Electronic Colloquium on Computational Complexity, Report No. 76 (2024)

Strong vs. Weak Range Avoidance and the Linear Ordering
Principle

Oliver Korten* and Toniann Pitassi®

April 10, 2024

Abstract

In a pair of recent breakthroughs [CHR24, Li24] it was shown that the classes SE, ZPENP,
and Y5 require exponential circuit complexity, giving the first unconditional improvements to a
classical result of Kannan [Kan82]. These results were obtained by designing a surprising new
algorithm for the total search problem Range Avoidance: given a circuit C : {0,1}" — {0, 1}
find an n + 1-bit string outside its range. Range Avoidance is a member of the class TFX5 of
total search problems in the second level of the polynomial hierarchy, analogous to its better-
known counterpart TFNP in the first level. TFZ5 was only recently introduced in [KKMP21]
and its structure is not well understood. We investigate here the extent to which algorithms of
the kind in [CHR24, Li24] can be applied to other search problems in this class, and prove a
variety of results both positive and negative.

On the positive side we show that Li’s Range Avoidance algorithm [Li24] can be improved
to give a reduction from Range Avoidance to a natural total search problem we call the Linear
Ordering Principle or “LOP”: given a circuit <: {0,1}" x {0,1}"™ — {0, 1} purportedly defining
a total order on {0, 1}", find either a witness that < is not a total order or else a minimal element
in the ordering. The problem LOP is quite interesting in its own right, as it defines a natural
syntactic subclass “L5” of S5 which nonetheless maintains most of the interesting properties of
S8 in particular we show that L5 contains MA and that its exponential analogue L5 requires
2" /n size circuits. Both of these are consequences of our reduction from Range Avoidance to
LOP.

On the negative side we prove that the algorithms developed in [CHR24, Li24] cannot be
extended to Strong Range Avoidance, a problem considered in the same paper which first intro-
duced Range Avoidance [KKMP21]. In this problem we are given a circuit C : {0,1}™\ {0"} —
{0,1}", and once again seek a point outside its range. We give a separation in the decision tree

(oracle) model showing that this problem cannot be solved in FPﬁg7 which in particular rules
out all of the new kinds of algorithms considered in [CHR24, Li24]. This black box separation
is derived from a novel depth 3 AC? circuit lower bound for a total search problem, which we
believe is of independent interest from the perspective of circuit complexity: we show that unlike
previous depth 3 lower bounds, ours cannot be proven by reduction from a decision problem,
and thus requires new techniques specifically tailored to total search problems. Proving lower
bounds of this kind was recently proposed by Vyas and Williams in the context of the original
(Weak) Avoid problem [VW23].

*Columbia University. oliver.korten@columbia.edu
TColumbia University. tonipitassi@gmail.com

ISSN 1433-8092

mailto:oliver.korten@columbia.edu
mailto:tonipitassi@gmail.com

1 Introduction

One of the central problems in complexity theory is to prove strong lower bounds on the size of
boolean circuits computing some explicit function f : {0,1}" — {0,1}; by a classical result of
Shannon, most such functions f require circuits of size 2"/n. In the original formulation of this
problem, “explicit” meant f € NP, since in this case case proving a lower bound n¢) would
separate the classes P and NP. It was soon realized that this problem remains difficult even for
much weaker definitions of “explicit,” i.e. if we broaden our search for high circuit complexity
functions to a much larger uniform complexity class than NP.

Obviously there are decidable problems with maximal circuit complexity, since a Turing machine
with sufficient resources may search for the hardest function f, : {0,1}" — {0,1} by brute force
given n, and then compute that function f,, on a given input of length n. Kannan [Kan82] was the
first to investigate the precise complexity upper bound of this brute-force construction of a hard
language: he observed that the class EX2 , which denotes 2°(")-time machines with access to an
oracle for a 25 complete language, contains a function of maximum circuit complexity, precisely
because this class possesses sufficient resources to diagonalize over all low-complexity functions of
a given input length. The question of finding the smallest uniform complexity class containing an
exponentially hard boolean function came to more prominence following the seminal works of Nisan,
Wigderson and Impagliazzo[NW94, IW97], who showed that if one could improve Kannan’s upper
bound from EZ% to E, it would imply BPP = P, i.e. universal derandomization of all polynomial
time algorithms.

A recent line of work on the Range Avoidance problem (“Avoid”) has reformulated this topic
in the language of search problems [Kor21, CHR24]. Consider the so-called “truth table generator”
TT, : {0,1}* — {0,1}?" which takes as input the description of a circuit C : {0,1}" — {0, 1} of size
s, and outputs the truth table of the function it computes. If s << 2", then a standard argument
shows that we may encode C' in a direct way using < 2™ bits, so that ¢ < 2™ and the function
TT,, is computable in 20 time. Therefore, to produce a function of high circuit complexity, it
suffices to find a string y € {0,1}%" outside the range of C. This general problem, where we are
given a circuit with more output bits then input bits and wish to find a string outside its range,
is called Range Avoidance. By the pigeonhole principle, it is a total search problem, meaning it
always has solutions. Viewing T'T,, as an instance of the Range Avoidance problem we can observe
that if Avoid has a polynomial time algorithm then E requires exponential-size circuits. For larger
complexity classes, it was shown in [Kor21] (based on an earlier result in [Jef04]) that solving Avoid
and proving circuit lower bounds are actually equivalent problems: for exponential-time classes at

ENP. proving an exponential circuit lower bound is equivalent to solving Avoid in the

least as large as
polynomial-time analogue of that class. Beyond constructing hard boolean functions, algorithms
for Range Avoidance have a host of further applications in explicit constructions of pseudorandom
objects [Kor21, GLW22].

This perspective was crucially used in recent breakthrough works of Chen, Hirahara, Ren and Li
[CHR24, Li24], who gave the first unconditional improvement to Kannan’s classical result!. These
works showed that the classes S5 C ZPENP C ¥F all contain a function of circuit complexity 2" /n,
which is within a (1+0(1)) factor of the maximum possible circuit complexity of a boolean function.
The results are established by giving a new algorithm for Avoid which runs in the class FS; , the

functional variant of the decision class Sg’ .

!This is the first improvement on finding the smallest complexity class with an exponential circuit lower bound. If
the goal is to prove merely superpolynomial lower bounds, lower bounds for smaller classes can be established using
Karp-Lipton theorems [KL80], an approach pioneered in Kannan’s original paper [Kan82]. This method can at best
show “sub-half-exponential” lower bounds, and only for infinitely many input lengths.

The authors of [CHR24, Li24] made progress on a classical lower bound problem by discovering
a new kind of algorithm for the total search problem Range Avoidance. This search problem lies in
an unusual complexity class which was only first investigated a few years ago by [KKMP21]: it is a
member of TFZE’ , the class of total search problems in the second level of the polynomial hierarchy.
Since the introduction of TFZzP in [KKMP21], there has been no follow up work developing a
structural classification of the problems therein, despite the considerable attention that has been
devoted to Range Avoidance [Kor21, CHR24, Kor22, CHLR23, ILW23, GGNS23, CL23, GLW22]
and explicit construction problems more generally. The work of [CHR24, Li24] indicates that
some problems in TFZ2P admit highly nontrivial algorithms, algorithms which have consequences in
seemingly unrelated areas of complexity. Do such algorithms exist for all search problems in TFZS ?
What more can we say about the relation of Avoid to other problems in this class? The purpose of
this work is to address these two questions in particular, and more broadly to further the systematic
study of TFZ2P beyond its introduction in [KKMP21], with an emphasis both on inclusions and
black boxr separations. Prior to our work, no non-trivial separations between problems in TFZE
were known.

TFZzP has a more famous cousin one level down in the polynomial hierarchy, the class TFNP of
total NP search problems. In contrast to TFZZP , TENP has received a thorough investigation over the
past three decades and its structure is rather well understood in comparison. A major distinction we
reveal between TFZS and TFNP is that the former has a plethora of resource-constained subclasses,
many of which can be separated from one another by explicit and natural search problems. By
“resource-constrained subclass” we mean a class of search problems characterized by the existence
of some resource-constrained algorithm which can find a solution. One example we will see is the
class psFZPPNP | the class of problems where for every input z, there is a canonical solution v,
which is output with high probability by some polynomial time NP-oracle algorithm. Another
class is FPT2 M5 , consisting of those problems which can be solved in polynomial time with oracle
access to a language in Zzp N I_IE . We will introduce and study several other such subclasses, and
exhibit four natural search problems which exhibit separations (in the decision tree model) between
them. This situation is in stark contrast to the known structure of TENP: while FNP does contain
some intermediate resource-constrained classes, such as psFZPP and FPNPM<NP (these are roughly
analogous to psFZPPNP and FPE"NME mentioned above), it is known that in the decision tree model
all of these classes collapse to FP. As a result in the decision tree model, the only resource-based
distinctions amongst the standard TFNP problems is the distinction between FP and the rest of
TENP.

1.1 Overview of Main Results

A search problem is defined by a relation R C {0,1}* x {0,1}*, where for each “instance” x we
say y is a “solution for z” if (z,y) € R; the relevant task is to find a solution given an instance.
We say that a search problem is total if every instance has a solution. A defining feature of search
problems which distinguishes them from decision problems is that a given instance may have many
different solutions. Indeed, if a search problem has a unique solution on every instance, then it
may be equivalently phrased as a decision problem: given (z,), output the it" Dbit of the unique
solution for x. For many search problems of interest it is not clear how to reduce them to a
decision problem of the same complexity. For example given total search problem R we may define
the decision problem LexFirstg, where given an instance (z,i) we must output the i*? bit of the
lexicographically first solution to x. While LexFirstg is clearly at least as hard as R, in many cases
it will be much harder and a reduction does not seem to exist in the opposite direction.

Say that A is a deterministic algorithm solving some search problem R. Then A naturally

associates to each instance x a canonical solution y, := A(x) which it outputs. In particular we
can think of A as defining a second search problem R’ with (z,y) € R’ iff A(z) = y; if A solves
the original search problem R, then R is reducible to R’ since (z,y) € R’ — (z,y) € R. Now,
if the algorithm A lies in some restricted complexity class, then this places the same complexity
upper bound derived search problem R’. The point of this is that when we have some nontrivial
deterministic algorithm solving a search problem R, we may think of it as giving a reduction from
R to a search problem with unique solutions.

For most of the classical problems in the class TFNP it is believed that there is no decision
problem which captures their complexity precisely, a conjecture supported by black box separations
[BCE198a]. More generally it is believed that for most of the standard problems R € TFNP, any
unique-solution problem R’ which we can reduce R to must lie outside of TFNP?. The new results in
[Li24, CHR24] reveal that the situation for Range Avoid is different: because their Range Avoidance
algorithms are deterministic and are upper bounded inside TFZzp , they imply that Range Avoidance
is reducible to a problem in TFZZP with unique solutions. To make this discussion more formal we
need to define the class TFZ5 and its unique solution subclass TFUZS:

Definition 1 (TFZQP and TFUZ2P). A polynomially-bounded® search problem R lies in TFZ2P if
it is a total search problem, and there exists a coNP werifier V so that (z,y) € R if and only if
V(z,y)=1. We say R € TFUZQP if moreover every instance has a unique solution.

In this terminology Li’s result implies the following: Range Avoidance is polynomial-time re-
ducible to a problem in TFUZzP . His result is in fact a significant strengthening of this, but for
now we focus on this particular consequence, which seems quite unintuitive on the surface: given
an instance f : {0,1}" — {0,1}"*! of Range Avoidance, there are at least 2" distinct solutions,
and it is not clear how to narrow down to any particular solution which is “more special” then the
others. Our first contribution is to clarify this result in the following way: we introduce a natural
TFZ; search problem, whose containment in TFUZ; is obvious from the definition, and then show
that Range Avoidance reduces to this problem:

Definition 2 (Linear Ordering Principle (LOP)). Given <: {0,1}" x {0,1}" — {0,1} specified by
a boolean circuit, find a witness that < does not define a total ordering on {0,1}", or else find the
minimal element in the ordering it defines. A witness that < does not define a total order consist
of z,y,z € {0,1}" such that one of the following holds: (a) x < x; (b) x #y, © Ly, and y £ x;
(c)x<y<zandx £ z.

While this problem does not literally have unique solutions as stated, it has a property which
we show is morally equivalent. Observe that one type of solution in this problem is easier to verify
then the other: a witness that < fails to define a linear order can be verified in polynomial time,
whereas a candidate minimum element can only be verified in coNP. Moreover, if an instance has no
easily verifiable solutions, then it has a unique solution. This follows from the fact that every linear
order has a unique minimal element. We summarize this by saying that LOP has essentially unique
solutions; a very easy argument (Section 2, Lemma 3) shows that any problem with essentially
unique solutions is reducible to a problem in TFUZ2P . We then prove:

Theorem 1. Range Avoidance is polynomial time reducible to LOP.

2This is equivalent to saying that we believe these standard problems, e.g. PPAD or PPP, not to lie in FPNPMeNP,
3The “polynomially bounded” condition just means we are restricting attention to search problems whose solutions
have polynomially bounded length.

We believe this result goes a long way in explaining the new upper bounds for Range Avoidance.
In particular our reduction isolates the two key steps in Li’s algorithm which allow us to single out
a special low complexity canonical solution for Range Avoidance: the first step prepares a special
subset of solutions using a certain tree-like iteration construction, and the second step singles out a
fixed canonical solution among these by defining a certain total ordering on these special solutions.
Recall our comment under Definition 1 that Li’s result is in fact stronger than a reduction from
Range Avoidance to a problem in TFUZS : more generally he shows that Range Avoidance lies
in the complexity class FS5 (we will review the definition of this class in Section 2). Our result
subsumes this upper bound as well, since another very direct argument shows that LOP lies in FS; .
Thus our result gives the current best upper bound on the Range Avoidance problem, and hence
on the Kannan’s classical problem of constructing the truth table of a hard boolean function.

At this point we have seen that there are search problems in TFZZP which seem on the surface
to have no distinguished solutions, but which nonetheless can be reduced to problems in TFUZE by
some highly non-obvious means. This naturally points to the following question: are all problems
in TFZzP reducible to TFUZzP 7 We give a negative answer in the decision tree model. Our separa-
tion is exhibited by the following relative of Range Avoidance which was introduced originally in
[KKMP21].

Definition 3 (Strong Avoid). Given f:{0,1}"\ {0"} — {0,1}", find y € {0,1}" \ range(f).

From now on we will refer to Range Avoidance as “Weak Avoid” to distinguish it from Strong
Avoid. Our black box separation will be significantly stronger than just showing that Strong Avoid
is not reducible to a problem in TFUZE ; we will show more generally that Strong Avoid cannot be
solved by making non-adaptive queries to any language in Y5, which is equivalent to proving size
lower bounds for depth-3 ACy circuits solving Strong Avoid:

P
Theorem 2. In the decision tree model, Strong Avoid is not in FPﬁQ. More specifically, let
C:{0,1}(N-DloeN _y £0 1IN be o depth-3 circuit of size 2N° and let D : {0,1}V° — {0, 1}leN
be an arbitrary postprocessing function, where N = 2" = |{0,1}"|. Then provided € is sufficiently
small, D o C' cannot solve Strong Avoid: there must be some input f : [N — 1] — [N] so that

D(C(f)) fails to find a y ¢ range(f).

This immediately implies non-reducibility to TFUZZP , since any problem R € TFUZZP with
unique solutions can be solved with non-adaptive queries to the language {(x,7) | (z,y) € R —
y; = 1} which lies in 25 . The connection of these kinds of separations to depth 3 AC° lower bounds
was spelled out in a recent paper of Vyas and Williams [VW23] for the case of Weak Avoid: their
work established that nontrivial upper bounds for Weak Avoid are equivalent to certain depth 3
circuits solving the so-called “Missing String” problem: given an explicit list of 2"~! n-bit strings,
output a string not in the list. The input size here is =~ N = 2", and the question is whether a depth
3 circuit exists of size polynomial or quasipolynomial in N. Note that the Missing String problem is
simply the black-box variant of Weak Avoid. Li’s result showed that quasipolynomial size depth-3
circuits for this problem actually do ezist, solving the original question of Vyas and Williams in the
positive. We show that if the problem is modified so that the list of strings has length N —1 rather
then %, then depth-3 circuits require exponential size to solve this problem. We note that our lower
bound holds against a stronger class of circuits than what was originally considered by Williams
and Vyas: in their model the depth 3 circuit is of the form C : {0, 1}(N-DlosN _; 10 1}loeN and
must output the exact solution to Avoid. Here we allow C to output an arbitrary string in {0, 1}V",
which can then be postprocessed arbitrarily to construct a solution to Avoid.

By a simple reduction, we also obtain quasipolynomial depth-3 circuit size lower bounds even
for moderately weak Avoid instances with domain [N] and codomain [N +N/1og®") N1. This result
gives a complete characterization of the degree of “Weakness” necessary to obtain quasipolynomial
size depth 3 circuits: if the codomain has size N + N/ log® M N then circuits of quasipolynomial
size suffice, and if its size is N + N/ log“’(l) N then they do not; see Lemma 9 for details.

Our last main result exhibits a more fine-grained separation amongst the subclasses of TFZZP .
Above we have highlighted one important distinction, between the problems which are reducible
to TFUZY and those which aren’t. However both of the problems we've seen so far which reduce
to TFUZ2P also have an additional property: they are solvable by a polynomial time randomized
algorithm using a NP oracle. For Weak Avoid this follows from its definition, while for LOP it
follows from its containment in the class FS5. We show that this is not possible for all problems
reducible to TFUZ2P . Our separation is exhibited by the following natural search problem:

Definition 4 (Strong 1-1 Avoid). Given f : {0,1}"™ \ {0"} — {0,1}", find a pair © # y in
{0,1}™\ {0"} such that f(x) = f(y), or else y € {0,1}™ \ range(f),

Observe that Strong 1-1 Avoid enjoys the same property as LOP of having essentially unique
solutions: it is easy to verify the collision solutions f(z) = f(y) A ¢ # y, and any instance with
no collision solutions has a unique solution. This follows from the fact that any injective function
f:[N] = [N + 1] misses exactly one point in its codomain. Hence, like Weak Avoid and LOP, the
problem Strong 1-1 Avoid is reducible to TFUZzP . However we prove the following lower bound:

Theorem 3. In the decision tree model, Strong 1-1 Avoid is not solvable in FBPPNP.

Aside from revealing further the structure of TFZ; , this result yeilds a new separation for
decision classes which was not previously known:

Theorem 4. In the decision tree model, ¥5 N N5 ¢ BPPNP. In particular ¥5 N NE ¢ S

In the next two subsections we will describe these main results in some more technical detail.
A diagram of the structure of TFZzp and our main results is given in Figure 1; some classes in this
diagram will not be defined until Section 2.1.

1.2 AC° Lower Bounds and Class Separations

Our two main separations show that Strong Avoid has no non-trivial upper bound inside of TFZ
(Theorem 2), and that Strong 1-1 Avoid has no randomized NP-oracle algorithm (Theorem 7).
The first lower bound is the more involved of the two, and requires proving a novel depth 3 AC?
circuit lower bound for a total search problem, which appears to be the first circuit lower bound of
this kind.

Theorem 2 yields a very fine-grained separation for the Strong Avoid problem. It is easy
to construct a depth 4 circuit C' : {0,1}(V-DMog N _, £ 1}M10e NT golying Strong Avoid, where
moreover the bottom fan-in is only O(log N) [VW23]. More strongly, it is possible to construct a
depth O(log V) decision tree, which at each step queries a depth 3, poly(N) size circuit on the input
f, and at each leaf outputs a correct solution y ¢ range(f). Our lower bound can be interpretted
as saying that if such a decision tree is forced to be non-adaptive, then either the circuits it queries
at each step must grow to exponential size, or else the number of queries must grow to N Q1) This
also contrasts the situation with Weak Avoid, where as mentioned above, Li’s construction gives
depth-3 ACy circuits of size NOU°gN) for solving Weak Avoid.

We believe our lower bound is of independent interest in circuit complexity. In particular, we
give a very precise depth-3 lower bound for a total search problem. It is of course possible to

\ 4

P
FP FPNP FSP psFZPPNP ppEing FP)?
A A A A
o
II’ ‘\‘ & E
',’I Linear Ordering Principle \ Strong Avoid

Weak Avoid Strong 1 — 1 Avoid

Figure 1: Inclusion diagram of relevant classes and search problems. Solid arrows represent the
inclusion of the class at the base of the arrow into the class at its tip. Dotted arrows indicate
non-inclusion of the base class into the tip class in the decision tree model. The main linear axis
of classes along the top are all included from left to right, indicated by the long solid arrow above
them. Our major results are the separations marked with #, & and the inclusion marked with ¢.
TFUZS essentially corresponds to FPZ:NM; , see Lemma 2.

construct contrived examples of total search problems which are hard for ACY circuits, for example
“given x € {0,1}" output b € {0,1} such that Parity(z) = b;” in such examples we can derive
hardness of the search problem by reduction from a decision problem. In contrast, the lower bound
we show here cannot be established by reduction from any decision problem. This follows from the
fact that any decision problem which is reducible to a TFZ5 search problem lies in 5 N ME. In the
decision tree model, this means that any language which can be solved by a small depth decision
tree querying instances of Strong Avoid has both 25 and Hg circuits. However, the lower bound
we are trying to show for Strong Avoid rules out the existence of any FPZ5NM; algorithm for Strong
Avoid. Phrased more succinctly, our lower bound establishes that Strong Avoid is harder then any
decision problem which can be reduced to it, which by definition means we cannot establish the
lower bound itself by reduction from a decision problem. In light of this, to prove Theorem 2 we
must develop new AC® lower bound techniques which are specially tailored to total search problems.

Our second main lower bound (Theorem 3) places Strong 1-1 Avoid outside of FBPPNP. Recall
that Strong 1-1 Avoid has the property of having essentially unique solutions and is thus reducible
to a problem in TFUXS. We will see (Lemma 2) that this means it is reducible to a decision
problem in Zzp N |'|2P . Combining this with the above lower bound we obtain Theorem 4, which
separates the decision tree class £5 N MY from BPPNP and in particular from S5. This is in contrast
to the situation for NP N coNP, which is known to collapse to P in the decision tree model. This
improves a previous result of Fortnow and Yamakami [FY96] who showed that X5 N5 ¢ PNP in
the decision tree model.

1.2.1 Lower Bound Methods

A main technical ingredient in both lower bounds is a new Switching Lemma (Lemma 6) specialized
for Avoid. Switching lemmas have been used for both circuit lower bounds for computing functions,

and in proof complexity to prove lower bounds on the size of proofs of hard tautologies (e.g.,
[Bea94, Raz93, BIK192]). Between the two, our argument bears a stronger resemblance to the
second, however there are some key conceptual differences. The basic idea behind all switching
lemmas is to show that under a random restriction p (from a suitable distribution) a low-width
DNF is likely to be represented by a low-depth decision tree. Since a low-depth decision tree
representation for a function f implies that both f as well as its negation can be represented
by low-width DNF's, this in turn allows us to collapse an AND of low-width DNF's into a single
low-width DNF, thus reducing the circuit depth by 1.

A major difference between various switching lemmas is the choice of distribution over restric-
tions, and the way in which the decision tree represents a DNF. In the original Switching Lemmas
used to prove ACy lower bounds for parity, the restrictions are simply uniformly random partial
restrictions, and the notion of represents is with respect to every input. That is, the decision tree
computes the same function as the DNF.

In the case of switching lemmas used in proof complexity to prove ACP-Frege lower bounds
for the [N] — [N + 1] pigeonhole principle, we think of the input as specifying a purported 1-1
function from [N] to [N + 1] (which cannot actually exist if N is finite). The chosen distribution
over restrictions are partial 1-1 matchings from [N] to [N + 1], and a low-depth “PHP decision
tree” in this context can make queries to a pigeon or to a hole at each vertex, and every path in the
tree corresponds to a partial matching. Since, in reality, no 1-1 function from [N] to [N + 1] exists,
these trees do not represent the original DNF in any standard way. However, if the input variables
instead corresponded to a total 1-1 assignment from [N] to [IV] (which do exist), then we can apply
the same PHP Switching Lemma to prove that under a random partial 1-1 restriction, a low-width
DNF is likely to convert to a low-depth PHP decision tree, which now represents the DNF in the
sense that it agrees with the DNF on all input assignments that correspond to 1-1 mappings from
[N] to [N].

In the case of Avoid, we have to modify the way of constructing a decision tree associated with
a DNF so that the decision tree represents the original DNF in the sense that they are truth-
functionally equivalent with respect to all 1-1 input functions from [N] to [M], where now M
is strictly larger than N. To achieve this, we modify the notion of pigeonhole decision trees as
follows. As in the original PHP Switching Lemma in proof complexity, each node of our decision
tree will query either a pigeon or a hole. When a pigeon is queried at a node, we allow edges for
all possible holes that it could be mapped to. But when a hole is queried, now we have to allow
for the possibility that this hole is unmapped: in addition to allowing edges for each pigeon that
could map to this hole, we allow an extra edge corresponding to the case where nothing maps to
this hole. With this modification, our pigeonhole decision trees will represent the original DNF
with respect to all 1-1 inputs from [N] to [M].

Another crucial distinction is how we use the Switching Lemma to reduce the depth of the
circuit by one. In the proof complexity setting for the pigeonhole principle lower bounds, we think
of N as infinite, and therefore with respect to 1-1 inputs, a DNF can be written as a low-width
matching disjunction, where each term in the disjunction corresponds to a partial 1-1 function
(or matching) from [N] to [N]. After applying the PHP Switching Lemma and a union bound,
each matching disjunction f (under p) becomes a low-depth “matching decision tree”, enabling
a reduction in the overall circuit depth by one. To summarize, in the classical PHP Switching
Lemma, the underlying depth-2 subcircuits are always low-width matching disjunctions, both before
and after each application of the PHP Switching Lemma. In our case, the underlying depth-2
subcircuits are not of the same type before and after applying our Pigeonhole Switching Lemma;
a consequence is that our Switching Lemma cannot be applied twice. This is not a defect of our
method, but rather a necessary feature of any technique here, since our search problem can be

solved by circuits of one higher depth. More specifically, we show that initially the bottom depth-
2 subcircuits of C can be expressed as low-width matching disjuncdtions. But after applying the
Pigeonhole Switching Lemma, and subsequent depth reduction, the new depth-2 subcircuits become
hole disjunctions which are a generalization of matching disjunctions, where now each term in the
DNF can specify not only a partial 1-1 matching, but also a subset of holes that are unmapped.
With these appropriate modifications, our proof of the switching lemma is similar to previous
proofs.

Equipped with the Pigeonhole Switching Lemma, we can give the high level view of both proofs.
We start with Theorem 2. To prove Theorem 2, we would like to restrict attention to the class
of 1-1 input functions from [N] to [N + 1]. However if we truly restrict ourselves to 1-1 functions,
then a lower bound is not possible by Lemma 4: for these inputs, there is a unique solution, and
therefore a polynomial-size depth-3 circuits can easily check whether the unique solution has its
it" bit equal to 1 or to 0 and hence solve the problem unconditionally. To circumvent this barrier,
we will prove a strengthening of Theorem 2, by giving a lower bound for Avoid on input functions
f : [N] = [M], where M is larger than N + 1. By enlarging the range of f, we can focus our
attention of f’s that are 1-1 since now for every input, there are at least M — N distinct solutions.
Note that this implies the lower bound stated above (with M = N + 1), since there is a direct
reduction from Avoid on instances [N] — [M] to instances [N] — [N + 1]: we simply map every
element of [M]\ [N + 1] to the element N + 1. Observe that this reduction does not preserve
injectivity.

Now assume there exists small-size s depth-3 circuit C computing Strong Avoid on 1-1 functions
from [N] to [M], M >> N. We can first apply a standard argument (the Width Reduction Lemma
8) so that we can assume that the bottom-level fanin of C is at most O(logs). After this step, we
can assume that C is a size-s, depth-3 circuit, where the bottom depth-2 subcircuits are low-width
matching disjunctions. Next we apply our Pigeonhole Switching Lemma (as discussed above) which
will guarantee that there exists a matching restriction p such that under p, all depth-2 matching
disjunctions in C will convert to low-depth pigeonhole decision trees. This will allow us to reduce
the overall circuit depth by 1, and afterwards each output bit of C will be computed by a low-width
hole disjunction. As discussed above, a hole disjunction is a type of DNF that generalizes matching
disjunctions: each term ¢ in the hole disjunction can be viewed as partial information about the
input f. The partial information consists of two parts: (i) first, ¢; specifies a small partial matching,
pairing up some pigeons in [N] to some holes in [V + 1]; (ii) secondly, to specifies a small set of
holes (disjoint from the holes mentioned in ¢; that are not in the range of f). It remains to prove
a lower bound for circuits C for solving Avoid, where each output bit is specified by a low-width
hole disjunction. This is also accomplished using a kind of restriction, but rather then choosing it
at random we apply a careful deterministic process involving a novel covering argument. This step
is somewhat reminiscent of early proofs of the Switching Lemma (e.g., [FSS84, Ajt83]).

The proof of Theorem 3 again uses the Pigeonhole Switching Lemma, together with a direct
argument. We want to prove depth lower bounds for FBPPNP | which informally are randomized
decision trees of small height which, instead of querying variables, are allowed to query the value
of an arbitrary low-width DNF over the inputs. By Yao’s minimax principle, it suffices to prove
that any low-depth PNP decision tree cannot solve Avoid with probability 2/3, with respect to
the uniform distribution of 1-1 functions. We think of this distribution in the following way:
first sample a uniform partial 1-1 assignment p, then sample a uniform extension of p to a total
assignment. Applying our Pigeonhole Switching Lemma and a union bound, we can argue that
with high probability over the first choice of p, all of the NP queries in our PNP decision tree 7' can
be simplified to small depth pigeonhole decision trees, which overall allows T to be replaced by a
low depth pigeonhole decision tree. It then remains only to argue that a pigeonhole decision tree

of low depth cannot solve 1-1 Strong Avoid with non-trivial probability on a uniform extension f
of p, which can be accomplished with a direct argument.

1.3 Linear Ordering Principle

We now discuss in more detail our results on the newly defined Linear Ordering Principle problem,
abbreviated LOP. Recall that our main result here is Theorem 1, which says that Weak Avoid is
polynomial time reducible to LOP. The proof follows much of the high level structure of Li’s result
placing Weak Avoid in FSY, with some key modifications. Roughly speaking, Li’s proof shows
that given an instance of Avoid f : {0,1}" — {0,1}"*! we can define a comparison relation = on
{0,1}PY(™) 5o that for some unique distinguished element 7* € {0,1}P°Y(") we have 7* C 7 for
all m # 7%, and 7" contains a solution to the original Avoid instance. In our case we need to define
a similar comparison relation, which in addition globally acts as a total order on {0, 1}p013’(”). To
explain the argument more clearly we split the reduction into two parts. We first introduce an
intermediate search problem called Forest Termination and reduce Weak Avoid to this problem,
then we reduce Forest Termination to LOP. We note that our proof, as well as Li’s, also bears
a strong resemblance to the work of [PWW88] who gave the first proof of the weak pigeonhole
principle in the bounded arithmetic theory 75.

Our subsequent results show some appealing structural properties of the complexity class defined
by reducibility to LOP. We start by proving closure under a broad class of reductions:

Theorem 5. Any search problem which has a polynomial time PN? Turing reduction to LOP also
has a polynomial time many-one reduction to LOP.

Combining this closure property with the fact that LOP has essentially unique solutions, we are
able to conclude that LOP is equivalent in complexity to a decision problem. In particular we can
define a decisional complexity class L2P for which LOP is the “complete problem” (despite being a
search problem and not a language). We start by presenting a machine-based definition of LE :

Definition 5. A language L is in the complexity class L2P if there is a polynomial time relation
R : ({0,1}%)3 — {0,1} and a polynomial p, so that for all x, R(x,-,-) defines a total order on
{0,132 whose minimal element a has a; = L(x).

We then have the following equivalent characterizations:
Theorem 6. The following are equivalent for a language L:
1. Lelb
2. L is polynomial time many-one reducible to LOP.
3. L is PNP_Turing reducible to LOP.
Conversely, the search problem LOP is polynomial time truth table reducible* to a language in L2P.

We mentioned in passing before that LOP is easily shown to lie in the class F32P , the functional
analogue of the decision class S5 (this will be shown in Lemma 5. The same reason shows that
LY C SP. For those unfamiliar with the somewhat unconvential class S5, this is a complexity
class introduced independently by Russell-Sundaram and Canetti [RS98, Can96]. Their goal was
to identify the smallest class in the polynomial hierarchy which is sufficient to capture randomized

4This is essentially the most restrictive reduction possible when reducing a search problem to a language.

10

algorithms, in particular BPP and MA. Beyond this purpose the class rarely appears, and so
far no natural problems have been exhibited which lie in SZP and not one of its more traditional
subclasses (such as BPP or NP). In addition it seems that S2P does not have a complete problem,
due to its definition involving a promise. We have identified here a subclass L2P of 52P , which is
characterized exactly by a simple and natural total search problem, and which nonetheless maintains
the interesting properties that motivated the original definition of 52P :

Theorem 7.
1. PNP C LY and BPP C MA C L
2. L§5 contains a language of circuit complexity 2" /n.

In each case, the result stated for Lg was previously known to hold for Sg and is now shown
to be inherited by the more natural subclass L2P . The only interesting property that is known
of Sg which we were unable to prove for L2P is the Karp-Lipton theorem; we discuss this further
Sections 1.4 and 4.

1.4 Open Problems

We conclude our introduction with a few interesting problems which remain open. The first is
rather broad:

Problem 1. Show any additional inclusions or black-box separations which are not implied by the
arrows in Figure 1.

We specifically highlight the following:
Problem 2. Is there an FPN? Turing reduction from LOP to Weak Avoid?
Our interest in this problem is the following observation:

Observation 1. Say that Linear Ordering Principle is FPNP Turing reducible to Weak Avoid.
Then there is a particular language L of circuit complexity > 2" /n, and a deterministic NP oracle
algorithm A running in time 200 such that given oracle access to any language L' of circuit
complezity 282(n) AL computes L.

This follows by composing the reduction of Weak Avoid to LOP, which produces a unique
solution, with the (purported) second reduction from LOP back to Weak Avoid. Such a consequence
would be rather surprising and interesting purely from the perspective of circuit complexity.

Next we highlight the problem of better clarifying the relationship between L; and 52P :

Problem 3. Does LY = S5? Can they be separated in the decision tree model? Does LY satisfy a
Karp-Lipton theorem?

For this problem, we would say Lg “satisfies a Karp-Lipton theorem” if one could unconditionally

prove the implication “NP € P/poly — PH = Lg .7 A notable property of 52P is that it is the smallest
complexity class for which this statement is known to hold.
The next problem we highlight is in the realm of depth 3 circuits:

Problem 4. Does Weak Avoid have depth 8 circuits of polynomial size?

SLE is the exponential-time analogue of LY, where we replace “polynomial time” with 290" time” in its definition

11

Recall that Li’s upper bound is only quasipolynomial, of size around N'°8~ . This problem
seems intimately connected to the long-standing open question in proof complexity of whether the
Weak Pigeonhole Principle has polynomial size bounded depth Frege proofs; a quasipolynomial
upper bound was shown by Paris Wilkie and Woods [PWWS88] using a very similar technique to
Li’s, and [MPWO02] give a different bounded-depth Frege upper bound of lower depth, but still
quasipolynomial size. Despite the strong aesthetic similarities we do not know a formal connection
in either direction between these problems.

Lastly, the search problems discussed here have other connections to bounded arithmetic. In
particular, the LOP principle has been studied in several papers, within the context of characterizing
the strength of Jerebek’s bounded arithmetic theory of approximate counting relative to weaker
theories, and also as a new avenue for approaching the longstanding problem of separating Buss’ 75
hierarchy by sentences of fixed complexity. Buss, Kolodziejczyk and Thapen [BKT14] observe that
the LOP principle is provable in both T2 and in APCy, and ask whether or not LOP is provable in
the weaker theory T21 + sWPHP, where sW PHP is the surjective weak pigeonhole principle, and
corresponds to the search problem Weak Avoid. Atserias and Thapen [AT13] resolve this question,
proving that in the relativized setting, sW PH P does not prove the LOP principle over T21. In fact
they prove a stronger result, that sW PH P cannot prove the HOP principle over Ty, where HOP
isa El{ version of LOP. It seems possible that the techniques here could be used to give a negative
answer to Problem 2. A relatively unexplored area that is likely to be fruitful is to discover more
relationships between natural search problems lying in the second level of the polynomial hierarchy
(and higher) and corresponding systems of bounded arithmetic.

2 Preliminaries

2.1 Search Problems, Complexity Classes, and Basic Inclusions

We define here a variety of subclasses inside of TFX5, classified according to the computational
resources necessary to solve a search problem. We then prove some of the more basic results relating
these classes to eachother and to the four main search problems of interest in this work.

P
Definition 6 (FPNP, FPZ’SHHS, FPﬁ2). Let R be a search problem and C a class of decision problems.

We say R € FPC if there is a language L € C and a polynomial time algorithm making queries to
L which “solves R:” given x it outputs y such that (x,y) € R. We say R € FPﬁ if there is such
an algorithm, which moreover makes its queries nonadaptively: given an input x it computes in
polynomial time a list of queries z1,...,zm, uses its L-oracle to test in unit time the membership
of each z; in L, and then uses the oracle responses to output an answer in polynomial time.

We include for reference the following class considered in [Li24, CHR24]:

Definition 7 (stZZP). stZzp 1s the class of search problems having “singled-valued” FZzp algo-
rithms. We say R lies in this class if there is a choice of canonical solution {(x,y,) € R | x} for
each input x, a second relation R € TFZ2P, and a polynomial time function f so that whenever

(:UVZ) € RI) f(Z) = Yz-

In Lemma 1 we relate this class to the others we have defined here. Beyond this we will not
need to reference this class further: every time we prove an upper bound for a search problem it
will be in a class lower then stZzp , and our separation for Strong Avoid will hold even against the

P
larger class FPﬁ2) stZS . We next review the randomized classes:

12

Definition 8 ((ps)FZPPNP (ps)FBPPNP). A relation R is in FBPPNP if there exists a randomized
polynomial time algorithm with access to a SAT oracle which, given x, outputs y such that (z,y) € R
with probability > 2/3. If the algorithm always outputs a valid answer or L and answers L with
probability < % this places R in the subclass FZPPNP.

For a search problem R where each x may have many solutions y, it is possible that a randomized
algorithm outputs different correct answers on the same input x as a function of its random coin
tosses. If for each x there exists a canonical y, with (z,y;) € R and some randomized algorithm
computes x — y, with high probability, we say that algorithm is pseudodeterministic; we use the
prefix ps— to denote the pseudodeterministic analogue of a randomized class.

The last standard complexity class we examine is the functional analogue of S5, defined as
follows:

Definition 9 (FS5). A search problem R is in FSY if there exists polynomial time algorithm V
taking three inputs, so that for all x there exists y, with (x,y;) € R so that:

1. There exists m such that for all o, V(x,m,m2) = Ys.

2. There exists mo such that for all m, V(x,m1,m2) = Ys.

Search Problems vs. Function Problems: As discussed in the introduction, some kinds of
algorithms for search problems have the property that they associate to each input a fized solution
which the algorithm produces on that input. With the exception of the non-pseudodeterministic
randomized classes FBPPNP? and FBPPNP, cach of the classes we have just defined describes algo-
rithms of this sort. These classes are arranged nicely in the following hierarchy, as indicated in
Figure 1:

b2

I

Proof. All inclusions follow directly from the definition, with the exceptions of FPNP C FSE which
is due to Russell-Sundaram [RS98] and FS5 C psZPPNP which is due to Cai [Cai07]. O

Lemma 1. FP C FPNP C FSP C psFZPPNP C FP:2"M C syFY P C FP

Recall the class TFUZE, referenced heavily in the introduction, consisting of those TFXE search
problems with unique solutions. This class is directly associated to FPZENM in this hierarchy:

Lemma 2. The following are equivalent for any R € TFZ2P:

1. R s polynomial time reducible to a problem in TFUZ2P.
2. R e FP=NM;

Proof. Say R is polynomial time reducible to R’ € TFUZQP . So there are polynomial time functions
so that for all z, if (f(z),y) € R’ then (x,g(z,y)) € R. Consider the language L defined as follows:
(z,i) € L iff for the unique y with (f(x),y) € R', we have y; = 1. Then L € ¥5 N M5 and g yeilds
a reduction from R to L.

In the other direction note that any language L € Z; N I_IS defines a search problem in TFUZQP :
given z find b € {0,1} so that L(z) = b. The result follows directly from this fact. O

Recall from the introduction that the problems LOP and Strong 1-1 Avoid do not quite have
unique solutions, but come very close. We define this property of having essentially unique solutions
as follows:

13

Definition 10 (Essentially Unique Solutions). We say that a total search problem R € TFZQP has
“essentially unique solutions” if there are verifiers V1, Vo such that:

1. V1 is testable in polynomial time, while Vo is testable in coNP.

2. For all z, either there exists y so that Vi(z,y) = 1 and (x,y) € R, or else there exists a
unique y such that Va(z,y) =1 and (z,y) € R.

We then have:

Lemma 3. If R has essentially unique solutions then it is polynomial time reducible to a search
problem R' € TFUZE which actually has unique solutions. By Lemma 2 this is equivalent to the

statement R € FPZNN5

Proof. Let V1, Vy witness that R has essentially unique solutions. Consider the search problem R':
given z, output either the lexicographically first y such that Vi (z,y) = 1, or else the unique y such
that Va(z,y) = 1. By the definition of Vi1, Vy we see that R’ is a total search problem with unique
solutions. Clearly R is polynomial time reducible to R’. We need to show that R’ € FZ; . For a
fixed x, say that there exists y with Vi(x,y) = 1, and let yo be the lexicographically first such .
Then we can confirm that (z,yp) € R’ in coNP by confirming Vi (x,yp) = 1 and that for all ¥’ < yo
we have Vi(z,y’) = 0. On the other hand say that there is no y with Vi(z,y) = 1, and let y* be
the unique element with Va(z,y*) = 1. Then we can confirm that (x,y*) € R’ in coNP by checking
that for all y we have Vi(x,y) = 0, and using V3 to confirm Vy(z,y*) = 1 (recall that Vs is in coNP
by definition). O

We now state formally the claim made in the introduction that LOP and Strong 1-1 Avoid have
essentially unique solutions:

Lemma 4. Linear Ordering Principle and Strong 1-1 Avoid have essentially unique solutions;
hence both problems lie in FPE5NMN3 .

Proof. Any injective function f : [N] — [N + 1] leaves a unique point in [NV + 1] out of its range.
Every total linear order on a finite set has a unique minimal element. O

We next prove formally that LOP is contained in the class FSS , which follows quite directly
from the definitions:

Lemma 5. Linear Ordering Principle is in FSE.

Proof. Let <: {0,1}" x {0,1}" — {0, 1} be an instance of Linear Ordering Principle. We construct
the FSE solver V for < as follows. Let X = {0,1}3"*! be partitioned so that the first 2" elements
A are identified with {0,1}", and the remaining > 23" elements B are identified with potential
witnesses that < fails to define a linear order. Given 71,1y € X, V(<, 71, m2) behaves as follows:

1. If m; € B codes a witness that < does not define a linear order for some i € {1, 2}, we output
m;; if both do then we output the lexicographically first between them.

2. Say m; € B and my € A for {i,i'} = {1,2}, and 7; is not a witness that < fails to define a
linear order. In this case we output m; .

3. If both m,m € A, we think of them as representing elements aj,ag of {0,1}" and compare
them according to <. If a; < as we output 7y, otherwise we output ms.

14

First say that < is not a total order. Among all witnesses to this let m € B be the lexicographically
first. Then for all 7/ € X, we have V(<,m,7') = V(<,7’,7) = 7. On the other hand say < is a
total order and let m € A correspond to its unique minimal element. Then again for all 7’ € X, we
have V(<,7,7') = V(<,7/,7) = 7. Thus in all cases V gives an FSY algorithm solving the Linear
Ordering Principle problem on input <.]

Finally, amongst the 4 search problems studied here we have the two following obvious inclusions
which we haven’t mentioned yet:

Observation 2. Weak Avoid and Strong 1-1 Avoid are polynomial time reducible to Strong Avoid.

2.2 Oracle Separations and the Decision Tree Model

All of the upper bounds and inclusions we show in this paper are unconditional and hold relative to
every oracle. Since showing any unconditional separations amongst the classes we have identified
would imply P # NP, we can only hope to establish separations in a restricted model. As is
standard, our restricted model will correspond to the “decision tree model” of complexity classes,
which can be framed either in terms of oracles and Turing machines, or more directly in terms of
decision trees and bounded depth circuits, c.f. [CIY97]. We choose here the latter terminology.

All of our search problems are defined in terms of a function or relation specified by a boolean
circuit. Take for example the Weak Avoid problem, whose instance is a boolean circuit computing
f:4{0,1}* — {0,1}**!. Clearly this problem remains total if f were not represented by a small
circuit, but instead was an arbitrary function f : [27] — [2"F!]. In the decision tree model, the
relevant search problem has as its input an arbitrary function f : [N] — [2N] where N = 2.
For example, the decision tree variant of the simplest complexity class FP then corresponds to
algorithms which can access f only by querying its on poly(n) = poly(log N) different inputs
x € [N]. If we imagine f : [N] — [2N] is specified by an assignment o : {0, 1}2"1*["+1] where
agzi; = f(x);, then this is equivalent to allowing the algorithm to query poly(n) = poly(log N)
variables of the assignment .

Decision tree analogues of other complexity classes can be defined similarly. It is a standard
result that a decision tree separation implies a a separation of the associated Turing machine classes
relative to an oracle; more specifically it is equivalent to a separation relative to a so-called “generic
oracle” [BCET98b].

Most of the definitions in our decision tree models will be standard, e.g. bounded depth formulae
and DNFs. One decision tree model we study whose definition and notation is less standardized is
a FPNP decision tree:

Definition 11 (FPNP Decision Trees). Let f : {0,1}" — A be a function where A is some set. A
PNP decision tree T computing f is defined by a binary tree, with each internal node labeled by a
DNF' formula on the variables {x; | i < n} and each leaf labeled by a value y € A. On an input
x € {0,1}", we traverse T starting at the root. At each internal node associated to a DNF D, we
test if D(x) = 1; if so we proceed to the right child of the current node, otherwise we proceed to the
left. When we reach a leaf we output the value associated to it; T computes f if the value reached is
f(x). We say that T has complexity < r if its depth as a tree is at most r, and each DNF' associated
to its nodes has width at most r.

P
We next define the decision tree variant of FPﬁ2 which is the subject of our main lower bound
Theorem 2:

15

Definition 12. Let R C {0,1}" x [M] black-box (relativized) search problem. We say that R is
P
in FPﬁ2 if there exist Z; circuits ®1,. .., P with k < polylog(N) and an arbitrary post-processing

function S : {0,1}% — [M] so that for all inputs f € {0, 1}, (f, S(®1(f),...,Px(f))) € R. A XY
circuit is a 2POW18 N _gize depth 3 circuit with bottom fanout < polylog N.

In our case the input will be some f € {0, 1}V representing a function f : [N] — [N + 1],
and the relevant search problem is to output some y € [N + 1] outside its range. The fact that this

P
captures the relativized version of FPﬁ2 is based on the well known equivalence between relativized
levels of the polynomial hiearchy and quasipolynomial size bounded depth circuits [FSS84]; in
particular the Zg circuits ®1,..., P, above correspond to a sequence of non-adaptive Zzp oracle
queries.

Note on bottom fanin: The depth 3 circuit model which captures FPT‘:’E has the additional
restriction that the bottom level of each depth 3 circuit has fanin poly log N. Our lower bound will
apply also to the stronger model in which the depth 3 circuits are only constrained in their size
and not their bottom fanin.

Finally, we make note of one separation indicated in Figure 1 which was shown prior to our
work:

Lemma (Wilson and Vyas-Williams[|Wil83][VW23]). In the decision tree model, Weak Avoid is
not in FPNP.

3 Lower Bounds for Pigeonhole Principles

3.1 Pigeonhole Principle Basics

We will be concerned here with search problems where the input is a function f : [N] — [M] with
M > N, and the goal is to find an empty pigeonhole of f.

Definition 13. We use [M]N to refer to the set of all functions f : [N] — [M]. We define a set
of propositional variables, referred to as “bit variables”, given by

BITSn um = {fei | © € [N],i € [[log M1]}

We associate each truth assignment o : BITSn pr — {0, 1} with the function fo : [N] — [M], where
where the value o assigns to f.; indicates the it bit of fo(x) in binary; if M is not a power of
two then we think of all strings in {0, 1}”°g M1 of binary value exceeding M as being redundant
representations of the element M. Similarly we associate every function f : [N] — [M] with the
assignment oy : BITSy pr — {0, 1} using the same correspondence.

From now on we will often not refer explicitly to assignments « : BITSy s — {0, 1}, only to
functions f : [N] — [M]. The relevance of this definition is that, when defining circuits/computational
devices whose input is a function f : [M] — [N], we must specify how the device is able to ac-
cess/read the input f: typically this will correspond to the ability to read the bits BITSy p;.

For the vast majority of this section we will restrict our attention to functions f : [N] — [M]
which are 1-1 (injective): consequently when we speak about the evaluation of a formula which
takes f as an input, we will typically only care about the behavior of that formula on this special
class of inputs. We use the following notation to express this:

16

Definition 14. Let Fyar C [M]IN] denote the set of all 1-1 functions [N] — [M]. For two
predicates F, G : [M]IN — {0, 1}, we say that F is equivalent to G (with respect to all 1-1 functions),
denoted by F = G, if F(f) = G(f) for all f € Fn .

We now introduce notation for describing partial information about an input f. A natural
such unit of partial information is a partial assignment p : BITSy s — {0, 1, x}, however for our
purposes it will be useful to define additional types of partial information as well:

Definition 15 (Matchings and Hole Restrictions). A partial matching is a partially defined 1-1
function from [N] to [M]. We use dom(w),range(mw) to refer to the domain and range of m, and
nodes(m) = dom(7) Urange(w). More generally a “hole restriction” T = (w, E) consists of a partial
matching ™ and a set E C [M] satisfying range(m) N E = (). Let nodes(t) = nodes(7) U E. We use
|| to refer to the value ||+ |E|. We think of the hole restriction (7, E) as describing the following
partial information about a function f : [N] — [M]: “f(z) = n(x) for all x € dom(rw), and
y ¢ range(f) for ally € E.” For a total assignment f € Fn nr, we say f is compatible with (w, E),
written f||(m, E), if the above statement holds. For two hole restrictions 1y = (w1, E1), 7o = (79, Ea),
we say they are consistent, written 11 ||2, if there is a total assignment f which is compatible with
both. We say 11 extends To, written 71 2 7o, if m1 2D m and E1 2 FEo. We will think of a partial
matching ™ as a special kind of hole restriction of the form (w,0), and a total 1-1 assignment f as
a special hole restriction of the form (f,Tange(f)), where Tange(f) = [M] \ range(f). In this way
we will use the above terminology to define relations between matchings, hole restrictions and total
1-1 assignments, e.g. f|lm and m C 7.

The main subject of this section is circuits C' : {0, 1}/BITSvuml 5 0 110e M1 which solve Avoid,
in the sense that C(f) ¢ range(f) for all f, where C(f) denotes feeding C' the representation of
f as an assignment to its bit variables. We thus need some notation for basic kinds of circuits
computing a function of f, which will be hole and matching disjunctions:

Definition 16 (Matching and Hole Disjunctions). A hole disjunction ¢ = Vi over [M]IN is
defined by a collection of hole restrictions [N] — [M], which we refer to as the “terms” of ¢. We
say ¢o(f) =1, or “f satisfies ¢,” if f||7; for some term 1; of ¢. In this way each hole disjunction
is associated with a boolean function Fy y — {0,1}. If |1| < w for all t we say that ¢ has width
w. We call ¢ a matching disjunction if all 7; are partial matchings.

Recall that we are primarily concerned here with the values a formula takes on 1-1 assignments
f € Fn,m. In such a setting we can simplify any circuit so that the bottom two logical layers are
a set of matching disjunctions:

Observation 3. Let D be a DNF formula on the bit variables BITSn . Then there is a matching
disjunction ¢ so that D = ¢. Moreover if D has s terms and width w, then ¢ will have < M s terms
and width < [log M |w.

Proof. Say that D = V; A {; ; is a DNF where each /; ; is a literal on BITSy /. For each term
t; = N;j{; ; we may replace it by the matching disjunction:

91': \/ T

m€match(t;)

where match(;) is the set of minimal partial matchings 7 so that for each literal ¢; ; = (=)¢ fap in
t; (with & € {0,1}), there is an edge (z,y) € 7 with y, = —=§. Clearly we have that 0;(f) = t;(f)
for all 1-1 assignments f, and thus we may replace D with the matching disjunction V;0; without
affecting its behavior on 1-1 assignments. Observe that |match(t;)| < M|t;| and its width is larger
by a factor of at most [log M. O

17

Definition 17. Let ¢ = 71 V...V 75 be a hole disjunction with 7; = (m;, E;) and let k = (o,U) be
a hole restriction. We define ¢ restricted by 7, denoted by ¢ | K, as follows: (i) First, any term
Ti € ¢ that is inconsistent with k is set to 0 by k and thus these terms disappear from ¢ | k (we
also say they are “killed” by k). If all terms are set to 0, then ¢ | k = 0. (i1) Otherwise for any
term T; consistent with k, we replace 7; with 7; | k:= (m; \ o, BE; \U). If ; | & = (0,0) this means
k already satisfies this term; if this happens for any of the 7; then we set ¢ [k = 1.

The last basic computational model acting on inputs f € Fn s we consider is a “pigeonhole
decision tree”:

Definition 18. A pigeonhole decision tree T over Fn s is defined by a rooted tree with fanout
< M, with leaves labeled by wvalues from some finite set Z. Fach internal node v € T is labelled
by either a “pigeon query” or a “hole query”. Pigeon nodes (those that make a pigeon query) are
labeled by a query q(v) € [N] and have < M outgoing edges each labeled by a distinct element
(q(v),y) € [N] x [M]. Hole nodes are labeled by a query q(v) € [M] and have < N + 1 outgoing
edges, which are either labelled by a distinct element (x,q(v)) € [N] x [M] or by q(v) € [M]. (The
label q(v) corresponds to nothing mapping to pigeon q(v).) In this way, we can associate each node
v €T to some (m, E) with 1 C [N] x [M], E C [M], consisting of the labels of all edges on the path
from the root to v in T. We then require that this pair (7, E) associated to v is a hole disjunction.

T is said to be a complete pigeonhole decision tree if for every f € Fya there is a (unique)
root to leaf path in T that is consistent with f. In the case that T is complete we may associate
T with a function T : Fny — Z, where T(f) is the value at the leaf of T' consistent with f.
The depth of T is the length of the longest root to leaf path. We will sometimes define pigeonhole
decision trees without having specific associated leaf values in mind; in this case we refer to the tree
as “unlabeled.”

Note: The queries in a pigeonhole decision tree do not correspond directly to queries of the
underlying bit variables BITSy »s. While it is possible to query log M of the variables BITS v 1/
to determine f(x) for some x € [N], if we want to determine the preimage of y € [M] under f
(or determine it has no preimage), we would need to query ~ N log M variables of BITSy s to
make this determination directly. Instead, a pigeonhole decision tree corresponds more directly to
a special kind of PNP decision tree on the bit variables.

We next observe that if T" is a complete depth d pigeonhole decision tree with binary leaf values,
then we may represent both T" and =7 by a width d hole disjunction:

Observation 4. Let F': Fyy — {0,1} be some predicate. If F =T for some complete pigeonhole
decision tree T of depth d, then there exist hole disjunctions ¢1,pe of width < d so that F' = ¢
and = F = ¢o.

We will need the following variant of the Switching Lemma, which says that for any low-width
matching disjunction ¢, is we sample a random partial matching p, then with high probability
¢ | p will have a low-depth, complete pigeonhole decision tree. We defer the proof of the Switching
Lemma to Section A.

Definition 19 (Distribution of Partial Restrictions). Let M%’M be the set of all partial matchings
[N] — [M] with exactly N — K edges. We use p ~ M%’M to denote a sample from the uniform
distribution on this set. When N, M are clear from context we write Mg as shorthand for M%’M.

Lemma 6 (Pigeonhole Switching Lemma). Let M, N,d € N. Let ¢ be a width-w matching dis-
junction over [M]IN. If M — N < K < % and N, K,d,w sufficiently large, then

1?5[[@ | p has no depth < d pigeonhole decision tree | < exp (d(log wK® —log NY/? + O(l)))
p~MEK

18

3.2 Depth 3 Lower Bound for Strong Avoid

In this section we prove the following circuit lower bound, which is a restatement of Theorem 2.

Theorem 2 (Restated). There is some absolute constant € > 0 so that the following holds.
Let ®q,...,P; be depth 3, size < s unbounded fanout formulas over the bit variables BITSn n41.
Provided k < N€ and s < 2V°, there exists a string z € {0, 1}k so that for all y € [N + 1], there
exists an assignment f : [N] = [N + 1] such that:

1. ®;(f) = 2z for all i

2. y € range(f)

In particular it is not possible to determine an empty pigeonhole of f by reading the values of
1(f), ..., Pr(f)-

Overview of Proof. As mentioned in Section 1.2.1, we want to prove Theorem 2 by restricting
attention to the class of inputs that correspond to 1-1 functions, and in order to do this we will need
to prove a strengthening of Theorem 2, by proving the lower bound for Avoid on input functions
f:[N] — [M], where M is larger than N + 1. As discussed in Section 1.2.1, this implies the lower
bound stated above (with M = N + 1).

Thus we assume for sake of contradiction that there exist depth-3 AND-of-OR-of-AND circuits
®y,..., P, of total size at most s that solves Avoid on all one-to-one instances f : [Ng] — [Mo],
where My = Ny + N, for some 0 < € < 1. Since we will prove the lower bound with respect to
all 1-1 inputs, by Observation 3 we can assume without loss of generality that the bottom level of
ANDs are partial matchings. Therefore, each circuit ®; is without loss of generality an AND of
matching disjunctions.

1. The first step is to argue that there exists a matching restriction p such that after applying p,
all depth-2 subcircuits (which are matching disjunctions) have width at most w ~ log s. This
is accomplished in the Width Reduction Lemma (8) by a standard Chernoff argument and
a union bound. Thus after applying Lemma &8, we are left with depth-3 circuits ®1,..., Dy
which are ANDs of matching disjunctions of width at most w = clogs for some constant
¢ > 0. These circuits still solve Avoid but now with respect to 1-1 functions on the reduced
domain and range, [Ni], [M;], where N1 = Q(Ny), and M; ~ N; + Nj.

2. At this point each ®; is an AND of low-width matching disjunctions, i.e. we have ®; = A;¢; ;
where the ¢; ; are width w matching disjunctions. The next step is to apply our Pigeonhole
Switching Lemma (6) which will tell us that there exists a matching restriction p such that for
all 7,7, ¢; ; | p simplifies to a depth d pigeonhole decision tree. We will be able to choose the
parameters in our switching lemma so that after the second restriction, there are Ny remaining
pigeons and M, = 2N3 remaining holes, with d?k? < Na. By Observation 4, this allows us to
rewrite —¢; ; as a width=d hole disjunction, and thus —=®; as width d hole disjunction. The
simplified circuits =®q,..., P still solve Avoid, but now with respect to 1-1 functions on
the reduced domain and range leftover after this restriction, i.e. on instances [Na] — [2N3].

3. The final step is to prove that if ¢1,..., ¢, are width-d hole disjunctions that solve Avoid
with respect to all 1-1 functions from [N] to [2Ns], then we must have d?k? > Ny. This is
accomplished by Lemma 7. The proof is a novel argument based on coverings. Recall that
our goal is to give some sequence of values zy, ...,z € {0,1}, so that for all yo € [2N2] we
can find a 1-1 instance f : [Na] — [2N3] so that ¢1(f) = z1,...,0k(f) = 2k, but yo is not
an Avoid solution for f. This indicates that the values ¢1(f),...,or(f) are insufficient to

19

determine an Avoid solution. To construct zi,...,zE, we start by repeatedly searching for
some ¢; whose underlying terms have a small hitting set, which is a small set of pigeons and
holes so that every term of ¢; mentions at least one of them. If some ¢; is found, we apply
a partial restriction p to the hitting set variables, which reduces the width of ¢; by 1. Since
there are k ¢;’s, and each has width at most d, after dk iterations, each ¢; either has been set
to a constant, or is promised to have no small hitting set. We set z; =1 or z; = 0 for all the
¢; which have been forced to a constant by our restriction p in this process, and set z; = 1 for
all the unkilled ¢;. Then to finish the proof, we need to show that for any yy we can find an
instance f||p so that yo € range(f), and ¢;(f) = 1 for every ¢; which was unkilled in the first
step. Let yo € [2N3] be given. Starting with the partial assignment p, we extend it so some
unmapped pigeon xg goes to yg, and then we iterate over each unkilled ¢; and try extend p
to satisfy one of its terms greedily. The correctness will follow from the fact that none of the
unkilled ¢; have a small hitting set.

We now formalize the above, which relies on the three Lemmas mentioned in the proof overview.
Two of these Lemmas (Lemmas 8 and 7) will then be proven, while the more involved Lemma 6
is postponed to Appendix A.

Proof of Theorem 2. Fix some ¢€,d to be specified later. Let Ny be sufficiently large, and let
My = No + N§. Assume towards a contradiction that ®q,..., ®; are depth-3, size s = 26 circuits
so that for all assignments f : [Ng] — [Mp], we may determine an empty pigeonhole for f by reading

the values ®1(f),...,®x(f), and that k& < N5/5. Without loss of generality we may assume:
o, = A\ Dy
J

where D; ; is a DNF over the variables BITSn;, az,. Obviously if ®1(f),..., ®x(f) could determine
an empty pigeonhole on all assignments f then it would do so on all 1-1 assignments; we will derive
a contradiction already from this fact. Therefore by Observation 3 we may assume

Q; = /\ Gij
J

where ¢; ; is a matching disjunction, at the cost of increasing the overall size of ® from s to Mps,
while preserving the behavior of the ®; on 1-1 assignments.

Applying the width reduction lemma (Lemma 8) with w = clog s for a sufficiently large constant
¢ > 1, and a union bound over ¢, j, we can find a partial matching pg leaving [N pigeons unmapped,
where N1 = 0Ny, such that for all 7,7, ¢;; | po has width w. Thus we have reduced the bottom
gate fanin of each circuit ®; to w, and the reduced circuits still solve Avoid with respect to all 1-1
functions f with domain Ny = 6Ny and range M1 = Ny + Nj.

Next we apply our Switching Lemma (Lemma 6) with the following choice of parameters:

NZ:Nl
M := M; = N1 + Nj
K := N§
w = clog s = c¢N§

d:= K5 = N/®

20

Choosing e sufficiently small, it follows that for all ¢, j:

Proppmy [Tg: 51p has depth > d] < %
Thus by a union bound over ¢, j, we conclude that there exists a partial matching p so that for each
1,7 there is a pigeonhole decision tree T; ; of depth d such that ¢; ; =, T ;.

Applying Observation 4 we can find hole disjunctions v; ; of width d so that —¢; ; =, v; ;, and
therefore -®; =, \/j 1;; which is a width d hole disjunction. By the conditions on the original
Dy, ..., Dy, for all 1-1 assignments f extending p we must be able to determine an empty pigeonhole
of f by reading the values =®(f),...,Pr(f).

After applying p, we are left with a reduced domain and range [Na] and [Ma], where No = K =
N§, and My = My — (N1 — K) = 2K = 2N;. Therefore on the smaller input size [2N2][N2], we have
found a sequence of k width-d hole disjunctions such that on all 1-1 assignments g : [Na] — [2N3],
we can determine an empty pigeonhole of g by reading the values of these hole disjunctions applied
to g. At this point we reach a contradiction with Theorem 7, since by our choice of parameters we
have 4k%d?> < Ns is satisfied (recall that k < N5/5 by assumption).

O

Equipped with the Pigeonhole Switching Lemma (Lemma 6, proof in Section A), it is left to
prove Lemmas 8 and 7. We will first prove Lemma 7 followed by a proof of Lemma 8.

Lemma 7. Let ¢1,...,¢x be hole disjunctions of width w over [2N] NI, Then provided N > 4k?w?,
there exists a string z € {0,1}* so that for all y € [2N], there exists a 1-1 function f : [N] — [2N]
such that:

1. ¢i(f) = z; for alli

2. y € range(f)

In particular it is not possible to determine an empty pigeonhole of f from ¢1(f), ..., ¢x(f) for all
1-1 assignments f.

To prove this we need the following definition:

Definition 20 (Hitting Sets). If ¢ is a hole disjunction and A C [N]U [M], we say that A is a
hitting set for ¢ if ANnodes(r) # 0 for all terms T € ¢.

We can observe the following property of hitting sets:

Observation 5. Let 7 : [N] — [M] be a partial matching, ¢ a nonempty hole disjunction, and
A C [N] U [M] a non-empty hitting set for ¢ | w. Say that ©' is an extension of m such that
A C nodes(n’). Then for each term T € ¢ | 7, T has strictly smaller width in ¢ | 7' then it
originally did in ¢ | .

We can now prove the main claim:

Proof. To prove this we will construct partial matching 7 : [N] — [2N], a set I C [k], and values
{z € {0,1} | i € I} so that:

1. For all total 1-1 assignments f extending 7, ¢;(f) = z; for all ¢ € I.
2. For all yg € [2N], there exists a total 1-1 assignment f extending 7 so that ¢;(f) = 1 for all
i ¢ I, and yo € range(f).

21

We will initialize 7 = () and expand it in stages by the following procedure:

1. If there exists a nonempty A C [N]U [2N],|A| < 2kw + 2 and some i € [k] so that A is a
hitting set for ¢; | 7, then extend 7 to a 1-1 map 7’ so that A C nodes(n’). If none exist then
halt the procedure and output the current .

2. Set m := 7’ and return to the previous step.

We claim that we will always be able to extend 7 in the appropriate way until no further hitting
sets can be found, and that at the end we will have |7| < kw(2kw + 2) = 2k*w? + 2kw. To see
this, observe that if ¢ is a hole disjunction of width w and nodes(7) is a hitting set for ¢, then
every term in ¢ will either be killed in ¢ [7 or else have its width decreased by 1 by Observation 5.
Therefore the above procedure can only repeat kw times before all the ¢; have been killed. In each
step at most 2kw + 2 edges need to be added to 7 in order to cover A, so the total size of 7 at
any step is at most kw(2kw + 2) = 2k?w? + 2kw, and therefore there are always enough available
pigeons/holes to extend 7 in the appropriate way at each step since N > k%w?.

Now we can choose I C [k], which will consist of those indices i so that ¢; | 7 is forced to a
constant (i.e. one of its terms is already satisfied by 7 in which case it is forced to one, or else all
of its terms are killed and it is forced to 0). For i € I we denote by z; € {0,1} the value it is forced
to. It remains to show that for any given yy € [2N], we can find a total 1-1 assignment f extending
7 so that yog € range(f) and ¢;(f) =1 for all i ¢ I. To do this we will construct a hole restriction
(p,U), where p is another partial matching disjoint consistent with 7, and U C [2N] satisfying:

1. yo € range(mw U p)
2. |p| < kw, |U| < kw
3. UNrange(r Up) =0

4. For each i € [k]\ I there is a term (o, E) € ¢;, so that for all x € dom(o) we have 7 U p(z) =
o(x),and E CU.

If we can accomplish this then the proof is complete. We simply extend 7 U p to a total 1-
1 assignment f which leaves U out of its range. By the assumption N > 4k?w? such a total
assignment exists; here we are using the fact that the total number of holes 2N is larger then the
size of U plus the number of holes filled thus far by 7 U p. By construction we then have ¢;(f) =1
for all i ¢ I and y € range(f).

Observe that by construction of 7, for each i ¢ I we have that ¢; | m has no hitting set of size
< 2kw + 2. We will construct p, U in stages. Initially we check if yy € range(7), if not we initialize
p = {(z0,y0)} where x(is an arbitrary element unmapped in 7, otherwise we initialize p = (). In
addition we initialize U = (). Now we go through each ¢ € [k] \ I in order and do the following. We
search for some term 7 = (0, E) € ¢; | (7w U p) so that nodes(7) Nnodes((p, U)) = 0. If found, then
we add the nodes in E to U and the edges in ¢ to p. We claim that it is always possible to find
such a term while maintaining that = U p is 1-1 and U Nrange(m U p) = 0. In particular say that
we have gotten to some step ¢ € [k] \ I where this is not possible. Let A = nodes({p, U)). Observe
that by construction |A| < 2kw + 2. Recall that by construction of = we have that A cannot be a
hitting set for ¢; [w. By definition of a hitting set this implies the existence of the required term
T E ¢;.]

Next, we prove the Width Reduction Lemma:

22

Lemma 8 (Width Reduction). Let € > 0 be a sufficiently small constant. Let ¢ be a matching
disjunction with s terms over [M][N]. Say a partial matching p is sampled as follows: sample
A C [N] by including each element independently with probability 1 — €; now choose a uniform 1-1
function A — [M].

Ppl"[¢ I p has width > w] < exp(log s — Q(w))

Proof. Let ¢ = A1,..., As. We will ignore each term whose width is already < w; its width cannot
increase under the restriction. Let A € ¢ be a term of width > w. We bound the probability that
p does not kill the term A as:

I;r[)\ survives p] = Ug%;lm Pr[dom(A) N dom(p) = U] | U“1(|AU4)
< gpr[ydom(A) Ndom(p)| = t]t!(af)
< <w/2>1'(w/) + Prlldom(X) N dom(p)| < 5
< W PRI SEES) B ()

Where the last inequality follows from Chernoff’s bound and Bern(1l — €) denotes the Bernoulli
distribution with expected value 1 — e¢. Thus by a union bound

Pr[¢ | p has width > w] < exp(log s — Q(w))
p
0

Lower Bounds for Moderately Weak Avoid: Above we showed that depth-3 circuits cannot
solve the Strong Avoid problem unless their size is exponential. In contrast, Li’s construction gives
quasipolynomial size depth 3 circuits which solve the Weak Avoid problem, i.e. Avoid on instances
[N] — [2N] when the codomain is at least twice as large as the domain. By a standard iteration
construction (the same argument which lets us reduce [N] — [2N] Avoid to [N] — [N?] Avoid as in
[Kor21]), for every constant d we can obtain quasipolynomial size depth 3 circuits solving Avoid on
instances [N] — [N + N/log? N]. We show here that this is essentially optimal: for every constant
¢ there exists another constant d so that [N] — [N + N/log? N] Avoid cannot be solved by depth
3 circuits of size 2'°6°N . The proof is a simple reduction to Theorem 2 which is originally due to
Razborov [Raz].

Lemma 9. For every ¢ € N there exists d € N so that the following holds. Let ®1,..., Py be depth
3 circuits of size s such that for every assignment f : [N] — [N 4+ N/log? N|, an Awvoid solution
can be determined from the values ®1(f),..., ®r(f). Then either k >1log N or s > 2108° N,

Proof. Let ¢ € N be fixed. We will choose M = log? N for an appropriate choice of d which
will be specified later and which will depend only on ¢. We then reduce the Avoid problem on
instances [M] — [M + 1] to instances [N] — [N + N/log? N] as follows: given g : [M] — [M + 1],
let g®¢ : [M{] — [(M + 1)£] be the map which sends each block [1, M],...,[M (¢ — 1), M{] to its
corresponding block in [1, M +1],...[(M 4+ 1)(¢ — 1), (M + 1)¢] according to g. Setting £ = & we
see that g is a map [N] — [N + £], where £ = N/M = N/log? N.

23

Obviously given g we can generate ¢®¢ without any computational overhead by simply substi-
tuting variables. In addition, any Avoid solution to ¢®¢ uniquely determines an Avoid solution to
g, obtained by simply forgetting the block number and outputting the position within the relevant
block. Thus if the circuits ®1(f),..., ®x(f) could solve Avoid on inputs [N] — [N + N/log? N]
then they can also solve Avoid on inputs [M] — [M + 1]. By Theorem 2 there is some absolute
constant €, such that for this to be possible we must have k > M€ and s > 2M°. Setting d > < the
theorem follows. O

3.3 BPPNP Lower Bound for 1-1 Strong Avoid

We restate the main result to be proved:
Theorem 3 In the decision tree model, Strong 1-1 Awvoid is not solvable in FBPPNP.

Recalling the definition of BPPNP (in the decision tree model), if 1-1 Strong Avoid has BPPNP
decision trees of complexity w, then there is a distribution 7~ over PNP decision trees of complexity
r, so that for all f: [N] — [N 4 1] T outputs a 1-1 Strong Avoid Solution with probability > 2/3.
By Yao’s minimax principle, this implies the existence of a fixed tree T' € support(7), so that
T(f) succeeds in finding an empty pigeonhole of f with probability > 2/3 when f is sampled
uniformly from the space of 1-1 functions F y1. It thus suffices to rule out the existence of such
a deterministic tree 7. We will use here the notation Fy := Fn ny41, and f ~ Fn to denote a
uniform sample from this set. Thus Theorem 3 follows from the following Theorem:

Theorem 8. There is an absolute constant € > 0 so the following holds: if T is a PNP decision tree
of complexity N over the bit variables BITSy yy1 and leaves labeled by elements of [N + 1], then:

Pr [T(f) ¢ range(f)] < N0
f~FN

The high level idea of the proof is as follows. Observe that a random f ~ Fy ps can be sampled
by first choosing a uniform partial matching p of a certain size, and then choosing a uniform
completion of p to a total assignment. Applying our Switching Lemma, we can argue that with
high probability, after we sample p we can replace all of the NP queries in our PNP decision tree T
with small depth pigeonhole decision trees, which overall allows T to be replaced by a low depth
pigeonhole decision tree. It then remains only to argue that a pigeonhole decision tree of low depth
cannot solve 1-1 Strong Avoid with non-trivial probability on a uniform extension f of p, which
can be accomplished with a direct argument.

Proof of Theorem 8. By definition of a PNP decision tree, T is a binary tree of depth r = N¢
with each internal node branching on the value of some DNF of width r over the bit variables
BITSn n+1. Let Dy, ..., Ds be the set of all DNF associated to the nodes of T'; so s < 2". As in
the proof of Theorem 2 we may apply Observation 3 and replace all D; by width rlog N matching
disjunctions ¢; since we only care about their behavior on assignments in Fy. Fix some parameter
K to be specified later. We will consider sampling f ~ Fy in the following way: first choose a
uniform partial matching p with N — K edges, then a uniform extension f O p of p to a total 1-1
assignment. We define B as the event that ¢; [p does not have a pigeonhole decision tree of depth
< r for some i < s. Observe in the case p ¢ B, we may construct a pigeonhole decision tree 7 of
depth r? so that T =, T'; we simply simulate the original computation of 7', and each time a DNF
D, was originally queried, we instead simulate the depth < r pigeonhole decision which represents
¢;. Let Py(J) be the maximum, over all pigeonhole decision trees @) of depth d on g : [J] — [J + 1],
of Pryr,[Q(g) ¢ range(g)]. Then we have:

24

,Pr [T(f) ¢ range(f)] = Tr [T(f) ¢ range(f)]
~FN b, f2p
< I;r[p e B+ max]grp[T(f) ¢ range(f)]
< I;r[p € Bl +P,2(K)

< 2"max Pr[¢; | p has no pigeonhole decision tree of depth < r| 4+ P,2(K)
i P

We will prove in the next lemma that P2 (K) < 1(7"42-1 Setting e sufficiently small and K = 3, we

can apply Lemma 6 and complete the proof. O

It remains to prove the bound on P,2(K). At the cost of increasing the depth of the tree by 1,
we assume that a pigeonhole decision tree always queries a hole before outputting it as a solution.

Lemma 10. P;(N) = Ni-s-l
Proof. Let T be a tree witnessing Py(N).
Say that T first queries a hole y € N, so that
Ti(f) if f(1) =y

TD=\ oy it £ =
Yy if y ¢ range(f)

then we have:
Pu(N) = Pr(T(f) ¢ range(f)
= Prly ¢ range(f)] + Z Prlf(e) = y] - Pr(Tu(f) ¢ range(f) | f(z) =]
< 1 . N
" N+1 N+1

Here we are using that fact that a uniform f conditioned on f(z) = y is equivalent, up to
relabeling, to a uniform member of Fx_1, and the labeling of pigeons and holes has no effect on
the value of Py_1(N — 1). By the same reasoning if 7" first queries a pigeon x then we have the

Pg—1(N —1)

simpler bound:

Pr{T(f) ¢ range(f)] = 3 Prlf(x) = u] - PrTy () ¢ range(f) | f(x) = y] < Pas (N = 1)

so overall . N
Py(N) < Pys_1(N —1 Py_1(N —1
oN) < max{Paa(N = 1), 1 + P (N = 1)
Therefore by induction on d we conclude that the optimal pigeonhole decision tree achieving Py(N)
only queries holes, and without loss of generality queries them in order 1,...,d (in the base case
we use the assumption that 7" must query a hole before using it as an answer), then outputs the

index of the first empty hole that was queried (if any). Therefore we have:

d

Py(N) = 1?«[{1, -y d} Erange(f)] = =

25

Next we show that Theorem 4, separating the decision class 5 N MY from BPPNP follows as
a corollary of Theorem 3.

Proof of Theorem 4. Lemma 4 says that Strong 1-1 Avoid is solvable in FPZZMMY . This result
holds relative to every oracle (and thus in the decision tree model). Hence relative to every oracle,
if ¥& N NS C BPPNP then Strong 1-1 Avoid collapses into BPPNP. The result then follows from
Theorem 3. O

4 Linear Ordering Principle

In this section we investigate the complexity of the Linear Ordering Principle. We restate the
definition in a slightly different terminology:

Definition (Linear Ordering Principle, Restatement of 2). The input to LOP is a binary relation
=< on [N] x [N] specified by a circuit. The following solutions are sought:

1. A witness that < does not define a total order on [N] (trivial solution)
2. An element ag € [N] so that ag < a for all a # ag € [N] (nontrivial solution)

We say an instance < is nontrivial if it has no trivial solutions. The trivial solutions are enumerated
formally as follows:

Antireflexivity Violation: x such that v < x
Transitivity Violation: x,y,z such that x <y < z and x £ z
Totality Violation: x # y such that x Ay and y £ =

Note that in the introduction we defined < to be a relation on {0,1}" x {0,1}". We state it in
this more general form here, since the space we define a linear ordering on in our main reduction
will not have size being a power of two. It is straightforward to pad an instance of LOP which is
defined on some subset of {0,1}" to the whole space without affecting the value of the solution.

Recall from Section 2.1 that LOP has “essentially unique solutions:” the trivial solutions are
checkable in polynomial time, and any instance without trivial solutions has a unique nontrivial
solution. Our primary interest in this problem stems from the following reduction (stated in the
Introduction):

Theorem 1 Weak Avoid is polynomial-time many-one reducible to LOP.

We will describe the reduction in two parts, using an intermediate search problem called Forest
Termination:

Definition 21 (Forest Termination). The input consists of:
1. A function Pred : [M] x [N] x [N] — [M]
2. A function Col: [M] x [N] — {0,1}

specified by boolean circuits. We think of the input as representing a layered rooted forest F of
depth N with nodes partitioned into sets L1, ..., Ly, each of size M, with nodes in Ly being roots
and all other nodes in {L;};>1 having a unique parent in Lj_1. We say that the function Pred
“validly represents a forest” if the following holds: for each uw € [M], k < j < i € [N], we have

26

that Pred(Pred(u,1i,7),j,k) = Pred(u,i, k). If this holds then we may think of Pred as repre-
senting some forest F' in the following strong sense: for any node w € L; with i > 1, the nodes
Pred(u,i,1),...,Pred(u,i,i) form the unique path from Ly to u in F. Finally for each each u € F
with think of Col(u,i) as coloring the node u € L; red or blue.

We say that w € FU{L} is a termination point of F if the following holds:

1. u= {1} and Ly contains no blue node.

2. w is a node in I, the path from Ly to u in F uses only blue nodes, and u does not have a blue
child in F.

Now the search problem is: given Pred, Col, find a witness that Pred does not validly represent
a forest, or else find a termination point in the forest it represents.

The totality of this problem follows by starting at at a blue node in L; (if one exists) and finding
a maximal blue path through its descendants in F'. We start by giving a reduction from Weak Avoid
to Forest Termination. This is the aspect of the proof which is very similar to arguments by Li and
by Paris Wilkie and Woods [Li24, PWW88].

Lemma 11. Weak Avoid with 2n stretch is polynomial-time reducible to Forest Termination.

Proof. Let f :{0,1}" — {0,1}?" be given; we denote by fo, f1 : {0,1}" — {0,1}" the functions
obtained by restricting to the first and last n bits of output respectively. Let S, denote the set
of all binary strings of length at most n, including the empty string e. Naturally S,, is associated
with the nodes of a full binary tree of depth n; however since the Forest Termination instance
we construct involves a forest whose structure and depth differ from that of S,,, we will use the
terminology of binary strings to refer to elements of S,, in order to avoid confusion. We say s C s’
if s is a prefix of s/, and s C s’ if it is a proper prefix. We use s- s’ for concatenation. If s C s’, with
s’ =s-p, we use s’ — s to denote p. We define the “preorder” < on S,, recursively with respect to
prefixes: for a prefix p and two distinct extensions p-s,p- s’ with s < &’ (with the relative order of
s, 8" defined recursively), we put p-s < p-s’ < p. In the view of S,, as a depth n perfect binary tree,
this corresponds to the recursive subtree ordering “left subtree < right subtree < root.” Note that
this is a total ordering with € being the greatest element and 0" the least. Finally, for an element
s € Sy, we say that s’ is a “left outlet” of s if either ' = s or s’ = p0 for some p C s. We use LO(s)
to denote its set of left outlets; note that [LO(s)| < n. Observe that for any s’ < s, there exists a
unique p € LO(s) such that p C s’

For some s € S,, and some value z € {0,1}", define fs(z) recursively as follows: if s = € then
fs(v) = v. If s = bs’ for some bit b and substring ', fs = fo(fp(z)). We define a “transcript”
as an element m € ({0,1}")". We say the transcript 7 is valid for some s € S, if m; = 0" for all
i > |LO(s)|. In this way the valid transcripts for s are in one-to-one correspondence with functions
LO(s) — {0,1}™. Thus for a valid transcript 7 for s and some p € LO(s), we use 7(p) € {0,1}"
to denote the value the transcript associates to p. For a transcript m, and strings s’ < s € S,,, we
define the transcript @’ = Pred(mw, s, s’) as follows. We first check if 7 is valid for s; if not we set
7’ to be some fixed canonical choice of invalid transcript for s’. Otherwise, for each p € LO(s), we
set 7' (p) = fp—q(m(q)) where ¢ € LO(s) is the unique left outlet of s which is an ancestor of p.

We now construct an instance of Forest Termination with [N] = 27! — 1] = S, and M =
[27"] = ({0,1}™)". [N] is associated naturally to S,, so that each layer corresponds to an element
of &, and the layers are ordered according to <, i.e. Lj is associated to 0" € &, and Ly to
e € S,. [M] is associated to the set of possible transcripts, so that L will be the set of all possible
transcripts for the string s (some valid and others invalid). We use Pred defined above to give

27

the Pred function in the instance of Forest Termination. It should be noted that the depth of
the forest defined here is N = 2"*! — 1, which is much larger then the depth of tree naturally
associated to S, (whose depth is n); this is why we have used the notation of binary strings rather
then nodes in a tree to refer to elements of S,,. It remains to define the node coloring function Col.
If (m,s) € [M] x [N] are such that 7 is not a valid transcript for s, then Col(w,s) is red; if 7 is a
valid transcript for s and |s| < n then it is colored blue (|s| denotes its length as a binary string).
Otherwise if 7 is a valid transcript for s and |s| = n, we check that 7(s) = = fs(s), where — denotes
the string obtained by flipping all bits. If so we color it blue, otherwise we color it red. Note that
since |s| = n, f(s) is well defined, and thus so is fs(s).

It follows by construction that Pred validly defines a forest in the sense of Definition 21. It
remains to show that given any termination point we may determine a solution to the original
instance of range avoidance. We first claim that there exists a blue node in the first layer Lgn,
so that the solution to Forest Termination cannot be L. Observe that LO(0™) = {0™}, thus the
transcript 7 which sets 7(0™) = = fon (0") will be blue. Now, say that m € L, is a termination node.
We claim that L, cannot be the last layer, i.e. s # €. Say towards a contradiction that 7 is a
termination node in layer L.. So 7 is a valid transcript for e, which stores a single value x = 7(e).
By the assumption 7 is a termination point all of its predecessors are blue. In particular if we view
x as a length-n element of S,,, then we have that Pred(m, ¢,) is blue, which by construction means
that f,(z) = —f.(x), which is a direct contradiction.

Now say that 7 is a termination node in layer Ly where s # ¢; let s’ be the successor of s in
the ordering <. First say that |s'| = n; in this case (7, s) cannot be a termination point, since
we may construct a blue transcript 7’ for s’ such that Pred(n’,s’, s) = m by simply appending the
value —f,/(u") as ©’'(u') to the original transcript 7 for s. Otherwise we have s = §'1. Let p = §0;
so p is a left-outlet of s, and therefore 7 stores some values z¢p = 7(p),z1 = 7(s). We claim that
xox1 must be a solution to the Avoid instance f. Say this is not true and there is some z € {0, 1}"
such that f(z) = xozy; i.e. fo(x) = 29 and fi(z) = 1. Then we can generate a blue transcript
7! for ' as follows. Observe that LO(s') = LO(s) \ {p} U {s'}. Thus if we remove p from the
domain of 7 and set 7’(s’) = 2 to obtain 7/, then #’ will be a blue transcript for " and we will have
Pred(7’, s', s) = m, which means (7, s) cannot be a termination point. To see this, note that in the
computation of Pred(n’, s, s), the only modification made to 7’ to generate m will be to compute
20 = fo(7'(s")), 21 = f1(7(s')), and add zy as the value 7 associates to p and z; as the value it
associates to s. By construction zyp = x¢ and z; = x1 so we end up with the original transcript
. O

Next we reduce Forest Termination to LOP, which is simpler:
Lemma 12. Forest Termination is polynomial-time many-one reducible to LOP.

We will prove shortly that any search problem which is PNP-reducible to LOP is also polynomial-
time many-one reducible to LOP (Theorem 5); therefore it suffices to give a PNP reduction.

Proof. Let Pred, Col an instance of Forest Termination. We start by using an NP oracle to search
for a witness that Pred fails to validly represent a forest; if found we output this as our solution,
otherwise we know that the instance indeed represents a forest F' on the nodes Lq LI --- U Ly. For
conceptual simplicity, we modify F' into a tree T' by adding a virtual blue root node 1. whose children
consist of all nodes in L;. We use < for the lexicographical ordering on each L;. We now define a
new ordering < on the nodes of T'. Its definition is given recursively with respect to subtrees of T’
as follows: say that u is a node with blue-rooted subtrees By < ... < Bg and red-rooted subtrees
Ry < ... < Rk ordered lexicographically by their respective roots. Define < recursively inside

28

each B;, Rj; now between them use the ordering By < ... < Bx < {u} < Ry < ... < Rgs. By
induction on the depth of T" we see that < is a total ordering. The relation < will be our instance
of LOP output by the reduction; it remains to show that < is efficiently computable and that its
minimal element yeilds a Forest Termination solution.

We first show how to compute <. Given ug # uy € T

1. If ug is an ancestor of uq then let v be the child of ug from which ug can be reached. If v is
blue then set u; < wug, else if it is red set ug < u;.

2. Otherwise let v be the least common ancestor of ug and uy, and let wg,w; be the children
of w from which ug and u; can be reached respectively. We define the relative ordering of
wp, w1 in <, which is then inherited by the pair ug, u1: if wp is blue and w—y is red for some
b € {0,1}, then set w, < w—p. Otherwise use the lexicographical order < to order the pair
wop, W1 .

The only nontrivial step here is to compute a least common ancestor of wui,us, which can be
accomplished with binary search. Say wuq,us lie in layers L;, L;s respectively, with i’ > i. The using
Pred we find the ancestor of uo in L;; call it ug. If 49 = uq then wuq is the ancestor of uy. Otherwise

let 7 = [i/2], and compute the ancestors vy, vy of uy, g in layer L;j. If they are distinct then
we repeat the same procedure starting from vy, ve. Otherwise if v1 = vy we prune all the layers
Ly,...,Lj_1 from consideration and repeat the procedure from u,%s, taking L; to be the root

layer with v; = vg as its root, and renumbering the layers accordingly. Overall the number of steps
required is O(log N).

Finally it remains to show that any solution to LOP on the instance < yields a solution to the
given Tree Termination instance, i.e. if w € {L} U L; U---U Ly is minimal in the ordering < then
it must correspond to a termination point. Say that u is not a termination point, then either:

1. There is an edge (v, w) in the path from the root to u so that w is colored red. In this case
we must have v < u.

2. u has a blue child v. In this case we have v < w.

In each case we see that v cannot be the minimal element. An example of a Forest Termination
instance and its corresponding order < is given in Figure 2. O

We now observe some special properties held by the search problem LOP, the first of which is
its strong closure properties under a wide class of reductions:

Theorem (Theorem 5). Let R be any search problem which has a polynomial-time, NP-oracle
Turing reduction to LOP. Then R is polynomial-time many-one reducible to LOP.

Proof. Let A be a polynomial time PNP Turing reduction from some search problem R to LOP. Let
x be an instance of the search problem of length n. We first claim that we can modify A so that:

1. A(z) only calls the LOP oracle on instances < which are nontrivial, i.e. they define a true
total order.

2. A(x) does not use its NP oracle.

To achieve the first condition, before each call to the LOP oracle on an instance <, we first use the
NP oracle to check if < defines a total order, and to find a violation if not. If a violation is found
we no longer need to use the LOP oracle on this instance; otherwise we know that < is a nontrivial

29

Figure 2: Example instance of Forest Termination with M = 4 and N = 3, with virtual root added
at the top. Blue nodes are circles and red nodes are diamonds. We have sorted each layer left to
right so that blue nodes come first, and within each color class the nodes are ordered left to right
lexicographically. The number on each node represents its position in the ordering <. The nodes
numbered 1 and 4 are the termination points of this instance.

instance and we use the oracle to solve it. Now to achieve the second condition, if ¢ is an instance
of SAT with m variables, we define the ordering <, on {0,1}" by: y <4 z if ¢(y) = 1A ¢(2) =0 or
vice versa, otherwise <4 orders them lexicographically. Clearly <4 is a nontrivial LOP instance,
and the minimal element of <, will tell us if ¢ is satisfiable.

At this point we have a polynomial time reduction A which makes adaptive oracle calls to LOP
on nontrivial instances, each of which has a unique solution. We next modify A(x) to make exactly
m calls on all computation paths, and have each call of the form <: {0,1}™ x {0,1}"* — {0,1}
for some fixed value m = poly(n). We can accomplish this easily by padding the algorithm with
dummy queries and padding any instance of LOP to a larger bit-length. We now define a new
instance <,: {0,1}™ x {0,1}™" — {0,1} as follows. An element of {0,1}™" is given by a sequence
(U1, ..., upy) with u; € {0,1}™. To compare two elements @ = (u1, ..., Un), 0 = (v1,...0n), we find
the first index i € [m] so that u; # v;. We simulate A(z) through the first i — 1 queries, plugging
in u; = v; as the answer to the 4™ LOP oracle query. Once we get to the i'" query, we look at
the instance <; of LOP defining the next query, and compare u;,v; using <;; we then order u, v
accordingly, e.g. u <, v if u; <; v;. It follows by construction that <, is a total order, and its
least element corresponds to the unique sequence of correct oracle responses in the computation
A(z). Therefore by the correctness of A we may read off in polynomial time from this sequence
the solution to the search problem R on input x. O

At this point we can prove Theorem 1 that Weak Avoid is polynomial time many-one reducible
to LOP:

Proof of Theorem 1. By [Kor21] there is a PNP reduction from the general Weak Avoid problem
to the special case when the stretch is 2n. Composing this with the reductions in Lemmas 11 and
12 we obtain a PNP reduction from Weak Avoid to LOP. Applying Theorem 5 this in turn yields a
polynomial-time many-one reduction. O

30

Recall that LOP enjoys the special property of having essentially unique solutions. Together
with its closure under PNP reductions, this endows LOP with the unusual property of being equiv-
alent to a decision problem. We define now a decisional complexity class Lg’ , possessing a few
equivalent definitions, whose complete problem is equivalent to the search problem LOP:

Definition (Reminder of Definition 5). A language L is in the complezity class LY if there is a
polynomial time relation R : ({0,1}*)3 — {0,1} and a polynomial p, so that for all x, R(z,-,-)
defines a total order on {0,1}*(™) whose minimal element a has a; = L(x).

Recalling Lemma 5, we have the following upper bound for this class:
Observation 6. L2P - Szp.

At first sight Lg seems to crucially involve a promise, namely that <, defines a total order
for all x, just like the promise defining the class 52P . However it turns out that this promise can
be eliminated and LOP can be given a purely syntactic characterization. This is summarized in
Theorem 6 which we restate here:

Theorem 6 The following are equivalent for a language L:
1. Lelb
2. L is PNP_Turing reducible to LOP.

3. L is polynomial time many-one reducible to LOP.
Conwversely, the search problem LOP is polynomial time truth table reducible to a language in Lg.

Proof. If L € LY then by definition it is many-one reducible to LOP which gives (1) — (2).
Theorem 5 gives (2) — (3); inspecting the proof, for each x we may define <, so that the value
L(z) is the first bit of the LOP solution to <5, which actually gives (2) — (1). O

Finally we prove Theorem 7 from the introduction, which tells us that L; satisfies two of the
three most interesting properties of the larger class S2P :

Theorem 7
1. PNP C Lg and BPP C MA C Lg
2. L56 contains a language of circuit complexity 2™ /n.

Proof. The inclusion PNP C LY follows directly from the closure of L5 under PNP reductions. For
the second inclusion, we know that every language in MA is PNP-reducible to the construction of a
O(logn)-seed length PRG for O(n)-size circuits [NW94]. The explicit construction of such PRGs
is in turn reducible to Weak Avoid [Kor21], and Weak Avoid is reducible to LOP by Theorem 1.
Applying Theorem 5 the result follows.

For the second part, the proof is identical to the case of SE shown in [Li24] given our reduction
from Weak Avoid to LOP. Given z € {0,1}" we may produce in 20(") time an instance of Weak
Avoid Cy, : {0,1}¢ — {0,1}?" so that any solution is a truth table of a function f : {0,1}" — {0,1}
of circuit complexity 2" /n. By Theorem 1 we may then construct in 20(") time a nontrivial instance
of LOP < so that from the unique minimal element of < we may read off a uniquely defined Weak
Avoid solution f, for C),. We then accept/reject x based on f,(x). Using the closure properties of
LS the language {fn }nen thus defined lies in L5. O

5LF is the exponential-time analogue of L5, where we replace “polynomial time” with 29 time” in its definition

31

The only interesting property of S2P which we cannot prove is inherited by its subclass L2P is the
Karp-Lipton theorem:

Theorem ([Cai07], credited to Sengupta). If NP € P/poly then PH = S5

The proof of this result does not seem to generalize to L2P .

References
[Ajt83] Miklds Ajtai. le—formulae on finite structures. Ann. Pure Appl. Log., 24(1):1-48, 1983.
[AT13] Albert Atserias and Neil Thapen. The ordering principle in a fragment of approximate counting. Electron.
Colloquium Comput. Complex., TR13-149, 2013.
[BCE198a] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative
complexity of np search problems. Journal of Computer and System Sciences, 57(1):3-19, 1998.
[BCE'98b] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative

[Bea94]

[BIK 192

[BKT14]

[Cai07]
[Can96]

[CHLR23)

[CHR24]
[CTY97]

[CL23]

[FSS84]
[FY96]

[GGNS23]

[GLW22]

complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3-19, 1998.

Paul Beame. A switching lemma primer. Technical Report, Department of Computer Science, University
of Washington, 1994.

Paul Beame, Russell Impagliazzo, Jan Krajicek, Toniann Pitassi, Pavel Pudlék, and Alan R. Woods.
Exponential lower bounds for the pigeonhole principle. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 200-220. ACM, 1992.

Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approximate counting.
J. Symb. Log., 79(2):496-525, 2014.

Jin-Yi Cai. S2p in zppnp. Journal of Computer and System Sciences, 73(1):25-35, 2007.

Ran Canetti. More on bpp and the polynomial-time hierarchy. Information Processing Letters, 57(5):237—
241, 1996.

Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point, and hard partial
truth table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, page 1058-1066, New York, NY, USA, 2023. Association for Computing
Machinery.

Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires near-maximum
circuit size. In 56th Annual Symposium on Theory of Computing, 2024.

Stephen Cook, Russell Impagliazzo, and Tomoyuki Yamakami. A tight relationship between generic
oracles and type-2 complexity theory. Information and Computation, 137(2):159-170, 1997.

Yilei Chen and Jiatu Li. Hardness of range avoidance and remote point for restricted circuits via
cryptography. Cryptology ePrint Archive, Paper 2023/1894, 2023. https://eprint.iacr.org/2023/
1894.

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Math. Syst. Theory, 17(1):13-27, 1984.

Lance Fortnow and Tomoyuki Yamakami. Generic separations. Journal of Computer and System Sci-
ences, 52(1):191-197, 1996.

Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range Avoid-
ance for Constant Depth Circuits: Hardness and Algorithms. In Nicole Megow and Adam Smith,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023), volume 275 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 65:1-65:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range Avoidance for Low-Depth Circuits and Con-
nections to Pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approzimation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022), volume 245 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1-20:21,
Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

32

https://eprint.iacr.org/2023/1894
https://eprint.iacr.org/2023/1894

[ILW23]

[TW97]

[Jer04]
[Kan82]

[KKMP21]

[KL8O]

[Kor21]

[Kor22]

[Li24]
[MPWO2]
[NW94]
[PWWSS]

[Raz|
[Raz93]

[RS98]

[VW23]

[Wil83)]

Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range avoidance, and
bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, page 1076-1089, New York, NY, USA, 2023. Association for Computing Machinery.

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing the
XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, page 220229, New York, NY, USA, 1997. Association for Computing Machinery.

Emil Jefabek. Dual weak pigeonhole principle, boolean complexity, and derandomization. Annals of
Pure and Applied Logic, 129(1):1-37, 2004.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control,
55(1):40-56, 1982.

Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total Functions in
the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages
44:1-44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80,
page 302-309, New York, NY, USA, 1980. Association for Computing Machinery.

Oliver Korten. The hardest explicit construction. In 62nd Annual Symposium on Foundations of Com-
puter Science, 2021.

Oliver Korten. Derandomization from time-space tradeoffs. In Proceedings of the 87th Computational
Complexity Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly uniform.
In 56th Annual Symposium on Theory of Computing, 2024.

Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole principle. J.
Comput. Syst. Sci., 64(4):843-872, 2002.

Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,
49(2):149-167, 1994.

J. Paris, A. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle and the existence of
infinitely many primes. J. Symb. Log., 53:1235-1244, 1988.

Alexander Razborov. Personal communication.

A. Razborov. Bounded Arithmetic and Lower Bounds in Boolean Complezity, In Feasible Mathematics
II. Birkhauser, 1993.

Alexander Russell and Ravi Sundaram. Symmetric alternation captures bpp. computational complexity,
7:152-162, 1998.

Nikhil Vyas and Ryan Williams. On Oracles and Algorithmic Methods for Proving Lower Bounds. In
Yael Tauman Kalai, editor, 14/th Innovations in Theoretical Computer Science Conference (ITCS 2023),
volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 99:1-99:26, Dagstuhl,
Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Christopher B. Wilson. Relativized circuit complexity. In 24th Annual Symposium on Foundations of
Computer Science (sfcs 1983), pages 329-334, 1983.

A Proof of the Pigeonhole Switching Lemma

As in the standard proof of the switching Lemma, we we need to define a procedure for representing
a matching disjunction by a canonical complete pigeonhole decision tree. We start with some
preliminary definitions.

Definition 22 (Complete Pigeonhole Trees on a subset A). For a partial matching © and a hole
restriction T, we say that T covers w if nodes(7) 2 nodes(w). If T = (0, E), we say that T is a
minimal cover of w if it fails to be a cover after removing any edge from o or any element from E.

33

For every tuple (A, N, M) where A C [N]U [M], we define a canonical complete pigeonhole
decision tree, denoted denoted by Co(N, M), as follows. This tree is unlabelled, and is defined with
respect to some fixed ordering of the elements of A. So lets assume the ordering ai,...,a, of A.
We build Co(N, M) in r steps:

1. In step 1, if a1 € [N], we query pigeon ay at the root, with all possible outedges: (a;,y), y €
[M]. Otherwise if a1 € [M], we query hole a1 with all possible outedges: (z,a;),x € [NJU{L}.

2. In step i > 1, for each leaf node | in T, let 7 = (o}, E}) denote the hole restriction associated
with the path to 1. If a; is a pigeon or hole in nodes() (that is, if a; has already been
“determined” by the hole restriction thus far), then we do nothing. Otherwise, we query a;
at the leaf I, with all possible outedges that are consistent with ;.

Observe that the leaves of C4(N, M) are in one-to-one correspondence with the set of all hole
restrictions that minimally cover A, and thus C4(N, M) is a complete pigeonhole decision tree.

Definition 23 (Canonical Pigeonhole Trees). Let ¢ = m V ...V 75 be a matching disjunction
over [N] U [M] where we have fized this ordering on the terms. The canonical pigeonhole tree for
¢, Tg(N, M), is defined recursively below. When N, M is clear from context, we will abbreviate
To(N, M) by Tsp.

1. If s = 0, then ¢ is a constant function. If ¢ = 1 then Ty(N, M) consists of a single node
labelled by 1, and similarly if ¢ is 0, then the decision tree is a single node labelled by 0.

2. Otherwise, let w1 be the first term in ¢ according to the ordering of terms in ¢. First, we
create the complete pigeonhole tree Cpodes(xy) (N, M). For each leaf | in the tree constructed so
far, let 7 = {0y, E}) be the hole restriction associated with the path to l. Then for each leaf l:

(a) Let P C [N] be the subset of pigeons that have not been matched by m;, and let H C [M]
be the subset of holes not matched by 7 and not in E;. P and H define the pigeons and
holes that are still undetermined after applying ;. If the size of P is N' and the size of
H is M', then we can rename the vertices so that we identify P with [N'] and H with
[M7].

(b) Recursively construct Ty, (N', M'). and attach a copy of this subtree to the leaf l.

It follows from the definition that 74 = ¢. Next, we restate the Pigeonhole Switching Lemma.

Lemma 6 Let M,N,d € N. Let ¢ be a width-w matching disjunction over [M]IN. If M — N <
K< % and N, K,d,w sufficiently large, then:

, f/’\f{ [To1p has depth > d] < exp(d(log wK® —log NY/? + O(l)))
~ K

Proof. Let ¢ = A\{ V...V Ag be a matching disjunction of width w. Let B be the set of partial
matchings p with N — K edges, such that 7Ty, has depth > d. If p € B, there exists a total
assignment f O p yielding a path P of length d from the root in 74;,. We define a sequence of
hole restrictions 71, ..., 7, and a sequence of partial matchings o1, ...,0,, and set S C [{] x [w] as
follows. Define 79 = (). Once 7; has been defined, let a;11 be the index of the first term in ¢ so
that A\g;,, [pUT1 U---U7; is unkilled. Then let 7;,1 be the minimal map 7,11 C f which covers
A [pUTIU U, and let 03 = Agy, [pUTIU--- U7 Finally let S C [£] x [w] contain each
index (4, 5) € [¢] x [w] such that the j"* edge of \; occurs in ;. We claim that such a sequence can

34

be constructed so that at the end ¢ < d, and if we take 0 = U;0;, then o is a partial matching with
nodes(c) Nnodes(p) = 0 and |o| = ¢ for some g <t < dw. This follows from the definition of Ty,
and and the fact that f achieves a path of length > d in this decision tree.

Thus, p € Mg, while pU o € Mg_; for some % <t < dw. We will define a map

CZUMK_tXFtXAt%MK

d
>4

for some finite sets {A¢}+<n so that whenever p € B and o, S are constructed from p as above,
there exists some “advice” § € A; so that Dec(p U 0,S,d) = p. This will imply that

Pr [peB] <

M Iy||A
S |/\/l |Z| K—t|[Tt][Al

which will yield the theorem provided we can choose the sets I'y, A; sufficiently small.

Let p € B, 73, a4,0;, S be as above. Define v; := pUrnU...UT;Ugi41U...Uagy, where v9 = pUo.
Let 0 = U;o; and t = |o;|. First, we claim that if we are given 71,...,7;-1, 01,...,0;—1, and and
~;—1 then we may decode from these the index a;. To do this, we simply search for the first satisfied
term in ¢ [y;—1. Next, observe that if we have knowledge of a;, then using S we may reconstruct o;.
Once we have v;_1, 0y, 7;, we may construct ; directly, by removing o; in ;—1 and replacing it with
T;- So it remains to show how to specify 7 using the extra information Ay, so that we may recover
7; from o;. Obverse that nodes(7) is contained in nodes(o) U ([N] U [M] \ nodes(p U o)). Therefore
if we construct a map 9§ : [K] — [K + L], where M — N = L and |6| < 2d which specifies, for each
u € nodes(o) the preimage/image of w in 7 (or the lack of preimage if u is marked empty), then
from o; we may reconstruct 7; by searching for the images/preimages of the nodes in [K|U[K + L]
corresponding to nodes(c;). Thus for every ¢ we can take A; = A to be the set of all hole restrictions
[K] — [K + L] of size at most d, so that |A| < (212) (KQ’;L)@d).. Finally it remains to show that
the sets S lie in I'; for some suitably small set I';. Observe that the set S C [¢] x [w] constructed
in this argument has the following form: [S N {i} x [w]| > 1 for all ¢ € ¢, and |S| < t. There are at
most (2w)? sets of this form (ranging over all possible values of £), thus we can take |I';| = (2w)?.

It remains to estimate the value

Pr [peB] <

M| |Te]|A
b T 3 Ml Ir

t>i

M
Z| K— d||FtHAt’

(N—K+t)

Observe that for each kK € M _; there are at least elements o € Mg such that a C k,

e

and on the other hand for any a € Mg there are at most (It() (!'elements k € Mg _ so that

o C k. Thus KL
|MK—t‘ < (t)(;r)t!
Ml = ()

35

So overall we have:
(K+L)t|
Pr pGB E N K+t ‘Ft||At|

p~Mi =
() (2K)t‘ (2w)t

[NlIsH

§| |Z(K+t)
K\ (K+L neEme
< (50) ("o <2d>!;((§v)(f;+)t)<2w>

2\t
V2d <\ N
Where we apply the assumptions K > L and K < N . We may safely assume N = 0(1), otherwise

the conclusion of the theorem holds trivially. Thus by geometric decay of terms in the above sum
we have, for some absolute C' € N, the bounds:

d
2K SwK?\ 2
P eBl<C 4d<)
ST lpeBl < (m) i

d
K?\?
< (2K)* (Egt?v)

provided K, d are sufficiently large with respect to C. So overall

d d
Pr [p € B] < exp(4dlog(2K) + = log(8wK?) — = log N)
p~Mge 2 2

< exp(d(log(16K*) + log(8wK) + log N/?)) = exp(d(log wK® —log NY/? + O(l)))

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

