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Abstract
Traditionally, software refactoring helps to improve a system’s internal structure and enhance its non-functional features, such as
reliability and run-time performance, while preserving external behavior including original program semantics. However, in the context
of learning-enabled software systems (LESS), e.g., Machine Learning (ML) systems, it is unclear which portions of a software’s semantics
require preservation at the development phase. This is mainly because (a) the behavior of the LESS is not defined until run-time; and (b)
the inherently iterative and non-deterministic nature of ML algorithms. Consequently, there is a knowledge gap in what refactoring truly
means in the context of LESS as such systems have no guarantee of a predetermined correct answer. We thus conjecture that to construct
robust and safe LESS, it is imperative to understand the flexibility of refactoring LESS compared to traditional software and to measure
it. In this paper, we introduce a novel conceptual framework named ReLESS for evaluating refactorings for supervised learning by
(i) exploring the transformation methodologies taken by state-of-the-art LESS refactorings that focus on singular metrics, (ii) reviewing
informal notions of semantics preservation and the level at which they occur (source code vs. trained model), and (iii) empirically
comparing and contrasting existing LESS refactorings in the context of image classification problems. This framework will set the
foundation to not only formalize a standard definition of semantics preservation in LESS but also combine four metrics: accuracy,
run-time performance, robustness, and interpretability as a multi-objective optimization function, instead of a single-objective function
used in existing works, to assess LESS refactorings. In the future, our work could seek reliable LESS refactorings that generalize over
diverse systems.
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1. Introduction
Developers of Learning-Enabled Software Systems (LESS)
face the challenge of constructing highly reliable large-scale
systems, as evidenced in previous research [1, 2]. With
the pervasive integration of dynamic Machine Learning
(ML) models in these operational software systems, safety,
efficiency, and adaptability with respect to evolving user
requirements become paramount. Moreover, software sys-
tems inherently evolve throughout their life-cycle [3], which
traditionally incurs substantial costs and risks, particularly
in the context of large, complex systems [4]. Although
LESS shares these traits with conventional software, its
data-driven nature accentuates the propensity for evolu-
tion [5]. This divergence from traditional software poses
unique challenges for testing and verification due to its
data-driven and uncertain requirements. Notably, the ef-
ficacy of resulting ML models, including Large Language
Models (LLMs), improves with more extensive data inputs,
necessitating a delicate balance between user privacy pro-
tection and model refinement in large-scale systems. Con-
sequently, there arises a pressing need for validation and
testing methodologies tailored to the distinctive character-
istics of AI-driven systems.

This evolving research agenda underscores a critical re-
assessment of priorities in AI system development. Further-
more, as AI technologies permeate various sectors of society,
scalable systems must effectively consider and adapt to legal,
policy, and employment implications. These technical at-
tributes not only underpin the functional aspects of AI appli-
cations but also facilitate their alignment with essential eth-
ical standards and societal expectations [6]. This imperative
is further underscored by a recent U.S. government-issued
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Executive Order [7] and the EU AI Act [8], emphasizing
the necessity for Safe, Secure, and Trustworthy Develop-
ment and Use of Artificial Intelligence. Moreover, to ensure
the positive societal impact of AI systems, accuracy, run-
time performance, robustness, and interpretability are crucial
technical attributes that directly support broader ethical
objectives.

Recent works [1, 9] have highlighted a variety of metrics
for assessing the impacts of LESS transformation. These
metrics include aspects such as ensuring safety and fairness,
protecting privacy, fostering collaboration, considering legal
and policy ramifications, and evaluating impacts on employ-
ment. Recent studies [10, 11, 12, 13, 14] have investigated
whether original and transformed systems should behave
consistently before and after transformation. These studies
illustrate the potential trade-offs between accuracy and each
respective metric. Although various metrics like fairness
and privacy are considered, in this work, we focus on accu-
racy, run-time performance, robustness, and interpretability
as a starting point with the intent to cover the majority
of AI safety concerns in LESS [14, 15, 16]. We argue that
comprehending and harnessing the flexibility of refactoring
in LESS represents a pivotal stride toward enhancing the
safety of AI systems.

A detailed exposition of these metrics, as discussed in the
state-of-the-art literature, is provided in Section 2.

Traditionally, the criterion for refactoring [17, 18], is that
the same input must produce the same output; any devia-
tion is considered a behavior change of the program and
a threat leading to system crash [19]. However, refactor-
ing is underexplored in the context of LESS, including deep
learning frameworks [1]. LESS, unlike traditional software
systems, benefit from randomness but yet lack a guarantee
of a predefined exact outcome due to their reliance on the
quantity and quality of data, complicating predictions about
the effects of refactoring.

This paper aims to bridge the knowledge gap between
refactoring practices in traditional software [4, 20, 21, 22, 23,
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24, 25, 26, 27], and LESS [12, 28, 29, 30] by introducing Re-
LESS (Refactoring of Learning-Enabled Software Systems),
an evaluation framework for standardizing and formaliz-
ing refactoring methodologies. In this work, we describe
this framework in the context of supervised learning tasks,
specifically image classification problems. Our hypothe-
sis posits that the criteria for successful refactoring—
namely source-to-source transformation and seman-
tic preservation—assume unique, yet complementary
implications in the context of LESS as opposed to tra-
ditional software systems.

Specifically, ReLESS will allow for the possibility that
transformations might produce outputs that are slightly
different from the original output as long as they lead to
improvements in other performance metrics of the system.
Determining how "different" the output can be from the
original is a research question we seek to address. More-
over, our approach aims to discover and preserve safety-
critical metrics during ReLESS while further mitigating the
uncertainties introduced by their non-deterministic nature.
While current approaches emphasize knowledge distilla-
tion (transferring knowledge from a large neural network
to a smaller, resource-efficient one) and regularization (a
technique for solving over-fitting), our vision for the future
of ReLESS includes approaches that combine connectionist
models (e.g., neural networks) and symbolic (e.g., decision
tree) approaches as well as Bayesian and analogizer (e.g.,
K-nearest neighbor, support vector machine) approaches.

This paper is structured as follows: in Section 2 we first
provide a comprehensive analysis of state-of-the-art refac-
toring methodologies in LESS and discuss how these works
trade-off accuracy with respect to specific metrics such as
run-time performance, robustness [11, 13, 14, 16], or inter-
pretability. In Section 3, we contrast existing practices and
scrutinize informal notions of semantics preservation across
different levels (source code vs. trained model). We then mo-
tivate a novel thread of inquiry for the ReLESS evaluation
framework and its multi-objective optimization function
that combines the aforementioned multiple metrics to guar-
antee the AI system’s safety. Section 4 presents preliminary
experiments utilizing ReLESS to gauge LESS safety and asso-
ciated parameters. Finally, in Section 5 we discuss the main
insights gleaned from this work and our future work.

2. Related Work
In recent years, various research has been conducted on
LESS refactoring, with significant observations in balancing
single metric against accuracy of models. Several studies
have focused on image classification or object detection, ad-
dressing this tension and presenting innovative verification.
However, these approaches often face limitations in lack of
generalization and narrow scope of metrics, which we aim
to address in our work.

2.1. Refactoring Types in Software
Development

Refactoring [17], a well-known technique for the evolution
and maintenance of traditional software, alters a system’s
internal structure without changing its behavior [18] to
improve non-functional characteristics such as run-time
performance, security, and modularity, and to pay down
technical debt [31, 32, 33, 34, 35]. It can be considered as

a series of typically automatic procedures for modifying
code, such as variable name changes to enhance comprehen-
sion [19], without an explicit focus on automated refactor-
ing, as these modifications frequently occur automatically
within a system-based environment. Formally, a refactoring
is a program transformation potentially spanning multiple,
non-adjacent program statements or expressions that is:
(i) source-to-source and (ii) semantics-preserving, i.e., the
behavior of the program is the same before and after the
refactoring.

Even though refactoring is a well-established practice in
traditional software development, it is not as well clear in
LESS. Existing refactoring attempts in LESS are implicitly
performed via controlling randomness [11], decomposing
trained models [12], or defining new requirements [13]. The
lack of refactoring tools and techniques, and an evaluation
framework for LESS is a significant challenge for developers
and researchers [2]. Our research aims to develop a multi-
objective evaluation framework for LESS. We study it in the
context of a specific class of supervised learning problems,
namely image classification tasks.

2.2. Image Classification Problems and
Evaluation

While the continuous evaluation of ML models [11, 12, 13,
36] has highlighted modularity, reliability, robustness, and
interpretability, these assessments done independently fall
short of ensuring the safety of AI systems as a whole. Con-
sider for instance the role of accuracy, which is the widely
accepted metric [37] for gauging the success of models in
the image classification task. Benchmark models for this
problem class originating from the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) have continually
improved on accuracy. To date, the record for the highest ac-
curacy on the ImageNet benchmark is an impressive 92.4%,
set by OmniVec(ViT)1. However, while high accuracy is in-
dispensable, it is not the sole criterion for the adequacy of
a model, especially within contexts of safety-critical appli-
cations. In such applications, other non-functional metrics
demand equal consideration to ensure the comprehensive
robustness and reliability of LESS.

Ensuring AI systems maintain safety and fairness [38]
across various conditions and inputs is crucial for ap-
plications like autonomous driving and medical diagno-
sis [13, 16, 39]. Reliability is equally important, as depend-
able systems yield consistent results, fostering trust among
stakeholders and accountability among developers. While
state-of-the-art models often match or exceed human per-
formance in image classification tasks, understanding errors
and their solutions remains challenging [40]. Evaluating
model performance is vital, especially in safety-critical sce-
narios, yet the opaque nature of the learning component
hinders transparency and interpretability.

Our proposed framework ReLESS combines accuracy, run-
time performance, robustness, and interpretability, using a
multi-objective optimization function. By experimenting
with metrics drawn from existing literature and through
preliminary evaluations of them, we validate target systems’
performance both before and after refactoring. Our findings
illuminate the trade-offs researchers make between accuracy
and other performance metrics. Importantly, our evaluation

1https://paperswithcode.com/paper/omnivec-learning-robust-
representations-with



process considers not just a single metric versus accuracy
but integrates multiple metrics to understand various system
maintenance challenges. This approach helps mitigate the
"black-box" nature of AI learning components, providing
clearer insights into system behavior and performance.

2.3. Baselines for Comparison
Chen et al. [11] analyzed refactoring for image classification
tasks at the algorithmic level with various models using
dynamic analysis, record-and-replay, and profile-and-patch.
The focus of their approach is to control randomness and
hardware non-determinism to guarantee that the 𝑂𝑢𝑡𝑝𝑢𝑡
and performance metrics are the same as the original sys-
tem in seven models (Lenet1/4/5, ResNet-38/56, WRN-28-10,
and ModelX). Models are then reproduced efficiently and
accurately across different hardware.

Pan and Rajan [12] hypothesized that decomposing learn-
ing models into reusable components can affect refactor-
ing outputs and statistical performance in the MNIST [41]
dataset. They run four DNN models across sixteen experi-
ments with varying hidden layers and datasets, demonstrat-
ing that removing irrelevant edges in the network can lead
to similar accuracy and preserve the most semantics. They
found that 9 out of 16 cases were functionally equivalent to
the original models, based on the Jaccard Index, with intra-
dataset performance from decomposed models slightly out-
performing models built from scratch (e.g., MNIST(+0.30%)).

Adopting the methodology from Hu et al. [13], we suc-
ceeded in obtaining the original and filtered images from
ImageNet [42]. Image filters such as brightness, contrast,
defocus/blur, frost, gaussian noise, and jpeg compression,
are crucial for testing the robustness of the refactored sys-
tems [43] because they involve pictures that human can
recognize correctly and easily before and after filtering,
thus setting a baseline for model performance in similar
conditions.

3. Methodology
Given the context of refactoring in ML systems as discussed
in the previous section, we present ReLESS, a conceptual
framework created especially to tackle two important re-
search goals. First, to investigate the definition and opera-
tion of semantic preservation during system transformation
procedures inside the LESS. Second, to explore approaches
for evaluating the safety of LESS during the system’s transi-
tion, building on our formalization of semantic preservation
from the previous goal.

Figure 1: Traditional refactoring. 𝑃𝑟𝑜𝑔1 is the refactoring. 𝑃𝑟𝑜𝑔2
and 𝑃𝑟𝑜𝑔′2 are programs to be refactored and the refactored pro-
gram, respectively. 𝑂𝑢𝑡𝑝𝑢𝑡 and 𝑂𝑢𝑡𝑝𝑢𝑡′ are the outputs of 𝑃𝑟𝑜𝑔2
and 𝑃𝑟𝑜𝑔′2, respectively, given 𝐼𝑛𝑝𝑢𝑡. Assume 𝑃𝑟𝑜𝑔2 ≠ 𝑃𝑟𝑜𝑔′2.

Figure 2: Refactoring LESS. 𝑃𝑟𝑜𝑔1 is the refactoring. 𝑃𝑟𝑜𝑔2 and
𝑃𝑟𝑜𝑔′2 is the ML algorithm to be refactored and the refactored ML
algorithm, respectively. Assume 𝑃𝑟𝑜𝑔2 ≠ 𝑃𝑟𝑜𝑔′2. 𝑃𝑟𝑜𝑔3 and 𝑃𝑟𝑜𝑔′3
are the outputs (trained models) of 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔′2, respectively,
given a training set. 𝑂𝑢𝑡𝑝𝑢𝑡 and 𝑂𝑢𝑡𝑝𝑢𝑡′ are the outputs (pre-
dictions/classifications) of 𝑃𝑟𝑜𝑔3 and 𝑃𝑟𝑜𝑔′3, respectively, given a
testing set.

Consider Fig. 1 which depicts the situation representing
the refactoring of traditional software systems. Here, 𝑃𝑟𝑜𝑔1
represents an (automated) refactoring that takes as input a
program 𝑃𝑟𝑜𝑔2 to be refactored and produces a refactored
program 𝑃𝑟𝑜𝑔 ′

2. Note that 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′
2 are source code,

i.e., textual descriptions. We assume that 𝑃𝑟𝑜𝑔1 is a non-
trivial refactoring, i.e., that 𝑃𝑟𝑜𝑔2 ≠ 𝑃𝑟𝑜𝑔 ′

2. As refactoring
typically deals with real-world languages with non-trivial
semantics, the semantic equivalence of 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′

2
is normally assessed empirically by executing 𝑃𝑟𝑜𝑔2’s test
suites and comparing the results. Thus, to evaluate the
refactoring 𝑃𝑟𝑜𝑔1, 𝐼𝑛𝑝𝑢𝑡 is fed to both 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′

2 for
all test suite inputs. The 𝑂𝑢𝑡𝑝𝑢𝑡 is then compared—ideally,
all tests have the same results before and after the refactor-
ing. If so, then 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡′, and 𝑃𝑟𝑜𝑔1 is considered
validated. Otherwise, 𝑂𝑢𝑡𝑝𝑢𝑡 ≠ 𝑂𝑢𝑡𝑝𝑢𝑡′, meaning there is
a bug [18, 19] in the system. Since traditional software is
typically deterministic and its logic is not driven by dynamic
data models, the process works in a relatively straightfor-
ward fashion. In fact, the larger the test suite, the greater
the confidence that the refactoring works.2 On the other
hand, given the non-deterministic intricacies inherent in
LESS, the traditional refactoring as described in Fig. 1 is in-
sufficient. Consequently, we construct an auxiliary diagram
Fig. 2 that facilitates a more direct and nuanced evaluation
of the transformations.

Now consider Fig. 2 representing ReLESS with citations
of related work in the supervised learning context. 3 Here,
𝑃𝑟𝑜𝑔1 represents an (automated) refactoring that takes as
input an ML algorithm 𝑃𝑟𝑜𝑔2 to be refactored and produces
a refactored ML algorithm 𝑃𝑟𝑜𝑔 ′

2. Note that 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′
2

are ML algorithm source code, i.e., textual descriptions. We

2Traditional software may be concurrent, potentially experiencing race
conditions, or may rely on its (changing) environment. In such cases,
“flaky” tests may arise, which would challenge refactoring validation.
In this case, the test suites can be executed several times to identify
stable tests.

3While our current investigation focuses on supervised learning, we
plan to extend the framework to other types of learning (unsupervised,
reinforcement) as part of of our future work.



again assume that 𝑃𝑟𝑜𝑔1 is a non-trivial refactoring, i.e.,
that 𝑃𝑟𝑜𝑔2 ≠ 𝑃𝑟𝑜𝑔 ′

2. To evaluate the refactoring 𝑃𝑟𝑜𝑔1, two
steps are taken: (a) a training dataset is fed to both 𝑃𝑟𝑜𝑔2
and 𝑃𝑟𝑜𝑔 ′

2, which then produces the compiled, aka trained
ML models 𝑃𝑟𝑜𝑔3 and 𝑃𝑟𝑜𝑔 ′

3, respectively; (b) an evaluation
(testing) dataset is fed to both 𝑃𝑟𝑜𝑔3 and 𝑃𝑟𝑜𝑔 ′

3. One or more
such datasets (both training and evaluation) may be used.
The 𝑂𝑢𝑡𝑝𝑢𝑡—in this case, predictions or classifications—is
then compared. If 𝑃𝑟𝑜𝑔1 results in no accuracy loss, then
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡′. Otherwise, 𝑂𝑢𝑡𝑝𝑢𝑡 ≠ 𝑂𝑢𝑡𝑝𝑢𝑡′, meaning
𝑃𝑟𝑜𝑔1 causes some accuracy loss when refactoring 𝑃𝑟𝑜𝑔2.
Note that unlike in the traditional refactoring evaluation
case, whether there is a bug in 𝑃𝑟𝑜𝑔1 in this situation is not
straightforward to determine and is not a topic of focus in
this paper. Because LESS can be non-deterministic and has
logic that is driven by dynamic data models, whether 𝑃𝑟𝑜𝑔1
is considered valid may depend on multiple factors. For
instance, if the accuracy loss is within a certain threshold,
then 𝑃𝑟𝑜𝑔1 may be considered valid. If the accuracy loss is
above the threshold, then 𝑃𝑟𝑜𝑔1 may be considered invalid.

A supplementary contribution of our proposed frame-
work is that it has an additional layer where both the trans-
formation and output comparison could occur. For instance,
there is a dashed line in Fig. 2 from 𝑃𝑟𝑜𝑔3 to 𝑃𝑟𝑜𝑔1 and
𝑃𝑟𝑜𝑔1 to 𝑃𝑟𝑜𝑔 ′

3, indicating that the program transformation
can also take place on the trained ML models. In the tra-
ditional setting (Fig. 1), because the transformation is not
source-to-source, it would not be considered a refactoring
in the traditional sense but instead viewed as compiler op-
timization. However, in the LESS context, ML algorithms
are typically written in interpreted languages (e.g., Python),
where a compiler is not involved. It is because the model
training (compilation) process can potentially be lengthy
(days or even weeks) depending on the dataset size, trans-
forming the ML algorithm to produce a new ML model as
part of the refactoring process can be time-consuming [44].
Instead, it may be advantageous in this context to perform
the refactoring at the testing level to avoid retraining. Such
a "refactoring" is done on LESS by Pan and Rajan [12, 45].
Although the transformation is on the trained ML model,
their goal of enhanced modularity is a classical refactoring
outcome.

3.1. Determination of Semantic Equivalence
Our objective is to ultimately build a tool, where users pro-
vide original code (old system), that determines which refac-
torings (new systems) would satisfy semantic equivalence.
We identify different levels at which this could occur: se-
mantic equivalence at: (a) the ML algorithm level (case 1),
and (b) the ML model level (case 2). We will demonstrate
how existing works perform semantic equivalence from a
single-lens point of view. Drawing on these effects, how-
ever, our approach will create a multi-objective evaluation
(instead of a single-objective function used by the current
state-of-the-art).

Case 1: Semantic Equivalence at the ML Algorithm
Level

𝑃𝑟𝑜𝑔2 = 𝑃𝑟𝑜𝑔 ′
2: This equivalence implies that 𝑃𝑟𝑜𝑔3 and

𝑃𝑟𝑜𝑔 ′
3 are also semantically equivalent as shown in Fig. 2. In

this case, 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′
2 are semantically equivalent since

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡′. But, the average training time (in hours)
of the model for this refactoring in Chen et al. [11] increases

from 0.017 to 0.023 for Lenet1 and from 7.08 to 14.979 in the
case of ModelX. Their approach has higher storage over-
head for 𝑃𝑟𝑜𝑔 ′

3 (due to random seed recording). Such an
approach does not facilitate model generalization to unseen
data by making the training process explore various possi-
bilities. This will constrain the robustness of an ML model.
Deterministic methods are also more susceptible to over-
fitting, as models can memorize the training data too closely,
limiting their performance on new data. Lastly, ensuring
complete determinism can be computationally expensive
and challenging, especially in complex, multi-threaded, or
distributed computing environments. This work highlights
the tension between semantic preservation and model opti-
mization.

Case 2: Semantic Equivalence at the ML Model Level

𝑃𝑟𝑜𝑔3 = 𝑃𝑟𝑜𝑔 ′
3: This means that the trained ML models

are the same. It follows again that 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡′, and
𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′

2 are semantically equivalent in the tradi-
tional sense. As we are considering non-trivial refactorings
as discussed earlier, we assume 𝑃𝑟𝑜𝑔2 ≠ 𝑃𝑟𝑜𝑔 ′

2, meaning
that the refactoring 𝑃𝑟𝑜𝑔1 has made some non-trivial trans-
formation. An example of such a transformation would be
to enhance the run-time performance of the training; the
trained model would be the same but the training process
would be faster. For instance, Castro Vélez et al. [46] show
that the 𝑃𝑟𝑜𝑔 ′

3 run-time is ∼9.22 seconds faster than 𝑃𝑟𝑜𝑔3
by applying a hybrid training technique in imperative Deep
Learning (DL) programs. In TensorFlow 2 [47], for exam-
ple, the tf.function decorator can be applied to certain
(model) Python functions found in imperative code to speed
up the training process. Developers and scientists, then, can
write natural, debuggable DL code in an imperative style
while retaining the run-time performance typically found in
legacy DL frameworks that support deferred-execution style
programming models. Applying tf.function to (other-
wise eagerly-executed) imperative DL code can be—if done
correctly—a semantics-preserving refactoring [46].

𝑃𝑟𝑜𝑔3 ≠ 𝑃𝑟𝑜𝑔 ′
3: This means that the trained models are not

the same. It follows that it is possible that𝑂𝑢𝑡𝑝𝑢𝑡 ≠ 𝑂𝑢𝑡𝑝𝑢𝑡′,
meaning that 𝑃𝑟𝑜𝑔2 and 𝑃𝑟𝑜𝑔 ′

2 may not be semantically
equivalent in the traditional sense. There are several situ-
ations that may occur here, e.g., (i) different hyperparam-
eters are used. (ii) hybridization is misused, resulting in
semantically–in-equivalent code [46], (iii) 𝑃𝑟𝑜𝑔 ′

3 may be an
optimized DL model, e.g., having fewer edges, being more
modular, and avoiding over-fit. In Fig. 2, 𝑃𝑟𝑜𝑔 ′

3 represents a
modular and refactored system from 𝑃𝑟𝑜𝑔3 via 𝑃𝑟𝑜𝑔1, where
semantics is preserved through separation of concerns, such
as using supervised classification labels for maintenance and
reduced model training time [12]. This indicated that 𝑃𝑟𝑜𝑔 ′

3
does better than 𝑃𝑟𝑜𝑔3 with respect to ReLESS optimization
while preserving the potential to explore generalizability
and scalability.

Our analysis not only sheds light on the current state-
of-the-art but also establishes a linkage between program
transformation techniques and their operational viability
in scenarios where safety is of paramount concern. We
then use these observations to formally define semantic
preservation using a multi-objective optimization function
rather than a single-objective one in LESS.



3.2. Semantic Preservation: Formal
Definition and Verification Metrics

We first define the semantic preservation of LESS based
on varying ranges of the output. The Venn diagram Fig. 3
shows the outputs from the original code and proposed Re-
LESS. The upper circle in blue is the output from the original
code, e.g., the probability of correct labels for a classification
or prediction task. The lower circle in yellow is the output
from ReLESS. This diagram examines where the two outputs
are equivalent (overlapping area) and where they are differ-
ent. Suppose 𝛿 is the acceptable range of overlap, i.e., how
much developers/engineers/scientists are willing to trade
accuracy with other factors viz. robustness, run-time per-
formance, interpretability etc. Ideally, the overlapped area
should be as large as possible, but this is not always the case
and is application-dependent. For instance, if the system is
time-critical, then the response time is emphasized in the op-
timization even though there are marginal accuracy losses.
If the system is safety-critical, then the accuracy should be
preserved as much as possible. That said, we posit that to
achieve semantic preservation in ReLESS, it is inadequate to
consider accuracy as the sole optimization metric.

Prior works [13, 38] has formalized balancing between ac-
curacy and reliability/robustness and fairness. OBrien et al.
[48] define non-functional LESS metrics as run-time per-
formance (speed), security, privacy, and memory (storage).
Building upon these foundational studies, we extend the
evaluation framework for semantic preservation to explic-
itly encompass safety as an overarching theme. Run-time
performance, as highlighted by OBrien et al. [48], serves not
only as a measure of efficiency but also influences system
safety by ensuring timely responses in critical scenarios. Ro-
bustness, as documented by Hu et al. [13], is directly linked
to safety, reflecting the system’s capacity to withstand errors
and adversities. Finally, interpretability, introduced by [36],
enhances safety by providing clarity on decision-making
processes, thereby allowing for greater accountability and
easier identification of potential safety breaches. These
three metrics collectively forge a more resilient and safety-
conscious framework for assessing semantic preservation
in LESS.

This tailored approach allows for a more integrated and
holistic assessment of LESS, aligning closely with contem-
porary LESS development and deployment needs. All three

Figure 3: |𝑂𝑢𝑡𝑝𝑢𝑡′| \|𝑂𝑢𝑡𝑝𝑢𝑡|. 𝑂𝑢𝑡𝑝𝑢𝑡 and 𝑂𝑢𝑡𝑝𝑢𝑡′ are super-
vised classification tasks’ labels from the original and refactored
models, respectively. |𝛿| = |𝑂𝑢𝑡𝑝𝑢𝑡′\𝑂𝑢𝑡𝑝𝑢𝑡|.

transformations do not change LESS’s external behavior
(semantics) [49]. The formal notation is built to combine ac-
curacy with those non-functional metrics with customized
importance factors to guide which degree of flexibility the
engineers, scientists, and researchers want the model they
work on to emphasize. We propose a multi-objective opti-
mization function, akin to Nguyen et al. [38]’s approach, to
determine the difference (loss function) between a LESS and
its corresponding ReLESS. We argue that if the loss is below
a certain threshold with constraints (as discussed in Fig. 3),
then semantic preservation is maintained.

As one of the state-of-the-art formal methods, optimiza-
tion via loss functions is central to the training of ML/DL
models [38]. It is recognized for its adaptability to a wide
range of applications. Different trade-offs exist when refac-
toring in ML/DL systems, so a multi-objective optimization
function is constructed. Besides, optimization can standard-
ize each metric term that needs to be balanced with accuracy
in loss function to make the whole system understandable
to the target audience. The range of optimization applied is
from classical ML models (random forest, gradient boost) to
DNN models with supported libraries, e.g., auto-sklearn [50]
and AutoKeras [51].

3.2.1. Accuracy, Run-time Performance, Robustness,
and Interpretability

To comprehensively evaluate the performance of ReLESS,
we will consider accuracy with three key loss functions:
run-time performance, robustness, and interpretability.

a. ACCuracy is the number of correct outputs over the
total number of instances.

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

where 𝑇 𝑃 and 𝑇𝑁 are the number of positive instances and
negative instances correctly classified, and 𝐹𝑃 and 𝐹𝑁 are
the number of instances incorrectly classified.

b. Run-Time Performance Improvement (RTPI ) is deter-
mined by comparing the observed run-time of the original
(old) code and new (transformed) code.

𝑅𝑇𝑃𝐼 =
𝑅𝑇𝑃𝑜𝑙𝑑 − 𝑅𝑇𝑃𝑛𝑒𝑤

𝑅𝑇𝑃𝑜𝑙𝑑
(2)

c. ROBustness Improvement is indicated as ROBI.

𝑅𝑂𝐵𝐼 =
1


∗Σ𝑥,𝑦∈(1 −
𝐿𝑜𝑠𝑠𝑛𝑒𝑤(𝑦, 𝑓 ) − 𝐿𝑜𝑠𝑠𝑜𝑙𝑑(𝑦, 𝑓 )

𝐿𝑜𝑠𝑠𝑜𝑙𝑑(𝑦, 𝑓 )
)

(3)
where  is the input dataset, 𝑥 is the training dataset, and 𝑦
is the set of corresponding labels for a supervised learning
task, such as image classification. Similar to RTPI, the ob-
served difference is captured in loss function in old and new
models. ROBI is observed by the difference in the loss func-
tion between the old and new models. Our definition for
robustness is based on [10, 52], where a robustness system
after refactoring is verified by its loss function after adver-
sarial training, and for classical ML after refactoring can be
also verified by its loss function after data augmentation,
feature engineering, and ensemble learning.

d. INTerpretability Improvement is indicated as INTI.

𝐼𝑁 𝑇 𝐼 =
1

|𝑠𝑢𝑏𝑠𝑒𝑡 |
∗Σ𝑥,𝑦∈𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑜𝑠𝑠(𝑦, 𝑓𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑎𝑏𝑙𝑒(𝑥)) (4)

Molnar [53] define interpretability in machine learning us-
ing interpretable models and a simplified loss function. The



loss function serves as a quantitative measure to compare
the interpretability of different models while maintaining
accuracy. This approach blends the conceptual understand-
ing of model behavior (through interpretable models) with a
practical, measurable way (using the loss function) to assess
and compare the clarity and comprehensibility of different
models. We compute this metric using the definition of in-
terpretability where a subset as input of . We are able to
compare the difference between new and old models and
the corresponding interpretability score [36]. The implica-
tion is that the simplified loss function on the explainable
refactored system correlates with higher interpretability,
which is plausible, but the exact method of determining
explainability is essential here.

To sum up, we define a multi-objective optimization loss
function that facilitates balancing the importance of various
objectives depending on the application domain. Each met-
ric is formulated as a ratio or a normalized value, which is
typical in performance evaluation to provide a standardized
measure of improvement or degradation. In the equation
below, each metrics term is the loss measurements calcu-
lated from Eqs. (2) to (4) respectively for ROBI, RTPI, and
INTI metrics respectively and accuracy is ACC; 𝜃 is the
model with its parameters,  is the dataset. Each term’s
weight coefficient 𝜔𝑖 is assumed to be user-defined and in-
dicates the importance of each of the metrics during model
evaluation.

𝑚𝑖𝑛𝕃(𝜃 ,) = 𝜔1 × ACC

+ 𝜔2 × RTPI

+ 𝜔3 × ROBI

+ 𝜔4 × INTI

(5)

where 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are weights that reflect the impor-
tance of each term in the loss function.

The multi-objective optimization function in this formal-
ism enables the determination of whether a ReLESS is a
semantically preserving transformation to its LESS. More-
over, when fusing these measurements, it is also essential to
include the measure of accuracy because regardless of the
importance of the speed of operation, robustness, and in-
terpretability, producing correct outputs is the cornerstone
of model evaluation. In other words, accuracy is always a
first-class objective. Only by considering the critical role of
accuracy can we ensure that a model is trustworthy [54].

Expanding on the conceptual structure presented in the
preceding part, we describe a preliminary experimental con-
figuration intended to closely assess the accuracy, run-time
performance, robustness, and interpretability of LESS.

4. Experimental Setup
This section describes the experimental setup employed for
a preliminary evaluation of the proposed ReLESS framework
for a simple case study. We describe the datasets used for
experiments, followed by an explanation of the experimental
design and the metrics adopted to assess the efficacy of the
refactorings.

4.1. Datasets and Models
As indicated in Section 2, we study ReLESS in the context of
two image classification datasets: the ImageNet dataset and
the MNIST dataset. The ImageNet dataset [42], comprised

of 1.2 million images across 1000 categories, is utilized for
the evaluation to assess reliability and robustness, with a spe-
cific subset of 50,000 images filtered from [43]. The MNIST
dataset [41], containing 60,000 training images and 10,000
test images of handwritten digits, serves as the basis for
initial evaluations. Those datasets enable preliminary as-
sessments of the refactorings’ effectiveness before proceed-
ing to more complex scenarios. Our experimental models
include fully connected neural networks with 1 to 4 layers
for the MNIST dataset, and pre-trained complex architec-
tures such as AlexNet [55], ResNet50 [56], VGG16 [57], and
GoogleNet [58] for the ImageNet dataset.

4.2. Experiment and Results
In our experimental setup, we applied the methodologies
outlined by Pan and Rajan [12] and Hu et al. [13], along
with techniques detailed in Section 3, across both datasets
to scrutinize the refactored systems with respect to accuracy,
run-time performance, robustness, and intepretebility. The
results of experiments are summarized in Table 1.

From Table 1, we observe that the refactored models ex-
hibit a marginal decrease in accuracy on the MNIST dataset,
with a difference of 0.001. This decrease is attributed to the
expanded modular complexity, which results in a run-time
increase of 414.7 seconds. The modularity of the refactored
model is significantly higher than the original model, with
a difference of 8. The robustness of the refactored model is
also higher, with a difference of 2.0476. The interpretabil-
ity of the refactored model is higher, with an accuracy dif-
ference of 0.0769. Increases in both metrics indicate that
the refactored system exhibits improved robustness and in-
teroperability after decomposing. However, although the
robustness has improved, the accuracy for refactored sys-
tems using the ImageNet dataset has decreased, falling be-
low that of a coin flip. Therefore, modularity appears not
only to be harmless but also beneficial to system safety, as
it maintains accuracy and improves robustness. But, for
the optimization of the aforementioned complex systems,
more efforts are required to prevent accuracy loss, particu-
larly in safety-critical tasks. More details can be found in
https://github.com/NanJ90/ReLess-testing-tool

To summarize, we present an initial assessment for Re-
LESS evaluation framework and describe the datasets used,
the experimental design, and the metrics for evaluating
refactorings. The comparative analysis of original and refac-
tored models reveals that different datasets and models can
exhibit significant variations across different performance
metrics. For instance, while the performance of the Ima-
geNet model remained relatively consistent after speedup,
the modularized MNIST model took 168 times longer than
the original. This underscores the critical importance of
evaluating effects across multiple datasets and models to
gain comprehensive insights into performance implications
w.r.t accuracy.

5. Conclusions and Future Work
Our contribution in this work includes a review of litera-
ture focused on refactoring in LESS, particularly with an
emphasis on safety considerations. This review critically
analyzes the spectrum of assessments presented across var-
ious studies, each contributing to a facet of the AI safety
standard. We further explore and elucidate the interrela-

https://github.com/NanJ90/ReLess-testing-tool


Table 1
Performance comparison of the original and refactored models on the MNIST and ImageNet datasets.

Metric
MNIST ImageNet

Original Refactored Difference Original Refactored Difference
Accuracy 0.9491 0.9490 0.0001 0.7948 <0.5 >0.2948

Run-time (seconds) 4.2 419.3 414.7 163.7 174 10.3000
Robustness 0.1744 2.2220 2.0476 0.9453 10.0754 9.1301

Interpretability (accuracy) 0.7882 0.8651 0.0769 <0.5 <0.5 0

tionships between these safety metrics and the accuracy
of AI systems, highlighting the implications for model de-
velopment and deployment. Our preliminary results set a
potential foundation to help drive the long-term evolution,
and robustness of LESS that are traditionally enjoyed by
conventional systems during development and deployment,
and then improve the safety of LESS. The scientists and en-
gineers who develop AI systems will be able to rely on the
refactored systems and trust them to make decisions that
are safe, secure, and trustworthy. This work includes un-
derstanding how the thresholds in Fig. 3 will be determined
for various applications and how the user can determine
the weights for the various metrics. We have described an
initial validation of our framework; however, further exper-
imentation that includes more metrics such as fairness and
privacy, extending the validation to a variety of problem
domains and case studies is essential to comprehensively
assess its effectiveness and generalizability. This would also
enable practitioners to prioritize specific components when
evaluating LESS and could even lead to design-to-criteria
LESS.
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