
An Improved Protocol for ExactlyN with More
Than 3 Players
Lianna Hambardzumyan #

The Hebrew University of Jerusalem, Israel

Toniann Pitassi #

Columbia University, New York, NY, USA

Suhail Sherif #

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Morgan Shirley #

University of Toronto, Canada

Adi Shraibman #

The Academic College of Tel Aviv-Yaffo, Israel

Abstract
The ExactlyN problem in the number-on-forehead (NOF) communication setting asks k players,
each of whom can see every input but their own, if the k input numbers add up to N . Introduced
by Chandra, Furst and Lipton in 1983, ExactlyN is important for its role in understanding the
strength of randomness in communication complexity with many players. It is also tightly connected
to the field of combinatorics: its k-party NOF communication complexity is related to the size of
the largest corner-free subset in [N]k−1.

In 2021, Linial and Shraibman gave more efficient protocols for ExactlyN for 3 players. As
an immediate consequence, this also gave a new construction of larger corner-free subsets in [N]2.
Later that year Green gave a further refinement to their argument. These results represent the
first improvements to the highest-order term for k = 3 since the famous work of Behrend in 1946.
In this paper we give a corresponding improvement to the highest-order term for k > 3, the first
since Rankin in 1961. That is, we give a more efficient protocol for ExactlyN as well as larger
corner-free sets in higher dimensions.

Nearly all previous results in this line of research approached the problem from the combinatorics
perspective, implicitly resulting in non-constructive protocols for ExactlyN. Approaching the
problem from the communication complexity point of view and constructing explicit protocols
for ExactlyN was key to the improvements in the k = 3 setting. As a further contribution we
provide explicit protocols for ExactlyN for any number of players which serves as a base for our
improvement.

2012 ACM Subject Classification Theory of computation → Communication complexity; Mathe-
matics of computing → Combinatorics

Keywords and phrases Corner-free sets, number-on-forehead communication

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.58

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/138/

Funding Lianna Hambardzumyan: Research partially supported by ISF grant 921/22.
Toniann Pitassi: Supported by NSF AF:Medium 2212136.
Suhail Sherif : Funded by the European Union (ERC, HOFGA, 101041696). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them. Also supported by FCT through the LASIGE Research Unit, ref.
UIDB/00408/2020 and ref. UIDP/00408/2020.
Morgan Shirley: Supported by an NSERC grant.

Acknowledgements Most of the work was done while Suhail Sherif was at Vector Institute, Toronto,
Canada. We thank Zach Hunter for his helpful comments on an earlier version of the paper.

© Lianna Hambardzumyan, Toniann Pitassi, Suhail Sherif, Morgan Shirley, and Adi Shraibman;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 58; pp. 58:1–58:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lianna.hambardzumyan@mail.huji.ac.il
mailto:tonipitassi@gmail.com
mailto:suhail.sherif@gmail.com
mailto:shirley@cs.toronto.edu
mailto:adish@mta.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2024.58
https://eccc.weizmann.ac.il/report/2023/138/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 An Improved Protocol for ExactlyN with More Than 3 Players

1 Introduction

In this paper we continue a recent line of work that seeks to apply ideas from communication
complexity to the field of additive combinatorics. Specifically, we study the following problems:

(i) k-AP Problem: What is the maximum size of a subset of [N] that contains no
(nontrivial) k-term arithmetic progression (k-AP for short) – a sequence x, x + δ, x +
2δ, . . . , x + (k − 1)δ for some δ ̸= 0?

(ii) Corners Problem: What is the maximum size of a subset of [N]k that contains no
k-dimensional corner – a set of k + 1 points of the form:

(x1, x2, . . . , xk), (x1 + δ, x2, . . . , xk), (x1, x2 + δ, . . . , xk), . . . , (x1, x2, . . . , xk + δ)

for some δ ̸= 0?

Our paper is inspired by a growing body of equivalences that have been discovered between
problems in additive combinatorics and communication complexity. We build on recent work
that exploits these equivalences to gain new perspectives on the two main problems above.

(i) The k-AP Problem is equivalent to the deterministic number-in-hand (NIH) k-player
communication complexity of the following promise version of Equality: Each of the
k players is given an input xi ∈ [N] and they want to decide if their inputs are all equal
under the promise that they form a k-term arithmetic progression.

(ii) The Corners Problem is equivalent to the (k + 1)-player number-on-forehead (NOF)
communication complexity of ExactlyN: There are k + 1 inputs, x1, . . . , xk+1 ∈ [N],
where Player i sees all inputs except for xi, and they want to decide whether or not
the sum of their inputs is equal to N .

The main contribution of this paper is a new protocol for the ExactlyN problem that
is more efficient than previously-known protocols when there are more than three players.
This in turn gives a new method for constructing corner-free subsets of [N]k which improves
on previous constructions for k > 2.

1.1 Background
Computational complexity and additive/extremal combinatorics have enjoyed a rich inter-
action in the last fifty years. On one side, extremal combinatorics has been critical for
proving complexity lower bounds. For example, the Sunflower Lemma underlies Razborov’s
superpolynomial monotone circuit lower bound [27] as well as recent query-to-communication
lifting theorems [23], and Ramsey’s Theorem underlies many complexity lower bounds [25].
On the other side, tools from complexity theory have been used to resolve problems in
additive/extremal combinatorics. For example, the recent breakthrough on the Sunflower
conjecture [2] uses ideas behind the Switching Lemma, and the resolution of the Kakeya
conjecture [8] and the Cap-Set Conjecture [7, 10] use the polynomial method from circuit
complexity. Moreover, some of the main achievements in theoretical computer science –
advances in error correcting codes, the PCP theorem, and pseudorandomness/extractors –
have rich and deep connections with additive combinatorics [22].

In this paper we continue in this tradition by studying two fundamental problems that are
well-studied from both the lenses of additive combinatorics and communication complexity.
We give a brief discussion of their importance and motivations from these respective fields.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:3

Additive combinatorics. A basic question in number theory and additive combinatorics is
understanding the existence of additive structure in the natural numbers, and understanding
how much of this structure is algebraic or combinatorial in nature. A remarkable early
theorem from 1927 due to Van der Waerden states that for every r and k, there exists N

such that any r-coloring of the numbers in [N] contains a monochromatic k-term arithmetic
progression. Later it was famously shown that in fact any dense enough subset of the
natural numbers contains an arbitrarily large arithmetic progression. Subsequently, many
generalizations and quantative versions have received a lot of attention in Ramsey theory,
with Szemeredi’s Theorem and the Multidimensional Szemeredi’s Theorem proving that
the density of k-AP free sets and corner-free sets must be sub-constant. This has led to a
lot of interest both in improving the density upper bounds and in finding large k-AP and
corner-free sets. We refer the reader to the excellent books by Tao and Vu [30] and by
Zhao [32] for a comprehensive treatment.

Communication complexity. The additive combinatorics problems we study here, viewed
through the lens of communication complexity, are essentially questions about derandomiza-
tion. The k-AP problem, reformulated as a communication problem, is a restriction of the
Equality function, which in the NIH model is easy for randomized protocols but maximally
hard for deterministic protocols. The restricted version here asks how the deterministic
complexity changes under the assumption that the inputs have an additive structure.

ExactlyN (the Corners Problem) has also been studied for the purpose of showing a
separation between randomized and deterministic NOF communication complexity. Although
a strong non-constructive separation is known even for k = nϵ many players [3], it was only
recently that the first constructive separation was shown [17], and even then it has only been
proven for k = 3 players.

Even though a constructive separation is now known, ExactlyN continues to be of
central importance in this line of research. This is because ExactlyN is a “graph function”,
and the strong non-constructive separation mentioned above [3] is witnessed by most graph
functions. The separating function of [17] is surprisingly not a graph function, and their lower
bound technique is not known to apply to ExactlyN. New techniques developed for lower
bounding the complexity of ExactlyN would then be promising to provide lower bounds
when k > 3. This would be of much interest since NOF lower bounds when k > log n would
imply breakthrough ACC circuit lower bounds [5, 31]. On the other hand, it is entirely
possible that there are efficient protocols for ExactlyN that are waiting to be discovered.

1.2 Previous bounds
The current state-of-the-art reveals a significant difference in our understanding of the k-AP
problem and the Corners problem.

The k-AP Problem. A construction by Behrend from 1946 yields a 3-AP-free subset of
[N] of size at least N · 2−2

√
2
√

log N+o(
√

log N) [4].1 The recent breakthrough result of Kelley
and Meka [18] shows that the exponent is tight to within polynomial factors for k = 3.

Behrend’s result was extended to all k > 3 by Rankin [26] who obtained the following
subset size lower bound: N · 2−t2(t−1)/2·(log N)1/t+o((log N)1/t), for t = ⌈log k⌉. Note that this
matches Behrend’s result (it is the same construction) when k = 3. The best size upper bound
for k = 4 is N · 1/(log N)Ω(1) [14] and for k > 4 is N · 1/(log log N)η, where η = 2−2k+9 [11].

1 All logarithms in this paper are base 2.

ITCS 2024

58:4 An Improved Protocol for ExactlyN with More Than 3 Players

k-AP-free
set in [N]

k-AP-free
coloring of [N]

NIH Equality
with k-AP promise

Corner-free
set in [N]k−1

Corner-free
coloring of [N]k−1

NOF
ExactlyN

Figure 1 The figure shows how the additive combinatorics problems are related to each other
and to their communication complexity equivalents. For problems A and B, A → B denotes
c(B) = O(c(A)), where c(·) measures the problem’s complexity in our context.

The Corners Problem. Until fairly recently, the best corner-free set construction was via
a direct reduction to the k-AP Problem. Ajtai and Szemerédi first gave this reduction for
k = 3 [1]; their proof easily generalizes to k > 3. The reduction is very clean and yields the
same density lower bounds for the (k − 1)-dimensional Corners Problem as for the k-AP
Problem – if [N] has a k-AP-free subset of size N · δ, then [N]k−1 has a corner-free subset of
size Nk−1 · δ. In particular, the estimates of Behrend and Rankin can be directly applied to
the Corners Problem.

Unlike the k-AP problem, where for k = 3 relatively tight bounds are known, there is a
large gap between upper and lower bounds for the 2-dimensional Corners Problem. The best
known upper bound is N2 · 1/(log log N)c for some constant c by Shkredov [29]. For k ≥ 3
the best upper bound is just Nk · o(1) [12].

Recent works have improved the Ajtai-Szemerédi reduction, yielding better lower bounds
for the Corners Problem, by examining it through a communication complexity lens.

Communication complexity and improved bounds for the Corners Problem. In 1983,
Chandra, Furst, and Lipton defined the NOF model of communication and showed the
equivalence between the k-party NOF complexity of ExactlyN and the (k− 1)-dimensional
Corners Problem [6].

Specifically, the minimal cost of protocols for these problems is (up to a constant factor)
the logarithm of the optimal solution for the closely-related coloring version of the additive
combinatorics problems in question:

(i) k-AP Problem (Coloring Version): What is the minimum number of colors to
color [N] such that each color class is free of k-APs?

(ii) Corners Problem (Coloring Version): What is the minimum number of colors to
color [N]k such that each color class is free of k-dimensional corners?

By a standard probabilistic tiling argument the coloring and subset size formulations of
these problems are roughly equivalent. A k-AP-free subset with size N/δ implies a k-AP-free
coloring with δ · O(log N) colors, and a similar connection holds for the corners problem.
Therefore, a lower bound on the size of a k-AP-free subset (resp. corner-free subset) is the
same as an upper bound on the k-AP-free coloring number (resp. corner-free coloring number)
and consequently on the NIH complexity of Equality with a k-AP promise (resp. the NOF
complexity of ExactlyN).

Figure 1 summarizes the relationships between the problems in additive combinatorics
and their communication complexity reformulations.

The Chandra-Furst-Lipton equivalence, combined with the Ajtai-Szemerédi reduction
to the k-AP Problem, shows that the NOF communication complexity of ExactlyN for
k = 3 is at most 2

√
2
√

log N + o(
√

log N) by Behrend’s construction, and for k > 3 is at
most t2(t−1)/2(log N)1/t + o

(
(log N)1/t

)
for t = ⌈log k⌉ by Rankin’s construction.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:5

The protocols yielded by the above equivalence are non-explicit: we have an upper
bound on their complexity but the underlying algorithms are non-constructive. This lack of
explicitness comes from two places. First, the AP-free subsets of Behrend and Rankin are
chosen using a generalized pigeonhole argument. Second, converting the subset size lower
bounds into coloring upper bounds requires a probabilistic tiling argument. The problem
for us is that such non-explicit protocols are difficult to analyze and therefore difficult to
improve. Linial, Pitassi, and Shraibman remedied this situation by giving an explicit protocol
for ExactlyN when k = 3 [20].

Recently, Linial and Shraibman gave the first protocol that improves the highest-order
term for the ExactlyN problem for k = 3 since Behrend’s original proof from 1946,
yielding also an improved subset size lower bound for the 2-dimensional Corners Problem.
Specifically, the constant of 2

√
2 ≈ 2.828 is improved to 2

√
log e ≈ 2.402 [21]. This protocol

was found by closely examining the explicit protocol of Linial, Pitassi, and Shraibman.
Linial and Shraibman’s result was further improved by Green, who lowered the constant to
2
√

2 log(4/3) ≈ 1.822 [13].

1.3 Main result
In this paper, we begin by giving an explicit protocol for ExactlyN with cost that matches
the construction of Rankin. Then we identify an optimization of this protocol which we
exploit to give the first improvement in the highest-order term for every constant k:

▶ Theorem 1. The number-on-forehead communication complexity of ExactlyN with k

players is at most(
1− ck

t

)
t2(t−1)/2(log N)1/t + o((log N)1/t),

where t = ⌈log k⌉ and ck is a constant depending on k.

▶ Corollary 2. Let t = ⌈log k⌉. The improved protocol from Theorem 1 yields a corner-free
subset of [N]k−1 of size2

Nk−1 · 2−(1− ck
t)t2(t−1)/2(log N)1/t+o((log N)1/t).

This is the first improvement in the higher-order term since Rankin’s 1961 construction.
(Rankin’s construction gives the above bound but where ck = 0 for all k.) Similar to the
recent breakthrough due to Linial and Shraibman [21] and Green [13], our protocol achieves
a constant factor improvement, and for k = 3 and k = 4 we match Green’s bound (and
improve on Rankin’s bound).
▶ Remark 3. Because ck degrades as k increases, if k is not of form 2j + 1 for some j ∈ N the
best way to use the protocol from Theorem 1 is to reduce to the protocol for k′ = 2t−1 + 1
players. This can easily be done by a communication-free transformation: the first k′ players
solve ExactlyN′ where N ′ = N −

∑
k′<ℓ≤k xℓ.

▶ Remark 4. In this paper, we are focused on improving the highest-order term in the bounds.
However, we would like to highlight the work that has been done on improving the lower-order
term as well. Elkin improved the lower-order term in Behrend’s construction [9] (see also

2 To get a corner-free set of [N]k−1 we need to consider the ExactlyN problem where the inputs of k
player are from [(k − 1)N] and add up to (k − 1)N . This results in extra terms depending on k which
can be pushed to the lower order term.

ITCS 2024

58:6 An Improved Protocol for ExactlyN with More Than 3 Players

the note of Green and Wolf [15]) and Elkin’s ideas were translated to Rankin’s construction
by O’Bryant [24]. Hunter [16] used similar techniques to improve the lower-order term of
Green’s construction. We leave applying these ideas to our new construction as an open
problem (see Section 5).

Outline of paper. In Section 2, we give a history of the ExactlyN problem, including an
outline of previous results based on Behrend and Rankin, which we hope helps the reader
gain an intuition for the remainder of the paper. At the end of Section 2, we give an overview
of our improved upper bound. In Section 3 we give an explicit protocol for ExactlyN for
all k, building heavily on Rankin’s construction. In Section 4, we give our improved protocol,
proving Theorem 1. We conclude with some open problems in Section 5.

2 Overview of protocols for NOF ExactlyN

The history of the ExactlyN problem begins with the paper of Chandra, Furst, and Lipton
that defines the NOF communication model [6]. By establishing a connection to the Corners
Problem they obtained a non-constructive protocol for ExactlyN with cost O(

√
log N),

beating the cost of the trivial protocol. As mentioned in the introduction, an essential step
in this protocol is a reduction to a promise instance of the Equality function in the NIH
model. The reduction is summarized below.

NOF ExactlyN to k-AP-free coloring. First, the players each perform a reduction that
yields the values X1, . . . , Xk where Xi is known only to Player i. These values are promised
to be a k-AP and are equal if and only if the original instance of ExactlyN evaluates to 1.
Then Player 1 announces the color of X1 according to some agreed-upon k-AP-free coloring
of [kN]: this is a coloring where no monochromatic subset of [kN] has elements which form
a non-trivial k-AP. Each other player then sends a single bit for whether or not the color of
Xi agrees with the color that Player 1 sent. They all agree if and only if X1, . . . , Xk are all
equal, as the k-AP promise implies that the colors can not be the same unless X1, . . . , Xk

are a trivial k-AP.
As discussed in the introduction the ExactlyN problem and the Corners problem in

combinatorics are equivalent. Thus the Chandra-Furst-Lipton reduction can be seen as a
reduction from the Corners problem to the problem of finding k-AP-free colorings. This
latter reduction was already known before Chandra-Furst-Lipton connected these concepts
to communication complexity (see [1] for the case of k = 3).

k-AP-free coloring to k-AP-free set. The reduction step of the protocol described above
is conceptually simple. The technical part is finding a k-AP-free coloring of of [N] where the
number of colors is minimized.3 This number can be estimated by the density version of the
coloring problem: find the largest k-AP-free subset of [N].

By a standard argument these problems are equivalent: a k-AP-free subset with size N/δ

implies a k-AP-free coloring with δ ·O(log N) colors and therefore gives a protocol with cost
log δ + O(log log N). Every known subset construction requires δ to be superlogarithmic
in N , in which case the O(log log N) term is negligible. Indeed, for k = 3 we know that
superlogarithmic δ is necessary [18].

3 The range of integers is [N], instead of [kN] as in the protocol; if we assume that k is a constant this
will not affect much.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:7

In the rest of the paper we will switch freely between the coloring problems and their
subset-size versions.

2.1 ExactlyN with 3 players
By the Chandra-Furst-Lipton reduction outlined above, a construction of a 3-AP-free subset
of [N] will result in a protocol for 3-player ExactlyN. Here we summarize the construction
of a 3-AP-free subset due to Behrend [4]. All of the best known constructions of k-AP-free
sets are essentially modifications of Behrend’s basic framework.

Following prior work of Salem and Spencer [28], Behrend represents numbers in [N] as
vectors in [q]d, where q and d are parameters to be chosen later subject to qd ≥ N . These
vectors are the base-q representations of numbers in [N]:

baseq,d(x) := (x0, . . . , xd−1) ∈ [q]d such that x =
d−1∑
i=0

qixi.

The idea behind Behrend’s construction is that no three vectors in [q]d that form a
line can lie on the same sphere. Suppose we had the following property: if three numbers
x, y, z ∈ [N] form a 3-AP, then their corresponding vectors baseq,d(x), baseq,d(y), baseq,d(z)
are in a line. Then one could choose the preimage of any sphere in [q]d to be the 3-AP-free
set – no three distinct vectors in this sphere could be in a line, and so no three distinct
numbers in the preimage could form a non-trivial 3-AP.

Unfortunately, a 3-AP in [N] does not always correspond to a line in [q]d. This is because
of the possibility of carries: as a simple example, 9, 12, and 15 are a 3-AP but the vectors
(0, 9), (1, 2), (1, 5) ∈ [10]2 are not in a line. The strategy that Behrend takes is to avoid carries
by limiting the ℓ∞ norm of the vectors. Under this restriction there can never be any carries
and so the desired property holds!

We now outline the complete argument. For ℓ ∈ [dq2], define Aℓ as the set of x ∈ [N]
such that each coordinate of baseq,d(x) has value less than q/2 and ∥baseq,d(x)∥2

2 = ℓ. Then
Aℓ is 3-AP-free. Furthermore,

∑
ℓ |Aℓ| = (q/2)d, so, by pigeonhole principle, for some

value of ℓ we must have |Aℓ| ≥ (q/2)d

dq2 . To optimize this expression we set d =
√

2 log N

and q = N1/d. This gives us a 3-AP-free set of size at least N · 2−2
√

2
√

log N+o(
√

log N),
which via the Chandra-Furst-Lipton reduction results in an ExactlyN protocol of cost
2
√

2
√

log N + o(
√

log N).

Explicit and improved protocols. From Behrend’s construction, the Chandra-Furst-Lipton
reduction shows the existence of better-than-trivial protocols for ExactlyN. We would like
to give a more explicit protocol, as an analysis of the details of the protocol may lead to new
insights to construct better protocols (and corner-free sets). This motivaton led to the better
3-player ExactlyN protocols of Linial, Pitassi, and Shraibman [20], which was followed by
Linial and Shraibman [21] and Green [13].4

The first explicit protocol of [20] had the general idea to go through the Chandra-
Furst-Lipton reduction, yielding values X1, X2, X3; player 1 will communicate the (squared)
length of baseq,d(X1), and the other players should agree with this length if and only if
X1 = X2 = X3. Of course, this runs up against the same carry problem as in Behrend’s

4 Green’s improvement is not phrased as a communication protocol, but was developed after further
analyzing the Linial-Shraibman protocol.

ITCS 2024

58:8 An Improved Protocol for ExactlyN with More Than 3 Players

construction, and here we do not have the liberty of excluding some vectors, as we want
this protocol to work for every possible input. Linial, Pitassi, and Shraibman remedy this
by having the players explicitly communicate information about the carry. Importantly,
their protocol relies on the fact that each input can be seen by two players. The cost of the
Linial-Pitassi-Shraibman protocol matches the cost of the non-constructive protocol from
Chandra-Furst-Lipton.

Linial and Shraibman [21] observed that with the knowledge of two of the inputs, certain
carries in the base-q sum of the inputs are more likely than others. In particular, the entropy
of the carry (conditioned on the information shared by certain players) is less than d. Linial
and Shraibman give a small-cost protocol that only works for the inputs that have the most
likely carry. Then, they show how to translate the inputs on which their protocol does not
work to those that do. This process uses communication equal to the entropy of the carry.
The total cost of this ExactlyN protocol is 2

√
log e
√

log N + o(
√

log N). Subsequent work
of Green refined the argument of Linial and Shraibman and yields a protocol with cost
2
√

2 log 4
3
√

log N + o(
√

log N) [13].

2.2 ExactlyN with more than 3 players
Ideas from Behrend’s construction can be used to build a larger k-AP-free set for k > 3.
Rankin was the first to give such a construction [26]; see also the independent rediscovery of
this result by Łaba and Lacey for a different presentation of the proof [19].

The key to Rankin’s construction is that the line on which the three vectors fall in the
intuition to Behrend’s construction can be replaced with a higher-degree object as long
as the number of vectors is sufficiently high. This motivates the definition of polynomial
progressions.

▶ Definition 5. A tuple of integers (x1, . . . , xk) ∈ Zk is a k-term degree-m polynomial
progression (denoted k-PPm) if there is a degree-m polynomial p such that ∀i ∈ [k], xi = p(i).

▶ Definition 6. A tuple of vectors over the integers (v1, . . . , vk) ∈ (Zd)k is a k-term degree-m
vector polynomial progression (denoted k-vecPPm) if there are degree-m polynomials pj for
each dimension j ∈ [d] such that ∀i ∈ [k], vi = (p1(i), ..., pd(i)).

This definition can be rephrased to say that these are tuples of vectors where each dimension
is a k-PPm.

Note that a k-PP1 is just a k-AP and a k-vecPP1 is just a sequence of vectors equally spaced
on a line. Now we can update our intuition of Behrend’s construction to include higher-degree
progressions, and make an additional observation that will allow us to exploit this fact.

Behrend relies on the fact that no three distinct vectors on a line in Rd can all be on a
sphere. This is the special case of a more general fact: no 2m + 1 vectors that form a
k-vecPPm are all on a sphere.
If a sequence of vectors form a k-vecPPm, their squared lengths form a k-PP2m.

We begin by using the first observation to find a k-PPm-free set where m is a power
of two and satisfies 2m + 1 ≥ k. This is done similarly to Behrend’s construction: using a
pigeonhole argument, choose the preimage of a large set of vectors with the same length.

Now we can use this k-PPm-free set (call this set S) to find a larger k-PPm/2-free set.
For each s ∈ S, add all of the vectors of squared length s to our new set. The fact that
this is k-PPm/2-free follows from the second observation above: any k-PPm/2 here would
correspond to a k-PPm in S. We repeat this process, halving the degree at each step, until
we have a set with no k-PP1, i.e. a k-AP-free set.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:9

In this outline we have omitted many details. In particular, just as in Behrend’s con-
struction vectors must be excluded from consideration based on their ℓ∞ norm to avoid
carries. Indeed, this exclusion is much stronger than in Behrend’s construction: at the step
for degree m, the set of allowed vectors has density exponentially small in m. Fortunately
this deficiency is more than compensated for by the fact that vectors of many lengths, instead
of simply one length, are included in the sets after the first step.

If we set the parameters correctly at every step, Rankin’s construction gives a k-AP-
free set of size at least N · 2−t2(t−1)/2(log N)1/t+o((log N)1/t) where t = ⌈log k⌉. For k = 3
and k = 4, this matches Behrend’s construction, which is expected as the construction
is exactly the same. For k ≥ 5, though, there is an improvement in the exponent of the
log N term. Consequently, the cost of the protocol for ExactlyN from this construction is
t2(t−1)/2(log N)1/t + o((log N)1/t) for t = ⌈log k⌉.

2.3 Our results

Our first result gives an explicit protocol for ExactlyN with any number of players which
matches the cost of the non-explicit protocol implied by Rankin. Our second result is an
improved protocol for ExactlyN for more than 3 players that takes advantage of information
shared by the players to improve the reduction to the NIH promise Equality problem.

Sketch of explicit protocol. (For full details, see Section 3.) The idea of this protocol
is depicted in Figure 2. As in the previous protocols, the players first locally perform
the reduction to NIH Equality problem with the promise that the new values X1, . . . Xk

form a k-AP. Then each player computes the base-q representation vector of their inputs
and the problem reduces to checking vector-Equality (Equality over vectors) with the
promise that the input vectors form a k-vecPP1. Next, they compute the squared length
of these vectors and reduce to Equality with k-PP2 promise. Although this promise is
not as strong as the promise of being a k-AP, the reduction is helpful since their new
inputs are much smaller than their initial inputs. The players continue by converting their
new inputs into base-q representation vectors again, and then computing the lengths of
those vectors and so on. Thus, they keep reducing Equality with k-PPm promise to
vector-Equality with k-vecPPm promise and vector-Equality with k-vecPPm promise to
Equality with k-PP2m promise. When reducing the vector-Equality to Equality the
degree of polynomial progression in the promise doubles, but the input size decreases in each
reduction. When reducing Equality to vector-Equality the degree as well as the input
size stays the same, and the input is now a vector polynomial progression which allows us to
continue with the reductions.

This process can repeat at most ⌈log k⌉ times, as when the degree m ≥ k− 1, the promise
k-PPm is trivially satisfied. At this point, the players are left to solve the Equality problem
on their current inputs. So one of the players communicates the final length, and all the
other players verify whether they have the same length.

To avoid carries during the process, every time the players reduce Equality to vector-
Equality, they need to make sure that all the obtained vectors are small. If they are not
small, one of the players computes and announces a translation which will make her vector
small, referred to in this paper as the shift. If other players need different shifts, then the
vectors are not equal, and we can terminate. Otherwise, all the players shift their vectors by
the same amount before computing the lengths of the vectors again.

ITCS 2024

58:10 An Improved Protocol for ExactlyN with More Than 3 Players

Sketch of improved protocol. (For full details see Section 4.) Recall that the goal of
the players is to figure out whether

∑
i∈[k] xi = N . The protocols that arise from previous

constructions of corner-free sets involve computing the values baseq,d(xi), the base-q repre-
sentations of the players’ inputs, thus creating a vector variant of the task in d-dimensional
space. Unfortunately, just as in the explicit protocol above, there is the possibility of carries.
Therefore, it is not necessarily the case that

∑
i∈[k] baseq,d(xi) is equal to baseq,d

(∑
i∈[k] xi

)
.

Previous protocols [20, 21] have leveraged the NOF setting to have the players reason
about the exact form of the carries. Specifically, these protocols have the players communicate
information about the carry string: the length-d string representing the carries performed in
the summation. We take the same approach.

Let us rephrase the objective as figuring out whether
∑

i∈[k−1] xi = N − xk. Player k

can then look at the base-q representations of the xis that they see and compute the carries
required in the summation on the left-hand side of the expression. They can then convey
the carry string to the other players. By adjusting the inputs accordingly, the players can
end up with vectors v1 to vk−1 that actually do add up to the base-q representation of the
left-hand side of the expression as desired. With this strategy each entry of the carry string
takes a value between 0 and k − 2, so d log(k − 1) bits of communication are required.

We can use the information shared by the players to lower the cost of this even further:
we have not yet exploited the fact that each of the first k − 1 players know k − 2 of the
inputs in the sum. Indeed, in the view of any of the first k − 1 players there are only two
values that each coordinate of the carry string can take, and these values are consecutive.
Therefore, if the kth player simply communicates the parity of each coordinate of the carry
string, each other player will have enough information to reconstruct the full carry string.
This improves the communication to d bits.

Note that using d bits to communicate the carry matches the cost of just directly reducing
it to an NIH problem and then switching to base-q representations in the NIH model as in
the explicit protocol above (see Figure 2); we need one final trick to find an advantage. Let
us first consider the case where k is even (so we are adding an odd number of vectors). In
this situation it is more likely for the parities of entries in the carry string to take value 0,
where probability is over the uniform distribution on the inputs. The idea is to use a protocol
that assumes that the input is “nice”: one where the parity-of-carry string takes the most
likely value of 0 in every coordinate. If the input is indeed nice, the players simply proceed
as if the kth player had communicated the all-0 string. Otherwise, we use communication to
shift the inputs so that they fulfill the assumption.

The cost of this protocol is d(1− Ω(1)) bits. The reason this is more efficient is that a
larger-than-2−d fraction of inputs are nice, and hence (using a set-covering argument) fewer
than 2d possible shifts are required.

When k is odd (so we are adding an even number of vectors), the fraction of nice inputs
is 2−d. So the protocol as described above is more efficient only when k is even. This can
be rectified by considering the centered base-q representations, where instead of using the
digits 0, . . . , q − 1 we use the digits ⌈−(q − 1)/2⌉, . . . , ⌊q/2⌋. This representation results in a
larger-than-2−d fraction of nice inputs both when k is even and when k is odd.

3 Explicit NIH protocol for Rankin

In this section we give an explicit protocol for the number-in-hand Equality problem with
the promise that the inputs form a k-AP that matches the cost of the non-explicit protocol
guaranteed by Rankin’s construction. As mentioned in the previous section, the general

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:11

strategy of our protocol is to convert the k-AP to a higher-degree polynomial progression by
converting the integers into vectors, finding the squared length of those vectors (which leaves
the parties again with integers), and repeating the process. Converting integers to vectors
requires some care, and sidestepping potential problems in this step is the main technical
contribution of this section.

Recall the definitions of k-PPm and k-vecPPm (Definitions 5 and 6). We define related
communication tasks below. We define the following communication tasks, which are versions
of the Equality problem with the promise that the inputs form either a k-PPm or k-vecPPm.

▶ Definition 7. The communication task (k, [N])-PPcc
m is defined as follows.

The input (x1, . . . , xk) ∈ [N]k is promised to be a k-PPm.
The output is 1 if x1 = · · · = xk (referred to as a trivial k-PPm) and 0 otherwise.

▶ Definition 8. The communication task (k, [q]d)-vecPPcc
m is defined as follows.

The input (v1, . . . , vk) ∈ ([q]d)k is promised to be a k-vecPPm.
The output is 1 if v1 = · · · = vk (referred to as a trivial k-vecPPm) and 0 otherwise.

We make the following observations about these tasks.

▶ Observation 9. (k, [q]d)-vecPPcc
m is equivalent to ANDd◦(k, [q])-PPcc

m. That is, (v1, . . . , vk)
is a valid input for (k, [q]d)-vecPPcc

m if and only if for each i ∈ [d], (v1,i, . . . , vk,i) is a valid
input to (k, [q])-PPcc

m. Furthermore, the output on (v1, . . . , vk) is 1 if and only if the output
of (k, [q])-PPcc

m on each (v1,i, . . . , vk,i) is 1.

▶ Observation 10. When the degree m is large enough, the promise in these tasks becomes
trivially fulfilled. When m ≥ k − 1, any (x1, . . . , xk) ∈ [N]k is a valid input to (k, [N])-PPcc

m.
This is because you can find a degree k − 1 polynomial p such that p(i) = xi for all i ∈ [k].
Hence for m ≥ k − 1, (k, [N])-PPcc

m is equivalent to the Equality function. Similarly for
m ≥ k − 1, (k, [q]d)-vecPPcc

m is also equivalent to the Equality function.

In this section we show explicit protocols exhibiting the following upper bound for the
communication tasks.

▶ Theorem 11. Let m ≤ k−1 and t = ⌈log(k/m)⌉. Then the number-in-hand communication
complexity of computing (k, [N])-PPcc

m is at most

t2(t−1)/2 t
√

mt−1 log N + O(tk2 log log N).

For m ≤ (k − 1)/2, the number-in-hand communication complexity of (k, [q]d)-vecPPcc
m is at

most

(t− 1)2(t−2)/2 t−1
√

(2m)t−2 log(q2d) + O(tk2 log log(q2d)).

As a special case (setting m = 1) this yields the desired protocol for NIH Equality with
k-AP promise. See Figure 2 for an illustration. The figure also shows where our improvement
for NOF ExactlyN comes into play; this is described in detail in Section 4.

The proof of Theorem 11 is given in Section 3.3. It uses as subroutines two protocols
that we present and analyze below.

Protocol 1 gives us a way to reduce the vector polynomial progression task (k, [q]d)-vecPPcc
m

to the integer polynomial progression task (k, [q2d])-PPcc
2m as long as k > 2m. Note that

we have made the problem harder by moving from degree m to degree 2m but we have
also decreased the input size from d log q bits per input to 2 log q + log d bits per input.
Protocol 2 gives us a way to reduce the integer polynomial progression task (k, [N])-PPcc

m

to the vector polynomial progression task (k, [q]d)-vecPPcc
m. This protocol uses md bits

of communication and requires that q is a multiple of 2m, qd ≥ N and k ≥ m + 2.

ITCS 2024

58:12 An Improved Protocol for ExactlyN with More Than 3 Players

k-party NOF ExactlyN k-party NOF ExactlyN⃗

(= ANDd1 ◦ExactlyN)

NIH k-PPcc
1 NIH k-vecPPcc

1

(= ANDd1 ◦ k-PPcc
1)

NIH k-PPcc
2 NIH k-vecPPcc

2

NIH k-PPcc
4 NIH k-vecPPcc

4

NIH k-PPcc
8

··
·

NIH k-vecPPcc
2⌊log(k−1)⌋−1

NIH k-PPcc
2⌊log(k−1)⌋

(Solve as Equality)

Protocol 2
Cost d1

Protocol 1

Protocol 2
Cost 2d2

Protocol 2
Cost 4d3

Protocol 1

Protocol 1

Protocol 1

Protocol 3
Cost d1(1 − Ωk(1))

Figure 2 The list of reductions used in protocols for k-party NOF ExactlyN. Reductions that
do not mention a cost are 0-cost reductions.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:13

Algorithm 1 A reduction from (k, [q]d)-vecPPcc
m to (k, [q2d])-PPcc

2m.

Input: v1, v2, . . . , vk ∈ [q]d distributed among k players in the NIH model
Promise: v1, v2, . . . , vk form a k-vecPPm with k > 2m

Output: x1, x2, . . . , xk ∈ [q2d]k distributed among the k players in the NIH model such
that x1, x2, . . . , xk form a k-PP2m, trivial if and only if (v1, . . . , vk) is trivial

1: For each i ∈ [k], Player i computes xi := ∥vi∥2.

Algorithm 2 A reduction from (k, [N])-PPcc
m to (k, [q]d)-vecPPcc

m.

Input: x1, x2, . . . , xk ∈ [N] distributed among k players in the NIH model
(Assume 2m|q, qd ≥ N)

Promise: x1, x2, . . . , xk form a k-PPm with k ≥ m + 2
Output: v1, v2, . . . , vk ∈ ([q]d)k distributed among the k players in the NIH model such

that either
(a) v1, v2, . . . , vk form a k-vecPPm, trivial if and only if (x1, . . . , xk) is trivial, or
(b) x1, x2, . . . , xk was a non-trivial k-PPm and at least one of the players knows
this.

1: For each i ∈ [k], Player i computes wi ← baseq,d(xi).
2: c← q/2m

3: For each i ∈ [k], Player i computes two vectors:
si = (⌊wi,1/c⌋, . . . , ⌊wi,d/c⌋) and
vi = (wi,1 (mod c), . . . , wi,d (mod c)).

4: Player 1 broadcasts s1.
5: For each i ∈ [k], Player i checks if si = s1. If they are not equal, player i notes that the

input was a non-trivial k-PPm.

3.1 Analysis of Protocol 1

The input (v1, . . . , vk) is promised to be a k-vecPPm. Let p1, . . . , pd be the degree-m
polynomials associated with them, in the sense that vi = (p1(i), . . . , pd(i)). Define the degree-
2m polynomial p′ :=

∑
j∈[d] p2

j . Note that the xi computed in the protocol is merely p′(i).
Hence (x1, . . . , xk) is a k-PP2m. If the original k-vecPPm was trivial, then the computed
k-PP2m is also trivial. On the other hand if any pj is non-constant, then p′ is also non-
constant (any monomial of maximal degree among the pjs will get squared and hence not get
cancelled in p′). Assuming k > 2m, the non-constant polynomial p′ cannot take the same
value on k different points and so the k-PP2m is non-trivial.

The cost of this protocol is 0 since there is no communication during the protocol.

3.2 Analysis of Protocol 2

We start with a useful statement about polynomials. Define the function L as follows:

L(a0, . . . , am+1) =
m+1∑
i=0

(−1)i

(
m + 1

i

)
ai.

▷ Claim 12 (folklore). Let k ≥ m + 2. The sequence (x1, . . . , xk) forms a k-PPm if and
only if

L(x1, . . . , xm+2) = · · · = L(xk−m−1, . . . , xk) = 0.

ITCS 2024

58:14 An Improved Protocol for ExactlyN with More Than 3 Players

A proof of this claim may be found in the full version. From Observation 9 it immediately
follows that vectors (v1, . . . , vk) form a k-vecPPm if and only if L(v1, . . . , vm+2) = · · · =
L(vk−m−1, . . . , vk) = 0⃗.

Now we can analyze the correctness of Protocol 2. Recall that parameters q and d are
set such that qd ≥ N and q is a multiple of 2m. Let S be the set of numbers in [N] whose
base-q representations only have entries less than q/2m.

▷ Claim 13. Let (x1, . . . , xk) be a k-PPm with each xi ∈ S. Then their base-q representations
(v1, . . . , vk) form a k-vecPPm, trivial if and only if the k-PPm was trivial.

Proof. Define the vector w as w := L(v1, . . . , vm+2). The sum of the positive coefficients
in the map L is

∑
i∈[m+1], i even

(
m+1

i

)
= 2m, so each entry in w is less than q/2m · 2m = q.

Similarly we can see that each entry is larger than −q. Rearranging the summations in the
definition of w, we obtain∑

j∈[d]

wjqj−1 =
∑
j∈[d]

L(v1,j , . . . , vm+2,j)qj−1

= L

 ∑
j∈[d]

v1,jqj−1, . . . ,
∑
j∈[d]

vm+2,jqj−1


= L(x1, . . . , xm+2) = 0.

The first non-zero entry of w, say wi, must be a multiple of q, otherwise
∑

wjqj−1 mod qi ̸= 0.
Since each entry of w is larger than −q and smaller than q, w must be equal to 0⃗. The
same argument works to show that L(v2, . . . , vm+3) = · · · = L(vk−m−1, . . . , vk) = 0⃗. So we
can conclude that (v1, . . . , vk) form a k-vecPPm. Since the operation of taking the base-n
representation is a bijection, x1 = · · · = xk if and only if v1 = · · · = vk. ◁

Clearly if in line 5 a player notes that si ̸= s1, that player’s input is different from the
input of Player 1, and so the k-PPm held by the players must have been non-trivial. We
now prove that if no player has si ̸= s1, then the vectors they compute at the end form a
k-vecPPm. Note that the vi computed in line 3 can equivalently be written as vi := wi − csi.
Since we are now analyzing the case when the locally-computed sis are all equal, the vector vi

can be written as vi = wi−cs1. Since it lies in {0, 1, . . . , c−1}d, it is the base-q representation
of an integer T (vi) :=

∑
j vi,jqj−1.

Since T : (a1, . . . , ad) 7→
∑

j ajqj−1 is a linear transform, T (vi) = T (wi) − T (cs1). We
know T (wi) = xi, so T (vi) = xi − T (cs1). Hence T (v1), . . . , T (vk) are just x1, . . . , xk shifted
by the integer T (cs1). Hence T (v1), . . . , T (vk) also form a k-PPm. Since every entry of
their base-q representation is at most c− 1 < q/2m, we can use Claim 13 to conclude that
v1, . . . , vm are a k-vecPPm, trivial if and only if the xis were. This proves the correctness of
the protocol.

The cost of this protocol is md since the only communication that occurs is in Line 4
where Player 1 broadcasts an element of {0, . . . , 2m − 1}d.

3.3 Combining Protocols 1 and 2
Our protocol for (k, [N])-PPcc

m uses Protocols 1 and 2 to repeatedly reduce the problem until
it becomes an instance of the form (k, [N ′])-PPcc

m′ with m′ ≥ k/2. At this point they can no
longer reduce the input size through these reductions, and so they solve this problem as an
Equality problem: Player 1 reveals their input and all the other players communicate 0 if

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:15

their input differs or if at any point in the reductions via Protocol 2 they noted that the
input was a non-trivial k-PP (see line 5). They communicate 1 otherwise. The output of the
protocol is 1 if all the players communicate 1. The correctness of this protocol is easy to
verify. The cost of the protocol depends on the parameters chosen during the reductions,
and we analyze this in the proof.

Proof of Theorem 11. We prove the claim by induction on t = ⌈log(k/m)⌉.
The base case is when t = 1, corresponding to k/2 ≤ m ≤ k − 1. Since (k, [N])-PPcc

m is a
promise version of Equality on log N bits it can be solved by player 1 broadcasting their
input and the other players using 1 bit each to convey whether their inputs match that of
player 1. This protocol requires log N + k bits and works for all m.

For the inductive step, let ⌈log(k/m)⌉ = i + 1. Since i + 1 is at least 2, we have k > 2m.
This means we can use Protocol 2 to reduce it to (k, [q]d)-vecPPcc

m and then Protocol 1
to reduce that to (k, [q2d])-PPcc

2m. Since ⌈log(k/2m)⌉ = i, by our induction hypothesis we
already have an upper bound on the communication complexity of (k, [q2d])-PPcc

2m.
Going via this reduction we get a protocol of cost

md + i2(i−1)/2 i
√

(2m)i−1 log q2d + O(ik2 log log q2d),

assuming qd ≥ N and q is a multiple of 2m (this condition is required for us to run Protocol 2
with cost md). We can easily find the minimum of a closely related quantity that captures
the essence of the minimization task.

▷ Claim 14. The following equality holds:

min
q′,d′∈R+,q′d′ =N

md′ + i2(i−1)/2 i
√

(2m)i−1 log q′2 = (i + 1)2i/2 i+1
√

mi log N.

The minimum is achieved when md′ = 2(i−1)/2 i
√

(2m)i−12 log q′ = 2i/2 i+1
√

mi log N .

Proof. Since d′(i
√

log q′)i = log N , we have

(md′)
(

2(i−1)/2 i
√

(2m)i−12 log q′
)i

= 2i(i+1)/2mi log N.

This is the product of i + 1 terms: one term is md′ and the other i terms are equal to
2(i−1)/2 i

√
(2m)i−12 log q′. The quantity we want to minimize is exactly the sum of these

terms. This sum is minimized when each of the terms are the same, and hence equal to the
i + 1th root of the product. ◁

In our actual minimization problem we want to ensure that q is a multiple of 2m and d is
a natural number, and we also are minimizing a larger quantity. In the rest of the proof we
show that accounting for these only adds to the lower order term. Let q′, d′ be the optimal
values in Claim 14. We can always find a q ∈ [q′, q′ + 2m) and d ∈ [d′, d′ + 1) that satisfy our
conditions. Plugging these in to our original minimization task, we get an upper bound of

m(d′ + 1) + i2(i−1)/2 i
√

(2m)i−1 log((q′ + 2m)2(d′ + 1)) + O(ik2 log log q2(d′ + 1)).

Using i
√

a + b ≤ i
√

a + i
√

b and log(a + b) ≤ log a + log b for a, b ≥ 2, this is in turn upper
bounded by

md′ + i2(i−1)/2 i
√

(2m)i−1 log q′2

+ m + i2(i−1)/2 i
√

(2m)i−1(i
√

2 log 2m + i
√

log d) + O(ik2 log log q2d).

We know the first two terms add up to (i + 1)2i/2 i+1
√

mi log N . We analyze the other
terms using the fact that 2i+1 ≤ k/m.

ITCS 2024

58:16 An Improved Protocol for ExactlyN with More Than 3 Players

i2(i−1)/2 i
√

(2m)i−1 log d: Since we choose a value of d that is at most k i+1
√

log N + 1, this
term is at most log log N + 1 when i = 1 and o(k2 log log N) otherwise.
i2(i−1)/2 i

√
(2m)i−12 log 2m: This is just i2(i−1)/22m, which is at most k.

ik2 log log q2d: This is at most ik2 log log N since q2d≪ q′d′ = N .
m is at most k.

Hence our final bound is

(i + 1)2i/2 i+1
√

mi log N + O((i + 1)k2 log log N). ◀

4 Improved NOF protocol for ExactlyN

In this section we will show how to use information shared by the players to improve the
reduction to the NIH promise Equality problem.

Recall that the goal of the players is to figure out whether
∑

i∈[k−1] xi = N − xk. We
will use the high-level ideas described in Section 2.3. We now formally define the centered
base-q representation and carry-related notions, and then present the protocol.

4.1 Centered base-q representations, carry strings and carry vectors
For simplicity, assume q is odd. For an integer x ∈ {−(qd − 1)/2, . . . , (qd − 1)/2}, the
centered base-q representation of x is a vector base±

q,d(x) defined as the unique v ∈ {−(q −
1)/2, . . . , (q − 1)/2}d such that x =

∑
j∈[d] vjqj−1.

When adding together numbers x1 through xt which have centered base-q representations
v1 through vt, we can get the centered base-q representation of the sum by adding v1 through
vt but then modifying the result to take care of the carries. This is captured by the following
process. (We require here that t < q, and this will be the case whenever we use this.)

Let w =
∑

i∈[t] vi.
Define a carry string s ∈ Zd as follows

s1 is the unique integer such that w1 ∈ {s1q − (q − 1)/2, . . . , s1q + (q − 1)/2}.
For j ∈ {2, . . . , d}, sj is the unique integer such that wj + sj−1 ∈ {sjq − (q −
1)/2, . . . , sjq + (q − 1)/2}.

Define a carry vector vs ∈ Zd+1 as
∑

j∈[d] sj(ej+1 − qej).

Then w + vs = base±
q,d+1

(∑
i∈[t] xi

)
. (Here w is viewed as a (d + 1)-dimensional vector

with wd+1 = 0.)

The following claim will be useful for communicating the carry to players in the NOF
model.

▷ Claim 15. Let v1, . . . , vt ∈ {−(q − 1)/2, . . . , (q − 1)/2}d and s be the carry string of∑
i∈[t] vi. Given only {sj (mod 2)}j∈[d] and v2, . . . , vt, one can reconstruct s entirely.

Proof. We prove this by induction. The base case is that we can reconstruct s1, and the
inductive step shows that given sj−1 and the information provided to us we can reconstruct
sj . Let vx =

∑
i∈{2,...,t} vi. We can compute vx with the information provided. Although we

do not know v1, we know that each entry of v1 lies in {−(q − 1)/2, . . . , (q − 1)/2}.
For the base case, let α be the unique integer such that vx,1 ∈ {αq − (q − 1)/2, . . . , αq +

(q − 1)/2}. If vx,1 = αq, then with the addition of v1,1 it will still remain in this interval
and so s1 = α. If vx,1 < αq, then with the addition of v1,1 it will either remain in the same
interval or move to the interval corresponding to α − 1. So s1 ∈ {α − 1, α}. Similarly if
vx,1 > αq, we know s1 ∈ {α, α + 1}. In any of these cases finding out s1 (mod 2) will specify
s1 exactly.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:17

The inductive step is similar. Assume we know sj−1. By definition sj is defined by which
interval vx,j + v1,j + sj−1 lies in. We know the value of vx,j + sj−1 and so again sj depends
on where the addition of v1,j can move it. With the same reasoning as before, finding out
sj (mod 2) will specify sj exactly. ◁

4.2 A reduction to a vector variant
Protocol 3 is a reduction from ExactlyN to a vector variant that we term ExactlyN⃗ . In
this protocol, players have as inputs (in the NOF model) x1, . . . , xk. Player k then broadcasts
a shift so that all the players can compute new inputs a1 to ak (still in the NOF model)
such that

∑
i∈[k] xi = N ⇐⇒

∑
i∈[k−1] ai = ak. These new inputs are also designed to have

the property that if you take the base-q representations of these inputs (called w1, . . . , wk

in the protocol), and you look at the carry string obtained by adding w1 through wk−1,
all of its entries are even. From Claim 15, this will allow all of the players to know the
exact carry string ws and for them to shift the vector wk by it in order to ensure that∑

i∈[k] xi = N ⇐⇒
∑

i∈[k−1] wi = wk − ws.
This vector variant of ExactlyN is then used to create a protocol for ExactlyN in

Section 4.3.

Algorithm 3 A reduction from NOF ExactlyN to NOF ExactlyN⃗ .

Input: x1, x2, . . . , xk ∈ [N] are distributed among the k players in the NOF model
qd ≥ N

Output: v1, v2, . . . , vk ∈ {−kq, . . . , kq}d+1 are distributed among the k players in the
NOF model, with

∑
i∈[k] vi = 0⃗ if and only if

∑
i∈[k] xi = N .

1: Player k broadcasts a δ ∈ Zk−1 such that
(a) for each i ∈ [k − 1], xi + δi ∈ {−(qd − 1)/2, . . . , (qd − 1)/2}, and
(b) the assertion in Line 5 holds.

2: For i ∈ [k − 1], ai ← xi + δi, ak ← N − xk +
∑

i∈[k−1] δi.
3: For i ∈ [k − 1], let wi ← base±

q,d(ai) and let wk ← base±
q,d+1(ak).

4: Player k computes s ∈ {−kq, . . . , kq}d, the carry string of
∑

i∈[k−1] wi.
5: Assert: For each j ∈ [d], sj (mod 2) = 0.
6: For each i ∈ [k], Player i computes s and the carry vector ws.
7: For each i ∈ [k − 1], vi := wi and vk := −wk + ws.

4.2.1 Correctness of the reduction
Let us first note that Line 1 is always achievable. That is, that there is always a δ that player
k can compute such that the assertion in Line 5 holds. One such δ is (−x1, . . . ,−xk−1),
which player k can compute. With this δ, each ai is 0 for i ∈ [k − 1]. The corresponding
wis would also be 0 vectors and the carry string of

∑
i∈[k−1] wi would also be a string of 0s.

This carry string satisfies the assertion that for each j ∈ [d], sj (mod 2) = 0.
Now we prove the correctness of the protocol assuming only that the assertion in Line 5

holds.
We start by showing that (v1, . . . , vk) are indeed known to the players in the NOF model.
The vector wi depends only on xi and δi, which are known to all players except player i.
Since the assertion in Line 5 holds, every player knows that each entry of s is even. Along
with the fact that every player misses at most one of the summands in

∑
i∈[k−1] wi, from

Claim 15 we see that every player does in fact know the string s. The carry vector ws is
a function of s, and hence they know ws as well. The vector vi depends only on wi and
ws, so all the players other than player i can compute vi.

ITCS 2024

58:18 An Improved Protocol for ExactlyN with More Than 3 Players

We finish by showing that
∑

i∈[k] vi = 0⃗ if and only if
∑

i∈[k] xi = N .∑
i∈[k]

xi = N ⇐⇒
∑

i∈[k−1]

ai = ak (definition of ai’s)

⇐⇒
∑

i∈[k−1]

wi + ws = wk (definition of wi’s and the carry vector)

⇐⇒
∑
i∈[k]

vi = 0⃗. (definition of vi’s)

It is easy to see that for each i ∈ [k − 1] vi ∈ {−(q − 1)/2, . . . , (q − 1)/2}d, (which we will be
viewing as a d + 1-dimensional vector with vi,d+1 = 0). Since vk has a carry vector added to
it, with the carries being as large as (k − 1)q, vk ∈ {−kq, . . . , kq}d+1.

4.2.2 Cost of the reduction
The communication in the protocol is entirely in Line 1. The cost of this line depends on the
size of the smallest set ∆ ⊂ Zk−1 such that for any x1, . . . , xk−1 ∈ [N] there exists δ ∈ ∆
which satisfies the requirements in Line 1. The communication cost is then merely ⌈log |∆|⌉
since Player k only needs to send the index of an element of ∆.

The size of ∆ is related to the size of the set

S := {(a1, . . . , ak−1) ∈ {−(qd − 1)/2, . . . , (qd − 1)/2}k−1 |

the carry string of
∑

i∈[k−1]

base±
q,d(ai) has only even entries}.

∆ is the smallest set of shifts of S that covers [N]k−1. We can show the following bounds
on |∆|.

Nk−1/|S| ≤ |∆| ≤ ((2qd)k−1/|S|) · k log N.

The lower bound on |∆| is straightforward. For the upper bound we use the probabilistic
method. Choose shifts δ(1), . . . , δ(t) uniformly at random from {−N − (qd − 1)/2, . . . , (qd −
1)/2}k−1. For any x = (x1, . . . , xk−1), there are exactly |S| different shifts that would land
x in S. Hence the probability that a uniformly random shift is good for x is |S|/(qd +
N)k−1 ≥ |S|/(2qd)k−1. The probability that none of the t shifts are good for x is at
most (1 − |S|/(2qd)k−1)t. Setting t = ((2qd)k−1/|S|) · k log N , this probability is at most
e−k log N ≤ 1/Nk. Hence by a union bound over all Nk−1 possible values of x, there is a
positive probability that (and hence there exists a set of t shifts such that) each x has a shift
that is good for it.

The cost of the protocol is hence at most k − 1 + log(qd(k−1)/|S|) + log k + log log N + 1.
So how large is S? Note that the integers from −(qd − 1)/2 to (qd − 1)/2 have centered

base-q representations ranging over all vectors in {−(q − 1)/2, . . . , (q − 1)/2}d. Hence

|S|
qd(k−1) = Pr

x1,...,xk−1∈
{

− qd−1
2 ,...,

qd−1
2

} [(x1, . . . , xk−1) ∈ S]

= Pr
v1,...,vk−1∈

{
− q−1

2 ,...,
q−1

2

}d

carry string of
∑

i∈[k−1]

vi has only even entries

 .

We now use the following claim. The proof may be found in the full version.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:19

▷ Claim 16. Let r1, . . . , rk−1 be real numbers uniformly sampled from [−1/2, 1/2).

Pr
r1,...,rk−1

 ∑
i∈[k−1]

ri (mod 2) ∈ [−1/2, 1/2)

 = 1
2 + Ek−1

2(k − 1)! ,

where En is the nth Euler zigzag number.5

Observe that the above quantity represents the limiting behaviour, as q →∞, of a specific
entry of the carry string being even. The rest of the proof will show that the probability that
a specific entry (say, the ith entry) of the carry string is even is within an additive 3k/2q of
the probability in Claim 16, regardless of what we fix the entries of v1 to vk−1 to be outside
of their ith entries.

The probability that s1 is even is the probability that k− 1 random numbers a1, . . . , ak−1
chosen from {−(q − 1)/2, . . . , (q − 1)/2} add up to give an even carry. Note that the
carry is even if and only if the sum modulo 2q lies in {−(q − 1)/2, . . . , (q − 1)/2}. We
approximate this by a probability arising from the following real-valued experiment. Take
k − 1 real numbers r1, . . . , rk−1 from the interval [−1/2, 1/2). Find the probability that
their sum modulo 2 lies in [−1/2, 1/2). The two processes are related as follows.
Let the set B = {−(q − 1)/2, . . . , (3q − 1)/2} represent the set of integers modulo 2q.
Divide [−1/2, 3/2) into 2q intervals of size 1/2q each. Let i1, . . . , ik−1 be the index of
the intervals that r1, . . . , rk−1 lie in. Each i is a uniformly random number from 1 to
q, and so aj is distributed as the ijth element of B. Let is be the interval that the
sum

∑
j rj (mod 2) lies in. Then

∑
j aj modulo 2q lies within the is through is+k−2th

elements of B.
So either we have

∑
j rj (mod 1) ∈ [1/2 − k/2q, 1/2), or else it must be the case that∑

j rj (mod 2) ∈ [−1/2, 1/2) ⇐⇒
∑

j aj (mod 2q) ∈ {−(q − 1)/2, . . . , (q − 1)/2}.
Hence the difference in probabilities of the experiments is at most Pr[

∑
j rj (mod 1) ∈

[1/2−k/2q, 1/2)]. This is k/2q, since the addition of a uniformly random number between
[0, 1] to any random variable makes its distribution modulo 1 the uniform distribution.
For other coordinates of the carry string another complication arises. Since the sum in a
coordinate is the sum of k−1 random numbers plus the carry from the previous coordinate,
that adds another change in the experiment. However, the carry from the previous
coordinate is always within {−k + 1, . . . , k− 1} so it adds an uncertainty of ±k/2q to the
sum in the real-valued experiment. Hence we can use the same real-valued experiment,
except this time we bound the difference in probabilities as Pr[

∑
j rj (mod 1) ∈ [1/2−

k/q, 1/2 + k/2q)] = 3k/2q.

Hence the probability that all entries of the carry string are even is at least (1/2 +
Ek−1/2(k − 1)!− 3k/2q)d. The cost of the protocol is at most

d log
(

1
1/2 + Ek−1/2(k − 1)!− 3k/2q

)
+ k + log k + log log N.

Since k/q ≪ 1 and d
dt log

(
1

1/2+t

)
= − 2

ln 2 > −3 at t = 0, this quantity is at most

d log
(

1
1/2 + Ek−1/2(k − 1)!

)
+ d · 9k

2q
+ O(k + log log N),

with 9dk/2q being o(1) if d ≤ log N/ log log N . In our usage we will have d ≤
√

log N .

5 See entry A000111 in The On-Line Encyclopedia of Integer Sequences (starts at E0) for more details.

ITCS 2024

https://oeis.org/A000111

58:20 An Improved Protocol for ExactlyN with More Than 3 Players

To simplify this expression, define

ck ≜ 1− log
(

1
1/2 + Ek−1/2(k − 1)!

)
. (1)

As k grows, ck → 2
ln 2

(2
π

)k. Protocol 3 uses (1−ck)d+O(k+log log N) bits of communication.

4.3 Putting everything together
Our protocol starts by running Protocol 3 with parameters q, d such that qd ≥ N . The
players end up with vectors v1, . . . , vk, each in {−kq, . . . , kq}d+1, (in the NOF setting) and
they want to know whether

∑
i∈[k] vi = 0⃗. Note that this sum is equal to 0⃗ if and only if for

each j ∈ [d + 1],
∑

i∈[k] vi,j = 0. Each of these is an instance of ExactlyN with the inputs
coming from {−kq, . . . , kq}.

Now they can make a cost-0 reduction to NIH (k, {−k3q, . . . , k3q}d+1)-vecPPcc
1 . This

is because each instance of ExactlyN has a cost-0 reduction to (k, {−k3q, . . . , k3q})-PPcc
1

(see the full version for the proof) and because (k, {−k3q, . . . , k3q}d+1)-vecPPcc
1 is equivalent

to ANDd+1 ◦ (k, {−k3q, . . . , k3q})-PPcc
1 (see Observation 9). One should note here that the

reduction in works even when the input is allowed to include negative numbers. This is also
true of Protocol 1, which is the first step in the NIH protocol for (k, [q]d)-vecPPcc

1 and which
outputs a nonnegative k-PP2.

We can now use the NIH protocol for (k, {−k3q, . . . , k3q}d+1)-vecPPcc
1 (Theorem 11) to

complete the protocol. Let t = ⌈log k⌉. The cost of the NIH protocol is

C := (t− 1)2(t−2)/2 t−1
√

2t−2 log(k6q2(d + 1)) + O(tk2 log log(k6q2(d + 1))).

The total cost of the protocol is then (1− ck)d + O(k + log k + log log N) + C. As done
in the proof of Theorem 11 we can optimize d and q to end up with a complexity of

t2(t−1)/2 t
√

(1− ck) log N + O(tk2 log log N)

≤
(

1− ck

t

)
t2(t−1)/2 t

√
log N + O(tk2 log log N).

5 Open problems

In this paper we give the first explicit protocol for ExactlyN that matches the performance
of Rankin’s construction. We then use the details of this explicit protocol to find an
improvement that relies on knowledge shared by the parties.

However, this improvement itself relies on an existential argument: there is a probabilistic
argument in Section 4.2.2. Therefore our final improved protocol has a non-constructive part.

▶ Open Problem 1. Give a completely explicit protocol that matches the performance of the
NOF protocol from Theorem 1.

The constructions of Behrend and Rankin use a pigeonhole argument over spheres in
some vector space. As mentioned in Remark 4, there is a line of work that improves the
lower-order terms of these constructions [9, 15, 24, 16]. The general strategy is to replace
the spheres with thin annuli. We have not attempted to use annuli in our construction, but
it seems to us that this might lead to an improvement in lower order terms in our case too.

▶ Open Problem 2. Improve the lower-order terms of our corner-free set construction by
replacing spheres with annuli.

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:21

Our protocol exploits the shared information between the players in the NOF setting. As
the number of parties increases the amount of shared information also increases. One might
think that this would lead to a corresponding increase in the magnitude of the improvement
in the NOF setting over the protocol described in Section 3, which makes no use of the shared
information. However, this is not what we see: the factor of (1− ck/t) from Theorem 1
actually grows as k increases.

▶ Open Problem 3. Give a corner-free set construction whose advantage over Rankin’s
construction improves as k grows.

The structure of Rankin’s protocol seems to necessitate a lack of smoothness in the
parameters of the construction. Namely, the best-known k-AP-free set construction when k

is not of the form 2t + 1 (for an integer t) is to round down to the nearest such value and
proceed with the corresponding construction. Is it possible to obtain a bound that depends
on log k instead of ⌈log k⌉? This would be exciting as it would require a different argument
than the degree-doubling method used by Rankin.

▶ Open Problem 4. Give a k-AP-free set construction that improves for each increase of
the value k.

Finally, an important open problem is to improve the large gap between the upper and
lower bounds on the size of corner-free sets, where progress has been stuck for more than
15 years. We feel that it may be possible to substantially improve the NOF communication
complexity of ExactlyN, by further exploiting the shared information in the NOF model.
On the other hand, if substantial improvements are not possible for ExactlyN, strong
lower bounds for ExactlyN would give a breakthrough separation of deterministic from
randomized NOF protocols for an explicit and well-studied function. As mentioned in the
introduction, the recent breakthrough result of Kelley and Meka proved an upper bound for
3-AP-free sets [18], nearly matching Behrend’s construction.

However, corners appear to be a much more complicated combinatorial object, and upper
bounds on corner-free sets have historically lagged behind those for 3-AP-free sets. Thus
narrowing this gap is an important problem in additive combinatorics as well.

▶ Open Problem 5. Narrow the gap between the best known upper and lower bounds on the
NOF complexity of ExactlyN.

References
1 Miklós Ajtai and Endre Szemerédi. Sets of lattice points that form no squares. Studia

Scientiarum Mathematicarum Hungarica, 9:9–11, 1974.
2 Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for the

sunflower lemma. Annals of Mathematics, 194(3):795–815, November 2021. doi:10.4007/
annals.2021.194.3.5.

3 Paul Beame, Matei David, Toniann Pitassi, and Philipp Woelfel. Separating deterministic
from randomized multiparty communication complexity. Theory of Computing, 6(9):201–225,
November 2010. doi:10.4086/toc.2010.v006a009.

4 Felix A. Behrend. On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences of the United States of America, 32(12):331–
332, December 1946. doi:10.1073/pnas.32.12.331.

5 Richard Beigel and Jun Tarui. On ACC. computational complexity, 4(4):350–366, December
1994. doi:10.1007/BF01263423.

ITCS 2024

https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4086/toc.2010.v006a009
https://doi.org/10.1073/pnas.32.12.331
https://doi.org/10.1007/BF01263423

58:22 An Improved Protocol for ExactlyN with More Than 3 Players

6 Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83,
pages 94–99, New York, NY, USA, December 1983. Association for Computing Machinery.
doi:10.1145/800061.808737.

7 Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach. Progression-free sets in Zn
4 are exponentially

small. Annals of Mathematics, 185(1):331–337, 2017. doi:10.4007/annals.2017.185.1.7.
8 Zeev Dvir. On the size of Kakeya sets in finite fields. Journal of the American Mathematical

Society, 22(4):1093–1097, 2009. doi:10.1090/S0894-0347-08-00607-3.
9 Michael Elkin. An improved construction of progression-free sets. Israel Journal of Mathematics,

184(1):93, July 2011. doi:10.1007/s11856-011-0061-1.
10 Jordan S. Ellenberg and Dion Gijswijt. On large subsets of Fn

q with no three-term arithmetic
progression. Annals of Mathematics, 185(1):339–343, 2017. doi:10.4007/annals.2017.185.
1.8.

11 W. Timothy Gowers. A new proof of Szemerédi’s theorem. Geometric & Functional Analysis
GAFA, 11(3):465–588, August 2001. doi:10.1007/s00039-001-0332-9.

12 W. Timothy Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem.
Annals of Mathematics, 166(3):897–946, 2007. doi:10.4007/annals.2007.166.897.

13 Ben Green. Lower bounds for corner-free sets. New Zealand Journal of Mathematics, 51:1–2,
July 2021. doi:10.53733/86.

14 Ben Green and Terence Tao. New bounds for Szemerédi’s theorem, III: A polylogarithmic
bound for r4(N). Mathematika, 63(3):944–1040, 2017. doi:10.1112/S0025579317000316.

15 Ben Green and Julia Wolf. A note on Elkin’s improvement of Behrend’s construction. In
David Chudnovsky and Gregory Chudnovsky, editors, Additive Number Theory: Festschrift In
Honor of the Sixtieth Birthday of Melvyn B. Nathanson, pages 141–144. Springer, New York,
NY, 2010. doi:10.1007/978-0-387-68361-4_9.

16 Zach Hunter. Corner-free sets via the torus, October 2022. doi:10.48550/arXiv.2209.10012.
17 Zander Kelley, Shachar Lovett, and Raghu Meka. Explicit separations between randomized

and deterministic number-on-forehead communication, August 2023. arXiv:TR23-124.
18 Zander Kelley and Raghu Meka. Strong bounds for 3-progressions. In 64th IEEE Annual Sym-

posium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November
6-9, 2023, pages 933–973. IEEE, 2023. doi:10.1109/FOCS57990.2023.00059.

19 Izabella Łaba and Michael T. Lacey. On sets of integers not containing long arithmetic
progressions, August 2001. doi:10.48550/arXiv.math/0108155.

20 Nati Linial, Toniann Pitassi, and Adi Shraibman. On the communication complexity of
high-dimensional permutations. In Avrim Blum, editor, 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019), volume 124 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 54:1–54:20, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2019.54.

21 Nati Linial and Adi Shraibman. An improved protocol for the Exactly-N problem. In Valentine
Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:8, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2021.2.

22 Shachar Lovett. Additive combinatorics and its applications in theoretical computer science.
Theory Comput., 8:1–55, 2017. doi:10.4086/toc.gs.2017.008.

23 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with
sunflowers. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215
of LIPIcs, pages 104:1–104:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.104.

24 Kevin O’Bryant. Sets of integers that do not contain long arithmetic progressions. The
Electronic Journal of Combinatorics, 18, November 2008. doi:10.37236/546.

https://doi.org/10.1145/800061.808737
https://doi.org/10.4007/annals.2017.185.1.7
https://doi.org/10.1090/S0894-0347-08-00607-3
https://doi.org/10.1007/s11856-011-0061-1
https://doi.org/10.4007/annals.2017.185.1.8
https://doi.org/10.4007/annals.2017.185.1.8
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.4007/annals.2007.166.897
https://doi.org/10.53733/86
https://doi.org/10.1112/S0025579317000316
https://doi.org/10.1007/978-0-387-68361-4_9
https://doi.org/10.48550/arXiv.2209.10012
https://arxiv.org/abs/TR23-124
https://doi.org/10.1109/FOCS57990.2023.00059
https://doi.org/10.48550/arXiv.math/0108155
https://doi.org/10.4230/LIPIcs.ITCS.2019.54
https://doi.org/10.4230/LIPIcs.CCC.2021.2
https://doi.org/10.4086/toc.gs.2017.008
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.37236/546

L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley, and A. Shraibman 58:23

25 Pavel Pudlák. Boolean complexity and Ramsey theorems. In Jaroslav Nešetřil and Vojtěch
Rödl, editors, Mathematics of Ramsey Theory, Algorithms and Combinatorics, pages 246–252.
Springer, Berlin, Heidelberg, 1990. doi:10.1007/978-3-642-72905-8_17.

26 Robert A. Rankin. Sets of integers containing not more than a given number of terms in
arithmetical progression. Proceedings of the Royal Society of Edinburgh Section A: Mathematical
and Physical Sciences, 65(4):332–344, 1961. doi:10.1017/S0080454100017726.

27 Alexander A. Razborov. Lower bounds on the monotone complexity of some boolean functions.
Dokl. Akad. Nauk SSSR, 281:354–357, 1985.

28 Raphaël Salem and Donald C. Spencer. On sets of integers which contain no three terms in
arithmetical progression. Proceedings of the National Academy of Sciences of the United States
of America, 28(12):561–563, 1942. arXiv:87810.

29 Ilya D. Shkredov. On a generalization of Szemeredi’s theorem. Proceedings of the London
Mathematical Society, 93(3):723–760, November 2006. doi:10.1017/S0024611506015991.

30 Terence Tao and Van H. Vu. Additive combinatorics, volume 105. Cambridge University Press,
2006.

31 Andrew Chi-Chih Yao. On ACC and threshold circuits. In 31st Annual Symposium on
Foundations of Computer Science, pages 619–627. IEEE, October 1990. doi:10.1109/FSCS.
1990.89583.

32 Yufei Zhao. Graph Theory and Additive Combinatorics: Exploring Structure and Randomness.
Cambridge University Press, 2023.

ITCS 2024

https://doi.org/10.1007/978-3-642-72905-8_17
https://doi.org/10.1017/S0080454100017726
https://arxiv.org/abs/87810
https://doi.org/10.1017/S0024611506015991
https://doi.org/10.1109/FSCS.1990.89583
https://doi.org/10.1109/FSCS.1990.89583

	1 Introduction
	1.1 Background
	1.2 Previous bounds
	1.3 Main result

	2 Overview of protocols for NOF ExactlyN
	2.1 ExactlyN with 3 players
	2.2 ExactlyN with more than 3 players
	2.3 Our results

	3 Explicit NIH protocol for Rankin
	3.1 Analysis of Protocol 1
	3.2 Analysis of Protocol 2
	3.3 Combining Protocols 1 and 2

	4 Improved NOF protocol for ExactlyN
	4.1 Centered base-q representations, carry strings and carry vectors
	4.2 A reduction to a vector variant
	4.2.1 Correctness of the reduction
	4.2.2 Cost of the reduction

	4.3 Putting everything together

	5 Open problems

