can meet the corresponding guarantees for a database of 100M rows with only 100MB

client and 1GB server memory.

Scope. The interfaces in this paper refer to prede�ned dashboard-like interfaces, such as BI dash-

boards or data journalism visualizations [5, 33], which are not open-ended like Jupyter Notebook [1]

or Hex [7] but still support a space of analyses that is di�cult to design and optimize. The interfaces

are not constrained by query complexity, as many other tools (such as Tableau [6], Metabase [2],

and Retool [3]) are, and can leverage an extensible library of data structures to optimize new

structural patterns in the analysis queries.

This paper focuses on de�ning an interface representation that is amenable to analysis, and an

optimization framework to support highly interactive data interfaces. Although we sketch an API

for designers to specify the inputs to Jade, we leave the development of a comprehensive library
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to future work. Jade does not consider optimizations based on approximation because it changes

the semantics of the interface and is confusing to users [54], and focuses on read-only analytics

interfaces. The optimizations are external to the cloud DBMS.

2 Use Case and System Overview

This section introduces an end-to-end use case as a way of introducing the system.

2.1 Use Case

We describe how a designer would use Jade to design, optimize, and deploy the data interface in

Figure 1. By interface design, we refer to the queries the interface can generate and the latency

bound designers expect for each interaction. While our focus is the optimization framework, we

sketch a dataframe-like API and how it is used to specify and deploy the interface.
The designer �rst uses the Jade library to de�ne the Diffplan and interactions that populate the

bar chart. She de�nes three value-based choice variables, which can take values from their associated
attribute domains, e.g., c can be any chamber, dmin can be any value of date. Jade supports many
choice types including numeric ranges, subsets, optional, enumeration of expressions, table and
attribute names, and operator subplans (Section 3.1). The designer then speci�es the query using
query builder notation.

dmin, dmax = pvd.val('date'), pvd.val('date')

c = pvd.val('chamber')

q = pvd.query.select('name', count()).from('T')

.where(and(between('date', dmin, dmax), eq('chamber', c)))

.groupby('name')

She now makes two interactions. i1 binds values to dmin,dmax; interacting with the sliders will
rapidly update their bindings and q’s result should update within 20ms; we call this the continuous
latency bound. Motivated by prior work [50], the system is allowed to take up to 2sec to update
when the user �rst switches to the slider from a di�erent interaction (e.g., the radio buttons); we
call this the switch-on latency bound. i2 binds c and should take 200ms for both continuous and
switch-on latencies.

i1 = q.iact([dmin, dmax], 20, 2000)

i2 = q.iact([c], 200)

Finally, the designer speci�es the memory constraints and network properties, and calls Jade using
the approximate solver (Section 4.3.2) to quickly return a feasible solution (say, Figure 2(e)). If Jade
was previously run with the same inputs, it returns the cached solution. Finally, she initializes the
solution to precompute data structures and runs the application on localhost.

pvd.memory({ client: '100', server: '1000'})

pvd.network({ latency: '20', throughput: '10'})

app = pvd.optimize({ solver: "approx" })

app.init()

app.run('localhost:8000')

If there is no feasible solution, Jade �nds a plan that meets the latency bounds and minimizes

memory usage. The designer can decide whether to allocate more resources or redesign the interface.

2.2 Problem Setup

Jade takes as input a cloud database instance, the interface’s Diffplans, interactions with their

latency constraints, and resource constraints. It then generates a physical execution plan spanning

a client-server architecture that meets these constraints.

Since Jade focuses on the data layer, it models the interface as a set of Diffplans (one for

each chart), interactions, and their latency constraints. A Diffplan δ is a plan that contains
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choices δ.C = {c1, . . . , cn}, implicitly representing a set of query plans. A Diffplan therefore

generalizes normal query plans with the addition of choice expressions and operators (collectively

called choices, see section 3.1 and section 3.2 ) that dynamically change expression and operator

subtrees at runtime in response to user interactions. Diffplans are amenable to static analysis and

optimization. Similarly to parameterized queries, binding concrete parameter values resolves to a

concrete query plan, but Diffplans generalize choices from mere parameter values to expressions

and sub-plans. To summarize, Diffplans execution �rst passes bindings top-down to resolve

choices and then bottom-up to execute the resolved plan.

In addition to choices, Jade introduces three classes of physical operators. The cloud operator is a

source that issues queries to the cloud DBMS. Identity operators manage data movement but do not

change contents, and include network and caching operators. Finally, data structure operators are

an extensible abstraction to support custom visualization-speci�c data structures. When combined

with identity operators, they enable Jade plans to control pre-computation, caching, and placement

decisions between the server and client. Section 3.2 describes these operators in detail.

An interaction x = ({(δ1, C1), (δ2, C2), ...}, Lc, Lsw) can a�ect multiple charts, i.e., Diffplans, and is

expected to meet continuous (Lc) and switch-on (Lsw) latency constraints. To simplify the notation,

we will treat x as a set of its Diffplans. Thus, for each δi ∈ x, the interaction speci�es a subset

of choices Ci ⊆ δi.C that it will bind, and δi.lc(x) and δi.lsw(x) are the interaction’s continuous

and switch-on execution latency for δi. The interaction’s estimated overall continuous latency

is the maximum across its Diffplans lc(x) = maxδ∈xδ.lc(x), and similarly for switch-on latency,

indicating the most the user would have to wait for any of the charts(i.e., Diffplans) to update.

Example 4. Continuing the previous example in Section 2.1, the Diffplan for the bar chart is

illustrated in Figure 2(b). In other words,

δ = γname,count()(σdate∈[$a,$b](σchamber=$c(votes))

Here, δ.C = [$a, $b, $c] has three choices, and binding them resolves into an executable query

e.g., γ(σdate∈[9/10,10/10](σchamber=′house′ (votes)). The range slider interaction xrange consists of a pair

(δ, {$a, $b}) with latency constraints Lc = 20 and Lsw = 2000; the radio button xradio has a pair (δ, {$c})

with Lc = Lsw = 200.

Since the execution latencies are not known during optimization, they must be estimated. This

raises the natural question of whether Jade should optimize for the expected or upper-bound

latency estimates. To this end, Jade uses both: it uses the upper-bound estimates to meet the

designer’s latency bounds and minimizes the expected latency, denoted with superscripts l
upper
□

and

l
avg
□

respectively, where □ ∈ {c, sw}. Finally, Mc(δ) and Ms(δ) denote the client and server memory

needed for the plan.

Finally, an interface I = (Δ, X) is a set of Diffplans Δ and interactions X. The total client memory,

Mc(I), is the sum of Mc(δ) for all δ ∈ Δ, excluding the possibly shared cache among di�erent δs

(similarly for the server). We use l̃x, M̃c, M̃s to denote estimates, and drop the argument (δ) if it is

clear from the context.

2.3 Problem Definition

We now formally state the main PVD problem:

Problem 1 (Physical Visualization Design). Given an interface I = (Δ, X), client/server memory

constraintsMc,Ms, and network latency lnet and throughput tnet, return optimal physical plans Δ★ to

execute each interaction’s corresponding query such that:

• l
upper
c (x) ≤ x.Lc ∧ l

upper
sw (x) ≤ x.Lsw ∀x ∈ X
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The interface usage phase �rst computes or loads pre-computed static data structures into

client/server memory. Jade then allocates a server and initializes the physical plans across the server

and client. Each interaction sends bindings—a dictionary that maps choices to their corresponding

values—to the appropriate physical operators. These operators execute the rest of the plan and pass

the results to the interface renderer.

3 Library

A Diffplan generalizes normal query plans with the addition of choice expressions and operators.

Data structures are modeled as operators. Jade has extensible libraries on data structure operators,

rules, and cost estimation.

3.1 Choices

We now introduce the choice expressions and operators that Jade supports. All choices are nodes

in a Diffplan, and serve to select a subset of its children or choose a literal from a domain. One

perspective is that choices are a compact representation of a (possibly in�nite) set of possible

queries; binding the choices resolves the Diffplan to an element in the set, and interactions that

change these bindings explore this space of possible queries.

3.1.1 Choice Expressions. Jade supports four choice expression nodes: ANY chooses one of its

children, OPT toggles the presence of its child, VAL selects a value from a pre-de�ned domain, and

SUBSET selects a subset of its children. A binding b is a dictionary that maps a node id to the bound

value; the syntax N(id;..)[b] binds node N with b. Once N resolves itself, it recursively passes b

to its child expression(s) using the following rules. Below, id refers to the node’s unique id.

• ANY(id; c:Expr+) has n children, and resolves binding b[id] ∈ [0, n) to its b[id]th child. For

instance, (a=ANY(0;1,3,5))[{0:1}] resolves to a=3.

• OPT(id; c:Expr+, default) toggles its child. It resolves b[id] ∈ (0, 1) to c if b[id] and default

otherwise.

• VAL(id; d:Domain) checks that b[id] ∈ d is within the domain d, and if so, resolves to b[id].

Jade supports two common domain types: an attribute A’s active domain (e.g., VALA(id; A)) and

a numeric range VALR(id; [start, end, step?]) with optional step.

• SUBSET(id; d:Domain, p) is similar to VAL but resolves its binding b[id] ⊆ d to a subset

of its domain that will be used to construct an expression tree rooted at its parent p1. Our

implementation supports three domain types: SUBSETA(id; A) uses an attribute’s active domain;

SUBSETR(id; [min, max, step?]) uses a numeric range, de�ned by a minimum, maximum, and

optional step; (SUBSETE(id; Expr+) uses a set of expressions. SUBSET is useful to choose grouping

expressions, projection expressions, lists, and �lter clauses. For example, SUBSET(id; a=1, b=2,

AND) can express a=1 or b=1 or a=1 AND b=1.

3.1.2 The AnyOp Choice Operator. The AnyOp(Op+) choice operator is analogous to the ANY expres-

sion, but it and its children are operators. This allows it to dynamically change query substructures

as long as they are pre-de�ned—for instance, to choose from a set of source tables. Nesting AnyOP

de�nes a combinatorial set of plans. AnyOp is considered both a logical and physical operator.

3.2 Physical Operators

Jade introduces a suite of physical operators for constructing execution plans. Unlike typical

operators, a Jade operator takes a table or a binary blob typed to a data structure (Blobds) and an

1Jade implements AND and OR as parents because they are su�cient for the experiments. Any commutative and

associative expression can be a parent.
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expression list as input. It is bound to bindings b (non-choice operators may ignore the bindings)

and returns a table or a typed blob.

Op(input:Table|Blobds, es:Expr
∗)[b:Bindings] → Table|Blobds

Physical operators are executable on the server, client, or both. In addition to AnyOp, Jade

introduces two classes of physical operators: Identity operators and Data Structure operators.

3.2.1 Identity Operators. Identity operators do not change data contents; instead, they are used

to manage data movement. Network, cloud, and cache operators are used to express materialized

views and control data placement and caching.

The network operators Send(input) and Receive(input) follow the exchange operator [34] design

to manage network communication and allow for split execution across the client and server.

The cloud operator is a unary operator with a logical Diffplan as its child. For instance,

Cloud(ANY(T1, T2))’s child chooses between two tables. Whenever its child is resolved to a

concrete plan through interaction bindings, the operator generates the corresponding query string

and sends it to the cloud DBMS. Results are forwarded to its parent operator. The main restriction

is that the child Diffplan cannot contain identity or data structure operators.

The cache operators are in-memory hash tables: the keys are bindings of its descendant choices,

and the value is the result of its child operator given that binding. If there is a cache hit, the cached

value is returned and the rest of the subplan is logically truncated. Otherwise, it passes the bindings

to its child operator and adds its output to the cache following the replacement policy.

We implemented two popular types of caches. SCache is a static cache that allocates su�cient

memory for all possible bindings of all choices in its subplan and pre-populates the cache o�ine. It

essentially truncates its subplan. DCache is a dynamic cache that allocates memory for the most

recent input table/blob and does no pre-population. When the input table/blob changes, it replaces

the cache. Future work can explore other caches and policies, such as disk caches and dynamic

caches with multiple slots.

3.2.2 Data Structure Operators. Jade supports an extensible library of data structures that are relied

upon to accelerate interactions and meet latency guarantees. For our experiments, we implemented

seven data structures: HashTable, B+ tree, R-tree, data cube, 1D and 2D cumulative data tiles [50],

and materialized views.

Each data structure implements a match(Operator)→matchState function used during query

optimization to check if it expresses a subplan. It returns a binary blob matchState used to initialize

the data structure if there is a match and null otherwise. It also implements physical operators to

create, use, and communicate the data structure during interface usage:

• build(Table, matchState)→BlobDS uses an input table and match state to construct a binary

blob that encodes the data structure.

• eval(BlobDS, matchState)[b:Bindings]→Table uses the blob from build(), matchState, and

bindings to return a result table.

• de/serialize(input:blob)→bytes ensures that the data structure can be sent over the network.

Otherwise, build and eval must be co-located.

Like other physical operators, each data structure also provides average and upper-bound cardinality,

memory, and latency estimates.

Combining Identity and Data Structure Operators Identity operators can be interleaved with

build and eval operator pairs to make �ne-grained placement and caching decisions. For example,

simply using DCache reproduces the caching strategy used by Falcon [50] to optimize the active

widget, while SCache at the top of the plan full pre-computes all possible query results. Inserting a
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network operator between build and eval o�oads expensive data structure creation to a server. In

short, combining identity and data structure operators creates a rich optimization space.

3.3 Optimizer Rules

Jade follows standard rule-based optimizer design [17, 22] to search the logical and physical plan

space. Each rule consists of a pattern that matches a subplan, and a function to transform the match

into a semantically equivalent subplan. Jade supports three classes of rules.

3.3.1 Adapted Rules. Existing transformation rules can be adapted to subplans with choices under

straightforward semantics: a rule is valid if it is valid in all subplans encoded by the choices. In

our implementation, we adapted three logical transformations: splitting conjunctive predicates,

swapping the order of two �lter operators, and swapping �lter and group-by operators.

3.3.2 Data Structure Rules. Each data structure implements the match(Operator) method (Sec-

tion 3.2) that the optimizer calls on each node in a candidate plan. If there is a match, the optimizer

replaces it with a pair of build and eval operators with a logical cache operator sandwiched between

them. The optimizer later chooses the physical cache operator (SCache or DCache).

3.3.3 Choice Rules. We designed specialized rules to push choices up or down the plan, speci�cally

the AnyOp operator and Any expression2). We will describe the push up rules as other variations,

and push down rules are straightword extensions.

For the AnyOp operator, pushing it above its parent operator P involves adding its parent to each

of its children:

P(AnyOp(c1, . . . , cn)) → AnyOp(P(c1) · · · , P(cn))

For the Any expression, rather than reorder it within an expression tree, we push it out of the

expression into a choice operator. Here, the operator P has a child operator c and a choice expression

with n subexpressions. When we push the Any up, it results in n parent operators, each containing

one of the subexpressions.

P(c, Any(e1, . . . , en)) → AnyOp(P(c; e1), . . . , P(c; en))

Note that the choice expression can be anywhere in the expression tree and not just its root. While

more sophisticated rules are possible, such as splitting a domain, we �nd these simple rules to be

e�ective and leave a detailed analysis of the rule space to future work.

3.4 Cost Models

The latency and memory estimation for interactions di�er from the traditional estimation in three

ways. First, costs are interaction-centric rather than plan-centric because the same Diffplan can be

bound by multiple interactions, so the same plan can have di�erent latency estimates. Second, we

distinguish between the �rst time the user manipulates an interaction (switch-on latency) and the

latency during continuous interaction (continuous latency). Third, we strive to meet guarantees, so

estimating expected latency and memory usage is insu�cient: we need to estimate upper bounds.

In this subsection, we describe our approach to estimate the upper-bound continuous �lupperc (x) and

switch-on �luppersw (x) latency for an interaction x, as well as the expected latencies �lavgc (x) and �lavgsw (x).

We start with per-operator estimation and then extend to a plan. The principles for estimating

memory usage are the same.

2All choice expressions reduce to Any, so we focus on it.
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3.4.1 Operator Estimation. Given an operator o, we estimate its execution time o.̃t by �tting

a simple linear regression model whose features are the number of input and output columns,

cardinality, size in bytes, and column types. We generate training data by executing 1,000 randomly

generated execution plans for the six applications of all data size in section 5.1 covering all these

operators for 20 times and collecting the ground-truth execution time along with the corresponding

features. When the optimizer uses the model to estimate an operator’s latency, we control how

conservative or aggressive the cardinality estimates are to estimate the upper-bound or expected

latency. Concretely, we control the conservativeness of the cardinality estimates by setting di�erent

types of predicate selectivity referring to the histogram statistics. For example, for upper bound

estimates, we use the selectivity of the most common value. If there are multiple-attribute selections

in conjunction, we use the smallest selectivity among them. For the average estimates, we use the

selectivity of 1
|unique values| . These result in o.�tupper and o.t̃avg for the operator.

3.4.2 Plan Estimation. We �rst describe how to estimate the upper-bound latency of a plan, and

then describe the minor change to estimate the expected latency. Brie�y, we sum the upper-bound

operator latencies o.�tupper along each path from root to leaf operator, and take the maximum. The

only exception is that if the operator is a cache and there is a known cache hit, then it is treated as

a leaf. Cache hits occur if the operator is an SCache or if we estimate the continuous interaction

latency for a DCache operator. Otherwise, the cache operator is a no-op. To estimate the expected

latency, we average over every path rather than take the maximum.

Example 5. Figure 4 shows another Diffplan δ for the interface in addition to the three Diffplans

in Figure 2(c-e). δ can calculate the interaction results for the slider 1○ and the radio 2○. It builds a

SCache to store the materialized view of the table T on the client, calculate the �lter over chamber,

and build a dynamic cache of a cube.

δ.�luppersw ( 1○) will assume the DCache is not populated and thus equals to the summation of all

operators’ latency till the SCache - 16ms = 1 + 10 + 5ms. δ.�lupperc ( 1○) equals to 1 ms which will only

need to run the Cube.eval. Here, δ.�luppersw ( 2○) and δ.�lupperc ( 2○) are both 16ms since the plan executes

from σ to the root.
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Fig. 4. Interface and its Diffplan: rightmost column shows the upper bound execution time of each operator.

4 Jade Engine Design

Recall that the input to Problem 1 is an interface I = (Δ, X), client and server memory constraints

Mc,Ms, network latency lnet and throughput tnet, and the library of transformation rules R. Δ is the

set of logicalDiffplans and each interaction x = ({(δi, Ci), . . . }, LC, LSW) ∈ X speci�es the choices in

a set of Diffplans that the interaction will bind, along with the latency constraints. The structure

of our solutions is as follows: for every pair of interaction and logical Diffplan that it binds (x, δ),

choose an optimal physical Diffplan that meets the interaction’s latency constraints, such that
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the total resources across all chosen physical Diffplans meet constraints. We will �rst describe

an exhaustive baseline approach, then describe pragmatic optimizations to run the optimizer

interactively.

4.1 Exhaustive Baseline

The baseline runs two very slow steps—Candidate Search and Optimal Selection—that we will opti-

mize in the subsequent subsections. Candidate search (Algorithm 1) loops through each interaction

x∈X and each di�plan δi that the interaction will bind, and �nds all viable physical plans Δx,i using

the following steps. It exhaustively applies the rules in R, and for each plan, tries all assignments of

static or dynamic cache between eval and build operators as well as other valid cache placements,

enumerates all valid placements of cloud and network operators, and only keeps viable plans that

satisfy the latency constraints - (Lc,Lsw).

Algorithm 1 Baseline Candidate Search

1: for x ∈ X do

2: for δi ∈ x do

3: Δx,i = {}

4: for δphys ∈ exhaustive enumeration do

5: Insert δphys into Δx,i if δphys is viable.

Next, optimal selection �nds the best δ★
x,i

∈ Δx,i for each pair of interaction and Diffplan, so

that the combination satis�es the memory constraints and minimizes the average latency estimates.

It simply enumerates every combination.

4.2 Candidate Search Optimizations

Candidate search trivially parallelizes over every interaction,Diffplan pair (x, δ);We also developed

two e�ective pruning heuristics.

4.2.1 Work Sharing. Exhaustive enumeration for every (x, δ) pair can be wasteful because for a

given Diffplan δ, almost all search steps are independent of the interaction x. The only dependent

decision is that the dynamic cache should never be above the choices that x will bind, because the

cache would never be reused.

Thus, we run candidate search for each δ to enumerate all reachable physical plans; these plans

insert a cache placeholder between each data structure Build and Eval pair and also enumerate other

viable places. For each interaction x that binds δ, we try all static and dynamic cache assignments,

and enforce that the DCache is above the choices that x binds. We add every viable plan as a

candidate for (x, δ). If each Diffplan is bound by N interactions, this reduces search cost by N×.

4.2.2 Push-ups First. Traditional query optimizers[22] are often staged so rules that almost always

improve the query (e.g., predicate push-down) are applied before more general rules. Similarly,

we �rst heuristically apply push-up rules so that all AnyOp and Any choices whose domains are not

literals are at the top of the resulting plans. We do this because data structures typically do not try

to match AnyOp and Any choices that are not literals, so their presence will cause false negatives,

and moving them to the top makes matching data structures more likely. In addition, it is possible

to search for candidates of an AnyOp’s child subplans in parallel, so pushing them up to the top

maximizes parallelization opportunities.

We refer to each subplan under the AnyOps as a basic plan βj because they only contain param-

eterized literals, which are familiar to traditional matching patterns. For each basic plan βj, we
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enumerate its set of viable physical plans Δx,i,j by exhaustively applying the rules and parallelize

search across the basic plans. Joins are always pushed to the bottom and materialized using a

cache operator to avoid computing joins during user interactions. We avoid join optimization, so

exhaustive enumeration is manageable.

Example 6. Below shows an example where the �lter predicate contains ANY($1; a, b) and VALR($2; [1, 5]).

We push the ANY operation out of the expression tree into the AnyOp operator at the top. The transfor-

mation results in two basic plans—one for each σ plan:

σANY($1;a,b)=VALR($2;[1,5]) → AnyOp($1;σa=VALR($2;[1,5]),σb=VALR($2;[1,5]))

We preserve the ids of the choice nodes and do not �atten them so that the original bindings still apply.

For instance, the binding {$1:0,$2:2} chooses σa=2 in both the original and transformed Diffplans.

Note that if the two choices had di�erent latency constraints (e.g., $1 was 20ms and $2 was 200ms),

then the latency of all plans is now 20ms.

4.2.3 Additional Pruning Heuristics. First, we restrict each Diffplan to at most one static cache;

once it is placed, we do not consider any static or dynamic caches under it. Second, if a given

static cache for a data structure exceeds the resource constraintsMc orMs, we prune any plan that

contains that static cache.

Example 7. Figure 5 shows an example of candidate searching for basic plans. In this example, we

search for physical candidates Δ$2,i,2 of the basic plan β2 for interaction $2. By applying rules, here are

two candidates among all the candidates the searcher �nds: the candidate 1○ statically caches the raw

table and calculates the �lter operation on the server, while the candidate 2○ builds a hash table for

attribute b on the server and statically caches it on the client for future queries. Although the second

candidate requires slightly more memory due to the hash table, it o�ers signi�cantly lower latency.

!"#$%$"

&#$%&'$" &($%&'$"

' '

(" ()

!!"#$%$"

"

#$%&'

()*+%,-

.#/0ℎ)

"

#$%&'

()*+%,-

2/3ℎ"/4$). 4&6$'(4)

2/3ℎ"/4$). )9/$(:;<$')

.#/0ℎ)

)$*,,,*

Apply Rules

1

2

Fig. 5. Two candidates 1○ and 2○ for the basic plan β2.

4.3 Optimal Selection

The output of candidate selection is a set of viable plans Δx,i,j for every interaction x and every

basic plan βj in each Diffplan δi ∈ x after push-ups. Since all viable plans satisfy the interaction

latency constraints, following Problem 1, our goal is to choose an optimal δ★
x,i,j

∈ Δx,i,j such that

the maximal l
avg
c (x) across all interactions is minimized. We structure the problem around two

constraints: 1○ for every interaction and basic plan pair, one plan is selected, and 2○ the total

resource consumption over all plans is within server and client memory constraintsMc, andMs.

Unfortunately, this problem is NP-hard because the optimal plan selection for di�erent interac-

tions and basic plans are not independent and may share data structures. This can be shown via a

polynomial-time reduction from the NP-complete hitting set problem to optimal selection; we omit

the proof due to space constraint.

We solve the optimal selection problem using integer programming, by translating 1○ and
2○ above into two sets of constraints. We model all dynamic and static caches in the candidate
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plans using binary variables D = {D1...Dd} and C = {C1...Ck}, respectively. Setting a variable to 1

chooses the corresponding static/dynamic cache. Ci.m and Di.m denote the cache’s memory usage

(Section 3.4). We de�ne a variable avglatency to denote the maximal l
avg
c (x) across all interactions.

The objective function is: minimize (avglatency).

To instantiate δ, each candidate set Δx,i,j in 1○must choose 1+ candidates δ ∈ Δx,i,j whose caches

are built. This is expressed by the two Π terms, where Cδ and Dδ denote the set of static and

dynamic caches in δ. The indicator function I() ensures that the estimated interaction latency
�lavg(xj) is smaller than avglatency.

∑

δ∈Δx,i,j

{
∏

c∈Cδ

c ×
∏

d∈Dδ

d × I(δ.�lavg(x) ≤ avglatency)} ≥ 1 ∀Δx,i,j 1○

Constraint 2○ ensures that the total memory across all selected plans is within client and server
memory constraints (MC,MS). An SCache Ci pins its data structures, so its use is a constant C.m.
However, an interaction x may materialize multiple DCache instances simultaneously and then be
evicted when the user uses a di�erent interaction. Thus, we only allocate the maximum DCache

required for an interaction. We model server-side memory of static MSCache
S

and dynamic cache

MDCache
S

as below, where CS (Dx,S) is the set of static (dynamic caches used by x) on the server.

MSCache
S =

∑

Ci∈C
S

Ci × Ci.m MDCache
S = max

x

∑

Di∈Dx,S

Di × Di.m 2○

The total server memory consumption MS = MSCache
S

+ MDCache
S

and its constraint is MS ≤ MS.

The similar holds for the client memory MC = MSCache
C

+ MDCache
C

≤ MC.

4.3.1 Implementation Details. Jade uses Z3 [28], but the indicator function I() in 1○ causes Z3 to

time out. To address this, we introduce an average latency threshold Tavg to remove all candidates

in Δx,i,j whose average latency is larger than Tavg; this lets us remove I() and quickly �nd a solution.

We use an outer loop that performs a binary search over the Tavg values between 0 and the largest

latency constraint to �nd the smallest Tavg that produces a solution. The �nal value of Tavg is

equivalent to minimizing avglatency.

The above formulation solves Problem 1 in Section 2.3 If no solution is found, we relax the

hard memory constraint and instead optimize to minimize a weighted average of server and client

memory usage, as described in problem 2. This approach helps the designer understand how much

additional memory is necessary to meet the latency requirements.

4.3.2 Approximation. We also introduce an approximate variant by terminating the search after S

seconds and choosing the top-K candidates with the smallest memory usage for each basic plan,

where S and K are hyperparameters that control the trade-o� between the quality and size of

the candidate sets passed into the IP program. A larger S potentially �nds better plans or more

sharable subplans, while a larger K increases the accuracy of the results at the cost of slower

integer programming. We evaluate this approach in section 5.6 and �nd that it greatly accelerates

optimization without discernible impact on the �nal solution or application.

5 Evaluation

We compare Jade to visualization frameworks and PDD tools in how well they optimize a variety

of data interfaces, latency bounds, and resources. Jade is more expressive than visualization

frameworks because it can mix-and-match optimizations, and interactively �nds feasible plans

over a wider range of constraints than PDD.
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were executed against the database to formally benchmark the interaction latency. Neither system

supports latency constraints, so we run their optimizations and report the resulting query latencies.

Data Interfaces. Jade is the �rst system to express and automatically optimize a wide range of

data interfaces, and so we lack a preexisting workload to evaluate. Thus, we sought out a set of

representative data interfaces that varied in domain and interface complexity. This survey resulted

in six representatives: weather analysis from Kaggle [56], Sloan Digital Sky Survey [58], Google’s

Covid visualization [33], interactive cross-�ltering interfaces to analyze Brightkite check-ins [35]

and Flight delays [50] from academia, and a cross-�lter visualization that analyzes Iowa liquor

sales on Observable [40]. These representatives also subsume the multitude of interfaces created

by frameworks such as Streamlit [8] and Hex [7].

While the data for all interfaces was available, we manually translated each interface into

Diffplans. We de�ne complexity based on if (1) each interaction a�ects one view, and (2) each view

is a�ected by one interaction. An interaction that a�ects >1 views must schedule and concurrently

execute queries. A view a�ected by >1 interactions means a Diffplan contains multiple choices and

may need dynamic caching to avoid a combinatorially large static cache. We say an easy interface

satis�es (1,2), a medium interface satis�es either, and a hard interface satis�es neither (Table 1).

Figure 6 shows the screenshots of these interfaces.

We scaled each interface’s database to vary between 1-100M records (10M default) using Synthetic

Data Vault [62]. Based on prior HCI and visualization work [13, 15, 31, 43, 44, 50, 51, 60], we chose

three latency bounds: fast (20ms), medium (200ms), and slow (2s). Widgets such as brush and

range slider interactions are set to fast because they rapidly generate many queries per second

and are sensitive to latency �uctuations [43]; all other interactions were set to medium. We set the

switch-on latency to slow for all interactions. This is denoted by the default latency setting L1.

5.2 Comparison with Baselines

We �rst compare how Jade, Mosaic, and Azure optimize each interface under varying latency

and resource constraints. In addition to the default L1 latency setting, let L2 and L3 be where all

continuous latency bounds are respectively fast and slow; switch-on bounds are always set to

slow. RS1 (100MB client, 1GB server) and RS2 (1GB client, 10GB server) represent lower and higher

memory resources.

Table 2 summarizes whether each system found a feasible solution. With low resources (RS1),

Mosaic only runs the Flight interface (which it was designed for), while Azure only supports the

Liquor interface, but only if all latency bounds are 2s (L3). With high resources (RS2), Azure did not

improve, while Mosaic only supports 55% of the settings. In contrast, Jade found feasible plans for

all interfaces—even Brightkite—under RS1. Under RS2, Jade supported all settings because it can

mix and match optimizations, placement, and caching policies in a more �exible way than Mosaic.

5.3 Is Feasible Really Feasible?

Since Jade evaluates feasibility using cost models, we �rst empirically studywhether feasible designs

actually meet the desired constraints. We then study the trade-o� between how conservative the

cost model is and the likelihood Jade �nds a feasible plan.

5.3.1 Do Feasible Plans Really Meet Constraints? We answer in the a�rmative by reporting the

resource and latency constraints compared with the actual memory usage and interaction latency4.

We use L1 and all pairs of client (Mc ∈ [100MB, 1GB]) and server (Ms ∈ [1GB, 10GB]) memory.

4Actual latency is measured as the time between issuing the query on the client and receiving the results on the client.
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Fig. 10. Interaction latency as database size grows.
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Fig. 11. The minimum resources needed to meet each interface’s latency constraints.

we vary client memory from 0 to 2GB; for each client setting, we �nd the minimum server memory

that �nds a feasible solution.

Figure 11 shows three resource pro�les. Interfaces that don’t require resources exhibit a �at line

(weather). Those that simply require a �xed-size data structure exhibit a shape because the

main decision is whether to cache on server or client (e.g., Liquor, SDSS, Covid, Flight). Brightkite

exhibits a smooth shape because it balances di�erent usable data structures and their placements.

If the network is fast, the client can often have no memory as long as the server has su�cient

resources; this is not the case for Brightkite because even with unbounded server memory, the

network alone violates latency constraints.

5.6 Optimization Runtime

We now report the optimization time needed to �nd a feasible plan when using L1 and RS2

constraints. We compare the full optimization algorithm and the approximate solution described

in Section 4.3.2, which stops search after S = 2 seconds 5 and uses the K=100 candidates with the

smallest memory requirements for each Diffplan as inputs to the IP. The feasible plans found by

both approaches exhibit similar average interaction latencies (e.g. 2.3243 ms vs 2.3244 ms for full

and approximate) and the actual memory usage stays within resource constraints.

5For liquor application, it appears to be longer than 2s because there needs some time to exit the search.
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NYT Implementation. The above interactions are designed to respond within dozens of millisec-

onds. The hot spots chart is precomputed as an image, the two tooltip statistics are cached on the

client, and the precomputed 14-day trends are cached on the server and fetched on hover.

Using the Jade Optimizer. The above system design can be easily reproduced via optimization;

the other visualizations follow similarly. Hot spots consists of four queries to calculate each of the

statistics described above, and they reference one VAL choice node that speci�es the county:

c = pvd.val('county')

q1 = pvd.query.select('county', 'avg(cases/pol*100000)')

.from('covid').where(gt('date', today() - '7 days'))

.groupby('county')

q2 = pvd.query.select('avg(cases)').from('covid')

.where(and(gt('date', today() - '7 days'), eq('county', c)))

q3 = ... // the #cases per 100K query is similar to q1 and omitted

q4 = pvd.query.select('date', 'cases').from('covid')

.where(and(eq('county', c), gt('date', today() - '14 days')))

The tooltip interaction should respond within 20ms (the tab interaction is omitted), and we specify
the expected memory available and network properties.

i1 = iact(c, 20)

pvd.memory({client: 1, server: 1000})

pvd.network({latency: 10 , throughput: 1})

Figure 14 shows that Jade reproduces the manually optimized plans for each of the three queries

above (δ★
i
for qi). δ★1 precomputes the map visualization’s data in the cloud DBMS and caches

them on the client. To show the tooltip statistics for a selected county, δ★2 precomputes all counties’

statistics, builds a hash table on county, and caches it on the client. δ★4 precomputes the 14-day

trends, caches an index over them on the server. Thus, the 14-day trend data incurs a network

roundtrip but no computation cost.
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Fig. 14. Jade optimized plan δ★1 , δ★2 , δ★4 for q1, q2, q4 respectively. The grey part represents the computation

on the database, the yellow is the server, and the green is the client side.

Jade Supports Iterative Design. The designer wants users to see historical statistics by choosing

a desired date using a slider. Unfortunately, the previous optimizations are no longer applicable

because they display �xed recent statistics instead of the historical data that users can specify using

the slider. With Jade, the designer simply de�nes a new choice d to represent the selected date and

include it in the a�ected queries (e.g., q1 shown below, and states its latency should be 200ms.

d = pvd.val('date')
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q1 = pvd.query.select('county', 'avg(cases/pol*100000)')

.where(between('date', sub(d, '7 days'), d))

.groupby('county')

i2 = iact(d, 200)

Jade updates the system architecture in seconds. Now Jade outputs per-interaction optimal physical

plans Δ★. For the tooltip interaction i1, Jade proposes a B+ tree index on a composite key (county,

date) cached on the server side. When the county changes, it will fetch the corresponding data for

q2-4 respectively and do the following computation of q2-4 on the �y and return the results. The

returning data is small - one integer for q2, q3 and 14 integers for q4, so the network is fast and

it satis�es the fast latency contraints. For the date slider, Jade proposes a cumulative data tile to

accelerate the recent 7 days case computation for all the counties on the server. When the date

changes, it will query the data tile and return the map over the network. The map is relatively large,

so the interaction is not that fast, but is still within <200ms. When the date changes, q2-4 still

use the B+ tree to accelerate the query execution. As we can see, Jade quickly helps redesign the

system architecture in seconds, whereas manual redesign and reimplementation could take days.

6 Related Work

Visualization Interface Query RepresentationMost interactive, SQL-based dashboarding tools,

including Tableau, VizQL, Vega-lite, and Mosaic [36–38, 57, 59], can dynamically generate SQL that

is executed in a DBMS. However, they do not specialize optimizations for each interface design,

nor do they synthesize an end-to-end client-server execution plan to meet latency guarantees.

Prior works PI2 [24, 25] and DIG [23] introduced a compact representation for analysis tasks, re-

spectively termed difftree and data interface grammar. This representation statically encapsulates

query analysis while maintaining the correspondence between user interactions and queries using

Choice nodes. However, these approaches are focused on syntactic strings and do not consider the

execution query plan. This paper extends this concept by introducing Diffplan, which mimics a

query plan and can be programmatically expressed using a query builder API common in data-frame

systems like Spark, Pandas. Diffplan retains the choice-based abstraction between interactions

and queries, but can be easily integrated into a standard query optimizer and executor framework.

Visualization-speci�c Optimizations Faster engines [27, 41, 53], data cubes [44], query rewriting

and materialized views[63], precomputation / pre-aggregation[38], spatial indexes[60] all reduce

query latencies for narrow classes of queries. Jade is designed to be extensible and, by specifying a

matching pattern and cost model, can incorporate these techniques into the optimization framework.

The main exceptions to this are sampling and approximation techniques [9], which we do not

consider because they change the semantics of the output visualization, and pre-fetching [14, 49],

which is orthogonal to choosing data structures and execution plans. We leave incorporating these

techniques into Jade to future work.

Parameterized Query Optimization or PQO [18, 39, 61] enumerates query templates to be com-

piled by databases, with desirable query plans cached across a range of potential parameterizations.

Jade di�ers in two key ways; �rst, it allows safe parameterizations beyond simple literals extending

into whole expressions and subqueries. Second, Jade encodes program-level context to guide data

structure selection, while PQO is strictly concerned with query planning, not physical design.

Physical Database Design (PDD): PDD also uses access patterns in a query workload to choose

indexes, partitions, and views to accelerate the queries [10, 21, 32, 45, 64]. Online database design

(ODD) [19, 47? ] monitors queries over time and balances recon�guration and future query bene�ts.

However, they are not applicable here because 1) they do not provide latency guarantees, 2) they

operate internal to the cloud DBMS yet the DBMS is the slow path, particularly for low latency
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interactions, and 3) ODD time scales are on the order of hours and the user experience su�ers

before optimization and during recon�guration.

7 Limitations

We now describe current limitations and future directions.

Choice Independence. Jade assumes that choices are independent (e.g., choosing state doesn’t

a�ect the county dropdown), so the query space for a Diffplan is the cross-product of the domains

of all choices. This forces Jade and the data structures to be more conservative than needed, and

removing this independence assumption can expand the set of feasible plans that Jade can �nd.

Fast Rendering. Jade assumes that rendering time is negligible. While valid in data visualization,

rendering can be expensive in domains like scienti�c visualizations [29].

Read-only Data. While Jade currently assumes read-only data, if the data structures were in-

crementally maintainable, then using Di�erential Data�ow [46] or DBSP [20] can maintain the

Diffplans. Jade supports capacity planning where designers change statistics to check feasibility.

8 Conclusion

Physical Visualization Design (PVD) introduces design independence for interactive data visualiza-

tion applications by decoupling the design, logic, and interactivity requirements of an interface

from the system optimizations and execution architecture needed to meet interactivity and resource

requirements. This paper formalized the PVD problem and described the �rst such system called

Jade. Despite making stronger latency guarantees than physical database design, we surprisingly

�nd that these guarantees eliminate a large class of di�cult query optimization problems—namely

join ordering—and thus make the problem tractable.

The core abstraction centers around the Diffplan—a compact representation of the queries

that supply data for a view or chart in the interface. By extending logical query plans with Choice

operators and expressions, they serve as targets for interactions to bind, but have well-de�ned

domains and semantics that are amenable to analysis. Jade shows that rule-based optimization

is e�ective at �nding feasible physical execution plans that satisfy latency constraints, and uses

integer programming to �nd a set of feasible plans that meet global resource budgets. Simple

heuristics enable Jade to �nd feasible solutions within seconds. Further, Jade only needs to �t cost

models for a given operator once, and can then use di�erent cardinality estimators to control how

aggressively or conservatively to estimate an operator’s execution time.

Across a diverse range of six data interfaces, we demonstrate that as compared to state-of-the-art

visualization systems like Mosaic and physical database design tools like Azure’s SQL Database,

only Jade can �nd feasible solutions under a wide range of latency and resource constraints. Feasible

solutions nearly always meet latency and resource constraints in practice, and are often much faster

and use fewer resources than estimated. For these reasons, we believe Jade can be an essential tool

in a designer’s toolbox.
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