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Castelnuovo-Mumford regularity and Schubert geometry

Alexander Yong

Abstract. We study the Castelnuovo-Mumford regularity of tangent cones
of Schubert varieties. Conjectures about this statistic are presented; these are
proved for the covexillary case. This builds on work of L. Li and the author
on these tangent cones, as well as that of J. Rajchgot-Y. Ren-C. Robichaux-
A. St. Dizier-A. Weigandt and J. Rajchgot-C. Robichaux-A. Weigandt on

tableau rules for computing regularity of some matrix Schubert varieties.

1. Introduction

Let GLn/B be the complete flag variety ; GLn is the group of n × n invert-
ible complex matrices and B is the Borel subgroup of invertible upper triangular
matrices. B acts with finitely many orbits

X◦
w = BwB/B ∼= C

�(w);

w ∈ Sn = the symmetric group on [n] := {1, 2, . . . , n} and �(w) is the Coxeter
length of w, that is,

�(w) = #{i < j : w(i) > w(j)}.

Their closures

Xw := X◦
w =

∐

v≤w

X◦
v

are the Schubert varieties ; here v ≤ w refers to (strong) Bruhat order. Let T ⊂ GLn

be the maximal torus of invertible diagonal matrices. The T -fixed points are ev :=
vB/B. To study the local structure of Xw, it suffices to study only the points ev
(for v ≤ w), since B provides local isomorphisms to any other point of X◦

v ⊆ Xw.
A book reference is [7].

Let (Op,Y ,mp, k) be the local ring of a point p in a variety Y . The associated
graded ring [1, Chapter 10] with respect to the mp-adic filtration is

Rp,Y := grmp
Op,Y =

∞
⊕

i=0

m
i
p/m

i+1
p (m0

p := Op,Y ).
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Rp,Y has a Z-graded Poincaré series

(1.1) PSp,Y (q) =
∞
∑

i=0

dim(mi
p/m

i+1
p )qi =

Hp,Y (q)

(1− q)dim(Y )
,

whereHp,Y (q) ∈ Z[q]. Hp,Y (1) is the Hilbert-Samuel multiplicity. In the case p = ev
and Y = Xw, let

PSv,w(q) = Pp,Y (q), Rv,w = Rp,Y , and Hv,w(q) = Hp,Y (q).

We study the Castelnuovo-Mumford regularity Reg(Rv,w), viewed as a graded
module over k[mev/m

2
ev ]. This statistic measures, in some sense, the “complexity”

of Rv,w; see Section 3 for definitions. Outside of Schubert geometry, study of
regularity of the associated graded ring appears in, e.g., [3,25] and the references
therein.

Conjecture 1.1. Reg(Rv,w) = degHv,w(q).

Conjecture 1.2 (Semicontinuity). If u ≤ v ≤ w in Bruhat order then

Reg(Ru,w) ≥ Reg(Rv,w).

Conjecture 1.3 (Upper bound). Reg(Rv,w) ≤
�(w)−�(v)−1

2 .

Proposition 5.4 shows they follow from earlier conjectures with L. Li [17,18];
see Section 5. Conjectures 1.1 and 1.2 imply that Reg(Ru,v) is a singularity measure
that falls into the framework of [26]. In particular, it would imply the locus of points
p ∈ Xw with “Reg(p) ≥ k” is described using interval pattern avoidance.

Speculatively, a strengthening of Conjecture 1.3 holds, namely,

Reg(Rv,w) ≤ deg Pv,w(q)

where Pv,w(q) is the Kazhdan-Lusztig polynomial ; but, the evidence is not strong
(n ≤ 6).

The papers [17,18] study the tangent cones in the case w is covexillary, i.e.,
w avoids the pattern 3412 (there are not indices i1 < i2 < i3 < i4 such that
w(i1), w(i2), w(i3), w(i4) are in the same relative order as 3412). This defines a
subfamily with a number of prior results. For example, ibid. gives formulas for
Hv,w(q) and related them to the Kazhdan-Lusztig polynomials ; a combinatorial
formula for the latter was already known due to work of A. Lascoux [15]. One also
has a “diagonal Gröbner basis theorem” for matrix Schubert varieties [14].1 These
results play a role in our work. This is our main result:

Theorem 1.4. Conjectures 1.1, 1.2, and 1.3 hold if w is covexillary. In
this case, there is a combinatorial rule for Reg(Rv,w) (see Theorem 4.4), and
Reg(Rv,w) = deg Pv,w.

Our proof of the first part of Theorem 1.4 makes use of [18], which degen-
erates the tangent cone of the Kazhdan-Lusztig ideal Nv,w to the Gröbner limit

[14] of the matrix Schubert variety Xκ(v,w) for a different covexillary permuta-
tion κ(v, w). Thereby, Hv,w(q) can be expressed in terms of flagged Grothendieck
polynomials [14, 16]. We were inspired by the paper of J. Rajchgot–Y. Ren–
C. Robichaux–A. St. Dizier–A. Weigandt [23], who determine the degree of a

1Some of these results are stated for vexillary rather than covexillary family; this is a matter
of convention.
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symmetric Grothendieck polynomial to find the regularity of Xw when w is Grass-
mannian (has at most one descent). Recent work of J. Rajchgot–C. Robichaux–
A. Weigandt [24] extends that formula to vexillary permutations, which we ap-
ply (see also the generalization in O. Pechenik-D. Speyer-A. Weigandt’s [22], and
E. Hafner’s [9]).

In Section 2, we recall the notion of Kazhdan-Lusztig ideals/varieties [26].
We also recapitulate necessary results about its tangent cone from [17, 18]. We
summarize definitions and facts we need about regularity in Section 3. We then
prove our main result in Section 4. Final remarks are collected in Section 5.

2. Kazhdan-Lusztig varieties

Let

Ω◦
v = B−vB/B

be the opposite Schubert cell where B− ⊂ GLn consists of invertible lower triangular
matrices. Ω◦

id is the opposite big cell ; it is an affine open neighborhood of (id)B/B.
Hence vΩ◦

id ∩ Xw is an affine open neighborhood of Xw centered at ev. However,
by [12, Lemma A.4],

(2.1) Xw ∩ vΩ◦
id

∼= (Xw ∩ Ω◦
v)× A

�(w).

Hence it suffices to study the Kazhdan-Lusztig variety

Nv,w := Xw ∩ Ω◦
v.

Explicit coordinates and equations for Nv,w were first studied in work with
A. Woo [26]. Let Matn×n be the set of all n×n complex matrices. The coordinate
ring is C[z] where z = {zij}ni,j=1 are the functions on the entries of a generic matrix
Z. Here zij corresponds to the entry in the i-th row from the bottom, and the j-th
column to the right.

Let us realize Ω◦
v as a affine subspace of Matn×n consisting of matrices Z(v)

where

zn−v(i)+1,i = 1, zn−v(i)+1,s = 0, zt,i = 0, for s > i and t > n− v(i) + 1.

Let z(v) ⊆ z be the unspecialized variables. Furthermore, let Z
(v)
st be the southwest

s× t submatrix of Z(v). The rank matrix is

rw = (rwij)
n
i,j=1

(which we index in the same manner), where

rwij = #{h : w(h) ≥ n− i+ 1, h ≤ j}.

One combinatorial characterization of Bruhat order is that v ≤ w if and only if
rvij ≤ rwij for all 1 ≤ i, j ≤ n.

The Kazhdan-Lusztig ideal is Iv,w ⊂ C[z(v)] generated by all rwst + 1 minors of

Z
(v)
st where 1 ≤ s, t ≤ n. As explained in [26],

Nv,w
∼= Spec

(

C[z(v)]/Iv,w

)

;

this is reduced and irreducible.
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Example 2.1. Let w = 7314562, v = 1423576 (in one line notation). The rank
matrix rw and the matrix of variables Z(v) are, respectively,

rw =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5 6 7
1 2 2 3 4 5 6
1 2 2 3 4 5 5
1 1 1 2 3 4 4
1 1 1 1 2 3 3
1 1 1 1 1 2 2
1 1 1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Z(v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0
z61 0 1 0 0 0 0
z51 0 z53 1 0 0 0
z41 1 0 0 0 0 0
z31 z32 z33 z34 1 0 0
z21 z22 z23 z24 z25 0 1
z11 z12 z13 z14 z15 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The Kazhdan-Lusztig ideal I1423576,7314562 contains among its generators, all 2× 2

minors of Z
(v)
25 but also inhomogeneous elements such as

(2.2)

∣

∣

∣

∣

∣

∣

z51 0 z53
z41 1 0
z31 z32 z33

∣

∣

∣

∣

∣

∣

= z51z33 + z53z41z32 − z53z31.

This generator, per se, does not imply I1423576,7314562 is inhomogeneous; however
one can confirm the ideal is in fact inhomogeneous with respect to the standard
grading using Macaulay2’s function isHomogeneous. These ideals (and their sta-
tistics) can be computed using https://faculty.math.illinois.edu/~ayong/

Schubsingular.v0.2.m2. �

We also need the Schubert determinantal ideal Iw which is defined similarly as
Iv,w except that we repace Z(v) with the matrix Z = (zij). The zero-set is the
matrix Schubert variety.

Given f ∈ C[z(v)], let LD(f) denote the lowest degree homogeneous component
of f . Now, define the (Kazhdan-Lusztig) tangent cone ideal to be

I ′v,w = 〈LD(f) : f ∈ Iv,w〉.

E.g., if f is the polynomial in (2.2) then LD(f) = z51z33−z53z31. The tangent cone
of Nv,w is

N ′
v,w := Spec

(

C[z(v)]/I ′v,w

)

.

This can be computed using Macaulay2’s tangentCone function.

3. Castelnuovo-Mumford regularity basics

The Castelnuovo-Mumford regularity of a finitely generated graded module

M =
⊕

j∈Z

M (j)

over a standard N-graded ring S =
⊕

j≥0 S
(j) is defined by

Reg(M) = max{fj(M) + j : j ≥ 0}

where

fj(M) :=

{

sup{n : Hj
S+

(M)n �= 0} if Hj
S+

(M) �= 0,

−∞ otherwise.

Here S+ =
⊕

j>0 S
(j) is the irrelevant ideal of S and Hi

S+
(M) is the i-th local

cohomology module of M with respect to S+ (and its endowed grading). We refer
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the reader to the book [4, Chapter 15] for further details. One has an expression
for the Poincaré series

(3.1) PSM (q) =
KM (q)

(1− q)dim(M)
,

where KM (q) ∈ Z[q]; see, e.g., [5, Corollary 4.1.8]. Let hM (q) be Hilbert function
and pM (q) be the Hilbert polynomial. Hilbert’s theorem states that

hM (q) = pM (q)

for all sufficiently large q. The postulation number is

post(M) = max{n : hM (n) �= pM (n)}.

By [5, Proposition 4.1.12],

post(M) = deg KM (q)− dim M.

It is known (and not hard) that when M is Cohen-Macaulay, Reg(M) =
post(M) + dim M . Hence

(3.2) Reg(M) = degKM (q).

Now suppose S = C[x1, . . . , xN ] and M = S/J is the S module where J ⊆ S
is an ideal that is standard graded homogeneous. M = S/J has a minimal free
resolution

0→
⊕

j

S(−j)βi,j(S/J)→
⊕

j

S(−j)βi−1,j(S/J)→· · ·→
⊕

j

S(−j)β0,j(S/J)→S/J→0.

Here i ≤ N and S(−j) is the free S-module where degrees of S are shifted by j.
Also,

Reg(M) := max{j − i : βi,j(M) �= 0},

and

PSS/J(q) =
KS/J(q)

(1− q)N
,

where K(S/J, q) ∈ Z[q]. If S/J is Cohen-Macaulay, (3.2) says

(3.3) Reg(S/J) = degK(S/J, q)− htS(J),

where htS(J) is the height of the ideal J in S. In our application, the algebraic
set V (J) is radical and equidimensional; htS(J) is the codimension of the variety
V (J) ⊆ CN .

Example 3.1. Continuing Example 2.1, using Macaulay2’s resolution and
betti one computes that the Betti numbers for the minimal free resolution of
T1423576,7314562 as

0 1 2 3 4 5 6 7 8 9 10

total: 1 12 61 176 322 392 322 176 61 12 1

0: 1 7 21 35 35 21 7 1 . . .

1: . 5 40 140 280 350 280 140 40 5 .

2: . . . 1 7 21 35 35 21 7 1

In Macaulay2 format, the entry in row j and column i is βi,i+j . So

Reg(C(v)/T1423576,7314562) = 2
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is the largest row index of this table. Similarly one checks that

Reg(C(v)/T1234567,7314562) = 3,

in agreement with Conjecture 1.2. �

4. Proof of Theorem 1.4

4.1. Proof of Conjectures 1.1, 1.2, 1.3 in the covexillary case. Let

R′
v,w := C[z(v)]/I ′v,w.

We claim

(4.1) Reg(R′
v,w) = degHv,w.

By [17, Theorems 3.1 and 5.5], SpecR′
v,w Gröbner degenerates to init≺ Xκ(v,w)

(up to a permutation of coordinates), the Gröbner limit in [14] of a matrix Schu-
bert variety Xκ(v,w) of the covexillary permutation κ(v, w). We will define κ(v, w)

in Section 4.2. At this moment, it suffices to know that init≺ Xκ(v,w) is a reduced
union of coordinate subspaces, whose associated Stanley-Reisner simplicial complex
is homeomorphic to a shellable ball or sphere [14, Theorem 4.4]. Shellable simpli-
cial complexes are Cohen-Macaulay, which by definition, means the said union of
coordinate subspaces is Cohen-Macaulay [20, Section 13.5.3]. Therefore Xκ(v,w) is
Cohen-Macaulay, and hence SpecR′

v,w is also Cohen-Macaulay as it also Gröbner
degenerates to it [6, Section 15.8].

In [17], one has

K(R′
v,w, q) =

Hv,w(q)(1− q)�(w0w)

(1− q)�(w0v)
.

Thus by (3.3),

Reg(R′
v,w) = deg Hw,v(q) + �(w0w)− �(w0w),

since
htC[z(v)]I

′
v,w = �(w0w)

(here we use the fact that the tangent cone of Nv,w has the same dimension as Nv,w

itself, namely �(w)− �(v), and that ). Thus (4.1) holds.
Since the tangent cone of Nv,w is SpecR′

v,w it follows from (2.1) that

tangent cone (vΩ◦
id ∩Xw) ∼= SpecR′

v,w × A
�(v).

The tangent cone of any affine open neighborhood of p ∈ Y is isomorphic to Rp,Y ;
see, e.g., [6, Section 5.4] and [21, III.3]. Hence the Cohen-Macaulayness of R′

v,w

implies the same of Rv,w, since this property of an affine variety is preserved under
cartesian product with affine space. Hence Conjecture 1.1 holds in this case by
(3.1).

Conjecture 1.2 holds in our case since it is shown in [18] that Hv,w(q) is semi-
continuous. Also, in the covexillary case, one has from ibid. that

degHv,w(q) = degPv,w(q)

where Pv,w(q) is the Kazhdan-Lusztig polynomial. By definition,

degPv,w(q) ≤
�(w)− �(v)− 1

2
;

this is Conjecture 1.3.
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4.2. Permutation combinatorics and the formula. We recall some stan-
dard permutation combinatorics; our reference is [19] (although our conventions
are upside down from theirs). The graph of w ∈ Sn places a • in position (w(i), i)
(written in matrix notation). Cross out all boxes weakly right and weakly above
a •; the remaining boxes of [n]× [n] form the Rothe diagram of w, denoted D(w).
That is,

D(w) = {(i, j) ∈ [n]× [n] : i > w(j), j < w−1(i)}.

The vector code(w) = (cn, cn−1, . . . , c1) where ci is the number boxes of D(w) in
row i. The essential set E(w) of w consists of those maximally northeast boxes of
any connected component of D(w), i.e.,

E(w) = {(i, j) ∈ D(w) : (i− 1, j), (i, j + 1) �∈ D(w)}.

Example 4.1. Continuing our running example, where w = 7314562, diagram
is graphically depicted in Figure 1. Hence

D(w) = {(2, 3), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4), (6, 2), (6, 3), (6, 4)}

and
E(w) = {e1 = (6, 5), e2 = (5, 4), e3 = (4, 2), e4 = (2, 3)}.

Moreover, code(w) = (0, 4, 3, 2, 0, 1, 0).

D(w) =

e1

e2

e3

e4

�

�

�

�

�

�

�

Figure 1. The diagram and essential set for w = 7314562.

A permutation in Sn is uniquely identified by the values of the rank matrix
(rwij) when restricted to D(w) or even merely E(w).

Throughout the remainder of this subsection, we assume w is covexillary.
Let λ(w) be the partition obtained by sorting code(w). It is useful to know

the graphical construction of λ(w): Since (a, b), (c, d) ∈ E(w) then one is weakly
northwest of the other [19], it follows there is a unique Young diagram (in French
notation) obtained by pushing all boxes of D(w) on a given antidiagonal to the
southwest; that is the diagram of λ(w).

Example 4.2. Our running example w = 7314562 is covexillary with λ(w) =
(4, 3, 2, 1). �

Given v ≤ w, [17] defines (and proves the existence of) a different covexillary
permutation κ(v, w). This is the unique permutation whose essential set is obtained
by moving each e = (i, j) ∈ E(w) southwest along its antidiagonal by rvij squares
to e′ and imposing that

r
κ(v,w)
e′

= rwij − rvij .
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By construction,
λ(w) = λ(κ(v, w)).

The graphical construction λ(κ(v, w)) induces a bijection of boxes:

φ : λ(κ(v, w)) → D(κ(v, w)).

Define a filling of each box b ∈ λ(κ(v, w)) with rwφ(b). We call this RRW(v, w), as

its provenance is from [24].

Example 4.3. One can check that κ(1423576, 7314562) = 3472561. �

The next result is the combinatorial rule of Theorem 1.4. It uses a similar
result of J. Rajchgot-C. Robichaux-A. Weigandt [24, Theorem 1.3]:

Theorem 4.4.
(4.2)

Reg(Rv,w) = Reg(R′
v,w) = degHv,w =

∑

k≥1

∑

α∈Connected(λ(κ(v,w))≥k)

maxdiag(α),

where:

• λ(κ(v, w))≥k is the shape of the subtableau of RRW(v, w) that have entries
≥ k;

• Connected(κ(v, w))≥k) are the connected components of the aforemen-
tioned shape; and

• maxdiag(α) is the largest northwest-southeast diagonal that appears in α.

Example 4.5. To complete our running example,

RRW(1423576, 7314562) = 0
0 0
0 0 1
0 0 1 1

and hence Theorem 4.4 asserts Reg = 2 (the longest diagonal appearing in the
unique 1’s component), in agreement with Example 3.1. �

For any u ∈ Sn let Gw(x1, . . . , xn) be the Grothendieck polynomial [16]. By
definition, Gw0

= xn−1
1 xn−2

2 · · ·xn−1 where w0 is the longest element in Sn. If
�(usi) > �(u) where si = (i i + 1) is a simple transposition, then Gu = πi(Gusi)
where

πi : Z[x1, x2, . . . , xn] → Z[x1, x2, . . . , xn]

is the isobaric divided difference operator defined by

π(f) =
(1− xi+1)f(· · · , xi, xi+1, · · · )− (1− xi)f(· · · , xi+1, xi, · · · )

xi − xi+1
.

4.3. Proof of Theorem 4.4. By [17, Theorem 6.6],

(4.3) PSv,w(q) =
Gλ(q)

(1− q)(
n

2)
,

where
Gλ(q) = Gw0κ(v,w)(1− q, 1− q, . . . , 1− q).

Comparing (4.3) with (1.1) and using the fact that dim(Xw) = �(w), we see that

(4.4) deg Hv,w = deg Gw0κ(v,w) −

((

n

2

)

− �(w)

)

.
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On the other hand, since λ(κ(v, w)) = λ(w), one has �(κ(v, w)) = �(w), and hence

(4.5) �(w0κ(v, w)) =

(

n

2

)

− �(w).

Moreover since κ(v, w) is covexillary, w0κ(v, w) is vexillary (avoids 2143). The
formula of J. Rajchgot-C. Robichaux-A. Weigandt [24, Theorem 1.3] shows (in our
conventions) that for any vexillary u ∈ Sn that

(4.6) degGu = �(u) +
∑

k≥1

∑

α∈Connected(λ(w0u)≥k)

maxdiag(α).

Hence the theorem follows by combining (4.4), (4.5) and (4.6) with u = w0κ(v, w).
�

In general, there are no simple formulas to compute the degree of a Kazhdan-
Lusztig polynomial Pv,w(q) (we refer the reader to [2, Chapter 5]). This proves the
final assertion of Theorem 1.4.

Corollary 4.6. Let w ∈ Sn be covexillary, then deg Pu,v is computed by the
rule of Theorem 4.4.

Proof. [18, Theorem 1.2] shows deg Hv,w(q) = deg Pv,w(q) when w is covex-
illary. Now apply Theorem 4.4. �

5. Further results and discussion

These conjectures were asserted in [18]:

Conjecture 5.1. Rv,w is Cohen-Macaulay. Consequently, Hv,w ∈ N[q].

That Xw is Cohen-Macaulay does not imply Conjecture 5.1. In fact, C. Huneke
[11] established Rp,Y being Cohen-Macaulay implies the same for (Op,Y ,mp, k), and
gave counterexamples for the converse. This is a strengthening of Conjecture 5.1:

Conjecture 5.2 (Semicontinuity). If u ≤ v ≤ w then [qt]Hu,w ≥ [qt]Hv,w.

Conjecture 5.3 ([18, Proposition 2.1]). degHv,w ≤ �(w)−�(v)−1
2 .

Proposition 5.4. Conjectures 5.1, 5.2, and 5.3 imply Conjectures 1.1, 1.2,
and 1.3.

Proof. The Cohen-Macaulay assertion of Conjecture 5.1 implies Conjecture
1.1 by the reasoning in our proof of Theorem 1.4. Combined with Conjecture 5.2
gives Conjecture 1.2. Separately, combined with Conjecture 5.3 one would obtain
Conjecture 1.3. �

During the preparation of [18], Conjectures 5.1 and 5.3 were checked for n ≤ 7.
Conjecture 5.2 was checked for at least n ≤ 6 and much of n = 7.

Let

maxReg(n) = max
v≤w∈Sn

Reg(Rv,w).

Conjecture 5.5. maxReg(n) = Θ(n2).

Computational data was not directly useful to arrive at Conjecture 5.5. For
n = 4, 5, 6, 7, maxReg(n) = 1, 2, 3, 5, respectively. For example, when n = 7 the
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maximizer is the (non-covexillary) w = 6734512 at v = id. Here Iv,w is inhomoge-
neous and

Hid,6734512(q) = 1 + 4q + 9q2 + 9q3 + 4q4 + q5.

Let
maxReg(n) = max

v≤w∈Sn,w covexillary
Reg(Rv,w).

We apply Theorem 4.4 to prove the covexillary case of Conjecture 5.5.

Proposition 5.6. maxReg(n) = Θ(n2).

Proof. For the lower bound, first suppose n = 3j − 1 for j ≥ 1. Let v = id
and w ∈ Sn be the unique permutation with

code(w) = (1, 2, 3, . . . , j, 0, 0, . . . , 0).

Then w is covexillary, with

λ(w) = (j, j − 1, . . . , 3, 2, 1).

For example, if j = 4 then w = 7, 11, 6, 10, 5, 9, 4, 8, 3, 2, 1. By our assumption,
κ(id, w) = w. Hence RRW(κ(id, w)) is the staircase λ(w) where column c from the
left is filled by (c− 1)’s. In our example,

RRW(κ(id, w)) = 0
0 1
0 1 2
0 1 2 3

.

Hence, Theorem 4.4 asserts that

Reg(Rid,w) = (j − 1) + (j − 2) + . . .+ 2 + 1 =

(

j

2

)

.

Now, if n = 3j or n = 3j + 1, use the same construction as for n = 3j − 1, except
that code(w) will have an additional 0 or 0, 0 postpended, respectively. In those
two cases, the same analysis implies

Reg(Rid,w) =

(

j

2

)

.

Hence maxReg(n) = Ω(n2) follows.
For the upper bound, since w ∈ Sn, λ(κ(v, w)) ⊆ n×n and RRW(κ(v, w)) only

uses labels k ∈ [n]. For each such k, the inner sum of (4.2) contributes ≤ n. Hence

Reg(Rv,w) ≤ n2. Therefore, maxReg(n) = O(n2), as required. �

Corollary 5.7. Conjecture 1.3 implies Conjecture 5.5.

Proof. The lower bound of Conjecture 5.5 is immediate from Proposition 5.6.
If Conjecture 1.3 holds, then

Reg(Rv,w) ≤
�(w)− �(v)− 1

2
≤ �(w0) =

(

n

2

)

. �

Sometimes Iv,w is homogeneous with respect to the standard grading; see [27]
and the references therein. In those cases, trivially, I ′v,w = Iv,w and Cohen-
Macaulayness of Iv,w and Conjecture 1.1 is automatic. As argued in [18], the
covexillary case is interesting precisely because I ′v,w = Iv,w need not hold in general
(as in the case of our running example).
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It is also natural to expect that our regularity conjectures are true for other
Lie types. We remark that in the minuscule case studied by [8], it is again true
that the Schubert varieties admit a dilation action of C∗ and hence the analogue
of Conjecture 1.1 holds for a similar reason as in the previous paragraph. This
problem should be in reach:

Problem 5.8. Determine the regularity of tangent cones of Schubert varieties
for minuscule G/P .

We also mention that the banner permutations of Z. Hamaker-O. Pechenik-
A. Weigandt [10] extend the vexillary permutations and have a description of the
Gröbner basis (also, see a further extension by P. Klein [13]). It would therefore be
interesting to see if the results of this paper (or of [17,18]) extend to that setting.

With regards to Theorem 4.4, one can use any rule that computes deg(Gu). An-
other rule applicable to arbitrary u ∈ Sn has been found by O. Pechenik-D. Speyer-
A. Weigandt [22]. On the one hand, the tableau rule of [24] is fitting with the
covexillary combinatorics we use. On the other hand, one wonders if that general
rule can be adapted to compute Reg(Ru,v)? We also remark that both of these
formulas can be regarded as solving a special case of our regularity problem; see
[27, Corollary 2.6] and its proof.
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