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Abstract—In this paper, we study a fully-decentralized multi-
agent policy evaluation problem, which is an important sub-
problem in cooperative multi-agent reinforcement learning, in
the presence of up to f faulty agents. In particular, we focus
on the so-called Byzantine faulty model with model poisoning
setting. In general, policy evaluation is to evaluate the value
function of any given policy. In cooperative multi-agent system,
the system-wide rewards are usually modeled as the uniform
average of rewards from all agents. We investigate the multi-
agent policy evaluation problem in the presence of Byzantine
agents, particularly in the setting of heterogeneous local rewards.
Ideally, the goal of the agents is to evaluate the accumulated
system-wide rewards, which are uniform average of rewards of
the normal agents for a given policy. It means that all agents
agree upon common values (the consensus part) and furthermore,
the consensus values are the value functions (the convergence
part). However, we prove that this goal is not achievable. Instead,
we consider a relaxed version of the problem, where the goal
of the agents is to evaluate accumulated system-wide reward,
which is an appropriately weighted average reward of the normal
agents. We further prove that there is no correct algorithm that
can guarantee that the total number of positive weights exceeds
|N | − f , where |N | is the number of normal agents. Towards
the end, we propose a Byzantine-tolerant decentralized temporal
difference algorithm that can guarantee asymptotic consensus
under scalar function approximation. We then empirically test
the effective of the proposed algorithm.

Index Terms—Multi-agent policy evaluation, Byzantine attack,
Temporal difference learning

I. INTRODUCTION

Reinforcement learning (RL) [34] is a powerful paradigm in
learning sequential decision-making. The success of RL both
in theory [1], [19], [29], [33], [35], [36], [43] and practice [14],
[26], [28] has sparked the interest in the realm of multi-agent
reinforcement learning (MARL) [20], [45], [46]. MARL [27],
[46] is a multi-agent setting, a natural extension of single-agent
RL, where agents interact within a common environment. The
state dynamics and individual rewards are affected by both the
global state and joint actions. Based on the system objective,
there are in general two main categories of MARL problems,
cooperative [46] and competitive [27] settings. Based on the
assumption of the system infrastructure, there are also two
categories, centralized setting and fully decentralized setting
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respectively. More specifically, in a fully-decentralized multi-
agent setting, agents are only able to share information with
each other through a communication network instead of a
central server. In contrast, in a server-present centralized system,
the server can collect and aggregate local information and
disseminate appropriate information to agents (see an excellent
survey [45] of MARL topics for further details). The focus of
this paper is the cooperative and decentralized setting as in
[46], where all agents work together to maximize a common
goal.

Similar to the single-agent RL setting, a complete MARL
algorithm searches for a certain optimal policy π∗ that can
maximize accumulated system-wide average reward, i.e.,

π∗ = argmax
π

E
[ ∞∑

t=0

γt
n∑

i=1

1

n
rit+1

]
,

where n is the number of agents in the system, γ is a discount
factor with 0 < γ < 1 and the expectation is subject to
the usual caveats about appropriate expectations existing in
steady-state. We note that in a cooperative multi-agent system,
the system-wide reward is typically modeled as the uniform
average of all agents. An important subproblem is to study the
multi-agent policy evaluation for a given policy π, as this can
be incorporated into the actor-critic framework as the critic
step. The goal of all agents, in this subproblem, is to learn the
value functions defined as:

V (s) = E
[ ∞∑

t=0

γt
n∑

i=1

1

n
ri(st, at)|s0 = s

]
,

for all states s ∈ S . This implies that 1) all agents need to reach
consensus and 2) the consensus values are the value functions
defined above. The multi-agent policy evaluation problem has
been studied extensively in fault-free setting [7]–[9], [17], [46].

We study a fully decentralized multi-agent policy evaluation
problem in the presence of Byzantine agents. In addition, we
consider a multi-agent system where up to f > 0 agents are
Byzantine. Specifically, we explore the model poisoning faulty
setting described in [6], [11], [32], where Byzantine agents
could send arbitrary or carefully crafted information to their
neighboring agents. In a fully decentralized system, it is typical
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for agents to share certain system parameters in order to achieve
consensus as described above. However, Byzantine agents have
the ability to modify these local parameters to arbitrary values,
thereby disrupting the algorithm. Furthermore, it is important
to highlight that in a fully decentralized system, a Byzantine
agent can transmit inconsistent information to its neighbors.
This means that a Byzantine agent can send different values
to different neighbors. This presents a significant challenge
compared to the centralized server-based setting, where a
Byzantine agent can only send a single piece of information to
the server. The existing literature in multi-agent reinforcement
learning (MARL) lacks a comprehensive study on robust
designs, particularly in heterogeneous settings that consider
these challenges.

In this work, we investigate the multi-agent policy evaluation
problem in the presence of Byzantine agents for any given
policy π. Ideally, the goal of the agents is to evaluate the
accumulated uniform average reward of the normal agents.
Specifically, let N denotes the set of normal agents in the
system, the decentralized multi-agent policy evaluation is to
characterize the following value at any states s for the given
policy π:

V (s) = E
[ ∞∑

t=0

γt
∑
i∈N

1

|N |
ri(st, at)|s0 = s

]
. (1)

However, we will prove later in Theorem 1 that evaluating
Eq. (1) cannot be achieved. Thus, we consider a relaxed version
of the multi-agent policy evaluation problem. In this relaxed
problem, the goal of the agents is to evaluate accumulated
weighted average reward, which can be written as:

V (s) = E
[ ∞∑

t=0

γt
∑
i∈N

αir
i(st, at)|s0 = s

]
, (2)

where αi ≥ 0 for all i ∈ N and
∑

i∈N αi = 1. We further
prove that for the case f > 0, there is no correct algorithm that
can evaluate Eq. (2) with

∑
i∈N 1{αi > 0} > |N |− f , where

|N | and f are number of normal and the maximum number of
Byzantine agents. In other words, achieving more than |N |−f
positive weights in the relaxed problem is impossible in general.
In the end, we propose a Byzantine-tolerant decentralized
temporal difference (BDTD) algorithm under linear scalar
function approximation that can guarantee that all normal agents
reach consensus.

The contributions of this paper are threefolds:

• First, we prove in Theorem 1 that evaluating the exact
value functions defined by the uniform average reward of
the agents in the presence of Byzantine is impossible. In
other words, there is no correct algorithm that can achieve
the value functions where system-wide rewards are modeled
as the uniform average rewards of all normal agents in the
presence of Byzantine agents. We further relax the problem to
consider solving value function where system-wide rewards
are modeled as appropriately weighted average rewards of
the normal agents.

• Second, we further prove in Theorem 2 that there is no
correct algorithm that can guarantee the number of positive
weights exceeds |N | − f for the aforementioned relaxed
problem.

• Last but not least, we propose a decentralized multi-
agent policy evaluation algorithm with linear scalar function
approximation, so that all normal agents can reach consensus.

II. RELATED WORK

A. Fault-free policy evaluation

Policy evaluation, which aims to evaluate how good a given
policy is, is an important sub-problem in designing a complete
RL algorithm, which can be incorporated into the actor-critic
framework as the critic step. Temporal difference (TD) learning
[33] is a simple yet effective learning algorithm first proposed
in the single-agent setting to evaluate a given policy. The
convergence theory in TD learning has been developed first in
asymptotic regime [36], [37] and then in finite-time horizon
[2], [29], [43].

The multi-agent policy evaluation, based on distributed TD
learning, has been recently studied [8], [9], [41]. Various aspects
of fully-decentralized MARL algorithms have been studied.
Notably, the sample and communication efficiencies of actor-
critic algorithms have been investigated in [7], [16], [17], [23].

B. Distributed Learning with Byzantine Agents

Byzantine agents with local model poisoning attack is a
common modeling for robust design of distributed algorithm
design. A large body of papers [3], [6], [11], [12], [18], [21],
[22], [42], [44] in the literature have adopted it as a common
failure model in federated learning problem, where a server is
involved to facilitate the collaborative learning process within
the supervised setting. In robust algorithm design, one feature
that is different from fault-free counterpart is to design robust
filtering mechanism. For instance, in the Krum aggregation
rule, as described by [3], the server receives local models from
agents and selects one received local model that has the smallest
distance to its subset of neighbors as the output. In [4], a key
system assumption is that the server holds a trusted dataset.
The server maintains a server model based on the current
global model and its trusted dataset. Upon receiving one local
model from any agent, the server considers this received local
model as benign if it is positive related to the server model.
Recently work in [5], [10] studied the effect of Byzantine
agents in the so-called federated reinforcement learning (FRL)
framework, where a central server is assumed to be present.
However, we note that FRL and MARL differ significantly
in that FRL is a multiple independent identical learner and
the action from one agent does not affect the outcomes of
other agents. In contrast, the global state transition and local
rewards are dependent upon joint actions in MARL. In [5], the
results are further extended the results to the offline setting. The
closest related work [41] studied the policy value evaluation in
the presence of Byzantine agents for a given policy. However,
the analysis implicitly assumes the setting of homogeneous
rewards, i.e. the rewards for all agents are the same. In our
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work, we consider a more general heterogeneous reward setting.
The offline competitive MARL has been studied in [40], where
the data poisoning fault model is considered. Specifically, the
rewards in the offline data are adversarially changed so that
the new Nash equilibrium learned from the poisoned data is
significantly different from the Nash equilibrium learned from
the original data.

There are a series of works [30]–[32] on decentralized
optimization problems where the local objective functions are
heterogeneous and convex. An important subproblem in both
our work and work in decentralized optimization [30]–[32] is
decentralized consensus, meaning all agents are required to
agree with each other. Existing work in [38], [39] have focused
on these fundamental problems and proposed f -trimmed-mean-
based algorithms. A recent paper [13] has investigated on the
topic of Byzantine-robust decentralized federated learning.

III. BYZANTINE POLICY EVALUATION IN MULTI-AGENT
REINFORCEMENT LEARNING

Throughout this paper, ∥ · ∥ denotes the ℓ2-norm for vectors
and the ℓ2-induced norm for matrices. | · | denotes cardinality
of a set/multi-set or the absolute value of a scalar. (·)T denotes
the transpose for a matrix or a vector.

1) System model: Consider a multi-agent system with
n agents, including up to f agents to be Byzantine agents.
We denote the set of Byzantine agents as F . Note that the
actual number of Byzantine agents in the system can be
smaller than f . We consider the scenario that all n agents
are connected through a complete graph, where each edge
serves as a communication channel that allows agents to send
information to their neighbors. Later, we will show that our
impossibility results hold even for this most ideal setting.

Definition 1 (Networked Multi-Agent MDP). Let the commu-
nication network be a complete graph. A networked multi-agent
MDP is defined by following tuple (S, {Ai}ni=1, P, {ri}ni=1, γ),
where S is the global state space observed by all agents, Ai

is the action set for agent i, P : S × A × S → [0, 1] is a
global state transition kernel, ri : S × A is the local reward
function for agent i, and γ ∈ (0, 1) is the discount factor. Let
A =

∏
i∈N Ai be the joint action set of all agents.

In this paper, we assume that the global state space S is
finite. We also assume that at any given time t ≥ 0, all agents
can observe the current global state st. ri(s, a) is individual
agent i’s reward given global state s and joint action a. For
simplicity of the presentation, we assume that the rewards are
deterministic. Even in this simple setting, we will show that our
impossibility results hold, let alone for more general stochastic
reward settings. We consider policies that are stationary. In our
MARL system, each agent chooses its action following its local
policy πi that is conditioned on the current global state s, i.e.,
πi(ai|s) is the probability for agent i to choose an action ai ∈
Ai. Then, the joint policy π : S ×A → [0, 1] can be written as
π(a|s) =

∏
i∈N πi(ai|s). For any given policy π, the global

value function for all s ∈ S is defined as follows: V (s) =

Es∼dπ,a∼π(·|s)[
∑∞

t=0
γt

N

∑
i∈N ri(st, at)|s0 = s], where dπ(·)

is the steady state distribution induced by π. The existence of
such distribution is guaranteed by the Assumption 1.

Definition 2 (Byzantine Networked Multi-Agent MDP). A
Byzantine networked multi-agent MDP is a networked multi-
agent MDP as defined in Definition 1 with up to f Byzantine
agents, who may send arbitrary information when sharing to
the neighboring agents.

We note that in the modelling of the Byzantine agents, the
agents still strictly follow the sampling policies and receives
true data from the environment. However, the Byzantine be-
havior appears in the communication process with neighboring
agents when sending value function information. One can see
such modelling in Algorithm 1.

2) Technical assumptions: We now state the following
assumptions for the decentralized multi-agent MDP described
above.

Assumption 1. For any policy π, the induced Markov chain
{st}t≥0 is irreducible and aperiodic.

Assumption 2. The reward rit+1 is uniformly bounded by a
constant rmax > 0, ∀i ∈ [n] and t ≥ 0.

Assumption 3. Each agent i’s value function is parameterized
by linear functions, i.e., V (s;w) = ϕ(s)w, where ϕ(s) ∈ Rd is
a feature vector for state s ∈ S . The feature matrix Φ ∈ R|S|×d

is a full-rank matrix. The feature vectors ϕ(s) are uniformly
bounded for any s ∈ S . Without loss of generality, we assume
that ∥ϕ(s)∥ ≤ 1.

Assumption 4. The total number of agents n and the maximum
number of Byzantine agents f has the following inequality
n ≥ 3f + 1.

Assumption 1 guarantees that there exists a stationary
distribution dπ(·) over S for the Markov chain induced by the
given policy π. Assumption 2 is common in the RL literature
(see, e.g., [8], [43], [46]) and easy to be satisfied in many
practical MDP models with finite state and action spaces.
Assumption 3 on features is standard and has been widely
adopted in the literature, e.g., [29], [36], [46], for linear function
approximations. Assumption 4 is a standard assumption in
decentralized Byzantine consensus problem as in [38].

IV. GENERAL RESULTS IN BYZANTINE FAULTY
MULTI-AGENT POLICY EVALUATION

In this section, we start with the scope of the problems
that we consider to facilitate the later discussions on our
impossibility results. First, we introduce the Byzantine-free
multi-agent policy evaluation problem [7], [8], [17], [46]. Note
that the stochastic convergence we are referring to in this paper
is expected mean-squared convergence as in Byzantine-free
setting [7], [8], [17], [29]. 1) Byzantine-free multi-agent
policy evaluation problem:

Problem 1. In decentralized TD learning, if all agents
function normally, is there a correct distributed TD learn-
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ing algorithm converges to a TD fixed point that satisfies:
w∗ = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑n
i=1

1
nr

i(s, a)]?

Note that the above convergence requires that each normal
agent i satisfy limt→∞ E[∥wi

t − w∗∥2] = 0. This implies two
important details. First, it signifies that all agents’ parameters
achieve consensus, meaning that they will all have the same
values. Second, in addition to reaching a consensus, the agreed-
upon value is w∗, which is referred to as the TD-fixed point.
We further note that from the perspective of the actor-critic
framework in decentralized MARL, consensus on certain global
information like value function is essential in computing local
policy gradients [7], [17], [46].

2) Byzantine faulty multi-agent policy evaluation prob-
lems: With the presence of Byzantine agents, since we consider
model poisoning Byzantine attack, it is clearly impossible to
guarantee Byzantine agents to converge to the aforementioned
Byzantine-free TD-fixed point w∗, defined in Problem 1. A
natural goal is to consider if there exist correct algorithms such
that the parameters converge to the fixed point corresponding
to normal agents, which is formally stated as follows.

Problem 2. When f > 0, is there a correct TD learning
algorithm that allows the agents to converge to w∗

N =
Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N

1
|N |r

i(s, a)], where N denotes
the set of normal agents?

The fixed point w∗
N proposed corresponds to modelling the

system rewards as the uniform average of all normal agents.
However, as we will prove in Theorem 1, it is impossible
to reach the TD-fixed point defined in Problem 2. Thus, we
further relax the problem to consider a TD fixed point that is
an appropriately weighted average of all normal agents.

Problem 3. When f > 0, is there a correct TD learning
algorithm that allows the agents to converge to w∗

α =
Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N αir

i(s, a)], where the weights αi

satisfies:
∑

i∈N αi = 1, αi ≥ 0, ∀i ∈ N?

The fixed point w∗
α proposed corresponds to modelling the

system rewards as a non-uniform weighted average of all
normal agents. In Theorem 2, we will answer this question
formally. In general, there is no correct algorithm that can
guarantee the number of positive weights exceeds |N | − f . In
other words, in some multi-agent policy evaluation problems,
achieving |N | − f number of positive weights is the best
an algorithm can do. Toward this end, we introduce a (ν, ξ)-
admissible problem.

Problem 4. ((ν, ξ)-admissible problem) When f > 0, for given
pair of ν ∈ N+ and ξ > 0, is there a correct TD learning
algorithm that allows the agents to converge to

w∗
ν,ξ = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N

αir
i(s, a)]. (3)

where the weights αi satisfies
∑

i∈N αi = 1, αi ≥ 0, ∀i ∈ N ,∑
i∈N 1(αi ≥ ξ) ≥ ν?

Problem 4 is to learn the value functions with at least ν
positive weights, which are bounded away from zero by at

least ξ. It is easy to see that when ξ = 0 and ν = 1, Problem 4
reduces to Problem 3.

3) Main theoretical results: The following theorems state
that, in the presence of Byzantine agents, no algorithm ensures
that the normal agents’ parameters converge to a fixed point
in Problem 2.

Theorem 1. When f > 0, Problem 2 is not solvable.

Theorem 2. For any ξ > 0, Problem 4 is not solvable for any
ν > |N | − f .

Theorem 2 says that a (|N | − f, ξ) admissible solution is
the best one can achieve for some ξ > 0.

We remark that even though the proofs for above two
theorems are inspired by [32], there are two significant
differences in the proofs and implications. First, our proof is
convergence for stochastic terms whereas in [32], the proof is
for deterministic terms. Secondly, the impossibility results hold
for general multi-agent policy evaluation problem, including
tabular case and linear approximations, whereas in [32], the
impossibility result is just for scalar case.

We also remark that the impossibility results holds for gen-
eral graph, not just limited to complete graph, in decentralized
multi-agent settings as well where the proof will be the same.
The reason that we assumed a complete graph in the beginning
is to design the algorithm in Section V.

V. BYZANTINE-TOLERANT DECENTRALIZED TEMPORAL
DIFFERENCE LEARNING

In this section, we provide a Byzantine-tolerant decentralized
TD (BDTD) learning algorithm for normal agents to solve
MARL policy evaluation in the sense of Theorem 2. In order
to derive such an algorithm, we further assume in Assumption
3, the dimension d = 1, i.e. the features are reduced to scalar
features.

1) Behavior of Byzantine agents: The behaviors of
Byzantine agents are described in Algorithm 1. The parameters
sent by the Byzantine agents can be arbitrary (denoted as ∗).
We note that Byzantine agents can only poison the local models
of their own, which are the information to be exchanged with
their neighbors. This is referred to as local model poisoning
[11]. We do not consider the data poisoning models, where
Byzantine agents may change the data which may include local
policies and local actions (global state as a result).

On the other hand, in a decentralized multi-agent setting,
a Byzantine agent can send inconsistent parameters to its
neighbors, which means that a Byzantine agent can send one
parameter to one neighbor and a distinct parameter to another
neighboring agent. There is a more restricted Byzantine model
called Byzantine broadcast model [30], where a Byzantine
agent sends the same parameter to neighboring agents. Here,
in our work, we focus on the more general setting where
Byzantine agents may send inconsistent parameters.

2) f -Trimmed mean subroutine: We will define f -trimmed
mean, which is a subroutine we used for parameters.

1The arbitrary value * can be different to neighbors.
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Algorithm 1: Byzantine Agent’s Behavior.
Input : initial state s0, given policy π, state features ϕ,

step-size ηk, initial parameters {wi
0}i∈V .

1 for k = 0, 1, · · · do
2 for all i ∈ F do
3 Execute action aik ∼ πi(·|sk);
4 Observe the state sk+1 and reward rik+1;
5 end
6 Send ∗ to neighbors1and receive values from

neighbors;
7 end

Definition 3 (f -Trimmed Mean [44]). For any multi-set2

{x1, · · · , xn}, where xi ∈ R for all i, sort the n values in
ascending order (break the tie uniformly random), then remove
the largest f and smallest f , respectively. For the remaining
n− 2f values, return the average value.

3) Policy evaluation for normal agents: Algorithm 2
describes the decentralized multi-agent policy evaluation algo-
rithm for normal agents. For any given policy π, the algorithm
learns the value function parameters using decentralized TD
learning.3 We note that for normal agents i ∈ N , it is only
required to know its own local policy πi.

In Line 9, we have used projected TD learning, a variant of
TD learning introduced in [2]. A choice for such radius R in our
scalar case is R = 2rmax

ϕmin(1−γ)3/2
, where ϕmin := mins∈S |ϕ(s)|

(see [2, Lemma 7] for vector case). This projection step is
mainly for theoretical analysis for bounding TD error terms. In
practice, such a projection step may be dropped. The step sizes
ηt used in Line 8 of Algorithm 2 are diminishing. The step
sizes are known to all agents as priori and satisfy the standard
conditions:

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞. A typical step

size choice is ηt =
1
t for t ≥ 0.

4) Main theoretical results for Algorithm 2 Let w̄t =
1

|N |
∑

i∈N wi
t, i.e. the average of the parameters of normal

agents at iteration t ≥ 0. Then, we have the following consensus
result that states parameters of all normal agents will converge
to the average asymptotically.

Theorem 3. The sequences generated in normal agents by
Algorithm 2 will achieve consensus, i.e. for any i ∈ N , we
have limt→∞ |wi

t − w̄t| = 0.

Theorem 3 ensures that even starting with different initial
parameters, in the heterogeneous reward setting and, more
importantly, inconsistent Byzantine faulty model, the parame-
ters among normal agents will eventually reach an agreement.
However, the average parameter w̄t itself may not have a limit
depending on the heterogeneity of the problem.

2A multi-set allows the elements in it to be the same.
3For simplicity, we used TD(0) instead of TD(λ). The extension to TD(λ)

where λ ∈ (0, 1] is straightforward.

Algorithm 2: Byzantine-Tolerant Decentralized TD
(BDTD) Learning for Normal Agents.

Input : initial state s0, given policy π, state features ϕ,
step-size ηk

1 for k = 0, 1, · · · do
2 Send parameter wi

k to neighbors and receive values
from neighbors

3 Consensus Update: w̃i
k ← f -Trimmed Mean;

4 for all i ∈ N do
5 Execute action aik ∼ πi(·|sk);
6 Observe the state sk+1 and reward rik+1;
7 Update

δik ← rik+1 + γϕT (sk+1)w
i
k − ϕT (sk)w

i
k;

8 end
9 Projected TD Step:

wi
k+1 ← Π2,R(w̃

i
k + ηkδ

i
k · ϕ(sk));

10 end

VI. EMPIRICAL EVALUATION

A. Experimental Setup

1) Parameter Settings: We consider a cooperative naviga-
tion task known as Simple Spread, derived from the Multi-
Particle Environment (MPE) [24]. The task involves 10 agents
aiming to collectively cover all landmarks. There are two
malicious agents among them. The agents receive rewards
based on the proximity between the closest agent and each
landmark. Collisions between agents result in negative rewards.
Each agent selects actions from the action space A ={no
action, move left, move right, move down, move up} using a
uniformly random policy. The objective is to train all agents to
identify and cover their respective landmarks while avoiding
collisions. The malicious agents, on the other hand, attempt
to deceive the other agents by providing arbitrary information.
The feature dimension is 40, encompassing the agents’ self-
positions, relative positions of landmarks, and relative positions
of other agents. The step-size is set to 0.1. We run our
experiments on Intel(R) Core(TM) i9-12900K CPU. We repeat
each experiment 10 times, and report the average results. Since
the variances of results are small, we omit them here.

2) Compared Methods: We compare our BDTD algorithm
with the following aggregation baselines.

• FedAvg [25]: Every agent, upon receiving parameters from
its neighboring agents, calculates the weighted mean of the
received parameters.

• Krum [3]: In the Krum aggregation rule, each agent
produces a single parameter that minimizes the sum of
distances to its subset of neighbors, and the size of the
subset is n− f , where n is the total number of agents and
f is the maximum number of Byzantine agents.

• Coordinate-wise median (Median) [44]: In every dimen-
sion, each agent calculates the coordinate-wise median of
all the parameters it receives.
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(a) Gaussian attack (b) Krum attack (c) Trim attack

Fig. 1: Mean squared Bellman error (MSBE) of different methods under different attacks.

(a) Gaussian attack (b) Krum attack (c) Trim attack

Fig. 2: Consensus error (CE) of different methods under different attacks.

• FLTrust [4]: When an agent receives a parameter from its
neighboring agent, it first calculates the cosine similarity
between its own parameter and the received parameter. If
the cosine similarity is positive, the agent then normalizes
the received parameter to have the same magnitude as
its own parameter. After that, the agent computes the
weighted average of all the normalized parameters sent by
its neighbors.

• SCCLIP [18]: The SCCLIP method mitigates the influence
of Byzantine agents through the use of the clip operation.
In this approach, when an agent receives parameters from
its neighboring agents, it employs its own parameter as the
reference point to limit or clip the received parameters.
3) Poisoning Attacks: We consider the following poisoning

attack schemes in our experiments.
• Gaussian attack [3]: In a Gaussian attack, each Byzantine

agent samples a vector from a Gaussian distribution with a
mean of zero and a standard deviation of one, then sends it
to its neighboring agent.

• Krum attack [11]: In the Krum attack, Byzantine agents
manipulate their parameters to degrade the Krum method’s
performance.

• Trim attack [11]: In the Trim attack, the attacker carefully
manipulates the parameters of Byzantine agents in a way
that causes a significant deviation between the aggregated
parameter before and after the attack.
4) Evaluation Metrics: We consider the following two

evaluation metrics: i) mean squared Bellman error (MSBE)
and ii) consensus error (CE). Given parameters {wi

k}i∈N and
samples (sk, sk+1), the empirical squared Bellman error (SBE)
of the κ-th sample is defined as SBE(

{
wi

k

}
i∈N , sκ, sκ+1) :=

1
|N |

∑
i∈N

(
r̄κ + γϕ(sκ+1)

Twi
κ − ϕ(sκ)

Twi
κ

)2
, where r̄κ =

1
N

∑
i∈N riκ. Then, MSBE up to the k-th sample is defined as

the average of SBEs over the history, which is computed as
MSBE := 1

k

∑k
κ=1 SBE(

{
wi

κ

}
i∈N , sκ, sκ+1). The consensus

error is computed as CE = 1
|N |

∑
i∈N ∥wi

k−w̄k∥2. The smaller
the MSBE and CE, the better the defense.

B. Experimental Results

Figures 1 and 2 show the MSBE and CE of different methods
under different attacks. “FedAvg w/o attacks” means that there
are no Byzantine agents in the system. We observe from
Figures 1 and 2 that our proposed BDTD overall achieves
the best performance across various attack scenarios. Even
under the strong Trim attack, our proposed BDTD ’s MSBE is
comparable to that of FedAvg without any attacks. In contrast,
existing Byzantine-robust aggregation rules, e.g., Krum and
SCCLIP, are susceptible to poisoning attacks. For instance,
FLTrust is vulnerable to both the Gaussian and Krum attacks.
Under the Gaussian attack, the final MSBE of FLTrust is 0.801.
Similarly, under the Krum attack, although MSBE of FLTrust
is low, CE is large, indicating a lack of consensus among the
normal agents when using the FLTrust aggregation rule. The
Krum aggregation rule is susceptible to all three considered
attacks. Specifically, under three poisoning attacks, the CE
of Krum remains small, but the MSBE becomes large. This
suggests that when normal agents employ the Krum aggregation
rule, they tend to reach a poor consensus.

VII. PROOFS FOR THEOREMS IN SECTION IV

Let [n] := {1, · · · , n}, i.e. the set of all agents. 4

4For the remaining proofs, please see online companion [15].
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A. Proof of Theorem 1

Proof. Assume that f > 0. Inspired by [32], the theorem is
proved by contradiction.

Suppose that there exists a correct algorithm A that solves
Problem 2. Define the rewards of the n agents as follows for
all state-action pair (s, a) ∈ S × A to be ri(s, a) = i for all
i ∈ [N ].

Consider the following two executions that in the first one,
agent 1 is the Byzantine agent and the rest are normal agents
whereas in the second one, agent n is the Byzantine agent and
the rest are normal agents. In both executions, Byzantine agent
behaves correctly as the correct algorithm, this is reasonable
as Byzantine agents can behave arbitrarily. As a result, for
execution 1, algorithm A outputs the result wi,1

t for each agent
i and given t such that, we have

wi,1
t

L2

−−→ 1

n− 1

∑
i∈{2,··· ,n}

Es∼dπ(·),a∼π(·|s)[iϕ(s)]

=

∑
i∈{2,··· ,n} i

n− 1
Es∼dπ(·)[ϕ(s)]

=
n(n+ 1)− 2

2(n− 1)
Es∼dπ(·)[ϕ(s)] ≜ w∗,1 (4)

where L2 denote expected mean-square convergence. More
specifically,

lim
t→∞

E∥wi,1
t − w∗,1∥2 = 0.

Similarly, for execution 2, we have

wi,2
t

L2

−−→ 1

n− 1

∑
i∈{1,··· ,n−1}

Es∼dπ(·),a∼π(·|s)[iϕ(s)]

=

∑
i∈{1,··· ,n−1} i

n− 1
Es∼dπ(·)[ϕ(s)]

=
n

2
Es∼dπ(·)[ϕ(s)] ≜ w∗,2. (5)

Note that
w∗,1 − w∗,2 = Es∼dπ(·)[ϕ(s)].

By the assumption of linear independence of feature vectors
ϕ(·), by Assumption 3, and the fact that dπ(·) is a distribution,
we know that there exists an entry in vector Es∼dπ(·)[ϕ(s)] is
on-zero. As a result, w∗,1 ̸= w∗,2.

However, for any agent i ∈ {2, · · · , n − 1} perspective,
they can’t distinguish the above 2 executions, as a result, they
must output the same results for both executions. However,
this contradicts with the assumption that both executions
would converge to distinct fixed points shown in (4) and (5)
respectively. Therefore, there’s no correct algorithm exists for
Problem 2 and the proof is complete.

B. Proof of Theorem 2

Proof. Recall that we assume n > 3f+1 and denote the actual
number of Byzantine agents in the system as q, i.e. q = |F|.
Let the rewards for any state-action pair (s, a) ∈ S ×A and
agent i ∈ [n] to be

ri(s, a) = i, for 1 ≤ i ≤ f and n− q + 1 ≤ i ≤ n

ri(s, a) = f + 1, for f + 1 ≤ i ≤ n− q.

For any correct algorithm, consider the following two cases,
where in both cases, Byzantine agents follow the correct
algorithm.

• Case 1: In this case, agents n − q + 1 ≤ i ≤ n are
Byzantine agents. The output of the correct algorithm
converges to

w∗
α ∈ [1, f + 1]Es∼dπ(·),a∼π(·|s)[ϕ(s)].

• Case 2: In this case, agents 1 ≤ i ≤ f are Byzantine
agents. The output of the correct algorithm converges to

w∗
α ∈ [f + 1, n]Es∼dπ(·),a∼π(·|s)[ϕ(s)].

As for any normal agent i ∈ {f+1, · · · , n−q} can’t distinguish
the above two cases, they must converge to an identical value
in both cases. So, w∗

α must be (f + 1)Es∼dπ(·),a∼(·|s)[ϕ(s)].
In other words,

w∗
α = (f + 1)Es∼dπ(·),a∼(·|s)[ϕ(s)]

=

n−q∑
i=1

αir
iEs∼dπ(·),a∼π(·|s)[ϕ(s)],

where the second equality is due to the definition of Case 1,
which is equivalent to

w∗
α =

n−q∑
i=1

αir
i = f + 1. (6)

The above equivalency is again because feature vectors are
linearly independent. By the reward setting given above, we
further have, for (6),

f∑
i=1

αii+ (f + 1)

n−q∑
i=f+1

αi = f + 1,

which is equivalent to
f∑

i=1

αii = (f + 1)(1−
n−q∑

i=f+1

αi) = (f + 1)

f∑
i=1

αi

which is only possible when αi = 0 for all 1 ≤ i ≤ f . As a
result, there could be at most |N | − f can be positive in Case
1 regardless of ξ. And ν can’t be larger than |N | − f and the
proof is complete.

VIII. CONCLUSION

In this paper, we studied fully decentralized multi-agent
policy evaluation problem in the presence of Byzantine agents.
We first established the impossibility of designing a correct
algorithm that obtains value functions where the system-wide
rewards are modelled as the uniform average rewards of
all normal agents. We then proceeded to relax the problem
by considering the system-wide rewards being appropriately
weighted average rewards of the normal agents. Subsequently,
we demonstrated that there is no correct algorithm capable of
ensuring that the number of positive weights surpasses |N |−f
for the aforementioned relaxed problem. Lastly, we proposed
a decentralized multi-agent policy evaluation algorithm, which
guarantees consensus among all normal agents.
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