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Castelnuovo-Mumford regularity and Schubert geometry

Alexander Yong

ABSTRACT. We study the Castelnuovo-Mumford regularity of tangent cones
of Schubert varieties. Conjectures about this statistic are presented; these are
proved for the covezillary case. This builds on work of L. Li and the author
on these tangent cones, as well as that of J. Rajchgot-Y. Ren-C. Robichaux-
A. St. Dizier-A. Weigandt and J. Rajchgot-C. Robichaux-A. Weigandt on
tableau rules for computing regularity of some matrix Schubert varieties.

1. Introduction

Let GL,,/B be the complete flag variety; GL,, is the group of n X n invert-
ible complex matrices and B is the Borel subgroup of invertible upper triangular
matrices. B acts with finitely many orbits

X = BwB/B = C‘™);

w € &, = the symmetric group on [n] := {1,2,...,n} and £(w) is the Cozeter
length of w, that is,

t(w) = i <j :w(i) > w(j)}.

Their closures

X=X =[] x5
v<w

are the Schubert varieties; here v < w refers to (strong) Bruhat order. Let T C GL,
be the maximal torus of invertible diagonal matrices. The T-fixed points are e, :=
vB/B. To study the local structure of X,,, it suffices to study only the points e,
(for v < w), since B provides local isomorphisms to any other point of Xy C X,,.
A book reference is [7].

Let (Op,y,mp, k) be the local ring of a point p in a variety Y. The associated
graded ring [1, Chapter 10] with respect to the my-adic filtration is

0o
o _ i i+1 0._
RPVY T grmpopqy - @mp/mp (mp T O;mY)'
=0
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R,y has a Z-graded Poincaré series

= . i 4 i H,Y(Q)
(1) PSv0) = 3 dimm /o' = (=

where Hy, v (q) € Z[g]. Hpv (1) is the Hilbert-Samuel multiplicity. In the case p = e,
and Y = X, let

Psv,w(q) = Pp,Y(q); R’U,w = Rp,Ya and Hv,w(q) = Hp,Y(q)~

We study the Castelnuovo-Mumford regularity Reg(Ry..), viewed as a graded
module over k[m,, /m2 ]. This statistic measures, in some sense, the “complexity”
of Ry ; see Section 3 for definitions. Outside of Schubert geometry, study of
regularity of the associated graded ring appears in, e.g., [3,25] and the references
therein.

CONJECTURE 1.1. Reg(R,w) = deg Hy (q).
CONJECTURE 1.2 (Semicontinuity). If u < v < w in Bruhat order then
Reg(Ru,w) > Reg(Ry w)-

Lw)—L(v)—1
CONJECTURE 1.3 (Upper bound). Reg(Ry,.) < —=—~—.

Proposition 5.4 shows they follow from earlier conjectures with L. Li [17,18];
see Section 5. Conjectures 1.1 and 1.2 imply that Reg(R,, ,) is a singularity measure
that falls into the framework of [26]. In particular, it would imply the locus of points
p € X, with “Reg(p) > k” is described using interval pattern avoidance.

Speculatively, a strengthening of Conjecture 1.3 holds, namely,

Reg(Rv,w) < deg Py (Q)

where P, ., (q) is the Kazhdan-Lusztig polynomial; but, the evidence is not strong
(n <6).

The papers [17,18] study the tangent cones in the case w is covexillary, i.e.,
w avoids the pattern 3412 (there are not indices i3 < iy < i3 < i4 such that
w(iy), w(ia), w(iz), w(is) are in the same relative order as 3412). This defines a
subfamily with a number of prior results. For example, ibid. gives formulas for
H, .(¢) and related them to the Kazhdan-Lusztig polynomials; a combinatorial
formula for the latter was already known due to work of A. Lascoux [15]. One also
has a “diagonal Grébner basis theorem” for matriz Schubert varieties [14].} These
results play a role in our work. This is our main result:

THEOREM 1.4. Conjectures 1.1, 1.2, and 1.3 hold if w is covezillary. In

this case, there is a combinatorial rule for Reg(Ry ) (see Theorem 4.4), and
Reg(Ryw) = deg Py -

Our proof of the first part of Theorem 1.4 makes use of [18], which degen-
erates the tangent cone of the Kazhdan-Lusztig ideal N, ., to the Grobner limit
[14] of the matrix Schubert variety yﬁ(uw) for a different covexillary permuta-
tion k(v,w). Thereby, H, . (q) can be expressed in terms of flagged Grothendieck
polynomials [14,16]. We were inspired by the paper of J. Rajchgot—Y. Ren—
C. Robichaux—A. St. Dizier—A. Weigandt [23], who determine the degree of a

1Some of these results are stated for verillary rather than covexillary family; this is a matter
of convention.
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symmetric Grothendieck polynomial to find the regularity of X,, when w is Grass-
mannian (has at most one descent). Recent work of J. Rajchgot—C. Robichaux—
A. Weigandt [24] extends that formula to vexillary permutations, which we ap-
ply (see also the generalization in O. Pechenik-D. Speyer-A. Weigandt’s [22], and
E. Hafner’s [9]).

In Section 2, we recall the notion of Kazhdan-Lusztig ideals/varieties [26].
We also recapitulate necessary results about its tangent cone from [17,18]. We
summarize definitions and facts we need about regularity in Section 3. We then
prove our main result in Section 4. Final remarks are collected in Section 5.

2. Kazhdan-Lusztig varieties

Let
), =B_vB/B
be the opposite Schubert cell where B_ C G L,, consists of invertible lower triangular
matrices. 2, is the opposite big cell; it is an affine open neighborhood of (id) B/B.

Hence v, N X,, is an affine open neighborhood of X,, centered at e,. However,
by [12, Lemma A.4],

(2.1) X NoQS, 2 (X, NQ2) x AN,
Hence it suffices to study the Kazhdan-Lusztig variety
Nopw = X N Q.

Explicit coordinates and equations for N, , were first studied in work with
A. Woo [26]. Let Mat,,»,, be the set of all n x n complex matrices. The coordinate
ring is C[z] where z = {2;;}}',_, are the functions on the entries of a generic matrix
Z. Here z;; corresponds to the entry in the i-th row from the bottom, and the j-th
column to the right.

Let us realize 2 as a affine subspace of Mat,,«, consisting of matrices Z ()
where

Zn—’u(i)-i—l,i = 17 Zn—v(i)-‘rLs = O, 2t = O,fOI' s>iand t >n— ’U(’L) + 1.

Let z(*) C z be the unspecialized variables. Furthermore, let Z éf) be the southwest
s x t submatrix of Z(*). The rank matriz is

= ()i =
(which we index in the same manner), where
rii=#{h:wlh) >n—i+1,h < j}
One combinatorial characterization of Bruhat order is that v < w if and only if

ri; <y forall 1 <4, 5 < n.

The Kazhdan-Lusztig ideal is I, ,, C C[z(")] generated by all r% 4 1 minors of
ng) where 1 < s,t < mn. As explained in [26],
Ny w = Spec ((C[z(”)}/lv,w) :

this is reduced and irreducible.



350 ALEXANDER YONG

EXAMPLE 2.1. Let w = 7314562, v = 1423576 (in one line notation). The rank
matrix 7% and the matrix of variables Z(*) are, respectively,

1 2 3 4 5 6 7 1 0 0 0 0 0 0
1 2 2 3 4 5 6 ze1 O 1 0 0 0 0
1 2 2 3 4 5 5 Z51 0 Z53 1 0 0 0
=111 1 2 3 4 4|, ZzZW=[zy 1 0 0 0 00
11112 3 3 231 232 233 23¢ 1 0 O
111112 2 291 222 223 %Z24 225 0 1
1111111 211 212 213 214 215 1 0

The Kazhdan-Lusztig ideal I1423576,7314562 contains among its generators, all 2 x 2
minors of Zz(g) but also inhomogeneous elements such as

251 0 253
(2.2) z1 1 0| = 251233 + 253241232 — 253231-

Z31 %32 %33
This generator, per se, does not imply I1423576, 7314562 is inhomogeneous; however
one can confirm the ideal is in fact inhomogeneous with respect to the standard
grading using Macaulay2’s function isHomogeneous. These ideals (and their sta-

tistics) can be computed using https://faculty.math.illinois.edu/~ayong/
Schubsingular.v0.2.m2. (]

We also need the Schubert determinantal ideal I, which is defined similarly as
I, except that we repace Z®) with the matrix Z = (zij). The zero-set is the
matriz Schubert variety.

Given f € C[z(")], let LD(f) denote the lowest degree homogeneous component
of f. Now, define the (Kazhdan-Lusztig) tangent cone ideal to be

Iw=(LD(f): f € Luw).

E.g., if f is the polynomial in (2.2) then LD(f) = 251233 — 253231. The tangent cone
of Nyw is

N} . = Spec (C[z(”)]/IL7w) )

This can be computed using Macaulay2’s tangentCone function.

3. Castelnuovo-Mumford regularity basics
The Castelnuovo-Mumford regularity of a finitely generated graded module
M = GB M)
JEZ
over a standard N-graded ring S = >0 SU) is defined by
Reg(M) = max{f;(M) +j:j =0}

where _ ‘
sup{n : Hg (M), # 0} if Hy (M) #0,
—00 otherwise.

fi(M) 1={

Here S; = @, SU) is the irrelevant ideal of S and Hngr(M) is the é-th local
cohomology module of M with respect to Sy (and its endowed grading). We refer
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the reader to the book [4, Chapter 15] for further details. One has an expression
for the Poincaré series

(3.1) PSy(g) = )

where Kyr(q) € Zlg]; see, e.g., [5, Corollary 4.1.8]. Let hps(q) be Hilbert function
and pys(q) be the Hilbert polynomial. Hilbert’s theorem states that
hai(q) = pa(q)
for all sufficiently large q. The postulation number is
post(M) = max{n : has(n) # par(n)}.
By [5, Proposition 4.1.12],
post(M) = deg Kr(q) — dim M.

It is known (and not hard) that when M is Cohen-Macaulay, Reg(M) =
post(M) + dim M. Hence

(3:2) Reg(M) = deg Kn(q).

Now suppose S = C[zy,...,zy] and M = S/J is the S module where J C S
is an ideal that is standard graded homogeneous. M = S/J has a minimal free
resolution

0%@ S(—j)Pa(S/7) %@S(_j)ﬁifl,j(s/‘]) .. .%@5(_”504(5/‘]) —8/J—0.
J J J

Here i« < N and S(—j) is the free S-module where degrees of S are shifted by j.
Also,

Reg(M) :=max{j —i: 5 ;(M) # 0},

and
Ksyi(q)
PS = —t—,
S/J(q) (1 — q)N
where K(S/J, q) € Z[q]. If S/J is Cohen-Macaulay, (3.2) says
(33) Reg(S/.7) = deg K(S/J,4) — hts(]),

where htg(J) is the height of the ideal J in S. In our application, the algebraic
set V(J) is radical and equidimensional; htg(.J) is the codimension of the variety
V(J) C CN.

ExaMPLE 3.1. Continuing Example 2.1, using Macaulay2’s resolution and
betti one computes that the Betti numbers for the minimal free resolution of
T1423576,7314562 as

01 2 3 4 5 6 7 8 910

total: 1 12 61 176 322 392 322 176 61 12 1
0:1 721 35 3 21 7 1 . .
1: 5 40 140 280 350 280 140 40 5

2: . .. 1 7 21 35 3521 7 1

In Macaulay2 format, the entry in row j and column % is 3; ;4;. So

Reg(C") /T 493576,7314562) = 2
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is the largest row index of this table. Similarly one checks that

Reg((c(v)/T1234567,7314562) = 37

in agreement with Conjecture 1.2. ([l

4. Proof of Theorem 1.4

4.1. Proof of Conjectures 1.1, 1.2, 1.3 in the covexillary case. Let
R, =Clz")/1,,.

v,W

We claim

(4.1) Reg(R,, ,,) = deg Hy .

By [17, Theorems 3.1 and 5.5, Spec R;, ,, Grobner degenerates to init 5 X ()
(up to a permutation of coordinates), the Grobner limit in [14] of a matrix Schu-

bert variety X, (,,.) of the covexillary permutation x(v,w). We will define x(v, w)

in Section 4.2. At this moment, it suffices to know that init< X, (, ., is a reduced
union of coordinate subspaces, whose associated Stanley-Reisner simplicial complex
is homeomorphic to a shellable ball or sphere [14, Theorem 4.4]. Shellable simpli-
cial complexes are Cohen-Macaulay, which by definition, means the said union of
coordinate subspaces is Cohen-Macaulay [20, Section 13.5.3]. Therefore yﬁ(uw) is
Cohen-Macaulay, and hence Spec Rfjﬁw is also Cohen-Macaulay as it also Grobner
degenerates to it [6, Section 15.8].
In [17], one has

;o How(@( = )t
]C(Rv,w,q) - (1 _ q)[(wov) :

Thus by (3.3),
Reg(R;hw) = deg Hy(q) + L(wow) — L(wow),

since
ht(C[zW)]Iq/

o K(wow)

(here we use the fact that the tangent cone of N, ,, has the same dimension as N, .,
itself, namely £(w) — ¢(v), and that ). Thus (4.1) holds.
Since the tangent cone of N, ,, is Spec Ry, ,, it follows from (2.1) that

tangent cone (vQ§; N X,,) = Spec Ry, ,, X AL,

The tangent cone of any affine open neighborhood of p € Y is isomorphic to R, y;
see, e.g., [6, Section 5.4] and [21, II1.3]. Hence the Cohen-Macaulayness of R, ,,
implies the same of R, ,,, since this property of an affine variety is preserved under
cartesian product with affine space. Hence Conjecture 1.1 holds in this case by
(3.1).
Conjecture 1.2 holds in our case since it is shown in [18] that H, ., (q) is semi-
continuous. Also, in the covexillary case, one has from ibid. that
deg Hy . (q) = deg Py w(q)
where P, ,,(q) is the Kazhdan-Lusztig polynomial. By definition,
L(w) —l(v) —1
e ) < SO,

this is Conjecture 1.3.
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4.2. Permutation combinatorics and the formula. We recall some stan-
dard permutation combinatorics; our reference is [19] (although our conventions
are upside down from theirs). The graph of w € &,, places a e in position (w(i),%)
(written in matrix notation). Cross out all boxes weakly right and weakly above
a e; the remaining boxes of [n] x [n] form the Rothe diagram of w, denoted D(w).
That is,

D(w) = {(i,5) € [n] x [n] + i > w(5),j < w (i)},
The vector code(w) = (¢n,Cn—1,--.,c1) where ¢; is the number boxes of D(w) in
row i. The essential set E(w) of w consists of those maximally northeast boxes of
any connected component of D(w), i.e.,

E(w) ={(i,j) € D(w) : (i = 1,7), (4,5 +1) & D(w)}.
ExAMPLE 4.1. Continuing our running example, where w = 7314562, diagram
is graphically depicted in Figure 1. Hence
D(w) ={(2,3),(4,2),(4,3),(5,2),(5,3), (5,4), (6,2), (6,3), (6,4) }
and
E(w) = {21 = (65 5)7 €2 = (574)a €3 = (4a 2)7 €4 = (253)}
Moreover, code(w) = (0,4,3,2,0,1,0).

: |
L
D(w) = €3
€2
¢ | &—

FIGURE 1. The diagram and essential set for w = 7314562.

A permutation in &,, is uniquely identified by the values of the rank matrix
(r#) when restricted to D(w) or even merely E(w).

Throughout the remainder of this subsection, we assume w is covexillary.

Let A(w) be the partition obtained by sorting code(w). It is useful to know
the graphical construction of A(w): Since (a,b), (¢,d) € E(w) then one is weakly
northwest of the other [19], it follows there is a unique Young diagram (in French
notation) obtained by pushing all boxes of D(w) on a given antidiagonal to the

southwest; that is the diagram of A(w).

EXAMPLE 4.2. Our running example w = 7314562 is covexillary with A(w) =
(4,3,2,1). 0

Given v < w, [17] defines (and proves the existence of) a different covexillary
permutation x(v,w). This is the unique permutation whose essential set is obtained
by moving each ¢ = (7, j) € E(w) southwest along its antidiagonal by r7; squares
to ¢/ and imposing that

Tn(v,w) w o

_ v
o =Ti; — Tyj-
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By construction,
AMw) = A(k(v, w)).
The graphical construction A(k(v,w)) induces a bijection of boxes:
¢ : AMk(v,w)) = D(k(v,w)).
Define a filling of each box b € A(k(v, w)) with 7§, We call this RRW(v, w), as
its provenance is from [24].

EXAMPLE 4.3. One can check that (1423576, 7314562) = 3472561. |

The next result is the combinatorial rule of Theorem 1.4. It uses a similar
result of J. Rajchgot-C. Robichaux-A. Weigandt [24, Theorem 1.3]:

THEOREM 4.4.

(4.2)
Reg(Ry,w) = Reg(R;, ,,) = deg Hy o = Z Z maxdiag(a),
k>1 aeConnected(A(k(v,w))>k)
where:

o \k(v,w))>y is the shape of the subtableau of RRW (v, w) that have entries
> k;

o Connected(k(v,w))>x) are the connected components of the aforemen-
tioned shape; and

e maxdiag(a) is the largest northwest-southeast diagonal that appears in a.

ExaMPLE 4.5. To complete our running example,

RRW(1423576, 7314562) = | 0
010
0]0]1
ojof1]1]
and hence Theorem 4.4 asserts Reg = 2 (the longest diagonal appearing in the
unique 1’s component), in agreement with Example 3.1. (]

For any u € &, let &,,(z1,...,2,) be the Grothendieck polynomial [16]. By
definition, &,, = a?f*la:g*z -++x,_1 where wq is the longest element in &,,. If
l(us;) > £(u) where s; = (i i+ 1) is a simple transposition, then &, = m;(B,s,)
where

mi Lx, xa, ., Tn] = Lz, Te, . L Ty
is the isobaric divided difference operator defined by

m(f) = (I—zip ) f( @i, igr, ) — (=) f(- ,l‘z‘+1,l’i,"').

Tj — Ti41
4.3. Proof of Theorem 4.4. By [17, Theorem 6.6],
G
(4. PSyle) = — U
(1-q)%)
where

GA(q) = 611)0/‘6(1},11})(1 -¢,1l-q,...,1— Q)
Comparing (4.3) with (1.1) and using the fact that dim(X,,) = ¢(w), we see that

(4.4) deg Hy o = deg Gy (v,w) — (<Z> — @(w)) .
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On the other hand, since A(x(v,w)) = A(w), one has ¢(k(v,w)) = ¢(w), and hence

(45) funnv,0)) = () = tw)

Moreover since k(v,w) is covexillary, wor(v,w) is vexillary (avoids 2143). The
formula of J. Rajchgot-C. Robichaux-A. Weigandt [24, Theorem 1.3] shows (in our
conventions) that for any vexillary u € &,, that

(4.6) deg &, = £(u) + Z Z maxdiag(a).

k>1 acConnected(A(wou) > 1)

Hence the theorem follows by combining (4.4), (4.5) and (4.6) with u = wok(v, w).

O

In general, there are no simple formulas to compute the degree of a Kazhdan-

Lusztig polynomial P, ,,(q) (we refer the reader to [2, Chapter 5]). This proves the
final assertion of Theorem 1.4.

COROLLARY 4.6. Let w € &,, be covezillary, then deg P, , is computed by the
rule of Theorem 4.4.

PRrROOF. [18, Theorem 1.2] shows deg Hy.,(q) = deg P, ,(g) when w is covex-
illary. Now apply Theorem 4.4. O
5. Further results and discussion

These conjectures were asserted in [18]:
CONJECTURE 5.1. R, is Cohen-Macaulay. Consequently, H, ., € N[g].

That X, is Cohen-Macaulay does not imply Conjecture 5.1. In fact, C. Huneke
[11] established R, y being Cohen-Macaulay implies the same for (O, y, m,, k), and
gave counterexamples for the converse. This is a strengthening of Conjecture 5.1:

CONJECTURE 5.2 (Semicontinuity). If u < v < w then [¢'|Hyw > (" Hyw-
CONJECTURE 5.3 ([18, Proposition 2.1]). deg H, ., < %.

PRrROPOSITION 5.4. Conjectures 5.1, 5.2, and 5.3 imply Conjectures 1.1, 1.2,
and 1.3.

PRrROOF. The Cohen-Macaulay assertion of Conjecture 5.1 implies Conjecture
1.1 by the reasoning in our proof of Theorem 1.4. Combined with Conjecture 5.2
gives Conjecture 1.2. Separately, combined with Conjecture 5.3 one would obtain
Conjecture 1.3. |

During the preparation of [18], Conjectures 5.1 and 5.3 were checked for n < 7.
Conjecture 5.2 was checked for at least n < 6 and much of n = 7.
Let
R = Reg(Ry w)-
maxReg(n) ,Jnasx eg(Ryw)
CONJECTURE 5.5. maxReg(n) = ©(n?).

Computational data was not directly useful to arrive at Conjecture 5.5. For
n = 4,5,6,7, maxReg(n) = 1,2,3,5, respectively. For example, when n = 7 the
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maximizer is the (non-covexillary) w = 6734512 at v = id. Here I, ., is inhomoge-
neous and

Higer31512(q) = 1 + 4+ 9¢° + 9¢° + 4¢* + ¢°.
Let
maxReg(n) = max Reg(Ry,w)-

v<weGS,,,w covexillary

We apply Theorem 4.4 to prove the covexillary case of Conjecture 5.5.
PROPOSITION 5.6. maxReg(n) = ©(n?).

ProoOF. For the lower bound, first suppose n = 3j — 1 for 7 > 1. Let v = id
and w € G, be the unique permutation with

code(w) = (1,2,3,...,4,0,0,...,0).
Then w is covexillary, with
AMw)=(,j-1,...,3,2,1).

For example, if j = 4 then w = 7,11,6,10,5,9,4,8,3,2,1. By our assumption,
k(id, w) = w. Hence RRW(k(id, w)) is the staircase A(w) where column ¢ from the
left is filled by (¢ — 1)’s. In our example,

RRW (k(id, w)) =

OOOO|
—

1]2]3]

Hence, Theorem 4.4 asserts that

Reg(Rigw) =G -1D+(G—-2)+...+2+1= (;)

Now, if n = 35 or n = 35 + 1, use the same construction as for n = 35 — 1, except
that code(w) will have an additional 0 or 0,0 postpended, respectively. In those
two cases, the same analysis implies

Reg(Rig.) = @

Hence maxReg(n) = (n?) follows.

For the upper bound, since w € &,,, A(k(v,w)) C nxn and RRW(x(v,w)) only
uses labels k € [n]. For each such k, the inner sum of (4.2) contributes < n. Hence
Reg(Ryw) < n?. Therefore, maxReg(n) = O(n?), as required. O

COROLLARY 5.7. Conjecture 1.3 implies Conjecture 5.5.

PROOF. The lower bound of Conjecture 5.5 is immediate from Proposition 5.6.
If Conjecture 1.3 holds, then

Sometimes I, ,, is homogeneous with respect to the standard grading; see [27]
and the references therein. In those cases, trivially, I{Mw = I, and Cohen-
Macaulayness of I,,, and Conjecture 1.1 is automatic. As argued in [18], the
covexillary case is interesting precisely because I, ,, = I, ., need not hold in general
(as in the case of our running example).

Reg(Ry,w) <
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It is also natural to expect that our regularity conjectures are true for other
Lie types. We remark that in the minuscule case studied by [8], it is again true
that the Schubert varieties admit a dilation action of C* and hence the analogue
of Conjecture 1.1 holds for a similar reason as in the previous paragraph. This
problem should be in reach:

PROBLEM 5.8. Determine the regularity of tangent cones of Schubert varieties
for minuscule G/P.

We also mention that the banner permutations of Z. Hamaker-O. Pechenik-
A. Weigandt [10] extend the vexillary permutations and have a description of the
Grobner basis (also, see a further extension by P. Klein [13]). It would therefore be
interesting to see if the results of this paper (or of [17,18]) extend to that setting.

With regards to Theorem 4.4, one can use any rule that computes deg(®,). An-
other rule applicable to arbitrary u € &,, has been found by O. Pechenik-D. Speyer-
A. Weigandt [22]. On the one hand, the tableau rule of [24] is fitting with the
covexillary combinatorics we use. On the other hand, one wonders if that general
rule can be adapted to compute Reg(R, ,)? We also remark that both of these
formulas can be regarded as solving a special case of our regularity problem; see
[27, Corollary 2.6] and its proof.
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