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Abstract: Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal 
cells. The underlying cause of cancer relates to the cell cycle, during which DNA is replicated. Cancer 
cells accumulate DNA mutations that help them acquire cancerous features, such as evading cell death and 
indefinite growth [1]. If these DNA mutations are in coding regions, they are translated to mutated proteins. 
The epitopes that contain these mutations are called neoantigens. Neoantigens are highly tumor-specific and 
can be targeted with immunotherapies [2]. During cell division, tumor suppressor genes play a role in the case 
of DNA damage or replication errors. The p53 protein is a tumor suppressor gene product that prevents tumor 
formation by activating processes that block cell division when DNA damage has occurred [3]. Mutant p53 
does not effectively bind DNA or activate the production of proteins necessary for the stop signal. This project 
explored a hypothesis that a set of distinct p53 protein mutations can be selected to serve as potential targets 
for cancer immunotherapy and vaccines by using immunoinformatics predictive analysis tools. By comparing 
these potential targets with experimental results, we can predict epitopes that may serve as neoantigen targets 
for immunotherapy. We identified candidate immunogenic epitopes using the NCI’s TP53 Database (NCI 
DB - tp53.isb-cgc.org), Cancer Epitope Database and Analysis Resource (CEDAR - cedar.iedb.org), and a 
powerful new bioinformatics tool (nextgen-tools.iedb.org/) [4] hosted by Immune Epitope Database (IEDB - 
iedb.org) and CEDAR.  Comparing predicted epitopes to highly mutable regions of p53 in tumor variants from 
NCI DB revealed areas of overlap that may be priority candidate epitopes for immunotherapy. Experimental 
data from CEDAR tested the immunogenicity of normal and mutated protein versions to help avoid harmful 
cross-reactions. These results help predict cancer epitope amino acid sequences relevant to understanding the 
immune system’s role in cancer progression, prevention, and treatment. These studies also set the stage for 
important subsequent undergraduate research projects to further characterize predicted cancer neoantigens. 
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Introduction
The underlying cause of cancer relates to the process by which most human cells grow and repair, known 
as the cell cycle. During the cell cycle, DNA is replicated so that dividing cells contain their matching set of 
chromosomes. DNA can be damaged by toxins, radiation, or other sources, leading to mutations that will be 
passed onto offspring cells if the cell cycle is not stopped. Cancer arises from the accumulation of mutations, 
which results in uncontrolled cell division and growth. Genes involved in regulating the cell cycle, including 
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proto-oncogenes and tumor suppressor genes, are often found to be mutated in tumors [5]. Cancer therapies 
that target oncogenes, such as trastuzumab (Herceptin®) and imatinib (Gleevec®, STI571), both work by 
targeting kinases that are part of the cell signaling pathway [6]. 
These drugs have revolutionized cancer treatment by inhibiting oncogenic proteins and blocking accelerated 
growth. However, reactivating a mutated, inactive protein such as tumor suppressor genes is challenging. 
While p53 is the most well-characterized contributor to tumors, no targeted drugs are available. Cellular 
mechanisms involving tumor suppressor genes, such as TP53, have naturally evolved to stop the cell cycle 
in the case of DNA damage or replication error. The p53 protein prevents uncontrolled growth and tumor 
formation by responding to stress-induced DNA damage via entering the nucleus and binding DNA to prompt 
the production of another mediator protein [3]. Mutations in the p53 protein affect DNA binding, so the 
mediator protein is not made. As a result, the cell loses the stop signal that would prevent uncontrolled growth. 
In addition, p53 binds DNA as a tetramer of four molecules of functioning p53; thus, if one allele of TP53 is 
mutated, it will negate the function of the unmutated p53 gene product [7]. 
An alternate strategy for cancer treatment focuses on leveraging the adaptive immune system to identify and 
destroy cells displaying foreign antigens presented on their cell surface (cell-mediated branch). Neoantigens 
are a class of peptides carrying somatic mutations resulting in a “new” antigen that can be identified as 
foreign and marked for destruction [8]. Targeting these neoantigens provides a mechanism for tumor-specific 
immunotherapies carried out on behalf of the adaptive immune system. Since tumor- associated mutations 
in p53 can produce neoantigens, cancerous cells that produce them can be distinguished from normal p53 
epitopes and cleared by immune effector cells. 
In the case of alterations to the TP53 gene, the mutant p53 proteins are degraded into short peptides and 
transported into the endoplasmic reticulum. In the lumen of the endoplasmic reticulum, the peptide fragments 
may bind with major histocompatibility complex (MHC) Class I proteins present in all nucleated cells to 
mediate antigen presentation. This epitope-MHC complex is displayed on the cell’s surface, where it may 
be found by a T-cell with a complementary receptor (TCR), forming a tight MHC-TCR complex. T-cell 
receptors are specific to foreign antigens and bind only epitope-MHC ‘peptides in a bun’ shaped complexes. 
The resulting immune response makes neoantigens promising immunotherapeutics, especially for highly 
immunogenic epitopes on the surface of tumor cells [8]. Current bioinformatics techniques such as sequence 
analysis, machine learning-aided binding, and immunogenicity predictions [9-10] (see Figure 1) help identify 
tumor-specific neoantigen epitopes that may be effective immunotherapeutic targets and cancer vaccines. 
Maximizing computational predictions helps minimize expensive and laborious experimental approaches. 
	

Fig. 1. [10-11] Bioinformatics tools enable prediction of candidate immunotherapy targets. (Figure adapted 
from "Neoantigen vaccine: an emerging tumor immunotherapy" and made with BioRender.  

(https://bit.ly/3TLZV4T))
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The undergraduate research described here is at the forefront of cancer immunotherapy; leveraging 
the cancer-specific NCI TP53 database, CEDAR, and IEDB tools to predict immunogenic p53 tumor 
antigen peptides computationally. By utilizing a next-generation pipeline tool to predict the processing of 
intracellular events, the results are then compared to experimental p53 epitope data to identify epitopes 
most likely to elicit an immune response to a large set of tumors while minimizing cross-reactivity to 
normal tissue. This project combines a current understanding of p53 role in cancer with available databases 
and bioinformatics tools to identify and characterize priority peptide epitopes that may serve as powerful 
neoantigens for targeted immunotherapies.

Methods 
Database and Resource Tools Used for Bioinformatics Analyses
This study used a select set of open access resources. In 2021, The Cancer Epitope and Analysis Resource 
(CEDAR), (https://cedar.iedb.org/) funded by the National Cancer Institute NCI, was developed as a companion 
to the Immune Epitope Database Analysis Resource (IEDB) (iedb.org) created by National Institute of Allergy 
and Infectious Diseases in 2003 with ongoing updates [12]. CEDAR serves as a repository of cancer-specific 
experimental peptide and epitope data as it catalogs experimental data on antibodies and T cell epitopes studied 
primarily in humans regarding cancer disease. CEDAR and IEDB collectively host next-generation tools that 
assist in predicting and analyzing epitopes (nextgen-tools.iedb.org/). For given protein sequences, the tools 
predict each step in the antigen processing and display process, including proteasomal cleavage, transporter 
associated with antigen processing (TAP), MHC Class I binding, cell-surface display, and T-Cell recognition 
(see Figure 2). The underlying machine learning algorithms have been trained on extensive empirical data sets 
to predict how each candidate epitope will behave at each step, thus avoiding costly empirical testing for large 
sets of new candidate epitopes.  The sequence processing workflow follows the biological process by which 
peptides are internally processed and externally displayed for interaction with T-cell receptors. This project 
leveraged the newer CEDAR database to predict and analyze immunogenic p53 cancer epitopes. 
The National Cancer Institute’s (NCI) TP53 Database (https://dceg.cancer.gov/tools/public-data/tp53-
database) has nearly 28,000 mutations of TP53 tumor variants characterized and available to the public. This 
extensive TP53 mutation variant dataset was used to map mutation frequency across the p53 protein and align 
it with computation predictions. The computational predictions from the generation tools in CEDAR were 
compared to experimental data in NCI TP53 DB and the CEDAR database, as described below.

Fig. 2. [12-13] The CEDAR database and Next-Generation tools enable computational prediction  
of all steps in the antigen processing and presentation pathway (Figure adapted from Colm and  

Koşaloğlu-Yalçın et al.)
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MHC Class I Presenting Peptide Predictions Using Next-Generation Tools
The Next-Generation Epitope Prediction Tools platform (https://nextgen-tools.iedb.org/) was used to predict a 
set of peptide epitopes that MHC Class 1 proteins may present on the cell surface.  The tool links predictions 
of intracellular events of antigen processing into one workflow. The computational pipeline used included 
the following predictions: proteasomal cleavage, predictions of selective specificity of peptides that are 
transported into the cytosol of the endoplasmic reticulum lumen, and MHC1 binding. Our pipeline and its 
parameters (https://nextgen-tools.iedb.org/pipeline) using p53 (UniProt: P04637). 
p53 Tumor Variant Mutation Frequency Distribution
TP53 mutation variant data (n=27,847) from the NCI p53 database was used to identify protein regions 
showing high mutation frequency. The NCI codon distribution tool (https://portal.gdc.cancer.gov/analysis_
page?app=ProteinPaintApp) was applied to the variant data to build a tumor variant distribution chart 
displaying the mutation frequency of amino acid segments along linear p53. 
Aligning Predicted Peptides to Full-Length p53 Protein and Tumor Variant Data
The resulting 23 peptides were modeled on linearized p53 (Uniprot: P04637) (1-393 aa) and juxtaposed along 
the NCI p53 tumor variant mutation distribution chart described above to identify regions of interest for 
neoantigen targets.
Comparison of Predicted and Empirical Results in CEDAR to Obtain Experimental Data for NGP 
Peptides
To describe the immunogenicity of the 23 NGP Peptides as non-mutated (self-antigen) and mutated (neoantigen)  
epitopes, human T cell assays of TP53 (UniProt: P04637, E7EQX7, J3KP33) epitopes were exported from 
CEDAR’s database and stratified. Self-antigen assays (n=25) were collected by filtering self-antigens with 
negative assay results. Neoantigen assays (n=76) were collected by filtering neoantigens with positive assay 
results. Using BLAST, sequences from CEDAR and NGP Peptides were matched, and assays for each NGP 
Peptide were counted. 

Results and Discussion 
Next-Generation Pipeline Predicted Peptides
The next-generation pipeline (NGP) feature of the CEDAR and IEDB resources was used to compute a 
set of candidate neoantigen targets. The NGP predicts products of intracellular steps of antigen processing 
to display for immune system surveillance and is a relatively new resource available to the public. (http://
workshop.iedb.org/) 
The results of the next-generation pipeline applied to the p53 protein sequence included a set of 23 peptides, 
listed in Table 1. Amino acid location on the p53 protein shows a broad distribution with a few clusters. 
Epitopes derived from sequences with the highest incidence of mutations must be a higher priority, as the 
resulting therapy will be effective against a broader set of tumors across diverse populations. 
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Table 1

Cluster.Sub-Cluster Number	 Peptide Number	 Alignment	 AA Position

	 1.1	 Consensus	 FEMFRELNEALELK	 338-351
	 2.1	 Consensus	 RMPEAAPPVAPAP	 65-77
	 3.1	 Consensus	 EYFTLQIRGRERF	 326-338
	 4.1	 Consensus	 YQGSYGFRLGFLH	 103-115
	 5.1	 Consensus	 GTRVRAMAIYK	 154-164
	 6.1	 Consensus	 APAPAAPTPAA	 74-84
	 7.1	 Consensus	 LSQETFSDLWKL	 14-25
	 8.1	 Consensus	 VEYLDDRNTFR	 203-213
	 9.1	 Consensus	 NLLGRNSFEVR	 263-273
	 10.1	 Consensus	 MLSPDDIEQWF	 44-54
	 11.1	 Consensus	 EVRVCACPGRDRR	 271-283
	 12.1	 Consensus	 DSTPPPGTRVR	 148-158
	 13.1	 Consensus	 RGRERFEMFREL	 333-344
	 14.1	 Consensus	 QSQHMTEVVRR	 165-175
	 15.1	 Consensus	 VVVPYEPPEV	 216-225
	 16.1	 Consensus	 APAPAPSWPL	 84-93
	 17.1	 Consensus	 VGSDCTTIHY	 225-234
	 18.1	 Consensus	 HLIRVEGNLR	 193-202
	 19.1	 Consensus	 WKLLPENNVL	 23-32
	 20.1	 Consensus	 RNSFEVRVCA	 267-276
	 21.1	 Consensus	 RNTFRHSVVV	 209-218
	 22.1	 Consensus	 RRPILTIITL	 248-257
	 23.1	 Consensus	 RVEGNLRVEY	 196-205

The 23 next-generation pipeline (NGP) predicted peptides and their position on the p53 protein 
sequence after processing through IEDB’s Next-generation Pipeline tools. Each NGP Peptide is the 

consensus alignment of its respective clustering results. 

Positioning of NGP Predicted Peptides on p53 Mutations
To determine the prevalence of each mutation and thus the real-world relevance of the predicted epitopes, the 
NCI’s TP53 database was accessed and analyzed in the context of the linear p53 protein. As seen in Figure 3, 
the frequency distribution of TP53 mutation variants along full-length p53 was visualized by building a codon 
distribution chart, with each codon representing an amino acid. The peaks and valleys show the frequency 
of mutations around a specific section of the linear protein. The codon chart showed a high incidence of 
mutations in specific regions along p53. 
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Fig. 3. The frequency distribution of known human p53 variants from the NCI’s TP53 Database (n=27,847) 
is mapped onto the full-length p53 codons (1-393 aa), representing amino acids. In blue, the 23 NGP 
Peptides are both spatially aligned along TP53 and highlighted within the distribution. The association 

between NGP Peptides and variant data represents the mutability within each predicted peptide.

Juxtaposing the 23 NGP Peptides against the mutation distribution of computationally predicted epitopes on 
this frequency chart helped zone in on neoantigen epitope targets that will be effective across the broadest 
range of tumors and populations. Multiple spikes in prevalence are observed between the 150th and 300th 
codon. This area acts on the cell cycle, inhibiting the moderating actions that monitor the cell cycle, resulting 
in the formation of cancer cells, and it makes sense that mutations will lead to tumor development [14]. The 
peaks in blue show overlap between regions of high mutagenicity and predicted immunogenicity, which will 
be priority amino acid regions for immunotherapy. 
The Summation of TP53 Point Mutation Frequencies within Each NGP Eptide  
To further characterize the incidence of real-life mutations in these predicted epitope peptides, the percentage 
of p53 variants found in the NCI’s TP53 database represented by each of the amino acids within each of the 
23 peptides was combined and graphed in Figure 4.  
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Percent of TP53 Mutations within NGPipeline Peptides

Fig. 4. This graph summarizes the frequency of tumor variants from the NCI’s TP53 database, represented 
in each of the next-generation pipeline (NGP) predicted peptides (Peps). Calculations  

were performed by combining the mutational frequencies for each amino acid within the amino acid 
range of the NGP Peps. 

Certain NGP Peptides contained higher frequencies of mutations than other peptides. Those accumulating 
more than 5% of known mutations were NGP Peptides 5, 9, 11, 12, 14, 20, and 22. Peptides containing 3% to 
5% of the mutations were NGP Peptides  8, 15, 18, 21, and 23. Peptides with fewer than 3% of the mutations 
were NGP Peptides 1, 2, 3, 4, 6, 7, 10, 13, 16, 17, and 19. These data give confidence to our predictive model, 
where predicted epitopes can be found in the literature. The next step was to use the in vitro data within the 
CEDAR database to assess real-world immunogenicity as measured by T-cell assays. 
Comparing In Vitro Immunogenicity of Self-Antigen and Neoantigen NGP Sequences 
Non-mutated self-antigens are non-immunogenic or would otherwise be autoimmune. Depending on the 
mutation, variable levels of immunogenicity are possible as the neoantigen is dissimilar from the self-antigen 
[9]. Figure 5 shows in vitro human T-cell assays exported from CEDAR where the experimental epitopes 
matched NGP Peptides. Self-antigen assays were the accumulation of self-antigen stimulation assays that 
did not elicit an immunogenic response, and neoantigen assays were those from neoantigen peptides that did 
elicit an immunogenic response.  CEDAR was vital because it collected these epitopes and their assay data 
to analyze post hoc. Without these open-access resources, this project would be challenging to process using 
currently available undergraduate research resources. 
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Fig. 5.  The number of in vitro T cell assays exported from CEDAR with experimental epitopes matching any 
of the 23 NGP Peptides. Self-antigen assays were the accumulation of self-antigen stimulation assays that 
did not elicit an immunogenic response (n=8 of 25), and neoantigen assays were those from neoantigen 

peptides that did elicit an immunogenic response (n=67 of 76).  NGP peptides 5, 9, and 15 are high priority 
as the non-mutated sequence did not produce T cell reactivity, and the mutated version did.  

Conclusion
To summarize, this work identified three p53 epitope sequences representing a significant set of real-world 
p53 mutations found in tumors. In addition, in vitro data supports that the neoantigens are immunogenic, while 
the non-mutated sequences are not. These results suggest that the results of the CEDAR prediction tool can 
be used to predict real-world data. These results also help recommend further in vitro and in silico testing of 
epitopes to increase our confidence in whether our other NGP Peptides are suitable candidates. 
These findings help support the value of computational prediction in identifying high-priority immunotherapy 
and vaccine targets. This is important because challenges remain in cancer immunotherapy, especially in 
solid tumors. p53 is an attractive target since it is a critical tumor suppressor [15]. Mutations in the p53 gene 
have been found in 50% of cancers, and failures in the p53 pathway contribute to almost all cancers [16]. 
Furthermore, prior research suggests it has a dominant negative phenotype. To aid computational predictions, 
an extensive set of p53 tumor antigen variants have been identified and are available in NCI TP53 DB, with 
supporting experimental data in CEDAR. We evaluated these resources and leveraged components that 
helped meet the project objective to determine whether computational predictions can successfully identify 
p53 immunogenic neoantigens that cover the spectrum of clinical mutations. Requirements of a successful 
immunotherapy target include effective antigen processing and T cell reactivity, a non-immunogenic wild-
type, and tumor antigen variants that are clinically prevalent across diverse populations. Comparing predicted 
results with available experimental data best enables effective immunotherapy target epitope identification.
Computational prediction is critical to identifying high-priority immunotherapy targets given that the immune 
system sees only a tiny fraction of tumor antigens, so data alone do not give a complete picture.  To predict 
immunogenicity, neoantigen prediction tools must cover all steps, from mutant protein production to T cell 
activation. The development of CEDAR and the next-generation tools platform has enabled students to 
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embark on medically essential and timely research to help develop broad immunotherapy targets for cancer 
diagnoses and vaccines. Follow-on student projects will use CEDAR and its next-generation tools to further 
refine the priority immunotherapy targets by assessing protein expression and the critical T-cell recognition 
of the candidate epitopes.  As CEDAR expands, we expect future projects to utilize their growing repertoire 
of tools and conduct deeper analyses [12]. This research also sets the stage for future student projects that 
could explore features of the high-priority epitopes (overlap of computed and empirical epitopes), such as 
the effect of mutations on protein structure and how this may impact function and immunogenicity. Critical 
subsequent research will also explore how well the predicted epitopes represent diverse populations [17-18]. It 
will suggest ways that data can be accessed and utilized differently so that the resultant immunotherapy would 
benefit all populations. 
In conclusion, concepts of the role of p53 in cancer were applied with the novel, open-access databases 
and bioinformatics tools to identify and characterize priority peptide epitopes that may serve as powerful 
neoantigen targets. The work sets the stage for follow-up undergraduate projects that use current bioinformatics 
capabilities to address and help solve immunotherapy and vaccine challenges.
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