
SymBisect: Accurate Bisection for Fuzzer-Exposed Vulnerabilities

Zheng Zhang

UC Riverside

Yu Hao

UC Riverside

Weiteng Chen

Microsoft Research

Xiaochen Zou

UC Riverside

Xingyu Li

UC Riverside

Haonan Li

UC Riverside

Yizhuo Zhai

UC Riverside

Zhiyun Qian

UC Riverside

Billy Lau

Google

Abstract

The popularity of fuzzing has led to its tight integration

into the software development process as a routine part

of the build and test, i.e., continuous fuzzing. This has

resulted in a substantial increase in the reporting of bugs

in open-source software, including the Linux kernel. To

keep up with the volume of bugs, it is crucial to automati-

cally analyze the bugs to assist developers and maintain-

ers. Bug bisection, i.e., locating the commit that intro-

duced a vulnerability, is one such analysis that can reveal

the range of affected software versions and help bug pri-

oritization and patching. However, existing automated

solutions fall short in a number of ways: most of them ei-

ther (1) directly run the same PoC on older software ver-

sions without adapting to changes in bug-triggering con-

ditions and are prone to broken dynamic environments

or (2) require patches that may not be available when

the bug is discovered. In this work, we take a differ-

ent approach to looking for evidence of fuzzer-exposed

vulnerabilities by looking for the underlying bug logic.

In this way, we can perform bug bisection much more

precisely and accurately. Specifically, we apply under-

constrained symbolic execution with several principled

guiding techniques to search for the presence of the bug

logic efficiently. We show that our approach achieves

significantly better accuracy than the state-of-the-art so-

lution by 16% (from 74.7% to 90.7%).

1 Introduction

In recent years, large-scale programs such as the Linux

kernel are being continuously fuzzed for the purpose of

improving code quality and security [23, 11, 42, 19, 31,

24]. Such continuous fuzzing systems have been shown

highly effective in identifying new bugs, e.g., syzbot [22]

reports thousands of bugs in the Linux kernel.

While fuzzing is highly effective, this poses large

workload to software developers and maintainers, as the

continuous stream of bugs requires various analysis, e.g.,

bug triage and patching, that is often done largely manu-

ally today [27]. This is a hard problem as we already see

over 8,000 bugs found by syzbot are auto-closed due to

the lack of human investigations [22]. Thus, automating

the analysis of fuzzer-exposed bugs is a worthwhile goal.

One important analysis that needs automation is bug

bisection, i.e., the process of identifying commit that

introduced a bug (also called vulnerability-contributing

commits, or bug-inducing commits). It proves instru-

mental in various aspects. For example, it can help devel-

opers and maintainers understand the bug and facilitate

patch development [7]; it can also pinpoint the vulnera-

ble software versions to inform users about whether they

need to worry about updating their software [12, 4].

To achieve this goal, researchers have proposed sev-

eral automated approaches, but unfortunately they all

have significant shortcomings.

The first type of approach directly executes the origi-

nal PoC on older software versions to see which version

would still crash after running the PoC. However, it is re-

ported that such a dynamic solution suffers from several

issues [3]: 1) Broken dynamic environment (e.g., build

or runtime errors) leading to versions being skipped. 2)

Accidental triggering of unrelated bugs. 3) Changes in

the underlying bug-triggering condition.

The second type of approach requires patches, which

may not be available at the time of the bug discovery.

Even if the patches are available, such static solutions

rely on heuristics which are inherently imprecise [9, 34].

This category includes the SZZ algorithm and its variants

[12, 40], as well as most vulnerable code clone detection

[26, 45]. For example, when given the code diff in a

patch, their solutions consider the bug-inducing commit

to be the one that introduces one or more lines in the

code diff [12, 45]. However, such a solution does not

take into account the bug-triggering conditions and can

miss important details that are outside of the scope of the

code diff in the patch.

There are also other methods, such as information

retrieval-based bisection [10, 47, 43], which are usually

based on bug reports. However, they either have low ac-

curacy or require manual analysis.

Motivated by the above deficiencies, we take a dif-

ferent approach from the traditional methods. In par-

ticular, we aim to reason about the presence of vulner-

ability logic through static code analysis. Fundamen-

tally, our approach investigates many more possible in-

puts beyond what’s included in the original PoC. Fur-

thermore, static methods can effectively circumvent a se-

ries of problems caused by the broken dynamic environ-

ments such as build errors. Finally, it does not require

the development of patches in advance. To this end, we

leverage symbolic reasoning which is the most precise

way of confirming the presence of a vulnerability stat-

ically. A crucial characteristic of this approach is that

it can automatically distinguish significant changes from

vulnerability-irrelevant changes and effectively eliminate

the influence of vulnerability-irrelevant changes on the

results.

More specifically, we apply under-constrained sym-

bolic execution [32] in different software versions to pre-

cisely identify the presence/absence of the same vulner-

ablility logic that is inherited from the released PoC.

Then with a simple binary search algorithm, we can pin-

point the commit that introduced the vulnerability. To

address the scalability challenges of symbolic execution,

we leverage the trace associated with the PoC to guide

the symbolic execution.

Following the methodology proposed in this paper, we

apply it to the context of Linux kernel and the corre-

sponding continuous fuzzing platform syzbot [22]. We

show that it significantly outperforms state-of-the-art ap-

proaches in terms of accurately determining the vulnera-

ble versions of bugs found with fuzzing. We summarize

our contributions as follows:

• We developed a novel and drastically differ-

ent solution of an automatic bisection tool

called SYMBISECT, targeting fuzzer-exposed

vulnerabilities. Our method is precise as it relies

on looking for the presence of key vulnerability

logic represented by symbolic formulas. We have

implemented SYMBISECT for Linux kernel bugs

reported on syzbot. We open-sourced the solution

to facilitate the reproduction of results and further

research [2].

• We proposed a new method to address the scalability

problem in under-constraint symbolic execution in the

Linux kernel. Our insight is that in the specific context

of fuzzing results, we are able to use the knowledge of

the vulnerability from the PoC to guide the symbolic

execution in a principled fashion.

• We evaluated the performance of SYMBISECT against

other state-of-the-art methods. We demonstrate that it

not only achieves much higher accuracy than the PoC-

based bisection but even outperforms the methods de-

pendent on the presence of patches. Specifically, it can

identify 83% of the vulnerable versions that elude de-

tection in the PoC bisection implemented by Syzbot.

2 Background and Motivation

In recent years, fuzzing has played a significant role in

discovering vulnerabilities in the Linux kernel [22, 23].

However, manual analysis of the extensive results gen-

erated by fuzzing has placed a tremendous burden on

maintainers [1]. Automatic analysis of fuzzing results,

such as identifying vulnerable versions and simultane-

ously identifying when vulnerabilities were introduced,

is highly beneficial for understanding the logic of vul-

nerabilities, developing patches, notifying the respec-

tive maintainers, and backporting patches to vulnerable

Long-Term-Support branches. For example, Rui Abreu

et al. observed that automating bug bisection that pin-

points the bug-inducing commits can speed up fixing

fuzzer-exposed bugs in Google’s proprietary code on av-

erage by a factor of 2.23 [7]. In this paper, we define bug-

inducing commit as a commit that introduces a software

bug into a codebase [10]. It is possible that multiple com-

mits (e.g., commit1 and commit2) contribute to the bug,

and the last commit (commit2) makes the bug trigger-

able. In such cases, we consider the last commit the BIC

because that is when a vulnerability is considered to ex-

ist.

Previous researchers have developed various types

of methods for identifying bug-inducing commits, in-

cluding PoC-based, Patch-based, and other approaches.

However, each has its own limitations. Next, we will in-

troduce them separately.

PoC-based bisection. The most straightforward ap-

proach is to dynamically re-execute the PoC that trig-

gered the bug on older commits. This method is em-

ployed by the continuous fuzzing platform syzbot [22].

Specifically, syzbot starts bisection by running the same

PoC with the commit on which the bug was discovered,

ensures that it can reproduce the bug, and then goes back

release-by-release (e.g., v5.4 to v5.3) to pinpoint the ear-

liest release without the kernel crash (again using the

same PoC). The predicate for bisection is binary (crash

vs. no crash), not trying to differentiate between differ-

ent crashes. This is intentional because bugs can man-

ifest in a different ways (under different bug titles) [3].

However, this inevitably introduces false positives as un-

related bugs can sometimes be triggered. In fact, a small-

scale analysis showed that unrelated bugs being triggered

contributed to 66% of incorrect bisection [4]. In addi-

tion, such an approach also leads to false negatives, i.e.,

failing to report a kernel version being affected by the

bug during bisection. They can be due to build/boot er-

rors, bugs that are difficult to reproduce, and failing to ac-

count for changes in bug-triggering conditions (no adap-

tation in the original PoC). Overall, a previous small-

scale study conducted by the syzbot team concludes that

the bisection accuracy is only about 50% [4], highlight-

ing the need for a better solution.

Patch-based bisection. This family of solutions is

based on patches, including SZZ algorithm and its vari-

ants[40, 12] and most vulnerable code clone detection

solutions [26, 45, 56, 37]. The basic idea of SZZ is to

identify the bug-inducing commit by tracing the modi-

fied lines in the patch back to the most recent commit

that introduced the lines. This method is static and ef-

fectively assumes the source lines removed or changed

by the patch are responsible for introducing the bug.

The SZZ algorithm has many variations, among which

VSZZ [12] is the latest improvement aimed specifically

at vulnerabilities (instead of general bugs). VSZZ mod-

ifies SZZ slightly by tracing back the commit history to

the earliest commit (as opposed to the most recent) that

introduces the deleted lines of a patch. However, such

methods require patches input, which are not available

at the time of bug discovery. Furthermore, the SZZ al-

gorithm and its variants are fundamentally heuristics and

their accuracies are limited [9]. Finally, they are unable

to handle patches with only added lines [12], which are

quite common in security patches (e.g., adding a bounds

check).

Vulnerable code clone detection statically identifies

sections of code that are similar or identical to known

vulnerable code fragments [25, 36, 26, 28, 45, 49]. These

methods rely on similarity comparisons of vulnerability-

related code to determine the presence of a given vul-

nerability in the target program. The basis of similarity

could be in terms of text, tokens, Abstract Syntax Trees

(AST), Control Flow Graphs (CFG), or Program Data

Graphs (PDG) [55]. Even though not originally intended

for bisection, they can be directly applied to identify the

earliest version similar to the known vulnerable version.

V0Finder [45] represents the state-of-the-art in this cate-

gory. In general, these methods are not designed to dis-

tinguish small changes made to the code base (e.g., via

a bug-inducing commit). Besides, such methods still re-

quire an initial input of vulnerable code. The “vulnerable

code” is generally defined as the whole patch function or

a subset of lines within it. For example, VUDDY [26]

uses the entire patch function, while others, like MVP

[49], extract “relevant lines” through methods such as

slicing, using deleted/added lines in the patch as slicing

criteria. The “vulnerable code” can also be manually ex-

tracted, such as in HiddenCPG [44].

Other bisection. There are some other methods such as

Information Retrieval (IR) approaches, that take bug in-

formation (usually from the bug report) as input and stat-

ically rank prior commits according to their “relevance to

the bug” [10, 43, 13]. The advantage of IR-based meth-

ods is that they do not require patches and can still locate

the buggy code based on bug reports or code coverage.

Nevertheless, such methods still do not fundamentally

attempt to verify the presence of vulnerability logic and

instead only approximate them. As a result, the accuracy

is also limited. They are usually good at identifying the

top-N suspected bug-inducing commits. However, their

accuracy declines significantly when N=1. Specifically,

for Fonte [10], the state-of-the-art method in this cate-

gory, the accuracy drops to only 36% when N=1, which

is lower than the accuracy of PoC/Patch-based methods.

Therefore, we do not consider such methods as the base-

line for comparison.

Our insight. We observe that existing approaches have

significant shortcomings. First and foremost, none of the

above methods attempts to reason about the vulnerability

logic when determining whether a particular version is

affected by a bug. This motivates us to develop a solution

that looks for the presence of the vulnerability logic in

target software versions.

Specifically, we propose to leverage under-constrained

symbolic execution to effectively address the shortcom-

ings of existing solutions. Compared to PoC-based

bisection, our solution (1) is static, thus sidestepping

the challenges stemming from broken dynamic environ-

ments; (2) focuses on the specific vulnerability, allowing

it to overlook other unrelated bugs; (3) considers more

possible inputs and execution paths, alleviating the con-

cern of changes in the underlying bug-triggering condi-

tions.

Compared to the existing patch-based methods, our

solution (1) does not require patches, which are not avail-

able when a fuzzer first finds the bugs; (2) looks for the

presence of vulnerability logic as opposed to syntatic in-

formation such as the presence of certain source lines or

tokens; (3) inspects the vulnerability logic beyond the

scope of patch functions, allowing a much more com-

plete and informed validation compared to heuristics that

concentrate on only the code diff or the functions in-

volved in patches.

3 Overview

In this section, we begin with a motivating example to

provide a concise overview of why existing methods fall

short and the intuition behind SYMBISECT. We will also

discuss the main challenges of implementing our solu-

tion. Following that, we introduce the overall architec-

ture of SYMBISECT.

The Bug-inducing Commit:
static struct bpf_map *htab_map_alloc(...)
1 - cost = S1*C1 + S2*S3;

2 - cost += S2*C2
3 - err = bpf_map_charge_init(..., cost);
4 - if (err)
 - goto free_htab;

5 err = prealloc_init(...);

int bpf_map_charge_init(...,u64 size)

6 if (size >= U32_MAX - PAGE_SIZE)

 return -E2BIG;

The Patch:
static int prealloc_init(...)
 S3 = S3 + C2;

7 - htab->elems =bpf_map_area_alloc(S2*S3,
8 + htab->elems =bpf_map_area_alloc((u64)S2*S3,

S1: (u64)htab->n_buckets C1: sizeof(struct bucket)
S2: (u64)htab->elem_size C2: num_possible_cpus()
S3: htab->map.max_entries

Figure 1: The Bug-inducing commit and Patch of a

vulnerability from syzbot

3.1 Motivating Example

Figure 1 illustrates an integer overflow vulnera-

bility that leads to an out-of-bounds memory ac-

cess. Specifically, the bug-inducing commit mod-

ifies the function htab map alloc(), which in turn

calls function bpf map charge init() and function

prealloc init(). Prior to this commit, the function

bpf map charge init() had a check at line 6, which

checked the variable size to prevent any potential in-

teger overflow in prealloc init(). However, the re-

moval of this safeguard paved the way for the occurrence

of an integer overflow. To mitigate this vulnerability, the

subsequent patch introduced a type-casting operation at

line 8 within prealloc init(), effectively preventing

the risk of integer overflow.

Prior PoC-based tool executed the released PoC in ver-

sions preceding the patch. However, in this case, it trig-

gered an unrelated bug, leading the kernel to crash before

it could access the function htab map alloc(). Conse-

quently, this resulted in an imprecise bisection result —

syzbot thinks the kernel version is vulnerable and keep

checking even earlier versions.

Prior Patch-based tools derive various forms of sig-

natures, primarily syntactic, from the patch function

prealloc init(). In this case, the bug-inducing com-

mit does not alter the patch function. Consequently, these

solutions are unable to capture the commit and fail to

differentiate versions preceding and following the bug-

inducing commit. This leads to incorrect identification

 Before inducing commit:
Line1 Assignment: cost = S1*C1 + S2*S3
Line2 Assignment: cost += S2*C2
Line6 Constraint S1*C1 + S2(S3+C2) < U32_Max - 4096
Line7 Overflow condition: S2(S3+C2) > U32_Max
Not solvable => Not vulnerable

Symbolic execution trace (partly):
...... -> htab_map_alloc() -> bpf_map_charge_init()
 -> prealloc_init() ->

 After inducing commit (before patch):
Line8 Overflow condition: S2(S3+C2) > U32_Max
Solvable => Vulnerable

Figure 2: Vulnerability detection via symbolic execution

of the bug-inducing commit.

Our solution symbolically executes the relevant func-

tions until it reaches the target source line and evalu-

ates the symbolic constraints to check whether an out-

of-bound memory access can occur — we know it is an

out-of-bound bug from the bug report. Specifically, the

symbolic execution starts from the syscall entry that trig-

gered the bug (available from the call stack in the bug

report). By enlarging the analysis scope, our solution

effectively explores more of the state space and is not

confined to the patch function. It effectively addresses

both the limitation of patch-based bisection and poten-

tial changes in the bug-triggering conditions. Addition-

ally, by disregarding unrelated bugs, it resolves the issues

associated with PoC-based bisection.

Figure 2 illustrates a portion of the symbolic execu-

tion process. In the non-vulnerable version (prior to the

bug-inducing commit), the variable cost is assigned in

lines 1 and 2, with a subsequent check at line 6. While

there are two branches in line 6, only one of them leads

to the vulnerability point. Within this path, symbolic

execution identifies a crucial constraint: S2(S3+C2) +

S1*C1 <U32 Max - 4096. This constraint ensures that

the overflow condition S2(S3+C2) >U32 Max is never

satisfied, preventing any subsequent out-of-bounds oc-

currences (the OOB section isn’t depicted in the figure).

Consequently, this version is deemed non-vulnerable,

which is correct. In contrast, in the vulnerable versions,

the critical check against the cost is removed. As a result,

the overflow condition becomes solvable by the symbolic

execution engine, leading to an out-of-bounds (OOB) sit-

uation later on. Accordingly, our solution correctly clas-

sified this version as vulnerable.

3.2 Challenges and Insights

Despite the advantages of using symbolic execution to

confirm the presence of vulnerability logic precisely,

symbolic execution also faces its own challenges.

Scalability concerns. In the motivating example, we

showed only a segment of the symbolic execution in Fig-

ure 2. In reality, our solution will encounter many more

functions (i.e., starting from the syscall entry) and accu-

mulate many more symbolic constraints. This can lead

to the classic scalability challenge for symbolic execu-

tion, as the number of forked states may grow exponen-

tially as the execution progresses. This makes the so-

lution seemingly ill-suited for a large scope of analysis,

especially against large-scale software such as the Linux

kernel. Previous methods deal with this problem by con-

fining the scope of symbolic execution to one specific

function [54] or utilizing concolic execution[15]. Nev-

ertheless, these methods are unsuitable for our purpose:

the existence of a vulnerability is not determined by a

single function, and we do not want to over-constrain the

possible inputs through concolic or concrete execution.

Key observation. We observe that, to overcome the

above challenge, it is possible to leverage fine-grained

trace-level information about how the vulnerability is

manifested (e.g., where the vulnerability is triggered, and

which functions are involved) in the reported version to

guide the exploration in the target version. This informa-

tion allows us to distinguish the key statements from the

unrelated ones for a specific vulnerability. As an illustra-

tion, coverage data can help de-prioritize less relevant ex-

ecution paths. By utilizing this approach, SYMBISECT

effectively narrows the scope of exploration, thus en-

hancing efficiency and mitigating the scalability chal-

lenge of symbolic execution.

3.3 System Architecture

As illustrated in Figure 3, our tool, denoted as

SYMBISECT, requires three essential inputs for its op-

eration:

• The source code of the program on which the bug

was reported – we refer to it as the reference version.

This version should be compilable and bootable as the

fuzzer has successfully found the bug on this version.

• Proof of Concept (PoC): This is the executable or

script that can reliably trigger the vulnerability in the

reference version of the program.

• The source code of the program in potentially vulnera-

ble target versions: These are the other versions of the

program that we want to assess for the same vulnera-

bility.

SYMBISECT is designed for vulnerabilities found

through fuzzing. So both the compilable and bootable

source code of the reference program and the PoC are

naturally available when a vulnerability is found via

fuzzing. With such inputs, SYMBISECT bisects the bug

in a fashion similar to syzbot (except that SYMBISECT

is completely static). It first evaluates historical ver-

sions backwards – one major release version at a time

(e.g., v5.5 and then v5.4). Through this iterative pro-

Programs
(target versions)

Program
(ref version)

Guidance
Transformer

Guidance
Generator

Symbolic
Detector

PoC

Detector

Non-vulnerable
versions

Bug-inducing
commit

Vulnerable
versions

Figure 3: Overview of SYMBISECT

cess, SYMBISECT can identify the boundary or range

for which the bug-inducing commit falls under (e.g., be-

tween v5.4 and v5.5). Subsequently, SYMBISECT follow

a simple binary search procedure to pinpoint the specific

commit that introduced the bug.

SYMBISECT consists of three primary components,

designed to accurately identify vulnerabilities while also

addressing scalability issues:

Guidance Generator. SYMBISECT first runs a PoC to

trigger the specific vulnerability in the reference version

of the program, thereby collecting essential execution

traces. Utilizing these traces, SYMBISECT systemati-

cally produces three primary categories of guidance for

subsequent symbolic detection. Firstly, SYMBISECT at-

tempts to align the call stack trace (also called call trace

in the syzbot bug report) of the execution on the target

version to the one on the reference version (referred to as

Call Stack Guidance) This effectively steers the explo-

ration of symbolic execution towards the function where

the vulnerability is observed. Secondly, besides the call

stack trace, SYMBISECT also secondarily attempts to

align the execution path down to the basic block level

(referred to as Path Guidance). This is useful when

there are a large number of possible execution paths that

follow the same call stack. Lastly, SYMBISECT reuses

the callees involved in indirect calls (referred as Indirect

Call Guidance), thereby informing the symbolic detec-

tor to focus on a limited number of indirect call targets

(as opposed to all possible ones computed using static

analysis). More details are in §4.1.

Guidance Transformer. Upon identifying the above

three kinds of guidance, SYMBISECT transforms them

from the reference version into the target versions of the

program. This enables a more efficient symbolic exe-

cution and a more accurate vulnerability detection pro-

cess on these target versions. It’s important to highlight

that guidance translation between versions is done at the

source code level, which remains stable and unaffected

by compiler optimizations. To enhance the precision

and robustness of those guidance when applied to differ-

ing target versions of the program, SYMBISECT employ

multiple optimizations during the guidance transformer

phase. More details about the guidance transformer will

be provided in §4.2.

Symbolic Detector. The symbolic detector is a form of

detector that can capture (or re-capture) the bugs that

were reported by a fuzzer. The detector is applied to

a target version, where it tracks all variables, especially

symbolic variables, including the symbolic sizes of allo-

cated objects. However, instead of attempting to find all

possible bugs during the exploration (which is clearly not

scalable), we narrowly focus on the specific bug at hand,

with the help of the aforementioned guidance. Through-

out the execution, the symbolic detector leverages guid-

ance from preceding phases. Specifically, it dynamically

adjusts the execution state schedule, aiming to allevi-

ate path explosion. Additionally, the detector refines the

callees of indirect function calls based on prior indirect

call guidance. For vulnerability detection, the symbolic

detector relies on call trace guidance to ensure accurate

detection of the same vulnerability previously identified.

More details about the under-constrained symbolic de-

tector can be found in §4.3.

4 SYMBISECT Design

In this section, we delve into the intricacies of

SYMBISECT’s design by dissecting each component,

discussing the challenges encountered, and illustrating

our corresponding solutions.

4.1 Guidance Generator

Overall, this components attempts to guide SYMBISECT

when SYMBISECT executes the PoC in the reference

version of the program to trigger a specific vulnerabil-

ity and collects the execution trace. Then, SYMBISECT

produces three categories of guidance from the execution

traces, which we explain below.

Call Stack Guidance. The call stack guidance repre-

sents the state of the call stack at the moment a vulner-

ability is triggered. This information can be readily col-

lected when the corresponding bug is triggered in the ref-

erence version of the software under investigation. Uti-

lizing the call stack guidance serves multiple purposes.

First, it assists in identifying an appropriate entry func-

tion as the starting point for our symbolic detector. Sec-

ond, it assists in pinpointing the target line where the

vulnerability is triggered, allowing the symbolic detec-

tor to focus on the same vulnerability rather than any

arbitrary vulnerability. We use call stack guidance to

constrain the exploration of a target version so that it

only explores the basic blocks that can potentially lead to

the same stack trace. Correspondingly, we translate call

stack guidance into basic-block-level priorities to guide

the exploration.

• Highest Priority: basic blocks that dominate the ba-

sic blocks in the call stack will receive the highest

priority. This indicates that their execution is essen-

tial for reaching the bug while maintaining the same

call stack. The set of such basic blocks can be identi-

fied through the dominator analysis on the control flow

graph of functions in the call stack.

• Lowest Priority: basic blocks, upon the execution of

which can cause deviations from the call stack, will

receive the lowest priority. Consequently, a symbolic

detector should avoid executing any of these blocks.

They can be identified through reachability analysis.

Path Guidance. In addition to the call stack guidance,

we will need more fine-grained guidance if there are still

too many possible execution paths that follow the same

call stack. Specifically we propose to prioritize the exe-

cution path directly at the basic block level. The idea is

that a basic block in the target version is likely to be non-

critical if (1) the basic block is not executed in the refer-

ence version and (2) it remains unchanged in both the ref-

erence and target versions of the program. Therefore, the

symbolic execution should prioritize the exploration of

branches whose basic blocks have higher priority. Note

that when there are conflicts, path guidance must yield

to call stack guidance because the most critical goal is to

ensure the vulnerable function being reached. We trans-

late path guidance into the basic-block-level priorities as

follows:

• High Priority: basic blocks covered by the execution

trace in the reference version of the program will re-

ceive high priority (lower than the highest priority).

• Low Priority: basic block not covered by the execution

trace in the reference will receive low priority.

Indirect Call Guidance. The indirect call guidance

records the callee functions associated with each indi-

rect function call encountered in the execution trace. Its

primary role is to facilitate the accurate resolution of in-

direct function calls during the symbolic execution pro-

cess, particularly in the target versions of the software

under analysis.

4.2 Guidance Transformer

To enhance both the efficiency of symbolic execution and

the precision of vulnerability detection in target program

versions, it is essential to translate the three categories

of guidance collected from a reference version. Specifi-

cally, one fundamental task is to map basic blocks from

the binary form in the reference version, where execution

traces are collected, to the LLVM IR in the target version,

where symbolic execution is executed. One potential so-

lution is first to map the binary-level basic blocks from

reference to target. However, due to compiler optimiza-

tions, even if the source code lines are identical, their

binary basic blocks may differ, making this solution un-

desirable.

Our solution employs source code as an intermedi-

ate representation to improve the mapping accuracy be-

tween the reference and target versions. The transfor-

mation sequence for basic blocks begins with the binary

form in the reference version, moves to its source code,

transitions to the source code in the target version, and

ends in the LLVM IR of the target version. To facil-

itate these mappings, we use the debug information to

transition between binary and source code and between

source code and LLVM IR. Additionally, Git is employed

for source code mapping between the reference and tar-

get versions. During the transformation sequence, we

take care of multiple corner cases to enhance the preci-

sion (more details in §5.1).

After transforming the call stack to the target version,

we verify the presence of the target line triggering the

vulnerability. If absent, the target version is deemed non-

vulnerable. If present, we examine whether there is a

potential path from the entry to the target function in the

call graph. A missing path directly results in a negative

outcome.

Otherwise, the exploration of the target version will

follow the aforementioned guidance. Finally, if there are

basic blocks unique to the target version (never seen in

the reference), we will assign a neutral priority level to

them as it is unknown whether these basic blocks will be

useful in triggering the vulnerability:

• Medium Priority: basic blocks unique to the target ver-

sion, which do not map to any basic blocks in the ref-

erence version, will receive medium priority. Com-

pared to the low priority basic blocks – the ones seen

in reference version yet not exercised, we are less cer-

tain about the utility of such basic blocks; therefore we

prefer to explore them with a higher priority compared

to the basic blocks that were seen in both reference and

target versions but not exercised in the reference.

Then, all the guidance (call stack, five lists of varying

priorities, and indirect call mapping) are forwarded to the

subsequent component.

4.3 Symbolic Detector

After generating guidance for the target version of the

program under analysis, the symbolic detector conducts

under-constrained symbolic execution on these targeted

versions. Specifically, the detector monitors all variables

within the program to identify potential vulnerability pat-

terns, such as use-after-free or out-of-bound access er-

rors. We propose multiple improvements to enhance the

ability of under-constrained symbolic execution, includ-

ing but not limited to handling symbolic addresses, and

symbolic sizes of allocated memory. The details are de-

scribed in §5.2. Throughout this execution, the symbolic

detector utilizes the guidance generated in prior stages to

enhance its effectiveness.

Call Stack Guidance. Symbolic execution is initiated at

a selected entry function, determined by examining the

call stack. Specifically, execution starts at the first mean-

ingful function in the call stack — we choose to start at

the syscall handler [24] (which is typically several layers

behind the generic syscall entry). The symbolic execu-

tion process ends upon detecting a vulnerability (result-

ing in a positive output) or upon hitting a time constraint

(yielding a negative output). Importantly, the detector

only checks for vulnerabilities upon reaching the speci-

fied target line in the guidance, avoiding hitting any un-

related bugs accidentally. Also, the basic blocks with the

lowest priority are prohibited from execution.

Path guidance. When symbolic execution encounters a

symbolic condition, it forks to explore both true and false

branches. This forking behavior primarily contributes to

the path explosion in symbolic execution. The path guid-

ance is employed to address this. This approach priori-

tizes exploration by first traversing branches with higher

priority. When two branches have the same priority, one

is randomly selected to be explored first.

Indirect Call Guidance. During symbolic execution, if

we observe the indirect call target being assigned explic-

itly to a function pointer, we can unambiguously deter-

mine the indirect call target. Otherwise, we initially refer

to the indirect call guidance to identify the indirect call

target. If we find a match for the specific indirect call, we

use the specific target from the guidance directly. Oth-

erwise, we utilize the state-of-the-art type-based anal-

ysis [29] to resolve indirect calls (which may produce

multiple targets).

5 Implementation

In total, the implementation of SYMBISECT has 4,726

LoC Python code for the Guidance Generator and Guid-

ance Transformer and 4,347 LoC of C++ for the Sym-

bolic Detector atop KLEE [16]. In the following

sections, we will delve into further details regarding

the Guidance Transformer (§4.2), and Symbolic Detec-

tor (§4.3). In summary, SymBisect collects the original

trace at the binary level, the generated guidances are at

the source code level, and the symbolic execution engine

is based on LLVM IR.

5.1 Guidance Transformer

Code formatting. Because we employ source code as

an intermediate representation during the guidance trans-

former, we require each source code line to be associated

with only a single basic block. To achieve this, we de-

velop a simple source code formatter that divides com-

posite lines into simpler ones. For instance, splitting “}
else if(cond){” into two distinct lines. This is done for

both the reference version and the target version at the

beginning.

Accurate coverage collector. SYMBISECT leverage

KCOV mechanism to discern which sections of the code

have been covered. Syzkaller offers a tool to save the

coverage data from KCOV. However, this operation is

not always reliable. When the kernel crashes, some cov-

erage can be lost. To improve this, SYMBISECT modifies

the kernel to record the KCOV buffer in a log upon a ker-

nel crash.

Refine guidance. The source code level guidance is gen-

erated using DWARF debug information, which may not

always be accurate. Specifically, compiler optimizations

(compiling the Linux kernel with -O0 is generally not

supported), e.g., function inlining, and reordering, can

lead to inaccuracies when mapping basic blocks in binary

instructions into their corresponding source code lines

with debug information – we find that the coverage of

many basic blocks can be lost. To mitigate such impact,

we implement an analysis of the basic blacks with the

control flow graph and the dominator tree. We recover

potentially lost basic block coverage under the following

two conditions: 1) Should a line within a BB be marked

as covered by a test case, it is necessary to mark all lines

within that same BB as covered as well. 2) In instances

where a covered BB is dominated by another BB (indi-

cating that it is invariably executed after the dominating

BB), it’s essential that the dominator BB is also marked

as covered.

5.2 Symbolic Detector

The types of vulnerabilities supported by SYMBISECT

are determined by symbolic engine and detectors.

SYMBISECT currently support bugs that exhibit out-of-

bound (OOB) memory access and use-after-free (UAF)

errors. This is because OOB/UAF vulnerabilities are the

ones that are generally considered more security-critical

and commonly exploited [57, 15, 48]. Note that the root

causes of these vulnerabilities can vary, e.g., the underly-

ing causes might be integer overflow and type confusion

but they exhibit OOB memory access as an error. Given

that syzbot categorizes vulnerabilities based on their se-

curity impact, we follow the same categorization. Cur-

rently, SYMBISECT has a few limitations: (1) it does

not support race condition bugs (that are not supported

by KLEE), and (2) it does not support bugs that require

reasoning across multiple syscalls (instead the detector

focuses on the last syscall that triggered the bug). Below,

we discuss some modifications made to KLEE to achieve

more accurate results.

Under constraint symbolic variables. We choose to

symbolize all variables without concrete values in static

environments, including global variables and arguments

of system calls. This approach allows us to explore a

broader range of potential execution paths during our

analysis.

Symbolic address. In its original form, KLEE does

not adequately support under-constrained symbolic ad-

dresses. When it encounters read/write operations to a

symbolic address, KLEE typically generates a specific

concrete address based on the current constraints.

The logic KLEE employs for dealing with under-

constrained symbolic addresses is not reliable, partic-

ularly when faced with a multitude of such addresses.

There might be instances where a symbolic address does

not map onto any existing object. In such cases, arbi-

trarily concretizing this address to an existing object and

proceeding with read/write operations can lead to incor-

rect outcomes.

Instead, we apply an improved mechanism in UCK-

LEE [18] to deal with symbolic addresses that have not

been encountered before. When attempting to write/read

to such a novel symbolic address, our system allocates a

new object. Besides that, we maintain mappings between

symbolic and concrete addresses. Therefore, subsequent

attempts to access the same symbolic address will, in re-

ality, be directed toward the corresponding concrete ob-

ject as per the mapping. This procedure ensures that

each symbolic address is consistently linked to a unique

concrete object, thereby improving the precision of read-

/write operations and overall analysis.

Symbolic size. The original way KLEE allocates a new

object with symbolic size is also not suitable for our sit-

uation. Specifically, if the size is symbolic, it generates

a specific concrete size, and then KLEE tries to half its

size until the size is no larger than a small constant (i.e.,

128 in KLEE v2.2).

In our under-constraint cases, it will result in many

objects with small sizes, such automatic concretization

may result in the inaccuracy of the results. For example,

if there is a path that can only be explored with a size

larger than the constant, it will always be skipped.

Instead, we implement a solution similar to the previ-

ous work[41] to handle this issue. We choose to track

the symbolic sizes. We allocate the object with a large

constant size in memory to make sure that the intended

access to the object won’t be missed and log the sym-

bolic size. When there is a check against the size of an

object, we always use the symbolic size.

Function modeling. To improve the scalability of sym-

bolic execution, we manually model more general library

functions belonging, such as strcpy(), malloc().

Vulnerability checker. The under-constraint nature of

our symbolic execution will introduce some false posi-

tives when asserting the presence of vulnerability logic.

To mitigate the problem, we concentrate on detecting

the vulnerability on the corresponding line (called tar-

get line) in the target version where the vulnerability is

triggered – we require the same line to be present in the

reference and target version.

Once reaching the target line, for each read/write oper-

ation, we extract the address (usually symbolic) and find

the corresponding object. If no corresponding object is

found (usually happens in UAF cases), instead of allocat-

ing new under-constrained memory, we report the vul-

nerability directly. Otherwise, SYMBISECT compares

the offset with the size of the object under current con-

straints. If the offset can be larger than the size (usually

happens in OOB cases), SYMBISECT reports the vulner-

ability and terminates the execution. Finally, if none of

these is detected, SYMBISECT keeps exploring various

execution paths until a time limit is reached or runs out

of paths to explore, leading to a negative result.

6 Evaluation

In this section, we evaluate SYMBISECT based on the

following three research questions.

• RQ1: How precisely does SYMBISECT identify the

vulnerable versions for a specific vulnerability? How

precisely does it determine the exact bug-inducing

commit? What factors influence the accuracy?

• RQ3: How effective is SYMBISECT, when com-

pared with state-of-the-art (PoC-based/patch-based)

bug-inducing commit identification methods?

• RQ4: How efficient is SYMBISECT in conducting its

analysis? Specifically, how does the provided guid-

ance/exploration strategy improve efficiency?

Evaluation Target and Vulnerability Dataset. We

assess SYMBISECT on Linux kernel bugs reported on

syzbot [22]. This choice is made due to several fac-

tors. First, syzbot is among the earliest and most ma-

ture continuous fuzzing platforms and the Linux kernel

is among the most popular open source software. Sec-

ond, the Linux kernel is the largest software that is being

continuously fuzzed today. Third, there are a variety and

a large number of bugs reported on syzbot continuously,

which require bisection. Specifically, in our evaluation,

we utilize SYMBISECT to conduct bisection on the Linux

mainline branch. We believe our solution generalizes be-

yond the Linux kernel as it is likely more complex than

most other software.

We consider adding support for other types an impor-

tant but orthogonal exercise (see discussion in §7). As

mentioned, SYMBISECT currently supports bugs that ex-

hibit OOB and UAF impact (and no race conditions in-

volved). Therefore, we randomly sampled 50 bugs from

syzbot reports that meet the following requirements: 1)

reported in the last 4 years. 2) labeled to have OOB or

UAF impact. 3) not race conditions (which our symbolic

detector currently does not support). 4) with PoCs and

the bugs can be reproduced. 5) the corresponding patch

has a “Fixes:” tag (to be explained below).

A “Fixes:” tag is included in a patch that points to one

or more previous commits that are considered to intro-

duce the corresponding bug. We treat it as the ground

truth because we verified that they are consistent with

our definition of bug-inducing commits (see later for

“ground truth verification”). Note that SYMBISECT does

not require the presence of a “Fixes:” tag to operate; we

choose such bugs to merely simplify the evaluation pro-

cess.

For each vulnerability, our tool begins with the re-

leased vulnerable version and inspects every major re-

lease version (e.g., v5.10) until the oldest version, v4.20,

in our dataset. Versions prior to v4.20 present compat-

ibility issues with the Clang/LLVM toolchain. While

more engineering work might address this, it diverts from

our primary focus. If the released vulnerable version

is not on the Linux mainline branch, we find the cor-

responding commit (with the same Linux kernel ver-

sion) as the starting point on the mainline. In total, our

dataset consists of 645 bug-version pairs. We will de-

termine whether each version is affected by a bug (vul-

nerable vs. non-vulnerable). We evaluate the accuracy

of SYMBISECT against these bug-version pairs. Subse-

quently, to evaluate bug-inducing commit identification,

we retained the bugs introduced after v4.20 (32 in to-

tal): SYMBISECT employs a binary search between the

latest non-vulnerable version and version on which the

bug was reported by syzbot to pinpoint the exact bug-

inducing commit.

All experiments are conducted in Ubuntu-20.04 with

1TB memory and Intel(R) Xeon(R) Gold 6248 20 Core

CPU @ 2.50GHz * 2. For each bug-version pair, we allo-

cate a single CPU core for a maximum of 10,000 seconds

of symbolic execution.

Comparison Targets. We compare SYMBISECT with

the three following lines of work:

Tools TP FP TN FN Accuracy Precision Recall F-1 Score

SYMBISECT 237 29 348 31 90.7% 89.1% 88.4% 88.7%

Syzbot(PoC) 146 27 350 122 76.9% 84.4% 54.5% 66.2%

V0Finder 138 0 377 130 79.8% 100.0% 51.5% 68.0%

VSZZ 250 145 232 18 74.7% 63.4% 93.3% 75.4%

Table 1: The results of vulnerable versions detection

Tools correct incorrect Accuracy

SYMBISECT 24 8 75%

Syzbot 16 16 50%

V0Finder 11 21 34.375%

VSZZ 18 14 56.25%

Table 2: The results of bug-inducing commit identifi-

cation

• PoC-based bisection. Syzbot bisects bugs with PoCs

to find the commit that introduced the bug [3]. We

employ a crawler to directly retrieve results from the

website. In instances where bisection results are un-

available, we execute the PoC on the target kernels to

get the results.

• Patch-based bisection with SZZ algorithm. As

described in §2.2, this line of research assesses

vulnerability-(un)affected versions by locating the

vulnerability-introducing commit with SZZ and its

variants. In this line of work, VSZZ [12] is the state-

of-the-art tool and it’s open source. We set up VSZZ

with their default options according to the tutorials[6].

• Patch-based bisection with vulnerable code clone de-

tection. These methods are based on code similarity

comparison. V0Finder [45] is a recent vulnerable code

clone detector that is used to discover the first ver-

sion where a vulnerability is introduced. We set up

V0Finder with their default options according to the

tutorials[5].

Evaluation metrics. For the evaluation of determining

the vulnerable versions for a specific vulnerability, for

each bug-version pair, we will get a verdict as true pos-

itives (TP), true negatives (TN), false positives (FP), or

false negatives (FN). Then we calculate the correspond-

ing accuracy, precision, recall, and F1 score. For pin-

pointing the precise bug-inducing commit, we received a

binary result (either identifying the correct bug-inducing

commit or not) from which we calculated the accuracy.

Ground truth verification. To ensure that the “Fixes:”

tag is consistent with the bug-inducing commit we de-

fined, we carried out the following verification for all

such tags in our dataset: 1) If the PoC triggers the re-

ported bug in the target version, then that version is

deemed vulnerable. 2) If the path from the entry function

to the target line is absent in the target version (for exam-

ple, if the target function or line does not exist), then it

is considered not vulnerable. 3) For versions that cannot

be verified through the previous two steps, we manually

analyze the logic of the vulnerability to determine if it

exists in the target version.

After the verification, we found that the vast majority

of “fixes” tags are consistent with the bug-inducing com-

mit we defined. The only exception was a vulnerability

introduced by two adjacent commits. The first commit

defined a function related to the vulnerability, and the

second introduced the caller of this function. According

to our definition, the second is the bug-inducing com-

mit, but the “fixes” tag pointed to the first. Interestingly,

we noted that these two adjacent commits were merged

into the Linux mainline branch together in a single merge

commit, thus not affecting our evaluation results.

6.1 Accuracy of SYMBISECT (RQ1)

Accuracy of vulnerable version detection. As shown

in Table 1, SYMBISECT achieves an overall accuracy

of 90.7% over 645 versions, higher than all existing

tools. Note that this evaluation is performed on a per-

bug-version-pair basis.

Accuracy of bug-inducing commit identification. Ta-

ble 2 shows the results of bug-inducing commit identi-

fication, SYMBISECT outperformed all the other cases

with an accuracy of 75%. The reason the accuracy is

lower (than vulnerable version detection) is that it aggre-

gates the results from all kernel versions for a single bug.

For example, if the vulnerability was introduced in v5.3,

we might correctly label v5.4 as vulnerable; however, if

we mistakenly labeled v5.3 as non-vulnerable, then we

still will end up with an incorrect bisection result for the

specific bug (FN). Upon manual inspection, we discov-

ered that among these eight cases of inaccuracy, five were

due to FPs, and three resulted from FNs.

False positives in SYMBISECT. SYMBISECT has 29

false positives (misidentifying non-vulnerable versions

as vulnerable). The FPs generated by SYMBISECT

tool arise from the intrinsic characteristics of under-

constrained symbolic executions. For example, global

variables are symbolized in our approaches, allowing the

constraints to represent them as potentially holding any

101 102 103 104

Number of commits between
non-vulnerable and released vulnerable version

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Correct-allcommits
Correct-relevantcommits
Incorrect-allcommits
Incorrect-relevantcommits

Figure 4: Comparison of commit number between

correct and incorrect cases

value of the specified type. However, such a variable

could be hard-coded somewhere that symbolic execution

cannot access. Consequently, such under-constraining

can lead to SYMBISECT concluding infeasible behaviors

in practice.

As an example false positive, we find an OOB bug that

arises from a lack of checks against socket types. In the

kernel, different types of sockets possess different sizes.

The mappings between the socket type and the corre-

sponding structure sizes are stored as global variables in

the kernel, which are symbolized in our detectors. When

under-constrained, the symbolized mapping can produce

any sizes from a given socket type, leading to false posi-

tives.

False negatives in SYMBISECT. Our evaluation records

31 false negatives (misidentifying vulnerable versions as

non-vulnerable). The primary cause of FNs is the scala-

bility issue. Certain vulnerabilities can be triggered only

via a specific path, which might not be covered in the

symbolic execution due to the time threshold, despite our

effort to apply principled guidance during exploration.

Moreover, the guidance may not be complete due to dif-

ferences between the reference and target versions. If the

symbolic execution lacks accurate guidance, it is likely

to encounter scalability issues due to the complexity of

kernels.

An example of this challenge occurs when a vulnera-

bility site is influenced by a check against a pivotal vari-

able. The vulnerability can be triggered only when this

variable is set to a particular value in preceding functions.

Yet, the distance between this value assignment and the

condition check is substantial, with many functions with

many state forks interspersed. Even with our guidance,

satisfying such a nuanced condition in a limited time to

activate the vulnerability proves challenging, resulting in

false negatives.

Factors that influence accuracy. We hypothesize there

are certain factors that affect the bisection accuracy. For

instance, a plausible factor is the distance between the

bug-inducing commit and the commit on which the bug

is discovered. This is because the farther away the two

commits are, the more changes may occur to the under-

lying bug-triggering condition.

To evaluate the distance factor, we counted the total

number of commits between the released vulnerable ver-

sion and the non-vulnerable version (the version before

the bug-inducing commit) on the Linux mainline branch.

Note that on the Linux mainline branch, a merge commit

may combine updates from multiple commits on other

branches, and we did not break down this merge com-

mit to recount the number of commits. Another variation

of the distance factor is to count only the “relevant com-

mits” — commits that modify the files within the call

stack responsible for triggering the bug — between the

vulnerable and non-vulnerable versions.

We investigated the two aforementioned factors, and

the results are presented in Figure 4. Contrary to our

expectations, there appears to be little correlation be-

tween the two distance metrics and the accuracy of bi-

section in our dataset. Specifically, as illustrated in

the figure, 37.5% (3 out of 8) of the incorrect cases

(Incorrect-all commits) had very limited space (fewer

than 10 commits in total) between bug-inducing com-

mit and vulnerability-finding commit. This proportion is

close to that of the correct cases (Correct-all commits),

where 41.7% (10 out of 24) also had limited space.

We analyzed bugs that have more than 100 “rele-

vant commits” (i.e., with large distances), which con-

stitutes 14 bugs in total. The accuracy of SYMBISECT

was 71.4% (10 out of 14). In general, we find that our

method is effective in eliminating the influences of un-

related code changes. Even if those commits modified

files included in the call stack (or even directly modified

the corresponding functions), as long as they do not af-

fect the existence of the vulnerability logic, our symbolic

execution-based methods often can exclude their impact

on the results.

6.2 Comparison (RQ3)

As shown in Table 1, SYMBISECT outperforms other

tools effectively. It achieves higher accuracy (90.7%

compared to the 77.1% average of preceding tools) and

higher F1 scores (88.7% as opposed to 69.8%) than

all previous tools. As expected, we observed that the

main reasons for inaccuracies in existing PoC-based

methods are the broken dynamical environment, inad-

vertent triggering of unrelated bugs, and evolving bug-

triggering conditions as the code progresses. The fail-

Reason FN FP
Solved

in SYMBISECT

Hard to reproduce 38 0 15

Detector not introduced 8 0 8

Build/boot errors 14 0 14

Config disabled 9 0 9

Trigger another bug 0 27 27

Over-constraint on inputs 53 0 53

Total 149 126

Table 3: The reasons of PoC-based method failed

ures of patched-based tools are due to their dependence

on unreliable syntactic information and only consider a

limited portion of bug-related code. In comparison, our

solution based on static symbolic reasoning aims to cap-

ture the logic of the specific vulnerability and extend its

scrutiny to a much broader context beyond the confines

of the patched function.

Improvements over syzbot bisection. Table 3 outlines

the reasons for the PoC-based method’s failures in our

dataset. The first five types are cited from the official

syzbot documentation[3], while the final reason, “over-

constraint” is a reason we observed. In fact, we find

that it is the most common reason for inaccuracies. No-

tably, SYMBISECT has effectively addressed 83% of the

inaccuracies associated with the PoC-based approach.

We will now detail the causes of each failure and how

SYMBISECT addressed them, as follows:

• Vulnerability with low probability of triggering. PoC-

based approach often struggles to reproduce bugs that

have a very low probability of triggering even in the re-

leased version that corresponds to the PoC. At present,

for every target version, syzbot conducts testing only

10 times [3]. It is probable that vulnerabilities may not

be triggered within these limited attempts. The under-

constraint feature of SYMBISECT enhances its capa-

bility to fulfill the preconditions necessary for trigger-

ing the bug. As a result, SYMBISECT yields accurate

results for 15 of the 38 cases within the given time

threshold.

• Detector not introduced. The PoC-based approach is

dependent on specific detectors, like the KASAN san-

itizer. Until these detectors are integrated into the ker-

nel, PoCs cannot detect vulnerabilities effectively. In

contrast, SYMBISECT is equipped with its own sym-

bolic execution detector, eliminating the need for re-

liance on sanitizers in the Linux kernel.

• Build/boot errors. As we discussed in §2, the static

feature of SYMBISECT bypasses the problem resulting

from kernel boot errors.

• Config disabled. As PoC-bisection goes back in time,

certain kernel configs may be forcefully disabled when

they conflict with the other config options. In contrast,

since our solution does not require the compilation of

the entire kernel, we can simply force other config

conflicts to be disabled and make sure the vulnerable

modules involved are compiled into LLVM bitcode for

our analysis.

• Accidental triggering of unrelated bugs. The PoC

has the potential to activate unrelated kernel bugs that

break the program. Current syzbot does not look at

the exact crash, nor does it attempt to distinguish be-

tween different types of crashes, leading to some FPs.

In contrast, our tool focuses on the specific bug only

upon reaching the target line (and analyze its associ-

ated operations). This allows us to effectively sidestep

this issue.

• Over-constraint on inputs. This is essentially due to

changes in the underlying bug-triggering conditions.

Executing the original PoC does not always activate

the bug in some vulnerable versions. Input muta-

tions become necessary under these circumstances.

The under-constrained symbolic execution approach

treats all potential entry function arguments and global

values comprehensively, effectively addressing these

false negatives.

Figure 5 presents an OOB vulnerability. Specifi-

cally, in function mpol parse str() if the str vari-

able starts with “=”, the flags variable will reference

the first byte of str. If a certain condition at line 2 is

met, the program skips to line 4. Here, a write opera-

tion occurs that exceeds the boundaries of str, leading

to an out-of-bounds write. The PoC-based syzbot bi-

section incorrectly pinpoints a bug-inducing commit

which modified the function shmem parse one—the

caller of the mpol parse str() function. Prior to

this misidentified commit, another check at line 8 was

in place against the opt variable. The initial PoC fails

this check, causing syzbot to label versions before this

commit as non-vulnerable. However, by using a dif-

ferent input that bypasses this check, the bug remains

exploitable. Instead, SYMBISECT symbolizes the in-

puts, making it easier to bypass such checks as long as

a feasible solution exist.

Improvements over V0Finder. V0Finder failed to dis-

cover 107 vulnerable versions out of 230 cases, result-

ing in a low recall of 46.5%. The main reason is that

V0Finder does a strict syntactic similarity comparison

for the whole function. Specifically, after normalization

and abstraction, it concludes that the target version is vul-

nerable only if the patch functions are strictly the same

as those in the released version. Thus it cannot detect

the vulnerable cases that are syntactically different, but

convey the same vulnerable functionality.

The incorrect Bug-inducing Commit
(Identified by Syzbot Bisection):

static int shmem_parse_one(...)

8 - else if (!strcmp(opt, "mpol")) {
 -
9 - if (mpol_parse_str(value, &ctx->mpol))

10+ if (IS_ENABLED(CONFIG_NUMA)) {
 +
11+ if (mpol_parse_str(param->string, &ctx->mpol))

The vulnerable function:
int mpol_parse_str(char *str,...)
1 char *flags = strchr(str, '=');
2 if(condition)
3 goto out

4 if (flags)
5 *flags++ = '\0';

out:
6 if (flags)
7 *--flags = '=';

Figure 5: Case study of syzbot FN

The incorrect Bug-inducing Commit
(Identified by V0Finder):

int qrtr_endpoint_post(...)

+ if (cb->type == QRTR_TYPE_NEW_SERVER) {
+ const struct qrtr_ctrl_pkt *pkt = data + hdrlen;
+ qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
+ }

 The Patch:
int qrtr_endpoint_post(...)
 struct qrtr_cb *cb;
1 - unsigned int size;
2 + size_t size;

3 if (len != ALIGN(size, 4) + hdrlen)
 goto err;

Figure 6: Case study of V0Finder FN

In Figure 6, we see an illustrative example. Here, a

4-byte size variable is prone to an overflow at line 3.

To address this, the patch modifies the variable’s size to

8 bytes. However, the bug-inducing commit pinpointed

by V0Finder is actually a feature enhancement commit,

unrelated to the vulnerability. This commit introduces

multiple lines into the patched function. Due to this,

V0Finder incorrectly designates all preceding versions as

non-vulnerable, leading to a multitude of false negatives.

SYMBISECT, instead of syntactic comparison, ex-

tracts accurate semantic information. Thus it can dis-

tinguish vulnerability-irrelevant changes from significant

changes effectively. Furthermore, it does not rely on

patches. Whether the patch changes a function or not

is irrelevant to SYMBISECT. As a result, SYMBISECT

can eliminate a large number of FN cases of V0Finder.

This significant advantage is largely due to the differing

 The incorrect Bug-inducing Commit：
 (initialize the file)
6 + TRACE("Block @ 0x%llx, %scompressed size %d\n", index,

 The Patch:
int squashfs_read_data(...)
1 - TRACE("Block @ 0x%llx, %scompressed size %d\n", index,
2 + TRACE("Block @ 0x%llx, %scompressed size %d\n", index - 2,

 compressed ? "" : "un", length);
 }

3 + if (length < 0 || length > output->length ||
 + (index + length) > msblk->bytes_used) {
4 + res = -EIO;
5 + goto out;
 + }

 The correct Bug-inducing Commit：
int squashfs_read_data(...)

7 TRACE("Block @ 0x%llx, %scompressed size %d\n", index,
 - compressed ? "" : "un", length);
8 - if (length < 0 || length > output->length ||
 - (index + length) > msblk->bytes_used)
9 - goto block_release;

Figure 7: Case study of VSZZ FP

foundational design principles of the two systems.

Improvements over VSZZ. VSZZ processes a patch as

input and identifies the vulnerability-introducing commit

by backtracing the patch’s deleted lines through the code

commit history to the earliest instance, facilitated by

line matching. The earliest commit where these deleted

lines were initialized is then marked as the commit that

induced the bug. When multiple deleted lines origi-

nate from different commits, VSZZ selects the earliest

of those commits as the bug-inducing commit. If the

patch does not have any deleted lines, VSZZ identifies

the commit that initialized the file mentioned in the patch

as the bug-inducing commit.

Figure 7 illustrates a typical scenario where the under-

lying assumption fails, leading to a false positive. The

deleted line 1 in the patch function is not created by the

vulnerability-inducing commit, leading to backtracing to

an earlier point. All commits situated between the com-

mit identified by VSZZ and the actual inducing commit

will be marked as FPs. In detail, the vulnerability was

brought into the codebase by a commit that removed a

certain validation check at line 8, then the vulnerabil-

ity was patched by putting the check back in. However,

the line they removed from the patch was just for log-

ging that is not really related to the vulnerability. VSZZ

traced this logging line back to when the whole function

was first added, resulting in some FPs.

Basically, the commit that introduces the vulnerability

may not alter the patch function at all, as demonstrated

in our motivating example. Even if it does alter the

patch function, it may not modify the deleted lines in the

patch, just as in the above example. Furthermore, even

Strategy Implementation

SYMBISECT Exploration + Indirect call + Stack + Path

Pure Exploration Exploration + Indirect call

Pure Re-tracing Indirect call + Stack + Path

Stack Exploration + Indirect call + Stack

Path Exploration + Indirect call + Path

Table 4: The relationship between strategy and guid-

ance

if the bug-introducing commit does change the deleted

lines, it may only modify them rather than create them.

In such cases, VSZZ may backtrace beyond the actual

bug-introducing commit. These factors contribute to 112

false positives, a significantly higher figure than those

seen with the other methods.

In contrast, our semantic method does not hinge on

such a strong assumption. The symbolic execution en-

gine accurately extracts semantic information, clarifying

their relationship with the vulnerability.

6.3 Scalability of Different Exploration

Strategies (RQ4)

To understand how the guidance helps with the overall

results, we conduct a comparative study against alterna-

tive strategies. Fundamentally, SYMBISECT balances the

exploration (i.e., allowing execution of the basic blocks

in the medium-priority list) with re-tracing (i.e., aligning

the execution trace with the one in the reference version).

Therefore, we consider the following strategies that fall

under various places in the spectrum: (1) pure explo-

ration without any re-tracing or guidance (no considera-

tion of basic block priorities), (2) pure re-tracing strictly

following path guidance (i.e., when a branch leads to a

high/highest priority exists, the other branches are pro-

hibited from execution), (3) exploration with call stack

guidance only. (4) exploration with path guidance only.

Table 4 shows the relationship between various strate-

gies and specific guidance. “Indirect call”, “Stack”, and

“Path” represent indirect call guidance, call stack guid-

ance, and path guidance, respectively. For strategies

with a combination of exploration and certain guidance,

we assign different priorities to different paths based on

guidance as defined in §4.1. In general, we prioritize the

execution of higher priority branches, and do not pro-

hibit the execution of branches unless the basic blocks

are marked as the lowest priority (which can never reach

the target line). In contrast, “Pure Re-tracing”, when one

branch leads to a high/highest priority basic block, the

execution of other branches is prohibited. For all strate-

gies, we employ the same entry function and target line

and activate the indirect call guidance to ensure a fair

comparison.

Results. The results are presented in Figure 8. The X-

101 102 103
Execution time until reach target line

in seconds(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SymBisect
Pure Exploration
Pure Re-tracing
Stack
Path

Figure 8: Scalability Evaluation

axis represents the symbolic execution time required to

reach the target line, while the Y-axis shows the percent-

ages of cases where the execution time falls within the

range [0, X]. We have the following observations:

We can see that SYMBISECT performs the best. Pure

re-tracing performs the worst, as it often fails to account

for changes in the underlying bug-triggering condition

and cannot reach the target line (e.g., the symbolic ex-

ploration is killed earlier than expected). Pure explo-

ration performs second to last because it has too many

execution paths to cover, resulting in path explosion. The

remaining two strategies with limited guidance perform

better than pure exploration but worse than SYMBISECT.

When comparing call stack guidance against path guid-

ance, we find that the former performs slightly better

than the latter. This is consistent with our strategy in

SYMBISECT where call stack guidance takes precedence

over path guidance. In other words, guiding the execu-

tion toward the target function is more aligned with the

end goal of reaching the target line of code.

7 Discussion

Exploration range. As discussed in §2, Relying

solely on patch functions presents inherent disadvan-

tages, prompting us to explore entire traces in order to

gather comprehensive information relevant to vulnera-

bilities within the program. However, these traces may

encompass thousands of functions, with the majority

of them unrelated to the vulnerability at hand. Conse-

quently, achieving a balance between scalability and ac-

curacy primarily relies on determining the appropriate

exploration range. While we employ specific heuristics

to limit the range, there is still room for a more system-

atic approach to this decision-making process. For ex-

ample, we envision one can apply static analysis (less

precise but more scalable) to identify the vulnerability-

related functions in advance, then skipping the unrelated

functions when applying symbolic execution. Develop-

ing such a solution would significantly improve our ca-

pability to identify and address vulnerabilities without

overwhelming our resources.

Support more bug types. The types of vulnera-

bilities supported by SYMBISECT depend on the sym-

bolic engine it is based on (currently KLEE) and the

detectors built on top of it (or provided by KLEE it-

self). SYMBISECT currently supports bugs that mani-

fest as OOB and UAF, including type confusion and in-

teger overflow bugs that manifest as OOB. There are a

few types of bugs that are interesting to support for fu-

ture improvements: (1) additional bug types such as use-

before-initialization [52], (2) bugs that require precise

reasoning across multiple syscalls, and (3) race condi-

tions bugs. For (1), it requires additional symbolic de-

tectors to recognize other bug types. For (2), symbolic

execution across multiple syscalls is feasible but presents

an additional scalability challenge. For example, in some

OOB cases, the allocation and use of the vulnerable ob-

ject occur in different system calls. Without analyzing

the allocation, the analysis of the subsequent syscall on

use will be under-constrained and therefore potentially

lead to false positives. This means we will need to first

collect the symbolic expression for the object size (in one

syscall), and then reason about whether the use can go

out-of-bounds (in another syscall). We envision an opti-

mization to terminate the symbolic execution of the al-

location syscall earlier, as soon as the object size info

is collected and leave other unexplored variables under-

constrained. For (3), there are specialized symbolic de-

tectors that can detect specific race condition bugs, e.g.,

multi-reads and double-fetch [50]. In the context of bi-

section, we envision that a more general approach is to

recognize the interleaving points [51] and record the de-

sired interleaving during the execution of the PoC in the

reference version and use it to guide the execution of the

target version.

Support bugs without PoCs. When a fuzzer discov-

ers bugs, it usually generates a corresponding PoC, but

there are exceptions. In some cases, syzakaller only pro-

duces a bug report. We wish to point out that our tool

does not necessarily have to rely on PoCs. Instead, as

long as we can obtain traces that trigger the vulnerability,

it would be sufficient to guide the symbolic execution.

For example, with hardware support (e.g., Intel Proces-

sor Trace [21]), we envision bug reports can be accom-

panied with corresponding control flow information.

8 Related Work

Under-constrained symbolic execution in OS kernels.

UCKLEE [33] represents the initial implementation of

an under-constrained symbolic execution virtual ma-

chine based on KLEE. It is primarily utilized for patch

verification as well as rule-based generalized checks,

encompassing areas such as memory leaks, uninitial-

ized data, and user input vulnerabilities. UBITect [52]

and IncreLux [53] utilize under-constrained symbolic

execution to identify feasible paths and mitigate false

positives in static analysis when detecting Use-Before-

Initialization (UBI) bugs. SID [46] aims to distinguish

security-related patches from other bug fixes, which is

different from our work. It attempts to set up a model for

several types of vulnerabilities with the help of under-

constraint symbolic execution, rather than simply ex-

tracting and comparing characteristics. Besides, previ-

ous studies that attempted to perform symbolic execution

on operating system kernels addressed the scalability is-

sues using the following methods: 1) Decrease the scope

of symbolic execution when analyzing operating system

kernels. For example, performing intra-procedural anal-

ysis on a specific function such as the patch function [54]

[46]. However, the approach may not be suitable for our

purposes. The existence of a vulnerability is not deter-

mined by a single function. 2) Concretizing symbolic

inputs and global variables [15, 48]. In our cases, it will

result in an over-constraint problem.

Dynamic vulnerable version identification. The infor-

mation about the affected versions of a vulnerability is

quite important [38]. Dai et al. [17] proposed a PoC mi-

gration approach that takes a PoC as input and migrates

the PoC to verify other affected versions. However, it

specifically targets user-space programs. Furthermore,

as demonstrated in § 6, over-constraint on inputs is only

one of the causes of failure.

Code clone detection. If two code fragments are highly

similar, with only minor modifications, or identical due

to copy-paste, then one fragment may be considered

a code clone of the other [55]. Code clone detec-

tion is widely used in software engineering tasks such

as program understanding, plagiarism detection, copy-

right infringement investigation, and code compaction

[8, 35, 36, 39, 20]. These techniques are designed to

detect general code clones with high accuracy and scal-

ability. However, they do not aim to precisely reason

about security properties of the code, which may be in-

fluenced by small changes while still preserving “sim-

ilarity”. In addition, vulnerable code clone detection

[26, 25, 14, 49, 56, 14, 45] usually perform code clone

detection on what they define as vulnerability-related

code (a few lines within the patch function or the entire

function, sometimes manually extracted [44]). However,

the lack of vulnerability logic reasoning makes them im-

precise, as demonstrated in our evaluation.

Information-retrieval-based bisection. Locus [43] was

the initial method to pinpoint bugs at the software change

level using token similarities from bug reports. Change-

Locator [47] determines Bug-Inducing Commit (BIC)

using crash call stack information. Orca [13] ranks com-

mits based on bug symptoms, like exception messages or

customer feedback. Bug2Commit [30] aggregates fea-

tures from bug reports and commit, averaging their vec-

tor representations. FONTE [10] identifies BIC via test

coverage. It ranks commits by the suspiciousness of their

modifications. Despite their scalability, these methods

fall short in accuracy. As mentioned in the Background

section, The state-of-the-art, Fonte, only reaches a 36%

accuracy rate.

9 Conclusion

The identification of vulnerable versions of Open Source

Software and pinpointing bug-inducing commits are cru-

cial for vulnerabilities uncovered through fuzzing. In

response to this, we introduce SYMBISECT, a precise

methodology grounded in symbolic analysis. The cen-

tral principle is that detailed symbolic information tends

to be more stable compared to both the original PoC and

syntactic similarity assessments during software evolu-

tion. Our experimental results confirm that SYMBISECT

not only significantly surpasses the existing PoC-based

approach in terms of accuracy, but also outperforms

methods that rely on patches. With the insights gained

from SYMBISECT about vulnerable versions, develop-

ers can precisely locate the bug-inducing commit. This

empowers them to address the potential threats brought

about by fuzzing vulnerabilities, thus promoting a more

secure software ecosystem.

Acknowledgment

We thank anonymous reviewers for their insightful com-

ments and suggestions. This work is supported by the

National Science Foundation under Grant #2155213,

#2247881 and a Google Gift.

References

[1] Linux Kernel Faces Reduction in Long-Term

Support Due to Maintenance Challenges. https:

//www.linuxjournal.com/content/linux-

kernel-reduction-longterm-support.

[2] SymBisect Source Code. https://github.com/

zhangzhenghsy/SymBisect.

[3] Syzbot Bisection. https://android.

googlesource.com/platform/external/

syzkaller/+/HEAD/docs/syzbot.md#

bisection.

[4] Syzbot Bisection Motivation. https:

//lore.kernel.org/all/CACT4Y+Y3nN=

nLEkHXLFcX7vxp_vs1JrD=8auJ3cX9we6TQHO+

w@mail.gmail.com/T/#u.

[5] V0Finder Source Code. https://github.com/

WOOSEUNGHOON/V0Finderpublic.

[6] VSZZ Source Code. https://figshare.com/

ndownloader/files/31748777.

[7] R. Abreu, F. Ivančić, F. Nikšić, H. Ravanbakhsh,

and R. Viswanathan. Reducing time-to-fix for

fuzzer bugs. In 2021 36th IEEE/ACM Interna-

tional Conference on Automated Software Engi-

neering (ASE), pages 1126–1130. IEEE, 2021.

[8] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and

B. Maqbool. A systematic review on code clone

detection. IEEE access, 7:86121–86144, 2019.

[9] N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube,

and M. Mühlhäuser. How long do vulnerabilities

live in the code? a {Large-Scale} empirical mea-

surement study on {FOSS} vulnerability lifetimes.

In 31st USENIX Security Symposium (USENIX Se-

curity 22), pages 359–376, 2022.

[10] G. An, J. Hong, N. Kim, and S. Yoo. Fonte: Find-

ing bug inducing commits from failures. In 2023

IEEE/ACM 45th International Conference on Soft-

ware Engineering (ICSE), pages 589–601. IEEE,

2023.

[11] C. Ascherm, S. Schumilo, T. Blazytko, R. Gawlik, ,

and T. Holz. Fuzzing with input-to-state correspon-

dence. NDSS, 2019.

[12] L. Bao, X. Xia, A. E. Hassan, and X. Yang. V-szz:

automatic identification of version ranges affected

by cve vulnerabilities. In Proceedings of the 44th

International Conference on Software Engineering,

pages 2352–2364, 2022.

[13] R. Bhagwan, R. Kumar, C. S. Maddila, and A. A.

Philip. Orca: Differential bug localization in

{Large-Scale} services. In 13th USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation (OSDI 18), pages 493–509, 2018.

[14] B. Bowman and H. H. Huang. Vgraph: A robust

vulnerable code clone detection system using code

property triplets. In 2020 IEEE European Sym-

posium on Security and Privacy (EuroS&P), pages

53–69. IEEE, 2020.

[15] W. Chen, X. Zou, G. Li, and Z. Qian. Koobe: To-

wards facilitating exploit generation of kernel out-

of-bounds write vulnerabilities. USENIX Security,

2020.

[16] D. E. Cristian Cadar, Daniel Dunbar. Klee: Unas-

sisted and automatic generation of high-coverage

tests for complex systems programs. USENIX

Symposium on Operating Systems Design and Im-

plementation (OSDI 2008) December 8-10, 2008,

San Diego, CA, USA.

[17] J. Dai, Y. Zhang, H. Xu, H. Lyu, Z. Wu, X. Xing,

and M. Yang. Facilitating vulnerability assessment

through poc migration. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Com-

munications Security, pages 3300–3317, 2021.

[18] D. E. David A Ramos. Under-constrained symbolic

execution: Correctness checking for real code.

USENIX Security, 2015.

[19] eng Chen and H. Chen. Angora: Efficient fuzzing

by principled search. In 2018 IEEE Symposium on

Security and Privacy (SP). IEEE, 2018.

[20] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi. Func-

tional code clone detection with syntax and seman-

tics fusion learning. In Proceedings of the 29th

ACM SIGSOFT international symposium on soft-

ware testing and analysis, pages 516–527, 2020.

[21] X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding

control flows using intel processor trace. In Pro-

ceedings of the Twenty-Second International Con-

ference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’17,

2017.

[22] Google. Google syzbot. https://syzkaller.

appspot.com/upstream/.

[23] Google. Google syzkaller. https://github.

com/google/syzkaller.

[24] Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian,

and A. A. Sani. Syzdescribe: Principled, auto-

mated, static generation of syscall descriptions for

kernel drivers. In 2023 IEEE Symposium on Se-

curity and Privacy (SP), pages 3262–3278. IEEE

Computer Society, 2023.

[25] J. Jang, A. Agrawal, and D. Brumley. Redebug:

finding unpatched code clones in entire os distribu-

tions. Oakland’12.

[26] S. Kim, S. Woo, H. Lee, and H. Oh. Vuddy: A scal-

able approach for vulnerable code clone discovery.

Oakland’17.

[27] X. Li, Z. Zhang, Z. Qian, T. Jaeger, and C. Song.

An investigation of patch porting practices of

the linux kernel ecosystem. arXiv preprint

arXiv:2402.05212, 2024.

[28] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu.

Vulpecker: an automated vulnerability detection

system based on code similarity analysis. AC-

SAC’16.

[29] K. Lu and H. Hu. Where does it go? refining

indirect-call targets with multi-layer type analysis.

In Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security,

pages 1867–1881, 2019.

[30] V. Murali, L. Gross, R. Qian, and S. Chandra.

Industry-scale ir-based bug localization: A per-

spective from facebook. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP),

pages 188–197. IEEE, 2021.

[31] H. Peng, Y. Shoshitaishvili, and M. Payer. Tfuzz:

fuzzing by program transformation. In IEEE Sym-

posium on Security and Privacy. IEEE, 2018.

[32] D. A. Ramos and D. Engler. Under-constrained

symbolic execution: Correctness checking for real

code. USENIX Security’15.

[33] D. A. Ramos and D. R. Engler. Under-constrained

symbolic execution: Correctness checking for real

code. In J. Jung and T. Holz, editors, 24th USENIX

Security Symposium, USENIX Security 15, Wash-

ington, D.C., USA, August 12-14, 2015, pages 49–

64. USENIX Association, 2015.

[34] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik,

A. Zaidman, D. M. Germán, and J. M. Gonzalez-

Barahona. How bugs are born: a model to iden-

tify how bugs are introduced in software compo-

nents. Empirical Software Engineering, 25:1294–

1340, 2020.

[35] C. K. Roy, J. R. Cordy, and R. Koschke. Compar-

ison and evaluation of code clone detection tech-

niques and tools: A qualitative approach. Science

of computer programming, 74(7):470–495, 2009.

[36] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and

C. V. Lopes. Sourcerercc: Scaling code clone de-

tection to big-code. In Proceedings of the 38th

international conference on software engineering,

pages 1157–1168, 2016.

[37] E. C. H. L. Seunghoon Woo, Hyunji Hong.

Movery: A precise approach for modified vulner-

able code clone discovery from modified open-

source software components. USENIX Security,

2022.

[38] Y. Shi, Y. Zhang, T. Luo, X. Mao, and M. Yang.

Precise (un) affected version analysis for web vul-

nerabilities. In 37th IEEE/ACM International Con-

ference on Automated Software Engineering, pages

1–13, 2022.

[39] G. Shobha, A. Rana, V. Kansal, and S. Tanwar.

Code clone detection—a systematic review. Emerg-

ing Technologies in Data Mining and Information

Security: Proceedings of IEMIS 2020, Volume 2,

pages 645–655, 2021.

[40] J. Śliwerski, T. Zimmermann, and A. Zeller. When

do changes induce fixes? ACM sigsoft software

engineering notes, 30(4):1–5, 2005.

[41] D. Trabish, S. Itzhaky, and N. Rinetzky. A

bounded symbolic-size model for symbolic execu-

tion. In D. Spinellis, G. Gousios, M. Chechik, and

M. D. Penta, editors, ESEC/FSE, pages 1190–1201.

ACM, 2021.

[42] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krish-

namurthy, and N. Abu-Ghazaleh. Syzvegas: Beat-

ing kernel fuzzing odds with reinforcement learn-

ing. USENIX Security, 2021.

[43] M. Wen, R. Wu, and S.-C. Cheung. Locus: Locat-

ing bugs from software changes. In Proceedings

of the 31st IEEE/ACM International Conference on

Automated Software Engineering, pages 262–273,

2016.

[44] S. Wi, S. Woo, J. J. Whang, and S. Son. Hid-

dencpg: large-scale vulnerable clone detection us-

ing subgraph isomorphism of code property graphs.

In Proceedings of the ACM Web Conference 2022,

pages 755–766, 2022.

[45] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich.

V0finder: Discovering the correct origin of pub-

licly reported software vulnerabilities. In USENIX

Security Symposium, pages 3041–3058, 2021.

[46] Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely

characterizing security impact in a flood of patches

via symbolic rule comparison. NDSS, 2020.

[47] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang.

Changelocator: locate crash-inducing changes

based on crash reports. Empirical Software Engi-

neering, 23:2866–2900, 2018.

[48] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and

W. Zou. {FUZE}: Towards facilitating exploit gen-

eration for kernel {Use-After-Free} vulnerabilities.

In 27th USENIX Security Symposium (USENIX Se-

curity 18), pages 781–797, 2018.

[49] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li,

B. Liu, Y. Liu, W. Huo, W. Zou, et al. {MVP}:

Detecting vulnerabilities using {Patch-Enhanced}
vulnerability signatures. In 29th USENIX Security

Symposium (USENIX Security 20), pages 1165–

1182, 2020.

[50] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim.

Precise and scalable detection of double-fetch bugs

in os kernels. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 661–678. IEEE, 2018.

[51] T. Yavuz. Sift: A tool for property directed sym-

bolic execution of multithreaded software. In 2022

IEEE Conference on Software Testing, Verification

and Validation (ICST), pages 433–443, 2022.

[52] Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song,

Z. Qian, M. Lesani, S. V. Krishnamurthy, and P. L.

Yu. Ubitect: a precise and scalable method to de-

tect use-before-initialization bugs in linux kernel.

In ESEC/FSE, pages 221–232. ACM, 2020.

[53] Y. Zhai, Y. Hao, Z. Zhang, W. Chen, G. Li,

Z. Qian, C. Song, M. Sridharan, S. V. Krish-

namurthy, T. Jaeger, and P. L. Yu. Progressive

scrutiny: Incremental detection of UBI bugs in the

linux kernel. In 29th Annual Network and Dis-

tributed System Security Symposium, NDSS 2022,

San Diego, California, USA, April 24-28, 2022.

The Internet Society, 2022.

[54] H. Zhang and Z. Qian. Precise and accurate patch

presence test for binaries. USENIX Security, 2018.

[55] H. Zhang and K. Sakurai. A survey of software

clone detection from security perspective. IEEE

Access, 9:48157–48173, 2021.

[56] D. Zou, H. Qi, Z. Li, S. Wu, H. Jin, G. Sun,

S. Wang, and Y. Zhong. Scvd: A new semantics-

based approach for cloned vulnerable code detec-

tion. In DIMVA, pages 325–344. Springer, 2017.

[57] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian.

{SyzScope}: Revealing {High-Risk} security im-

pacts of {Fuzzer-Exposed} bugs in linux kernel. In

31st USENIX Security Symposium (USENIX Secu-

rity 22), pages 3201–3217, 2022.

