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Abstract

This paper considers the problem of offline optimization, where the objective
function is unknown except for a collection of “offline" data examples. While
recent years have seen a flurry of work on applying various machine learning
techniques to the offline optimization problem, the majority of these works focused
on learning a surrogate of the unknown objective function and then applying exist-
ing optimization algorithms. While the idea of modeling the unknown objective
function is intuitive and appealing, from the learning point of view it also makes
it very difficult to tune the objective of the learner according to the objective of
optimization. Instead of learning and then optimizing the unknown objective func-
tion, in this paper we take on a less intuitive but more direct view that optimization
can be thought of as a process of sampling from a generative model. To learn an
effective generative model from the offline data examples, we consider the standard
technique of “re-weighting", and our main technical contribution is a probably
approximately correct (PAC) lower bound on the natural optimization objective,
which allows us to jointly learn a weight function and a score-based generative
model from a surrogate loss function. The robustly competitive performance of the
proposed approach is demonstrated via empirical studies using the standard offline
optimization benchmarks.

1 Introduction

Offline optimization refers to the problem of optimizing an unknown real-valued objective function f
based only on a collection of “offline" data examples (xi, f(xi)), ∀i ∈ [m] := {1, 2, . . . ,m}, where
each xi is an independent sample drawn from an unknown distribution pdata. Aside from these
examples, no additional information on the objective function f is available prior to or during the
optimization process, and hence the name “offline optimization". This rather restrictive setting is
particularly relevant to the optimization scenarios where: i) the objective function is very complex
and no structural information is available; and ii) querying the objective function is very expensive.
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Figure 1: Function vs. distribution modeling for offline optimization.

Obviously, offline optimization is a more challenging setting than standard optimization [6], where
full structural information on the objective function is available; or black-box optimization [5], where
even though no structural information on the objective function is available, the objective function can
be queried upon during the optimization process. Therefore, instead of aiming at the global optima,
for offline optimization we are usually satisfied with finding a few candidates, among which there are
significantly better 2 solutions than the existing offline observations. Under this lesser objective, a
direct application of offline optimization is experimental design, for which the candidates are to be
efficiently found without querying objective functions through experiments that are often slow or
expensive. Applications in the literature include the design of proteins [32], chemical molecules [21],
DNA sequences [29], aircraft [25], robots [39], and hardware accelerators [37].

Related work. Traditionally, offline optimization has been mainly approached through the Bayesian
view, i.e., by endowing the unknown objective function f a prior distribution. This has led to a large
body of work under the name Bayesian optimization; see Fu and Levine [19] and the references therein
for the recent progress in this direction. Motivated by the rapid progress in machine learning, recent
years have also seen a flurry of work on offline optimization from a frequentist’s view [11, 22, 35, 45],
i.e., by modeling the objective function f as a deterministic but unknown function. However, most of
these works have been focusing on learning a surrogate of the unknown objective function and then
applying existing optimization algorithms (see “Function Modeling” in Figure 1). Prime examples
include Trabucco et al. [45], Brookes et al. [11], Gupta and Zou [22], Chen et al. [14].

While the idea of modeling the unknown objective function is intuitive and appealing, from the
learning point of view it also makes it very difficult to tune the objective of the learner according
to the objective of optimization [45, 11, 22]. As a result, it is very difficult to gauge whether these
previous approaches actually come with any theoretical guarantees.

Main contribution. Figure 1 illustrates the key differences between function modeling and distribu-
tion modeling for offline optimization. In sharp contrast to function modeling, our approach does not
explicitly learn a surrogate of the unknown objective function, but directly learns a generative model
3 from the offline examples using a theoretically-grounded surrogate of the natural optimization
objective: Jopt(θ) = Ex∼pθ [f(x)]. The main contribution can be summarized as follows:

We derive a PAC bound on the natural optimization objective, allowing the generative model and
weight function to be jointly learned from a surrogate loss function that aligns the learner’s and
optimization objectives.

2 The Method

In this paper we take on a less intuitive but more direct view of optimization and consider it as
a process of sampling from a generative model. There are two natural advantages to this view.
First, through sampling exploration is now intrinsic in the optimization process. Second, this view
allows us to shift our focus from modeling the objective function to modeling a target distribution.
Unlike learning a surrogate on the objective function, as we shall see, the objective of learning a
generative model can be naturally aligned with the objective of optimization, thus bringing theoretical
guarantees on the optimization performance.

More specifically, let pθ be a generative model from which sampling can produce, with high probabil-
ity, samples whose objective values are significantly better than the offline observations. Note that

2Throughout the paper, better or superior solutions refer to those with either larger or smaller objective values,
depending on whether the goal of optimization is maximizing or minimizing the objective function.

3We emphasize here that the idea of leveraging generative models for offline optimization is not entirely new,
e.g. Brookes et al. [11], Krishnamoorthy et al. [34, 33].

2



unlike the traditional generative models, whose purpose to generate samples that are “similar" to the
training examples, the goal of our generative model pθ is to generate samples with superior objective
values than the offline observations. Relative to the data-generating distribution pdata, these targeted
samples with superior objective values are the “outliers". Therefore, from the learning perspective,
our main challenge here is to learn a generative model that generates outliers rather than the norm.

2.1 Learning a Generative Model with a Pre-selected Normalized Weight Function

To facilitate the learning of a desired generative model, in this paper we shall consider the standard
technique of “re-weighting" [12]. Roughly speaking, we shall consider a weight function that assigns
higher weights to the domain points with better objective values and then train a generative model
using the weighted offline examples. This allows us to tune the generative model towards generating
samples with better objective values.

Formally, let qtarget(x) := w̃(f(x)) · pdata(x) be a hypothetical target distribution, where w̃ is
a normalized, non-negative weight function such that Ex∼pdata [w̃(f(x))] = 1, and pdata is the
(unknown) data-generating distribution from which the offline observations x[m] := (xi : i ∈ [m])
were drawn. In our approach, the hypothetical target distribution qtarget plays dual roles: On one
hand, it serves as the hypothetical learning target of the generative model pθ; on the other hand, it is
also connected to the unknown data-generating distribution pdata via the normalized weight function
w̃ and hence allows a generative model pθ to be learned from the offline data examples. Operationally,
we would like to train a generative model pθ such that pθ ≈ qtarget. But what would be a suitable
choice for the normalized weight function w̃?

In this section, we shall focus on training a score-based model, which is mainly motivated by the
following connection between the score function of the hypothetical target distribution qtarget and the
gradient of the unknown objective function f :

starget(x) = ∇x log qtarget(x) = ∇x log [w̃(f(x))pdata(x)] = sdata(x) +
w̃

′
(f(x))

w̃(f(x))
∇xf(x),

where starget and sdata are the score functions of qtarget and pdata, respectively. If w̃ is monotone
increasing, the derivative w̃

′
(f(x)) > 0 for all x ∈ X . In this case, the score function starget is

aligned with the gradient of the objective function f , so sampling along the direction of starget will
naturally produce samples with high objective values.

In practice, the normalized weight function can be either pre-selected or learned from the offline data
examples. In the former case, as we have seen, the generative model pθ can be learned via a loss
function that is simply the weighted version of the loss function for training a standard generative
model. In the latter case, however, a priori, it is unclear how to construct a loss function that would
allow us to jointly learn a generative model pθ and a normalized weight function w̃.

2.2 Jointly Learning a Generative Model and a Normalized Weight Function

To address the above challenge, in this section we shall start with the following natural optimization
objective Jopt(θ) for identifying a desired generative model pθ. The above natural optimization
objective, however, cannot be evaluated for any θ, because the objective function f is unknown.
Instead of trying to learn a surrogate on f and then use it to guide the training of the generative model,
here we consider the more learning-theoretic approach of constructing a probably approximately
correct (PAC) [42] bound on Jopt. Unlike Jopt, which depends only on θ, the PAC bound depends on
both θ and the normalized weight function w̃. As we shall see, not only it captures both the utility
and learnability considerations for selecting w̃, it will also naturally suggest a surrogate loss function,
from which both a generative model pθ and a normalized weight function w̃ can be jointly learned
from the offline data examples.

To construct an appropriate loss function, let us assume without loss of generality that our goal of
optimization is to maximize an unknown objective function f . Our proposed loss function is based on
the following PAC lower bound on the natural optimization objective Jopt(θ):

Jopt(θ) ≥ Ĵx[m]
(w̃)︸ ︷︷ ︸

empirical utility

− c0K
√

L̂x[m]
(θ, w̃)︸ ︷︷ ︸

empirical weighted DSM loss

− c0K
√
2∆ 4

√
V̂x[m]

(w̃)︸ ︷︷ ︸
empirical variance

−

c1KW2(q̄target,N )− c0K
√

2R̂x[m]
(Θ)−O

(
1/ 8

√
m
)
. (1)

3



Table 1: Experimental results on the benchmark datasets [↑].

Supercond. TFBind8 GFP UTR Fluores. Ave.
Improv. #BestDbest 0.399 0.439 0.789 0.593 0.485

Grad 0.483±0.021 0.985±0.007 0.053±0.002 0.657±0.039 0.747±0.209 0.234 2/5
COMs 0.481±0.017 0.918±0.027 0.864±0.000 0.683±0.009 0.740±0.064 0.414 2/5
CbAS 0.491±0.028 0.868±0.076 0.864±0.000 0.659±0.009 0.574±0.020 0.320 0/5
ψ = 20 0.423±0.044 0.903±0.050 0.865±0.000 0.693±0.006 0.803±0.057 0.407 3/5
α = 0.25 0.537±0.045 0.941±0.034 0.865±0.000 0.693±0.013 0.809±0.078 0.485 4/5

Incorporating proper changes to the PAC lower bound (1) leads to the following objective for jointly
learning a (un-normalized) weight function wϕ and a score-function model sθt :

Jα,λ(θ, ϕ) =

1

m

m∑
i=1

wϕ(f(xi))f(xi)

Ẑϕ

− λ

√√√√ 1

m

m∑
i=1

wϕ(f(xi))ℓθDSM(xi)

Ẑϕ

− α
4

√√√√ 1

m

m∑
i=1

(
wϕ(f(xi))

Ẑϕ

− 1

)2

. (2)

Details regarding the PAC lower bound (1), the surrogate loss function (2), as well as the training
and sampling algorithms are elaborated in A.4, A.5, and A.6, respectively.

3 Experimental Results

We assess the performance of the proposed learning algorithm using the four standard tasks (Super-
conductor, TF Bind 8, GFP, and UTR) from the Design-Bench benchmark [46]. In addition, we have
included the “Fluorescence" task from Fannjiang et al. [18] for a comprehensive evaluation.

Evaluation. We generated a total of N = 128 designs for each task and subsequently computed
the mean and standard deviation of the 100th percentile of the normalized ground truth over eight
independent trials.

Results. The results are listed in Table 1, where Dbest denotes the normalized maximum objective
value among the initial samples; “Grad" and “COMs" refer to [45]; “CbAS" refers to [11]; “ψ = 20"
refers to our proposed approach with a pre-selected weight functionw(y) = exp(ψy) for ψ = 20; and
“α = 0.25" refers to our proposed approach with a learnable weight function and hyper-parameters
α = 0.25, λ = 0.1. Results that fall within one standard deviation of the best performance are
highlighted in bold.

Note that across all tasks, our proposed approaches demonstrate not only notable improvement
over the best initial samples, but also consistently competitive performances against the other three
prominent offline optimization algorithms. Quantitatively, our proposed approach with a learnable
weight function achieves the highest average improvement over all five tasks, where the improvement
over a specific task is defined as (y − Dbest)/Dbest. We believe that this superior consistency is
rooted in our modeling perspective and the theoretically-grounded design of the learning algorithm.

4 Conclusion

In this paper, we introduced a novel generative approach to offline optimization by shifting the focus
from traditional function modeling to distribution modeling. This approach leverages the concept
of sampling from a generative model rather than optimizing a surrogate of the unknown objective
function. We proposed a PAC-bound framework that enables the joint learning of a generative
model and a weight function, ensuring that the learning process is aligned with the optimization
goals. Our empirical results, validated on standard offline optimization benchmarks, demonstrate
the robustness and competitive performance of the proposed method. Future research could explore
further refinements of the PAC-bound framework and its applications to more diverse optimization
problems.
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List of Symbols

The next list describes several symbols that are used within the entire body of the paper.

α, λ Hyper-parameters (learnable case)
ℓDSM Denoising score matching loss function

R̂ Rademacher complexity
Dbest Maximum objective value within the offline dataset
N Normal distribution
pdata Data-generating distribution
ψ Hyper-parameter (pre-selected case)
qtarget Target distribution (hypothetical)
w̃ Normalized weight function
x Domain point, Design or Feature vector
x[m] A set of offline domain points {x1,x2, . . . ,xm}
xi Offline domain point
f Unknown objective function
f(xi) Offline objective value
fθ Parameterized surrogate objective function
Jopt Natural optimization objective
pθ Parameterized generative model
wϕ Parameterized weight function (unnormalized)
Wp p-Wasserstein distance
y Objective value, Label or Score

9



A Technical Details

A.1 The denoising diffusion probabilistic model (DDPM)

For score-based generative models, we are particularly interested in the denoising diffusion proba-
bilistic model (DDPM) [44, 24] due to its stability and performance on high-dimensional datasets.
Below we first recall a few essential results on the DDPM.

Consider a forward process of continuously injecting white Gaussian noise into a signal xt:

dxt = −
1

2
β(t)xtdt+

√
β(t)dwt, t ∈ [0, 1], (3)

where β : [0, 1]→ R++ is a positive noise scheduler, wt is a standard Wiener process [28], and time
in this process is assumed to flow in the forward direction from t = 0 to t = 1. Denote by qt the
marginal distribution of xt from the forward process (3). The DDPM is mainly motivated by the fact
that the marginal distributions qt, t ∈ [0, 1], can be recovered through the following reverse process
[3]:

dxt = −β(t)
(
1

2
xt + sθt (xt)

)
dt+

√
β(t)dw̄t, (4)

where sθt is a model of the score function of qt and w̄t is (again) a standard Wiener process but with
time flowing backward from t = 1 to t = 0. More specifically, let p1 be the initial distribution of x1

from the reverse process (4) and let pθt be the marginal distribution of xt, t ∈ [0, 1) from the reverse
process (4). If we let p1 = q1 and sθt be the exact score function of qt for all t ∈ [0, 1], we have
pθt = qt for all t ∈ [0, 1) [10]. In particular, the initial distribution of the forward process q0 can be
recovered at the end of the reverse process via the score functions of qt, t ∈ [0, 1]. Thus, to learn the
initial distribution of the forward process q0, it suffices to learn a model sθt that approximates the
score functions of qt for all t ∈ [0, 1].

There are several methods [26, 48, 43] that allow a model sθt to be learned from a training dataset
drawn from q0. Here we focus on the denoising score matching (DSM) method due to its scalability
to large datasets. For the DSM method, a model sθt is learned by minimizing the following DSM loss:

LDSM(θ; q0) := Ex∼q0
[
ℓθDSM(x)

]
, (5)

where

ℓθDSM(x) :=

∫ 1

0

λ(t)Ez∼N (0,I)

[∥∥∥∥sθt (xt) + z

σ(t)

∥∥∥∥2
]
dt (6)

is the point-wise DSM loss, xt =
√

1− σ(t)2x + σ(t)z, λ : [0, 1] → R++ can be any positive

function, and σ(t) =
√
1− exp

[
−
∫ t
0
β(s)ds

]
.

While the previous DSM loss can be easily estimated from a dataset drawn from q0 and hence is very
conductive to learning, a priori it is unclear how it would connect to any generative loss between q0
and pθ0. Interestingly, it was shown in Theorem 2 and Corollary 3 of Kwon et al. [38] that under some
(relatively) mild conditions4 on β, q0, and sθ, by choosing λ(t) = β(t) we have

W2(q0, p
θ
0) ≤ c0

√
Ex∼q0

[
ℓθDSM(x)

]
+ c1W2(q1, p1), (7)

where W2(q, p) is the 2-Wasserstein distance [1] between the probability distributions q and p, and
c0 and c1 are constants that only depend on the choice of the noise scheduler β and some prior
knowledge on p0 and sθt but is independent of the model parameter θ. In Kwon et al. [38], this result
was coined as “score-based generative modeling secretly minimizes the Wasserstein distance".

4The readers are referred to Section 3.1 of Kwon et al. [38] for the assumptions under which the inequality
(7) holds.
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A.2 Weighted learning

To learn a generative model pθ ≈ qtarget, we shall let q0 = qtarget and p1 be the standard multivariate
Gaussian distribution N . If we denote q1 and pθ0 by q̄target and pθ respectively, by (7) we have

W2(qtarget, pθ) ≤ c0
√
Ex∼qtarget

[
ℓθDSM(x)

]
+ c1W2(q̄target,N ). (8)

We mention here that the output distribution of the forward process q̄target is potentially dependent on
the choice of w̃, even though this dependency is not explicit from the notation. In practice, however,
q̄target can be made very close to the standard multivariate Gaussian distributionN with an appropriate
choice of the noise scheduler β. Therefore, the Wasserstein distance W2(q̄target,N ) is very small and
is usually disregarded from the learning process.

To estimate the DSM loss Ex∼qtarget
[
ℓθDSM(x)

]
from the offline data examples, note that by the

definition of qtarget, we have

Ex∼qtarget
[
ℓθDSM(x)

]
= Ex∼pdata

[
w̃(f(x))ℓθDSM(x)

]
(9)

≈ 1

m

m∑
i=1

w̃(f(xi))ℓ
θ
DSM(xi), (10)

where (9) is also known as “re-weighting" or importance sampling [12]. By (8), minimizing the
empirical weighted DSM loss (10) can help to identify a generative model pθ ≈ qtarget for a
pre-selected normalized weight function w̃.

Finally, we note that scaling the normalized weight function w̃ does not change the optimal solution
that minimizes the empirical weighted DSM loss (10). Therefore, when using (10) to identify a
generative model pθ, one can use an un-normalized weight function instead of a normalized one.

A.3 Trade-off between utility and learnability

Intuitively, there are two considerations for selecting a normalized weight function w̃. On one hand,
from the utility point of view, we would like to choose w̃ such that the hypothetical target distribution
qtarget focuses most of its densities on the domain points with superior objective values. This can
be achieved, for example, by choosing w̃ to be heavily skewed towards superior objective values.
On the other hand, from the learning viewpoint, the generative model pθ is learned from the offline
observations, which were generated from the unknown data-generating distribution pdata. If w̃ is
chosen to be heavily skewed, the hypothetical target distribution qtarget then becomes very different
from the data-generating distribution pdata. In this case, learning the generative model pθ from the
offline data examples may be subject to very high sample complexity.

A.4 The main theorem

Our proposed loss function is based on the following PAC lower bound on the natural optimization
objective:

Jopt(θ) = Ex∼pθ [f(x)]. (11)

Theorem A.1. Assume that: i) the unknown objective function f is K-Lipschitz and satisfies
|f(x)| ≤ F for all x ∈ X ; ii) the generative model pθ is a DDPM; iii) the point-wise DSM loss ℓθDSM
satisfies 0 ≤ ℓθDSM(x) ≤ ∆ for all x ∈ X and all θ ∈ Θ; and iv) the conditions from Section 3.1 of
Kwon et al. [38] on the noise scheduler β, the data-generating distribution pdata, the normalized
weight function w̃, and the score-function model sθt are satisfied. Let W̃ be the collection of all
normalized weight functions w̃ that are L-Lipschitz and satisfy 0 ≤ w̃(y) ≤ B for any y ∈ [−F, F ].
With probability ≥ 1− δ, we have for any w̃ ∈ W̃ and any θ ∈ Θ,

Jopt(θ) ≥ Ĵx[m]
(w̃)︸ ︷︷ ︸

empirical utility

− c0K
√
L̂x[m]

(θ, w̃)︸ ︷︷ ︸
empirical weighted DSM loss

− c0K
√
2∆ 4

√
V̂x[m]

(w̃)︸ ︷︷ ︸
empirical variance

−

c1KW2(q̄target,N )− c0K
√
2R̂x[m]

(Θ)−O
(
1/ 8
√
m
)
, (12)
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where

Ĵx[m](w̃) =
1

m

m∑
i=1

w̃(f(xi))f(xi) (13)

is the empirical utility of w̃,

L̂x[m]
(θ, w̃) =

1

m

m∑
i=1

w̃(f(xi))ℓ
θ
DSM(xi) (14)

is the empirical weighted DSM loss of sθt ,

V̂x[m]
(w̃) =

1

m

m∑
i=1

(w̃(f(xi))− 1)
2 (15)

is the empirical variance of w̃,

R̂x[m]
(Θ) = Eσ[m]

[
sup
θ∈Θ

1

m

m∑
i=1

σiℓ
θ
DSM(xi)

]
(16)

is the empirical Rademacher complexity with respect to the parameter family Θ, and the last term
O (1/ 8

√
m) is independent of the model parameter θ and w̃.

The proof of the above theorem is long and technical and hence is deferred to next section to enhance
the flow of the paper. We mention here that the proof utilizes several key technical results including
the duality theorem of Kantorovich-Rubenstein [2] for the 1-Wasserstein distance [4], the fact that
“score-based generative modeling secretly minimizes the Wasserstein distance" [38], the Rademacher
bound for bounded functions [42], the Wasserstein contraction property [9], and the covering bound
for Lipschitz functions [47].

Note that to maximize the PAC lower bound (1), we need to simultaneously maximize the utility of w̃
and minimize the weighted DSM loss of sθt and the variance of w̃. Therefore, the PAC lower bound
(1) captures both the utility and learnability considerations for selecting a normalized weight function
w̃.

A.5 From PAC lower bound to surrogate loss function

To jointly learn a generate model pθ and a normalized function w̃, first note that the last two terms of
the PAC lower bound (1) are independent of θ and w̃ and hence can be ignored from the learning
objective. The forth term is due to the “initial" sampling error of the reverse process. As discussed
previously in Section A.2, while this term is potentially dependent on the normalized weight function
w̃, in practice it can be made very small by choosing an appropriate noise scheduler β and hence will
be ignored from our learning objective.

To make the first three terms learnable, we consider the following two modifications to the bound.

First, the coefficients c0K and c0K
√
2∆ in the second and the third term require some prior knowl-

edge on the unknown data-generating distribution pdata and the unknown objective function f . In
practice, we replace them by two hyper-parameters λ and α, respectively. We mention here that
the hyper-parameter α plays a particular important role in the learning objective, as it controls the
utility-learnability tradeoff for selecting a normalized weight function w̃.

Second, the weight function w̃ needs to be normalized with respect to the unknown data-generating
distribution pdata and the unknown objective function f . In practice, we let w̃(·) =

wϕ(·)
Zϕ

,
where wϕ is an un-normalized weight function parameterized by a second parameter ϕ, and
Zϕ = Ex∼pdata [wϕ(f(x))] is the normalizing constant. While the exact calculation of Zϕ again
requires the knowledge of pdata and f , in practice it can be easily estimated from the offline data
examples as Ẑϕ = 1

m

∑m
i=1 wϕ(f(xi)).

12



A.6 Algorithms

Algorithm 1 TRAINING

1: Input: Offline examples (xi, f(xi)); hyper-parameters α, λ; learning-rate parameters η1, η2.
2: General step:

3: ϕ0 ← argmaxϕ∈Φ

{
1
m

∑m
i=1

wϕ(f(xi))f(xi)

Ẑϕ
− α 4

√
1
m

∑m
i=1

(
wϕ(f(xi))

Ẑϕ
− 1

)2
}

▷ via GD

4: θ0 ← argminθ∈Θ

{
1
m

∑m
i=1 wϕ0

(f(xi)) · ℓθDSM(xi)
}

▷ via SGD
5: for k = 0 to K − 1 do
6: ϕk+1 ← ϕk + η1 · ∇ϕJα,λ(θk, ϕk) ▷ via GD

7: θk+1 ← θk − η2 · ∇θ
{

1
m

∑m
i=1 wϕk+1

(f(xi)) · ℓθkDSM(xi)
}

▷ via SGD
8: end for
9: Output: Model parameters (ϕ∗, θ∗) = (ϕK , θK).

Algorithm 2 SAMPLING/OPTIMIZATION

1: Input: Score function model sθ
∗

t (x), number of samples N , number of steps T , noise scheduler
parameters (βmin, βmax), and β̃(t) = 1

T

[
βmin + t

T (βmax − βmin)
]
.

2: General step:
3: Draw N samples x(1)

T ,x
(2)
T , . . . ,x

(N)
T

i.i.d.∼ N (0, I)
4: for n = 1 to N do
5: for t = T to 1 do
6: x

(n)
t−1 ←

(
2−

√
1− β̃(t)

)
· x(n)

t + 1
2 β̃(t) · s

θ∗

t/T (x
(n)
t )

7: end for
8: end for
9: Output: Optimized samples x(1)

0 ,x
(2)
0 , . . . ,x

(N)
0 .

B Proof of the Main Theorem

In this section, we introduce a few technical results, which will lead to the proof of the main theorem.

B.1 Wasserstein distance

Let µ and ν be two probability distributions on Rd. A coupling γ between µ and ν is a joint
distribution on Rd × Rd whose marginals are µ and ν. The p-Wasserstein distance between µ and ν
(with respect to the Euclidean norm) is given by [1]:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,x̃)∼γ [∥x− x̃∥p]

)1/p

, (17)

where Γ(µ, ν) is the set of all couplings between µ and ν, and ∥ · ∥ denotes the standard Euclidean
norm.

The 1-Wasserstein distance, also known as the earth mover’s distance, has an important equivalent
representation that follows from the duality theorem of Kantorovich-Rubenstein [2]:

W1(µ, ν) =
1

K
sup

∥f̃∥Lip≤K

{
Ex∼µ[f̃(x)]− Ex∼ν [f̃(x)]

}
, (18)

where ∥ · ∥Lip denotes the Lipschitz norm. In our construction, this dual representation of the 1-
Wasserstein distance serves as the bridge between the objective-specific generative loss and the
generic generative loss.
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By the standard Jensen’s inequality [16], we also have

W1(µ, ν) ≤W2(µ, ν) (19)

for any two distributions µ and ν. As we shall see, this simple relationship between the 1-Wasserstein
and 2-Wasserstein distances can help to further connect the objective-specific generative loss to the
DSM loss for training a score-based generative model.

B.2 Generalization bound for weighted learning

Let ℓθ : X → R be a bounded loss function parameterized by θ ∈ Θ such that 0 ≤ ℓθ(x) ≤ ∆
for all x ∈ X and all θ ∈ Θ. Consider the problem of estimating the expected weighted loss
Lp(θ, w̃) = Ex∼p[w̃(x)ℓθ(x)], where w̃ : X → R+ is a normalized, bounded weight function such
that Ex∼p[w̃(x)] = 1 and 0 ≤ w̃(x) ≤ B for all x ∈ X . We have the following PAC upper bound,
with respect to the parameter family Θ, on the expected weighted loss Lp(θ, w̃) for any given w̃.

Lemma B.1. For any given w̃, with probability ≥ 1− δ we have for any θ ∈ Θ

Lp(θ, w̃) ≤ L̂x[m]
(θ, w̃) + 2∆

√
V̂x[m]

(w̃) + 2R̂x[m]
(Θ) + 3

√
2B∆ log(2/δ)

m
, (20)

where L̂x[m]
(θ, w̃) = 1

m

∑m
i=1 w̃(xi)ℓθ(xi) is the empirical weighted loss over the training

dataset x[m], V̂x[m]
(w̃) = 1

m

∑m
i=1 (w̃(xi)− 1)

2 is the empirical variance of w̃ over x[m], and
R̂x[m]

(Θ) = Eσ[m]

[
supθ∈Θ

1
m

∑m
i=1 σiℓθ(xi)

]
is the empirical Rademacher complexity with re-

spect to the parameter family Θ over x[m].

Proof. By assumption, we have 0 ≤ w̃(x) ≤ B for any x ∈ X and 0 ≤ ℓθ(x) ≤ ∆ for any
x ∈ X and any θ ∈ Θ. It follows immediately that the weighed loss function w̃(x)ℓθ(x) satisfies
0 ≤ w̃(x)ℓθ(x) ≤ B∆ for any x ∈ X and any θ ∈ Θ. Applying the standard Rademacher bound
to the weighted loss function class (w̃(x)ℓθ(x) : θ ∈ Θ), with probability ≥ 1− δ we have for any
θ ∈ Θ

Ex∼pdata [w̃(x)ℓθ(x)] ≤ L̂x[m]
(θ, w̃) + 2R̂w̃

x[m]
(Θ) + 3

√
2B∆ log(2/δ)

m
, (21)

where L̂x[m]
(θ, w̃) = 1

m

∑m
i=1 w̃(xi)ℓθ(xi) is the empirical weighted loss over x[m], and

R̂w̃
x[m]

(Θ) = Eσ[m]

[
supθ∈Θ

1
m

∑m
i=1 σiw̃(x)ℓθ(xi)

]
is the empirical weighted Rademacher com-

plexity [42] with respect to the parameter family Θ over x[m]. The empirical weighted Rademacher
complexity R̂w̃

x[m]
(Θ) can be further bounded from above as:

R̂w̃
x[m]

(Θ) = Eσ[m]

[
sup
θ∈Θ

1

m

m∑
i=1

σi (w(xi)− 1 + 1) ℓθ(xi)

]

≤ Eσ[m]

[
sup
θ∈Θ

1

m

m∑
i=1

σi(w̃(xi)− 1)ℓθ(xi)

]
+ Eσ[m]

[
sup
θ∈Θ

1

m

m∑
i=1

σiℓθ(xi)

]
.(22)

Further note that

1

m

m∑
i=1

σi(w̃(xi)− 1)ℓθ(xi) ≤
√∑m

i=1(w̃(xi)− 1)2

m

√∑m
i=1 (σiℓθ(xi))

2

m

=

√∑m
i=1(w̃(xi)− 1)2

m

√∑m
i=1 ℓ

2
θ(xi)

m

≤ ∆

√∑m
i=1(w̃(xi)− 1)2

m

for any θ ∈ Θ and any realization of σ[m], where the first inequality follows from the standard Cauchy-
Schwarz inequality, the second equality follows from the fact that the square of a Rademacher variable
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takes a constant value of 1, and the last inequality follows from the assumption that 0 ≤ ℓθ(x) ≤ ∆
for any x ∈ X and any θ ∈ Θ. It follows immediately that

Eσ[m]

[
sup
θ∈Θ

1

m

m∑
i=1

σi(w̃(xi)− 1)ℓθ(xi)

]
≤ ∆

√∑m
i=1(w̃(xi)− 1)2

m
. (23)

Substituting (23) into (22) gives

R̂w̃
x[m]

(Θ) ≤ ∆
√
V̂x[m]

(w̃) + R̂x[m]
(Θ), (24)

where V̂x[m]
(w̃) = 1

m

∑m
i=1 (w̃(xi)− 1)

2 is the empirical variance of w̃ over x[m], and R̂x[m]
(Θ) =

Eσ[m]

[
supθ∈Θ

1
m

∑m
i=1 σiℓθ(xi)

]
is the empirical (un-weighted) Rademacher complexity with re-

spect to the parameter family Θ over x[m]. Substituting (24) into (21) completes the proof of (20)
and hence Lemma B.1.

The main insight from the above lemma is that the generalization error (with respect to the parameter
θ) between the expected weighted loss Lp(θ, w̃) and the empirical weighted loss L̂x[m]

(θ, w̃) can be
controlled by controlling the complexity of the model class Θ and the variance of the normalized
weight function w̃.

B.3 A distribution-dependent surrogate on the natural optimization objective

Proposition B.2. Assume that the unknown objective function f is K-Lipschitz and the generative
model pθ is a DDPM. Under the assumptions from Section 3.1 of Kwon et al. [38] on the noise
scheduler β, the data-generating distribution pdata, the normalized weight function w̃, and the
score-function model sθt , we have

Jopt(θ) ≥ Ex∼pdata [w̃(f(x))f(x)]︸ ︷︷ ︸
expected utility

− c0K
√
Ex∼pdata

[
w̃(f(x))ℓθDSM(x)

]︸ ︷︷ ︸
expected weighted DSM loss

−c1KW2(q̄target,N ),

(25)

where ℓθDSM is the point-wise DSM loss of sθt as defined in (6), q̄target is the output distribution of the
forward process (3), Φ is the standard Gaussian distribution, and c0 and c1 are constants that are
independent of the model parameter θ and w̃.

Proof. We start by writing Jopt(θ) as:
Jopt(θ) = Ex∼qtarget [f(x)]−

{
Ex∼qtarget [f(x)]− Ex∼pθ [f(x)]

}
. (26)

By the definition of qtarget:
qtarget(x) := w̃(f(x)) · pdata(x), (27)

we have
Ex∼qtarget [f(x)] = Ex∼pdata [w̃(f(x))f(x)] . (28)

Furthermore,

Ex∼qtarget [f(x)]− Ex∼pθ [f(x)] ≤ sup
∥f̃∥Lip≤K

{
Ex∼qtarget [f̃(x)]− Ex∼pθ [f̃(x)]

}
(29)

= K ·W1(qtarget, pθ), (30)
where the first inequality follows directly from the assumption that f is K-Lipschitz, and the second
equality follows from the dual representation (30) of the 1-Wasserstein distance.

Under the assumption that pθ is a DDPM, we can further bound the 1-Wasserstein distance
W1(qtarget, pθ) as:

W1(qtarget, pθ) ≤W2(qtarget, pθ) ≤ co
√
Ex∼pdata

[
w̃(f(x))ℓθDSM(x)

]
+ c1W2(q̄target,N ), (31)

where the first inequality follows from (19), and the second inequality follows from (8) and the
definition of qtarget in (27).

Substituting (28), (30), and (31) into (26) completes the proof of (25).

Next, we shall convert the distribution-dependent surrogate on the right-hand side of (25) into a PAC
lower bound using the standard complexity theory.
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B.4 Proof of Theorem A.1

For the proof, we shall write qtarget and q̄target as qw̃target and q̄w̃target respectively, to emphasize their
dependencies on the normalized weight function w̃. Let us first recall from Proposition B.2 that the
natural optimization objective Jopt(θ) can be bounded from below as:

Jopt(θ) ≥ Ex∼pdata [w̃(f(x))f(x)]− c0K
√
Ex∼pdata

[
w̃(f(x))ℓθDSM(x)

]
− c1KW2(q̄

w̃
target,N ).

(32)
To turn the right-hand side into a PAC lower bound on Jopt(θ), let us first fix a normalized weight
function w̃ ∈ W̃ .

Given w̃, let us first apply the standard Hoeffding’s inequality to obtain a concentration lower
bound on the expected utility Ex∼pdata [w̃(f(x))f(x)]. More specifically, by assumption we have
|f(x)| ≤ F for any x ∈ X and 0 ≤ w̃(y) ≤ B for any y ∈ [−F, F ]. It follows that the weighed
objective function w̃(f(x))f(x) satisfies |w̃(f(x))f(x)| ≤ BF for any x ∈ X . By Hoeffding’s
inequality, with probability ≥ 1− δ′/2 we have

Ex∼pdata [w̃(f(x))f(x)] ≥ Ĵx[m](w̃)−
√
BF log(2/δ′)

m
, (33)

where Ĵx[m](w̃) = 1
m

∑m
i=1 w̃(f(xi))f(xi) is the empirical utility of w̃. Next by Lemma (B.1),

with probability ≥ 1− δ′/2 we have for any θ ∈ Θ

Ex∼pdata
[
w̃(f(x))ℓθDSM(x)

]
≤ L̂x[m]

(θ, w̃) + 2∆
√
V̂x[m]

(w̃) + 2R̂x[m]
(Θ) + 3

√
2B∆ log(4/δ′)

m
and hence√

Ex∼pdata
[
w̃(f(x))ℓθDSM (x)

]
≤

√
L̂x[m]

(θ, w̃) + 2∆
√
V̂x[m]

(w̃) + 2R̂x[m]
(Θ) + 3

√
2B∆ log(4/δ′)

m

≤
√
L̂x[m]

(θ, w̃) +
√
2∆ 4

√
V̂x[m]

(w̃) +
√

2R̂x[m]
(Θ) +

4

√
18B∆ log(4/δ′)

m
, (34)

where L̂x[m]
(θ, w̃) = 1

m

∑m
i=1 w̃(xi)ℓ

θ
DSM(xi) is the empirical weighted DSM loss of sθt over x[m],

V̂x[m]
(w̃) = 1

m

∑m
i=1 (w̃(xi)− 1)

2 is the empirical variance of w̃ over x[m], and R̂x[m]
(Θ) =

Eσ[m]

[
supθ∈Θ

1
m

∑m
i=1 σiℓ

θ
DSM(xi)

]
is the empirical Rademacher complexity with respect to the

parameter family Θ over x[m]. Substituting (33) and (34) into (32), with probability ≥ 1 − δ′ we
have for any θ ∈ Θ

Jopt(θ) ≥ Ĵx[m](w̃)− c0K
√
L̂x[m]

(θ, w̃)− c0K
√
2∆ 4

√
V̂x[m]

(w̃)− c1KW2(q̄
w̃
target,N )−

c0K
√
2R̂x[m]

(Θ)− c0K
4

√
18B∆ log(4/δ′)

m
−
√
BF log(2/δ′)

m
. (35)

To remove the conditioning on w̃, let W̃ϵ be an ϵ-cover [47] of W̃ under the L∞ norm. By (35), for
any given ṽ ∈ W̃ϵ, with probability ≥ 1− δ′ we have for any θ ∈ Θ

Jopt(θ) ≥ Ĵx[m](ṽ)− c0K
√
L̂x[m]

(θ, ṽ)− c0K
√
2∆ 4

√
V̂x[m]

(ṽ)− c1KW2(q̄
ṽ
target,N )−

c0K
√
2R̂x[m]

(Θ)− c0K
4

√
18B∆ log(4/δ′)

m
−
√
BF log(2/δ′)

m
.

By the union bound, with probability ≥ 1− |W̃ϵ|δ′ we have for any θ ∈ Θ and any ṽ ∈ W̃ϵ

Jopt(θ) ≥ Ĵx[m](ṽ)− c0K
√
L̂x[m]

(θ, ṽ)− c0K
√
2∆ 4

√
V̂x[m]

(ṽ)− c1KW2(q̄
ṽ
target,N )−

c0K
√
2R̂x[m]

(Θ)− c0K
4

√
18B∆ log(4/δ′)

m
−
√
BF log(2/δ′)

m
.
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Choosing δ′ = δ/|W̃ϵ|, with probability ≥ 1− δ we have for any θ ∈ Θ and any ṽ ∈ W̃ϵ

Jopt(θ) ≥ Ĵx[m](ṽ)− c0K
√
L̂x[m]

(θ, ṽ)− c0K
√
2∆ 4

√
V̂x[m]

(ṽ)− c1KW2(q̄
ṽ
target,N )−

c0K
√
2R̂x[m]

(Θ)− c0K
4

√
18B∆ log(4|W̃ϵ|/δ)

m
−

√
BF log(2|W̃ϵ|/δ)

m
. (36)

By the definition of ϵ-cover, for any w̃ ∈ W̃ , there exists an ṽ ∈ W̃ϵ such that |w̃(f(x))− ṽ(f(x))| ≤
ϵ for any x ∈ X . Note that this immediately implies that:

Ĵx[m](w̃)− Ĵx[m](ṽ) =
1

m

m∑
i=1

(w̃(f(xi))− ṽ(f(xi))) f(xi)

≤ 1

m

m∑
i=1

|w̃(f(xi))− ṽ(f(xi))| |f(xi)| ≤ Fϵ, (37)

where the last inequality follows from the assumption that |f(x)| ≤ F for any x ∈ X ;

√
L̂x[m]

(θ, ṽ)−
√
L̂x[m]

(θ, w̃) =

√√√√ 1

m

m∑
i=1

ṽ(f(xi))ℓθDSM(xi)−

√√√√ 1

m

m∑
i=1

w̃(f(xi))ℓθDSM(xi)

≤

√√√√ 1

m

m∑
i=1

|ṽ(f(xi))− w̃(f(xi))| ℓθDSM(xi) ≤
√
∆ϵ, (38)

where the last inequality follows from the assumption that 0 ≤ ℓθDSM(x) ≤ ∆ for any x ∈ X ;

4

√
V̂x[m]

(ṽ)− 4

√
V̂x[m]

(w̃)

= 4

√√√√ 1

m

m∑
i=1

(ṽ(f(xi))− 1)2 − 4

√√√√ 1

m

m∑
i=1

(w̃(f(xi))− 1)2

= 4

√√√√ 1

m

m∑
i=1

(ṽ(f(xi))− w̃(f(xi)) + w̃(f(xi))− 1)2 − 4

√√√√ 1

m

m∑
i=1

(w̃(f(xi))− 1)2

≤ 4

√√√√ 1

m

m∑
i=1

(ṽ(f(xi))− w̃(f(xi)))2 + 4

√√√√ 2

m

m∑
i=1

|ṽ(f(xi))− w̃(f(xi))| |w̃(f(xi))− 1|

≤
√
ϵ+ 4

√
2(B + 1)ϵ, (39)

where the last inequality follows from the assumption that 0 ≤ w̃(f(x)) ≤ B for any x ∈ X ; and

W2(q̄
ṽ
target,N )−W2(q̄

w̃
target,N ) ≤W2(q̄

ṽ
target, q̄

w̃
target)

≤ c2W2(q
ṽ
target, q

w̃
target)

≤ c2d2(X )dTV(q
ṽ
target, q

w̃
target)

=
1

2
c2d2(X )

∫
X
|ṽ(f(x))− w̃(f(x))|pdata(x)dx

≤ 1

2
c2d2(X )ϵ, (40)

where c2 is the Wasserstein contraction constant [9] of the forward process (3), d2(X ) :=
maxx,x′∈X ∥x − x′∥2 is the diameter of X with respect to the ℓ2 norm, and dTV(q

ṽ
target, q

w̃
target)

denotes the total variation distance between qṽtarget and qw̃target. Here, the first inequality follows from
the fact that the 2-Wasserstein distance is a metric and hence follows the triangle inequality, the
second inequality follows from the Wasserstein contraction property [9] of the forward process,
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(a) Objective function (b) Offline examples

Figure 2: A toy example: Initial setting.

and the third inequality follows from the total-variation bound [20] on the 2-Wasserstein distance.
Substituting (37)–(40) into (36), with probability ≥ 1− δ we have for any θ ∈ Θ and any w̃ ∈ W̃

Jopt(θ) ≥ Ĵx[m](w̃)− c0K
√
L̂x[m]

(θ, w̃)− c0K
√
2∆ 4

√
V̂x[m]

(w̃)− c1KW2(q̄
w̃
target,N )−

c0K
√
2R̂x[m]

(Θ)− c0K
4

√
18B∆ log(4|W̃ϵ|/δ)

m
−

√
BF log(2|W̃ϵ|/δ)

m
−(

F +
1

2
c2d2(X )

)
ϵ−

(√
∆+ 1

)√
ϵ− 4

√
2(B + 1)ϵ. (41)

By assumption, any normalized weight function from W̃ is L-Lipschitz and bounded byB. Therefore,
the covering number |W̃ϵ| is of the order O(exp(1/ϵ)). Let ϵ = m−γ for some γ ∈ (0, 1), and we
have from (41)

Jopt(θ) ≥ Ĵx[m](w̃)− c0K
√
L̂x[m]

(θ, w̃)− c0K
√
2∆ 4

√
V̂x[m]

(w̃)− c1KW2(q̄
w̃
target,N )−

c0K
√
2R̂x[m]

(Θ)−O(m−(1−γ)/4)−O(m−γ/4). (42)

Choosing γ = 1/2 in (42) completes the proof of (1) and hence Theorem A.1.

C Additional Experiments and Details

C.1 A toy example

We first experimentally validate the proposed learning algorithm using a toy example in R2. In this
example, the unknown objective function f is a mixture of two Gaussian density functions: f(x) =
2
√
3π [0.45 · N (x;µ1,Σ) + 0.55 · N (x;µ2,Σ)], where µ1 = [1.5, 1.5]t, µ2 = [−1.5,−1.5]t,

Σ =

[
2 1
1 2

]
, and the unknown data-generating distribution pdata is a mixture of two Gaussian

distributions: pdata(x) = 0.3 ·N (x;µ3, I)+0.7 ·N (x;µ4, I), where µ3 = [−4,−4]t, µ4 = [4, 4]t,
and I is the 2 × 2 identity matrix. The weight function wϕ and the score-function model sθt are
jointly learned by maximizing the proposed objective (2).

The filled contour plot of the objective function f is shown in Figure 2a, with warmer colors
representing higher objective values. Figure 2b shows 300 samples drawn from the data-generating
distribution pdata, with the color of each sample rendered according to its ground-truth objective value.
These 300 samples and their corresponding objective values are the offline examples from which
the weight function wϕ and the score-function model sθ are trained. Figure 3 shows the optimized
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(a) α = 1 (b) α = 0.3 (c) α = 0

Figure 3: A toy example: Top: Optimized samples; bottom: Learned weight function.

samples and the learned weight function wϕ for several different values of the hyper-parameter α
while fixing the hyper-parameter λ = 0.1.

The legitimacy of the proposed approach is demonstrated by the following observations. i) Even
though the weight function is not constrained to be monotonic a priori, as shown in the bottom row
of Figure 3, the learned weight functions are monotone increasing and hence put higher weights to
samples with higher objective values. ii) When α = 1, the learned weight function is relatively “flat"
across its input domain. As a result, the learned generative model is very close to the data-generating
distribution, and the optimized samples are very “similar" to the initial samples. As we decrease
the value of α from 1 to 0.3, the learned weight function becomes much more skewed towards
the higher input values. As a result, some of the optimized samples have been nudged along the
direction of the gradient of the objective function and hence have much higher objective values
than the initial samples. When we further decrease the value of α to 0, the learned weight function
becomes extremely skewed. In this case, the hypothetical target distribution is not learnable. As a
result, instead of the gradient direction, the optimized samples have been nudged along all directions.
Therefore, the hyper-parameter α can effectively control the utility–learnability tradeoff for selecting
a weight function wϕ. iii) Compared to the data-generating distribution, with an appropriate choice
of the hyper-parameters α and λ, the learned generative model is substantially more capable of
generating samples with higher objective values, as demonstrated by the differences of the 50th, 80th,
and 100th percentiles between the samples drawn from these two distributions. More results on this
toy example can be found in Appendix C.4.1.

C.2 Benchmark datasets

We conducted experiments on five standard offline optimization tasks:

• Superconductor, which aims to design a superconductor with 86 components to maximize
the critical temperature;

• TF (Transcription Factor) Bind 8, which aims to find a DNA sequence of 8 base pairs to
maximize its binding affinity to a particular transcription factor;

• GFP (Green Fluorescent Protein), which aims to find a protein sequence of 238 amino
acids to maximize the fluorescence;

• UTR (Untranslated Region), which aims to find a human 5’ UTR DNA sequence of 50
base pairs to maximize the expression level of its corresponding gene;
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Table 2: The benchmark datasets

Supercond. TFBind8 GFP UTR Fluores.
Type continuous discrete discrete discrete discrete

Dimension 86 8 237 50 13
Category N/A 4 20 4 2

# Train/Total 17014/21263 32898/65792 5000/56086 140k/280k 4096/8192
Min/Max 0.0/185.0 0.0/1.0 1.283/4.123 0.0/12.0 0.155/1.692
Dbest 74.0/0.4 0.439/0.439 3.525/0.789 7.123/0.594 0.900/0.485

• Fluorescence, which aims to identify a protein with high brightness. At each position,
the selection of an amino acid is limited to those found in the sequences of the two parent
fluorescent proteins. These parent proteins differ at precisely 13 positions in their sequences
while being identical at all other positions.

For all previous tasks except for the Fluorescence, we utilized the Design-Bench package [46] to
generate the training data, pre-process the data (including the conversion of categorical features to
numerical values), and evaluate new designs. For the Fluorescence task, we collected raw data from
Fannjiang et al. [18]. The objective value in this case is represented by the combined brightness.
From a total of 213 = 8192 samples, we selected the worst 4096 examples as our training dataset.
While the features in the Fluorescence dataset are binary, we simply treated them as continuous inputs
to our algorithm.

The key attributes of the aforementioned benchmark datasets can be found in Table 2, which include:

• Type: The type of features represented in the dataset, which can be either continuous or
discrete;

• Dimension: The feature dimension of the dataset;
• Category: The number of categories for each feature (only applicable to the discrete

datasets);
• # Train/Total: The number of samples in the training and entire datasets. The entire dataset

includes both the training dataset and additional data examples, which are used to help
evaluate the new designs;

• Min/Max: The minimum and maximum objective values within the entire dataset;
• Dbest: The un-normalized and normalized maximum objective values within the training

dataset.

C.3 Implementation details

Normalization. As we adopted DDPM as our generative model, we normalized each feature to the
interval [−1, 1]. For the objective values, we mapped the original values in the training dataset to the
range of [0, 1]. This step ensures consistency in the learning of the (un-normalized) weight function
wϕ. For the GFP task, we employed a variational auto-encoder [31] to embed the high-dimensional
features into a lower-dimensional space before normalizing them into the interval [−1, 1].
Networks. In our implementation, we used neural networks to model both the (un-normalized )
weight function wϕ and the score function sθt . The weight function is a simple scalar function. In
our implementation, we simply used a 4-layer multi-layer perceptron (MLP) with ReLU activation
functions. In addition, we applied an exponential function to the output of the MLP to enforce the
non-negativity of the weight function. The architecture for the score function model consists of a
time-embedding layer and five blocks of “Dense-BatchNorm-ELU”. Before each block, we injected
time-embedding information by concatenating it with the input to the block.

Training. The noise scheduler for the DDPM was chosen as β(t) = βmin + (βmax − βmin)t for
t ∈ [0, 1], where βmin = 0.1 and βmax = 20. The detailed training procedure is described in
Algorithm 1. The training scheme involves first identifying a suitable initialization of ϕ and θ and
then followed by an alternating maximization over ϕ and θ. More specifically, to obtain a suitable
initialization of ϕ and θ, we first note that the model θ only shows up in the second term of our
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learning objective (2). Maximizing the other two terms over ϕ gives us an initial estimate ϕ0 (see
Line 3 of Algorithm 1). In our implementation, this maximization was performed via full-batch
gradient descent (GD), for which we used the Adam optimizer [30] with a constant leaning rate 10−3.
Once an initial estimate ϕ0 has been obtained, we can obtain an initial estimate θ0 by minimizing the
second term over θ while setting ϕ = ϕ0 (see Line 4 of Algorithm 1). To minimize the weighted
denoising score matching loss, we considered a time range of t ∈ [10−3, 1] and used the Adam
optimizer with a variable learning rate via stochastic gradient descent (SGD). The learning rate was
gradually decreased from 10−3 to 10−4 during training. The alternating maximization of the learning
objective (2) over the parameters ϕ and θ is described in Line 5–8 of Algorithm 1. Again the Adam
optimizer was used, and the learning rates were set as η1 = η2 = 10−4.

Sampling/Optimization. The sampling/optimization procedure is described in Algorithm 2. This
procedure is identical to the probability-flow sampler in Song et al. [44].

C.4 Additional experimental results

C.4.1 Toy example

Additional choices of the hyper-parameter α. Previously in Section C.1, we described a toy
example in R2 and used it to validate our proposed approach. In particular, in Figure 3 we reported
the optimized samples and the learned weight function wϕ∗ for several choices of the hyper-parameter
α. Here in Figures 4 and 5 we report the optimized samples and the learned weight function wϕ∗

for some additional choice of the hyper-parameter α. Note that when α = ∞, the learned weight
function wϕ∗ is completely flat across its domain, and thus the hypothetical target distribution qtarget
is identical to the data-generating distribution pdata. It should become very clear from these reported
results that the hyper-parameter α can effectively control the utility-learnability tradeoff for selecting
a weight function.

Figure 4: Optimized samples (with learnable weight function) for different choices of the hyper-
parameter α.

Pre-selected weight function. Instead of considering a learnable weight function wϕ, we may
also consider using a pre-selected weight function to train the generative model pθ. Motivated by
the learned weight functions wϕ∗ from Figure 5, here we consider the simple exponential function
wψ(y) = exp(ψy), where ψ is a hyper-parameter. Note that when ψ = 0, the weight function wψ
is completely flat across its domain, and as we increase the value of ψ, wψ becomes increasingly
skewed towards the higher values in its domain. The optimized samples and the corresponding
pre-selected weight functions are reported in Figures 6 and 7. Note here that we have purposely
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Figure 5: Learned Weight function wϕ∗ for different choices of the hyper-parameter α.

chosen the values of the hyper-parameter ψ such that the pre-selected weight functions wψ in Figure 7
mimic the learned weight function wϕ∗ in Figure 5. As a result, the optimized samples from Figures 6
have similar statistical profiles as those from Figures 4. Next, we shall use the benchmark datasets to
illustrate that a learnable weight function can significantly outperform a pre-selected weight function
in terms of generating samples with a consistent and superior statistical profile.

Figure 6: Optimized samples with pre-selected weight function for different choices of the hyper-
parameter ψ.

C.4.2 Benchmark datasets

Here we report additional results on the benchmark datasets using both the learnable weight function
wϕ and the pre-selected exponential weight function wψ . In our experiments, we fixed the value of the
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Figure 7: Pre-selected weight function wψ for different choices of the hyper-parameter ψ.

hyper-parameter λ = 0.1 and considered several different values for the hyper-parameter α (learnable
weight function) and ψ (pre-selected weight function). The mean and standard deviation of the best
generated samples for each benchmark dataset are reported in Table 3. The average improvements
for different choices of the hyper-parameter α (learnable weight function) and ψ (pre-selected weight
function) are also reported in Table 3. It is clear that the use of a learnable weight function with
α = 0.25 significantly outperform any pre-selected weight function considered here in terms of the
average improvement. The learned weight functions wϕ∗ that correspond to α = 0.25 for each of the
benchmark datasets are reported in Figure 8.

On the top row of Figure 8, the dashed lines represent pre-selected weight functions, while the solid
line represents the learned weight function for each of the benchmark datasets. It is evident that the
learned weight functions differ significantly from the pre-selected exponential weight functions. The
label histograms of for each of the benchmark datasets are shown on the bottom row of Figure 8.
Noticeably, labels of Superconductor and Fluorescence datasets are heavily skewed towards small
objective values. Coincidentally, their learned weight functions tend to flatten when the objective
values are large (roughly 0.8− 1.0). Given that the majority of data examples in these datasets have
small objective values, assigning higher weights to large objective values would result in a smaller
"effective sample size" in weighted learning. Therefore, it makes sense that these two datasets adopted
a less steep slope in the learned weight function to maintain a reasonable effective sample size. This
observation underscores that our learning objective (2) can adaptively choose an appropriate weight
function to balance the utility-learnability tradeoff. Thus, to fully harness the potential of the proposed
generative approach, it is crucial to make the weight function learnable as well.

In all the experiments involving a learnable weight function, we consistently set λ to 0.1. We also
conducted additional experiments to investigate the impact of the hyper-parameter λ on the results.
The findings, as depicted in Figure 9, reveal that λ proves to be a relatively insensitive hyper-parameter
within our method. Across all datasets, variations in λ ranging from 0.01 to 1.0 only result in very
minor differences in terms of the optimization performance.

D Further Discussions

To further elucidate the main contributions of this paper, we put the proposed PAC-generative
approach to offline optimization in the context of several related works.

Modeling target distribution vs. modeling objective function. As mentioned previously in
Section 1, the “standard" approach to offline optimization is to first learn a surrogate of the unknown
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Table 3: Mean and standard deviation of the best generated samples for different choices of the
hyper-parameter α (learnable weight function) and ψ (pre-selected weight function).

Supercond. TFBind8 GFP UTR Fluores. Ave.
Improv.Dbest 0.399 0.439 0.789 0.593 0.485

ψ = 0.5 0.493±0.033 0.892±0.054 0.865±0.000 0.669±0.009 0.881±0.036 0.462
ψ = 1.0 0.478±0.027 0.914±0.044 0.865±0.000 0.678±0.015 0.882±0.022 0.467
ψ = 5.0 0.496±0.026 0.917±0.022 0.865±0.000 0.689±0.009 0.859±0.052 0.472
ψ = 20.0 0.423±0.044 0.903±0.050 0.865±0.000 0.693±0.006 0.803±0.057 0.407
α = 0.15 0.425±0.073 0.925±0.043 0.864±0.000 0.693±0.010 0.696±0.060 0.374
α = 0.2 0.468±0.029 0.913±0.051 0.864±0.000 0.698±0.016 0.739±0.054 0.410
α = 0.25 0.537±0.045 0.941±0.034 0.865±0.000 0.693±0.013 0.809±0.078 0.485
α = 0.3 0.502±0.054 0.924±0.029 0.865±0.000 0.697±0.008 0.798±0.045 0.456

Figure 8: Top: Learned weight functions wϕ∗ (solid, black line) for the benchmark datasets; bottom:
histograms of offline training labels.

Figure 9: Investigation of λ when α = 0.2.

objective function and then apply existing optimization algorithms. The main challenge for modeling
the objective function is the so-called distributional shift. That is, when the optimization algorithm
explores regions away from the offline observations, the learned surrogate tends to become less
accurate. It is thus crucial to understand how far the optimization algorithm can explore away from
the offline observations and how to maintain the accuracy of the learned surrogate throughout the
exploration process. Notable efforts in the literature include Qi et al. [41] and Trabucco et al. [45],
which considered regularized surrogate models in favor of invariance and conservatism; Fannjiang
and Listgarten [17] and Chen et al. [13], which considered surrogate models learned via importance
sampling and contrastive learning; and Fannjiang et al. [18], which used conformal prediction to
quantify the uncertainty of the learned surrogate.
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Despite these efforts, however, it remains unclear how to align the objective of learning a surrogate
of the unknown objective function with the objective of optimization. This is evidenced by the
very recent work Beckham and Pal [7], which discussed how one may interpret the conservative
approach proposed in Trabucco et al. [45], and Beckham et al. [8], which suggested that an alternative
evaluation metric is potentially better than simply choosing the best candidates using the learned
surrogate. In contrast, the PAC-generative approach proposed in this paper is based on modeling a
target distribution (as opposed to the objective function). As we have shown, under this generative
view, it is possible to tune the objective of the learner according to a natural optimization objective.

Weighted learning vs. conditional/guided generation. Recent years have seen remarkable success
in conditional/guided image generation [15, 23]. Conditional/guided generation can be easily adapted
to offline optimization. Specifically, one can simultaneously learn a standard score-based generative
model and a surrogate of the objective function and then use the gradient of the learned surrogate
to guide the generation of the optimized samples [40]. Alternatively, one may also model the target
distribution qtarget as the conditional distribution pdata given f(x) ≥ y0 for some threshold y0 and
train a generative model that approximates this conditional distribution [11, 22]. However, learning
the conditional distribution may also require a surrogate of the objective function. In contrast, in our
approach we model the target distribution qtarget using a weight function. As discussed in Section 2.1,
in our weighted-learning model, the score of qtarget is intrinsically aligned with the gradient of the
objective function. Hence we directly train a generative model from the offline data examples to learn
the score of qtarget, and there is no need to learn a surrogate of the objective function separately.

Offline optimization vs. offline reinforcement learning (RL). While the focus of this paper
is offline optimization, recent years have also seen a substantial amount of interest in offline RL
[36, 49, 27, 50]. Even though these two problems face some similar challenges, in our evaluation
offline RL is the considerably more challenging setting. It is thus of interest to see whether the
proposed PAC-generative approach can lead to any success in offline RL as well.
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