
Supporting young students in developing meanings for the set-theoretic function definition is 

emphasized in 6th-12th grade curricula around the world. In our prior work, we have highlighted 

how covariational reasoning can support college students in constructing relationships that allow 

them to consider the mathematical properties important for the set-theoretic definition of 

function. In this paper, we show how such reasoning can provide similar affordances for younger 

students by presenting one sixth grade student’s, Ariana’s, sense making. To characterize 

Ariana’s sense making related to her quantitative reasoning in contextual situations, we build on 

Harel’s work to articulate the constructs of situational intellectual need and situational 

epistemological justification. We highlight how Ariana's covariational reasoning supported her 

development of a situational epistemological justification which included a structure entailing 

numerous quantitative relationships. We also highlight how this epistemological justification 

supported her work representing conceived relationships graphically and making determination 

regarding properties of a set theoretic function definition.  However, we characterize that Ariana 

constructed functional and non-functional relationships alike; determinations regarding 

properties of function were spurned by teacher-researcher prompts rather than any intellectual 

need Ariana experienced as she conceived such relationships. Through this analysis, we build an 

anti-deficit story of Ariana’s sense making that leads us to call into question the value of 

focusing on the set-theoretic definition of function early in students’ experiences. 

Keywords: Covariational Reasoning; Function; Intellectual Need; Epistemological Justification; 

Anti-deficit Story 
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Intellectual need, covariational reasoning, and function: Freeing the horse from the cart 

 

A function, covariationally, is a conception of two quantities varying simultaneously such 

that there is an invariant relationship between their values that has the property that, in 

the person’s conception, every value of one quantity determines exactly one value of the 

other. (Thompson & Carlson, 2017, p. 444) 

  

Curricular standards in the U.S. and elsewhere emphasize the importance of middle and 

high school students learning a set-theoretic function definition (Ayalon & Wilkie, 2019; 

National Governors Association, 2010). For instance, in the U.S. students are expected to learn a 

set theoretic function definition in 8th-grade (National Governors Association, 2010). In the same 

year they begin to explore linear functions, and are restricted to learning about other function 

classes for the remainder of their secondary school experiences; non-functional relationships (per 

traditional textbook definitions of function) are largely absent from U.S. curricula after the 

introduction of a set-theoretic function definition. Further, U.S. state tests require students to 

identify whether relationships represented in tables (e.g., New York State Education Department, 

2022; North Carolina Department of Public Instruction, 2019) and graphs (e.g., Massachusetts 

Department of Elementary and Secondary Education, 2022; Ohio Department of Education, 

2022) represent functions.  

Despite the importance of the set-theoretic definition of function in school mathematics, 

most research points to students not understanding the definition in ways compatible with 

mathematician or educator intentions (e.g., Breidenbach et al., 1992; Even, 1990; Martinez-

Planell & Gaisman, 2012; Moore et al., 2019a). Whereas some researchers have designed 
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interventions to promote more productive meanings for the function definition for high school 

(e.g., Dubinsky & Wilson, 2013) or college students (e.g., McCulloch et al., 2019; McCulloch et 

al., 2020), in this paper we take a different approach. We call for a deemphasis on the function 

definition in school mathematics altogether in favor of developing students quantitative and 

covariational reasoning. We ground this argument in our prior research and results presented in 

this paper described below.  

Extending the horse and cart metaphor 

In our previous work (Paoletti & Moore, 2018), we argued a conception of function 

rooted in covariation, as described in the opening quote, can provide students with meanings for 

quantitative relationships that support them in making determinations about the mathematical 

properties important for a set-theoretic function definition (e.g., univalence). In that previous 

work we illustrated the productivity of such a conception using a case of an undergraduate 

student, Arya, constructing a quantitatively sophisticated image of a situation. Arya then 

leveraged this image to determine if various situational relationships (some represented 

graphically and others only imagined) represented functions by considering the set-theoretic 

function properties she had previously learned. We contended that Arya’s covariational 

reasoning provided her with a metaphorical horse that she could use to pull the metaphorical cart 

that is a formal set-theoretic function definition.  

In this paper, we return to the horse and cart metaphor to build on and extend our 

previous argument by constructing an anti-deficit story (Adiredja, 2019; Adiredja & Louie, 2020; 

Adiredja & Zandieh, 2020) describing the productive sensemaking of Ariana, a Latina 6th- grade 

student (approximately 11-years old). To do this, we first extend Harel’s (2008, 2018a, 2018b) 

prior work to the domain of students’ quantitative reasoning to introduce the constructs of 
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situational intellectual need and situational epistemological justification1. We highlight how 

Ariana experienced a situational intellectual need that supported her in constructing a situational 

epistemological justification. Ariana leveraged her situational epistemological justification as she 

developed meanings for graphs as representing emergent traces (Moore & Thompson, 2015; 

Moore 2021). Further, she leveraged this justification as she addressed questions related to 

properties of the set-theoretic definition of function in ways compatible with Arya (Paoletti & 

Moore, 2018), despite never having been introduced to a set-theoretic definition of function 

Although Ariana (a 6th-grade student) was capable of engaging in reasoning compatible 

with Arya (an undergraduate student), we highlight how Ariana did not experience any 

intellectual need for differentiating between functional and non-functional relationships. By 

connecting to research on students’ and teachers’ meanings for function, we argue that a 

potential lack of intellectual need raises questions regarding the importance of emphasizing, or 

over-privileging, ‘function’ (i.e. the cart) in the form of univalence (the property that for each 

element in the domain there is a unique element in the range) in pre-college mathematics— as 

required by curriculum standards. That is, we argue for freeing the metaphorical horse (i.e., 

constructing quantitative relationships) from the cart (i.e. a formal function definition), with the 

cart only being brought in when students experience some intellectual need for it (e.g., in 

analysis and exploring formal properties of integration and differentiation). 

Intellectual need, epistemological justifications, and constructing quantitative 

relationships 

 
1 We note our use of “situational” refers to the situation, context, or physical phenomena students 
are making sense of and is not intended to refer to situated perspectives (e.g., Lave & Wenger, 
1991). 
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Harel (2008, 2018a, 2018b) included the constructs of intellectual need and 

epistemological justification as part of his framework for DNR-based instruction. We use two 

criteria to characterize a student as experiencing an intellectual need2. First, the student must 

have an experience in which their current ways of operating (e.g., mathematics knowledge) does 

not result in assimilation and establishing a state of equilibrium, thus resulting in a state of 

perturbation. Second, a researcher claiming that a student is experiencing an intellectual need 

implies that the researcher perceives meanings to be within the student’s zone of proximal 

development that could resolve the state of perturbation (Weinberg et al., in press).3 If, on the 

other hand, the student experiences a perturbation such that the meanings necessary for 

accommodation are outside of their zone of proximal development, the student perturbation is 

better characterized as associated with a state of confusion rather than a state of intellectual need 

(Weinberg et al., in press).  

If the student is able to resolve an intellectual need via the creation of new mathematical 

knowledge, and is aware of how the new knowledge resolves the perturbation, Harel (2008) 

characterizes the resulting awareness as the student’s epistemological justification. Using the 

context of complex numbers, Harel (2018a) exemplified the difference between students 

developing new knowledge without and with an awareness of how a perturbation is resolved. He 

described how his college students had been taught about complex numbers, and how they could 

operate on complex numbers, without ever having experienced any intellectual need for such 

 
2 We note that intellectual need, as defined in the broadest sense, can stem from the enactment of 
mathematical or non-mathematical schemes (e.g., affective schemes). For the purpose of this 
paper, we focus on mathematical schemes.  
3 As Weinberg, Tallman, & Jones (in press) clarify, the particular meanings a researcher 
perceives to be within a student’s zone of proximal development are the for when a researcher 
describes a student experiencing an intellectual need for a particular idea.  
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numbers. He also described an approach to introducing complex numbers that started with 

students experiencing a perturbation. This perturbation could be resolved by creating a definition 

for complex numbers. The students’ prior knowledge around complex numbers was not 

grounded in any epistemological justification, whereas the students experiencing Harel’s 

approach could generate a sentential epistemological justification, which results from 

understanding the need for a definition, axiom, or proposition, for complex numbers. 

Emphasizing the importance of intellectual need and epistemological justification, Harel 

(2018a) advised that instruction focused on rigor (e.g. formal mathematical definitions) in 

absence of intellectual need for that rigor creates situations in which students feel like “aliens in 

knowledge construction” (p. 38). In such an absence, students are unlikely to value rigor and, 

relatedly, unlikely to construct an associated epistemological justification rooted in their 

mathematical meanings. 

In addition to sentential epistemological justification, Harel (2018a, 2018b) has described 

other forms of epistemological justifications including understanding aspects of the process of 

proving (apodictic epistemological justification) and understanding underlying reasons for how a 

proof or justification came into being (meta epistemological justifications). Across all of Harel’s 

characterizations of intellectual need and epistemological justification, he emphasizes the 

importance of students experiencing perturbations that they resolve via the construction of some 

new mathematical knowledge.  

Due to his focus on new mathematical knowledge, Harel does not explicitly focus on 

student’s meanings for situations that may support the generation of new mathematical 

knowledge. We add to the types of intellectual need and epistemological justifications by 

describing a situational intellectual need and situational epistemological justification. We 
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characterize a student as experiencing a situational intellectual need when she experiences a 

(possibly minor) perturbation as she conceives a novel “real-world” situation and subsequently 

sets the goal-oriented activity of making sense of and mathematizing that situation via a cyclical 

process of constructing quantities and their relationships. Johnson’s (2023) description of an 

intellectual need for relationships, “a need to explain how elements work together, as in a 

system” (p. 30) falls within our description of a situational intellectual need. 

We characterize the student as creating a situational epistemological justification when 

she resolves this perturbation by leveraging, and potentially reorganizing, her existing schemes 

and operations in a way that provides her with both an understanding of the situation and an 

awareness of the underlying quantities and relationships between quantities in the situation. Our 

characterization of intellectual need and epistemological justification are less stringent than 

Harel’s use; we do not require the construction of knowledge in the form of entirely new 

schemes and operations. However, we underscore that students re-constructing or reorganizing 

previously constructed (quantitative) schemes and operations in a novel situation is effortful, as 

well as critical for the construction of mathematical concepts (e.g., Steffe & Thompson, 2000).  

When characterizing intellectual need and epistemological justifications, the researcher’s 

goal should be to explore and explain the students’ purposeful sensemaking in the context as 

they understand it, which is consistent with an anti-deficit perspective (Adiredja, 2019) and 

pursuing a humanized, equitable education via attention to students’ mathematics (Ellis, 2022; 

Hackenberg, 2010). Certain situations or tasks may elicit an intellectual need for some students 

and not for other students. When a task does not elicit an intellectual need, researchers and 

teachers need to consider why in relation to the student’s current meanings; the notion of 

intellectual need does not exist independent of situating it in the context of a student’s extant 
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mathematics in combination with an instructor or researcher’s targeted meanings in working with 

that student (Weinberg et al., in press). Such reflections can support the design (or re-design) of 

tasks that can be further implemented. Similarly, as a student develops an epistemological 

justification, she can leverage ways of knowing that may be inconsistent with researchers’ 

targeted meanings.  

Situational intellectual need, epistemological justifications, and emergent thinking 

As a backdrop to illustrate the notions of situational intellectual need and epistemological 

justification, we use the Faucet Task (and student work on this task in subsequent sections), 

which we have implemented in both research and instructional settings. As situational 

intellectual need requires a student to conceive a situation and set the goal-oriented activity of 

making sense of and mathematizing a situation, it is important to use experientially real 

situations (Gravemeijer & Doorman, 1999). Experientially real situations give students the 

opportunity to construct quantities and their relationships (e.g., Johnson et al., 2020; Thompson 

& Carlson, 2017); as students have experiences with running water and faucets, we assume the 

Faucet Task is experientially real to them. 

Creating situational intellectual need 

To support students in connecting the Faucet Task to an experientially real situation, we 

have them explore a Geogebra applet that allows them to turn hot and cold knobs that, in turn, 

change both the width of the rectangle below the faucet (i.e. indicating changing the amount of 

flowing water) and the color of the rectangle (i.e. indicating changing the temperature of the 

water) (see https://www.geogebra.org/m/rdxkrwek and Figure 1). When implementing the task, 

we first have students identify and describe quantities in the situation they could measure (e.g., 

amount of turns of either knob, water temperature, amount of water) to explore if they are 

https://www.geogebra.org/m/rdxkrwek
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understanding quantities in ways compatible with our intentions. Intending to support the 

students in experiencing a situational intellectual need that leads to their mathematizing the 

situation, we present four tasks, each beginning with both knobs turned halfway on (Figure 1, 

left). We ask students to predict how temperature and amount of water vary from this initial state 

as (A) the cold knob is turned to all the way on, (B) the cold knob is turned to all the way off, (C) 

the hot knob is turned to all the way on, and (D) the hot knob is turned to all the way off. In each 

case, we ask students to provide reasons for their prediction prior to using the applet to check if 

their prediction is viable. For example, a student addressing prompt B may argue that since the 

cold knob is being turned off, the amount of water will decrease, and there will be less cold water 

so the water temperature will increase. 

Building a situational epistemological justification 

When students observe the quantities changing in a way other than their prediction, we 

ask them to consider why, in a faucet situation, the quantity did not do what they anticipated. For 

example, it is not uncommon for students to predict increasing the cold water will cause both the 

amount of water and temperature to increase. However, after observing temperature decreasing, 

students have the opportunity to re-construct and make accommodations to their meanings for 

the relationships between quantities in the situation. For example, they may consider how adding 

cold water will increase the relative proportion of cold to hot water from the starting combination 

of equal amounts hot and cold water, thereby decreasing the water temperature. Such reasoning 

can provide the basis for an evolving situational epistemological justification such that they 
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begin to develop an awareness of the underlying quantities and relationships between quantities 

in the situation.4 

  

Figure 1. Several screenshots of the Faucet Task for Scenario (A) the cold-water knob 

being turned on from its initial state. 

Leveraging a situational epistemological justification to develop graphing meanings 

We next use the Faucet Task to support students in leveraging the situational 

epistemological justifications they developed in the above activity to build towards a conception 

for graphs termed emergent graphical shape thinking (Moore, 2021; Moore & Thompson, 2015). 

Drawing on descriptions of covariational reasoning (see Thompson & Carlson, 2017), Moore and 

Thompson (2015) described emergent thinking as conceiving a graph simultaneously in terms of 

“what is made (a trace) and how it is made (covariation)” (p. 785). Critical to such a conception 

is a student conceiving of a graph in terms of a progressive trace constituted by a point’s 

movement dictated by the covarying quantities’ magnitudes, with the resulting graph being an 

emergent result of that covariation (see Figure 2). Such reasoning requires explicit bridging of 

 
4 We note it is common for students in our study to share that they have thought of this task 
between sessions while cleaning dishes at home or using a school sink, which provides further 
opportunities for them to develop situational epistemological justifications.  
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students’ meanings for objects in a coordinate system (e.g., segments representing quantities’ 

magnitudes) and the covarying quantities in a situation (Paoletti et al., 2023). 

     

Figure 2. Several static instances of the emergent trace representing amount of water and 

temperature covarying as the cold knob is turned on. 

With the goal of supporting the students’ development of emergent graphical shape 

thinking, after the task sequence described above, students engage with a series of applets, each 

presenting the original situation with additional mathematical objects. The first of these applets 

presents temperature and amount-of-water magnitudes on a vertical and horizontal axis, 

respectively (Figure 3a). The next applet presents a point in the coordinate system 

simultaneously moving in accordance with each segment’s magnitude (Figure 3b). In the third 
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applet, the ‘trace’ feature of Geogebra is used to have the dynamic point, representing both 

quantities’ magnitudes, leave a trace that produces a record of the movement of the point.  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 3: The applet (a) with temperature on a vertical axis and amount of water magnitudes on 

horizontal axis (b) with the point shown, (c) showing the movement of the knob and point as the 

cold is turned on, and (d) the resulting emergent trace from (c). 

 

For each of these three applets, we again have students predict, test, and observe what 

happens for Scenarios (A)–(D). Students can leverage their situational epistemological 

justification as they describe how different objects in the coordinate system change based on 

their meanings for the situation. For example, a student may anticipate that when the cold water 

is turned on, the amount of water will increase and the temperature will decrease. That student 

can also anticipate this relationship corresponding to the pink segment getting longer and the red 

segment getting shorter. The student may then argue that the point will move diagonally down 

and to the right because of these changes in the two segments (see Figure 3c for a trace for 

Scenario (A)). Further, we note this series of applets and prompts can create additional 

opportunities for students to re-construct a situational epistemological justification. Each applet 

presents a new object for the student to consider, which can result in the student setting the goal-

oriented activity of making sense of and mathematizing that object in relation to their previous 

activity. When objects do not behave as predicted, students have repeated opportunities to re-

conceive the quantities and their relationships in the situation (and in the graph). Hence students 

have additional possibilities to re-conceive or strengthen their situational epistemological 

justification. 

Relevant to students’ emergent reasoning, Paoletti and Moore (2017) characterized that 

reasoning about the same graph as being traced in multiple directions was a strong indication of 

emergent graphical shape thinking. Hence, in the last part of the Faucet Task, we ask students to 
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interpret what situations may have created novel completed graphs (see Figure 4 for examples). 

By asking students to interpret such graphs, we intend for them to experience another round of 

situational intellectual need as they set the goal of interpreting mathematical representations in 

relation to situational quantities and relationships between the quantities. The students can 

reconcile this intellectual need by drawing on and accommodating their previously constructed 

situational epistemological justifications. Namely, students may re-construct specific, and maybe 

several, quantitative structures to interpret given graphs as tracing in one, and maybe several, 

directions. For example, a student may interpret the graph in Figure 4a as tracing from left-to-

right, arguing temperature is decreasing while amount of water is increasing. The student may 

conclude turning the cold knob on would produce this graph. A student may also interpret the 

graph as tracing from right-to-left, arguing temperature is increasing while the amount of water 

decreasing. With this interpretation the student may conclude turning the cold knob off would 

produce this graph.  

 

    

(a)     (b) 

Figure 4: Two examples of completed graphs in the Faucet Task. 

 

Anti-deficit perspective, radical constructivism, and teaching experiments  
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In this section, we characterize our understanding of adopting an anti-deficit perspective. 

We then describe how we view radical constructivists teaching experiments (Steffe & 

Thompson, 2000) as a viable tool researchers can use to develop anti-deficit stories of students’ 

productive sensemaking. An anti-deficit perspective is a theoretical orientation researchers can 

use to examine students’ mathematical sense making (Adiredja, 2019; Adiredja et al., 2020). A 

researcher adopting this perspective:  

begins with the assumption that all students are capable of reasoning mathematically, and 

that they bring productive resources for learning mathematics. In research about student 

mathematical thinking, such perspective maintains flexibility with respect to the source 

and form of productive knowledge and reasoning. Important learning resources can stem 

from students’ experiences from both in and out of the classroom, and productive sense-

making can be expressed in imperfect mathematical language and with inconsistencies. In 

fact, inconsistencies and imperfections are sites for exploration for productive 

understanding. (Adiredja et al. 2020, p. 521) 

Adiredja (2019) described a methodological framework for cognitive researchers who want to 

engage with anti-deficit work. The framework involved several criteria. First, researchers must 

engage in intentional selection of research subjects who are implicated in broader and individual 

deficit narratives. Second, researchers should adopt an anti-deficit cognitive theoretical 

framework, which allows them to construct an anti-deficit story using careful analysis of 

students’ sensemaking. Finally, researchers should explicitly challenge deficit interpretations of 

data.  

We argue that teaching experiments as described by Steffe and Thompson (2000), which 

are grounded in a radical constructivism (von Glasersfeld, 1995), are well suited to support 



INTELLECTUAL NEED, COVARIATIONAL REASONING, AND FUNCTION 

 16 

researchers in constructing an anti-deficit story using careful analysis of students’ sensemaking. 

A foundational assumption of the teaching experiment methodology is that students’ 

independently construct their own mathematical realities based on their repeated experiences 

making sense of their experiential world (von Glasersfeld, 1995); a researcher’s goal is to use the 

student’s words and actions to build models of their mathematical realities, with the resulting 

models referred to as the mathematics of students (Steffe & Thompson, 2000). Connecting 

teaching experiments to Nodding’s (2002) care theory, Hackenberg (2010) identified that such a 

process involves cognitive decentering in which a researcher (or teacher) attempts to put aside 

their own reality and understand the mathematical reality of the student. Such a process “goes 

beyond just knowing that a student thinks differently to attempting to think like the student 

thinks, and acting upon that attempt to open possibilities for the student to make progress in 

some way” (Hackenberg, 2010., p. 240). Adopting this perspective, researchers using a teaching 

experiment methodology understand the mathematics of students as a form of legitimate 

mathematics, even when a student’s mathematics may not align with researchers’ or 

mathematicians’ conceptions.  

Adopting both a radical constructivist view and an anti-deficit perspective (Adiredja, 

2019), there are no such things as misconceptions – only conceptions that have worked for 

students in their prior experience. Further, although a teacher’s or researcher’s task or prompt 

may support or occasion shifts in student meanings, they can never cause such shifts; instead 

shifts in students’ meanings should always be attributed to the effortful sensemaking on the part 

of the student (Adiredja, 2019; Steffe & Thompson, 2000). Finally, we note that both approaches 

de-emphasize formal mathematical knowledge as conceived by mathematicians. In fact, Steffe & 
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Thompson (2000) go so far as to argue for mathematics of students becoming a foundation for 

school mathematics:  

By regarding mathematics as a living subject, we are faced with a different mathematics 

than appears in contemporary school mathematics… We strive to specify the 

mathematical concepts and operations of students and to make them the conceptual 

foundations of school mathematics. (p. 269)  

Hence, we view radical constructivists’ teaching experiments as a viable methodology 

researchers can use as they provide anti-deficit stories. We now describe how we used this 

methodology in ways that align with an anti-deficit perspective. 

Methods, participants, and analysis 

  We describe a student’s, Ariana’s, sense making during an exploratory teaching phase of 

a teaching experiment (Steffe & Thompson, 2000) in which we engaged her in the Faucet Task. 

This teaching experiment was part of a larger design-based research study in which the research 

team was interested in investigating the extent to which middle-school students could reason 

quantitatively and covariationally to conceive of and graphically represent relationships5. 

Although the research team was familiar with secondary and undergraduate students’ reasoning 

in relevant contexts through their prior research, they had not yet investigated the ways middle-

school students may engage in such reasoning and thus initially conducted exploratory teaching.  

The goal in this exploratory teaching was “to become thoroughly acquainted, at an 

experiential level, with students’ ways and means of operating in whatever domain of 

mathematical concepts and operations are of interest” (Steffe & Thompson, 2000, p. 274). For 

 
5 We refer the reader to Paoletti et al. (2020), Paoletti et al. (2022), and Paoletti et al. (2023) for 
additional findings from the larger design experiment.  
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example, we were unsure the extent to which middle school students experienced opportunities 

to reason about and graphically represent relationships between covarying quantities. As such, 

we designed several tasks, including the Faucet Task, that allowed us to explore the ways 

students may naturally reason about, and represent, such situations. Due to the exploratory nature 

of this part of the study, our interactions with students were largely responsive and intuitive. 

During such interactions, a teacher-researcher’s (TR’s) actions are not pre-planned in advance of 

the session, instead relying on their in-the-moment conjectures about how and why students are 

reasoning during the interactions (Steffe & Thompson, 2000). Although exploratory teaching 

was largely our purpose in this teaching experiment (Steffe & Thompson, 2000), we audio and 

video-recorded each session with the intention of building viable models of the student’s 

evolving mathematical meanings as we engaged her in a 10-session teaching experiment.  

Subjects and setting 

The study occurred in a Northeastern U.S. school that hosts a diverse student population 

(over 75% students of color). We asked teachers to recommend students who could articulate 

their thinking and would be willing to participate. Particular to this paper, we characterize the 

activity of one Latina 6th-grade student, Ariana, we engaged in the teaching experiment. We 

focus on the first three sessions in which Ariana addressed questions particular to the Faucet 

Task. 

Consistent with the anti-deficit framework principle of intentional subject selection 

(Adiredja, 2019), we chose Ariana as according to her end of year state test, she was categorized 

as: “Partially Met Expectations” (Level 2 out of 5). As our results will show, this score did not 

accurately capture Ariana’s full mathematical capabilities. We highlight her brilliance as she 
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engaged in sensemaking to explore mathematical ideas well beyond what is typically expected of 

a 6th-grade student.    

Data analysis 

Consistent with the teaching experiment methodology (Steffe & Thompson, 2000), we 

used on-going and retrospective analyses to analyze the data. During both phases of analysis, we 

conducted conceptual analysis — “building models of what students actually know at some 

specific time and what they comprehend in specific situations” (Thompson, 2008, p. 45). 

Conceptual analysis allowed us to develop and refine models of the students’ mathematics that 

viably explained her actions.  

During on-going analysis, the research team met after each teaching episode to review 

the video and identify important instances in student activity that supported our building initial 

models of Ariana’s mathematics to viably explain her observable words and actions. These initial 

models supported our designing and adapting tasks for future episodes. In these future episodes 

we tested these models by predicting how students might respond to a given task or situation. 

Such activity is consistent with analytical interactions in a teaching experiment (Steffe & 

Thompson, 2000).  

During retrospective analysis, we again performed conceptual analyses (Thompson, 

2008) to generate, test, and adjust models of Ariana’s mathematics so these models provided 

viable explanations of her activity. The research team re-watched the entire teaching experiment 

sequentially to analyze the data using generative and convergent approaches (Clement, 2000). 

Using a generative approach, we watched videos identifying occurrences providing insights into 

Ariana’s in-the-moment meanings (Thompson, 2016) for constructing, interpreting, and 

graphically representing relationships between quantities. Using these instances, we generated 
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tentative models of her mathematics, including characterizing Ariana’s situational 

epistemological justifications. Using a convergent approach, we tested these models by searching 

for supporting or contradicting instances in Ariana’s other activities. When evidence contradicted 

our models, we revised our model and returned to prior data with these new hypotheses in mind. 

This process resulted in a viable model of Ariana’s mathematics. 

Developing epistemological justifications to reason emergently: The case of Ariana 

We describe Ariana’s activity addressing the Faucet Task, first highlighting her 

experiencing a situational intellectual need she resolved by constructing a situational 

epistemological justification via a quantitative structure. We show how she leveraged this 

justification as she described how various mathematical objects varied. We conclude by 

highlighting how this activity supported Ariana in addressing questions regarding ‘function’ 

(from the researchers’ perspectives), but illustrate that these questions did not produce an 

intellectual need for her.  

Developing a situational epistemological justification in the Faucet Task 

When first presented with the Faucet Task and asked to “play around” with the knobs, 

Ariana identified “how much water comes out” and “temperatures of the water” as quantities she 

could measure. As Ariana addressed Scenarios (A)–(D), she constructed and re-constructed 

particular quantitative and covariational schemes and operations to make sense of the situation 

(e.g., reasoning about directional changes in two quantities’ magnitudes, making additive 

comparisons to describe more water leaving the faucet). This activity formed a basis for her 

developing situational epistemological justification. For instance, addressing Scenario (A), 

Ariana drew on her personal experiences with faucets to accurately describe “there’s going to be 



INTELLECTUAL NEED, COVARIATIONAL REASONING, AND FUNCTION 

 21 

more water coming out” and when asked what was going to happen to the temperature, she said, 

“it’s going to become colder.”  

When addressing Scenario (B), Ariana initially indicated both water temperature and 

amount of water would decrease. However, when asked to justify the change in temperature she 

re-considered: 

TR:  Why do you think it’s going to get colder? 

A:  Because you’re turning it off [pauses]. 

TR:   We’re turning cold off, so. 

A:   [interjecting] It would become warmer. 

 TR:  Why would it become warmer? 

A:   Because, since we’re turning it [the cold knob] off. Um the more you turn it, um 

to the right [referring to Scenario A], the more colder it would get. But since 

we’re turning it um to the left, it would become warmer because we’re basically 

turning it [the cold knob] off. 

Addressing the TR’s prompt, Ariana reconsidered the quantities in the situation, arguing that 

whereas turning cold water on resulted in a decrease in temperature in Scenario (A), turning the 

cold off would result in an increase in temperature in Scenario (B).  

Leveraging situational intellectual need and epistemological justification, we contend 

Ariana experienced a situational intellectual need as she attempted to justify her initial conjecture 

that water temperature decreased for Situation (B). She experienced a minor perturbation when 

she attempted to use her already existing schemes and operations to make sense of and 

mathematize a novel situation. Reconciling this need, Ariana used existing schemes and 

operations (e.g. reasoning about the directional change of quantities) to begin to construct a 
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situational epistemological justification that enabled her to determine how, and more importantly 

why, the quantities in the situation varied as they did (i.e. arguing that since turning the cold 

water on results in colder water, turning it off will result in warmer water). Specifically, her 

constructed quantitative structure entailed schemes involving compensation such that she could 

anticipate changes in temperature regardless which knob was changed. This is reflected by the 

fact that Ariana had no difficulty in accurately predicting how each quantity would change for 

Scenarios (C) and (D). 

We note that a researcher adopting a deficit perspective may consider Ariana’s sense 

making insignificant given the everyday context. However, we counter such an interpretation by 

highlighting the sophistication of this reasoning. Particularly, Ariana understood that a 

modification to one knob can cause a temperature change more directly related to the other knob 

(e.g., “[the temperature] would become warmer because we’re basically turning [the cold knob] 

off”). Such reasoning requires a situational epistemological justification that entails a complex 

relationship between (at least) three interrelated quantities (amount of hot knob turns, amount of 

cold knob turns, and water temperature).  

Leveraging a situational epistemological justification addressing graphing prompts in the 

Faucet Task 

Ariana leveraged her developing situational epistemological justification when describing 

how the mathematical objects (seen in Figure 3a/b) varied in the next two applets. For example, 

after describing the point as moving according to the endpoints of the two varying segments 

(Figure 3b), Ariana predicted and then tested how the point moves for Scenarios (A)–(D). In 

each case, Ariana leveraged her situational epistemological justification to accurately address 

each prompt. In one instance, addressing Scenario (D), Ariana first described that the 
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temperature and amount of water decreased, and that this corresponded to each segment 

decreasing in length. She then described, “since they’re [motioning to the segments on the axes] 

both moving, it’s [the point’s] going to go diagonally [motioning from the point on the computer 

screen diagonally down and to the left].” In each scenario, Ariana described that the point’s 

movement was dictated by the covarying magnitudes, which she later built on to describe the 

direction of the emergent trace in these scenarios.  

Ariana’s activity on the last part of the Faucet Task (e.g., Figure 4) provided an 

opportunity to explore if she was engaging in emergent graphical shape thinking. Addressing the 

first graph (Figure 4a), and indicative of reasoning emergently, Ariana experienced a minor 

perturbation as she immediately questioned if the graph “started down here [pointing to the 

bottom right endpoint] or up here [pointing to the top left endpoint]?” She then argued if the 

graph started at the top left endpoint, “turning cold on” would produce the given graph. 

Justifying this, she put her finger over the top left endpoint and indicated for the initial state, “If 

it started here, the hot water, the hot water would be on.” Then, leveraging her situational 

epistemological justification, she argued the action that would result in the given graph was, 

“turning cold on… because if you turn cold on it [water temperature] would go down [motioning 

along the curve from the top left endpoint] and as you can see it’s a little curve [motioning over 

the curve near the bottom right endpoint] as if the water is increasing [motioning horizontally 

along the horizontal axis to indicate the amount of water is increasing].” Shortly thereafter, 

Ariana argued if the graph started at the bottom right endpoint, “turning the cold water off” 

would produce the graph traced in the opposite direction.  

We infer Ariana experienced a situational intellectual need as she was tasked with 

describing a single knob turn that would produce the given graph but was unsure which direction 
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the graph traced (e.g., questioning the starting point of the graph). Ariana resolved this 

perturbation by using her existing situational epistemological justification in a new way. In 

particular, she interpreted one graph in two different ways, and provided two different, accurate, 

descriptions of starting states and turns that would produce the graph. Hence, we infer Ariana 

was engaging in emergent shape thinking. Ariana’s emergent reasoning is particularly powerful 

as there is evidence that such reasoning is non-trivial for pre-service and in-service mathematics 

teachers (Moore et al. 2019, Thompson et al., 2017). 

Ariana explicitly addressing questions about univalence 

Consistent with exploratory teaching, the TR next opted to explore in-the-moment 

conjectures. In particular, he conjectured that Ariana’s quantitative structure could support her in 

considering scenarios that were more complex than the applet was designed to address. He 

intended to explore if Ariana could conceive of and describe both functional and non-functional 

relationships (from his perspective) within the scenario similar to Arya (Paoletti & Moore, 

2017).  

First, the TR prompted Ariana to imagine if she could turn both knobs simultaneously, 

which was not possible in the applet as designed. He intended explore if Ariana might consider 

novel situations that may produce different changes in the temperature and amount of water than 

she had yet experienced. He then asked if she could describe “a way to turn both of them to keep 

the temperature the same.” The following conversation ensued:  

A:  If you turn them both on, the temperature would stay the same… if it started off 

like equal, and you left it [the amount your turning each knob] equal, but you still 

move it, it will, the temperature will stay the same. 
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[Ariana spontaneously considered what happens to volume as she turns one knob on and 

the other off. The TR returned to keeping temperature invariant before moving to 

the situation Ariana was describing]. 

TR:  But the volume would in that case, what would happen to the volume if turning 

them both on by the same amount? 

A:  The volume would increase. 

TR:  Increase. What if we were turning them both off by the same amount?   

A:  Um it [volume] would decrease. 

Despite the applet not allowing Ariana to turn both knobs simultaneously, she was able to make 

a modification to her quantitative structure by imagining a new situation that entailed 

simultaneously turning the knobs in the same direction. She reasoned in such a case water 

temperature remained constant while the amount of water varied. We infer Ariana was implicitly 

reasoning that situationally the amount of water is not in a univalent relationship with 

temperature (i.e. the same temperature magnitude can correspond to multiple amount of water 

magnitudes).  

Immediately after this, the TR began to question whether every amount of water 

magnitude corresponded to exactly one temperature magnitude: 

TR:  I don’t want any more water…So we want that same amount of water. But we 

want it to be hotter, and you can turn both knobs. 

A:  But you would just turn on the hot. 

TR:  If I turn on the hot more, it’s going to increase the temperature and the amount 

total amount of water right? So say I turn the hot on a little bit. But at the same 

time I turned the cold off a little bit. What would happen in that case?  
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A:  In that case, the volume would stay the same, because you're adding a piece that 

you already took away from the cold. 

TR:  Right… And what happens to the temperature? 

A:  Um the temperature increases. 

TR:  Increases. What if I want the water to be a little colder?  

A:  You would take, you [do] the opposite, you would just take away the hotness, you 

take, like a turn of the hotness [off] and then add another turn of cold.  

Leveraging her situational epistemological justification, Ariana understood if she simultaneously 

turned the knobs in opposite directions by equal amounts, the amount of water leaving the faucet 

would remain invariant but the water temperature would vary. We infer Ariana implicitly 

reasoned that situationally temperature is not in a univalent relationship with water volume (e.g., 

a particular volume magnitude corresponds to a range of temperature magnitudes). 

As Ariana’s quantitative structure supported her in making decisions regarding 

univalence in each case, the TR conjectured she may be able to characterize whether even more 

complex relationships were univalent. Hence, he prompted Ariana to consider if each point 

representing (Amount of water, Temperature) magnitudes corresponded to exactly one 

situational state (e.g., one pair of (Hot knob turns, Cold knob turns)). Referring to a specific 

(Amount of water, Temperature) point shown on the applet, he asked Ariana if it was possible to 

play with the knobs to obtain both the same amount of water coming out and the same 

temperature. After a 6-second pause, Ariana indicated this was possible. The following 

conversation occurred:  

A:  I'm not sure that the temperature, but… if we just like add, umm, another piece of 

hot water and take a cold water away, umm, [the pink segment on the horizontal 
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axis, seen in Figure 2] would stay the same… because the amount of water is 

coming out. 

TR:  Yeah, so the pink will stay the same, but do you think it [the point] would move 

up or down or would it stay there?  

A:  It would move up because you’re, more hot water. Now that you told me that, I 

don't think, I don't think there's a way. 

Ariana initially additively coordinated the volume of hot water and the volume of cold water to 

consider how to maintain a constant total volume of water. When asked if the point would move 

up or down, Ariana turned her attention to temperature, realizing it would increase in the 

situation she described.  

After this, the TR provided Ariana with another point on the graph and asked if another 

mixture of hot and cold water could produce that same (Amount of water, Temperature) point. 

After an eleven second pause, and consistent with her initial response above, Ariana attended 

only to the amount of water to conclude another situation could produce the point. Also 

consistent with her response above, when testing her conjecture Ariana then attended to 

temperature, realizing the temperature changed and that her proposed situation produced a 

different point. After Ariana realized this, the TR asked “So if I stopped [at] a specific place…I 

have that amount of water coming out and that temperature [pointing to the segments on the axes 

respectively]. Any other situation gets me there?” Ariana immediately responded that this was 

not possible just prior to the session ending. Due to time constraints of the session, the TR did 

not have an opportunity to further explore Ariana’s meanings for this complex relationship.  

A researcher adopting a deficit account may characterize Ariana’s activity above as 

showing a lack of sense making; in both cases she first only attended to one quantity while 
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considering the TR’s prompt. We challenge such an interpretation by highlighting the 

complexity of considering four changing quantities simultaneously (i.e., hot knob turns, cold 

knob turns, temperature, and amount of water). In each case, Ariana successfully coordinated 

three changing quantities prior to considering the fourth; such multivariational reasoning is non-

trivial for students from middle school to advanced mathematics (Jones, 2022; Panorkou & 

Germia, 2020). 

Reflecting on Ariana’s actions, we infer that she continued to (re)construct her 

quantitative structure and, thus, associated situational epistemological justification involving 

relationships between states of the turning knobs and the resulting temperature and amount of 

water. She concluded in-the-moment that two different knob states could not produce the same 

(Amount of water, Temperature) point. That is, Ariana concluded that the relationship between 

(Hot knob turns, Cold knob turns) states and (Amount of water, Temperature) was a univalent 

relationship. Hence, we infer Ariana described three relationships as having or not having the 

property that “every value of one quantity determines exactly one value of the other [quantity]” 

(Thompson & Carlson, 2017, p. 444) (Table 1). 

Table 1: The relationships Ariana’s considered as possibly representing covariational functions. 

Situation “One quantity” “The other [quantity].” Univalent? 

Turning both knobs in 

same direction 

Temperature Amount of water No 

Turning both knobs in 

opposite directions 

Amount of water Temperature No 

Turning either knob 

any amount 

(Temperature, 

Amount of water) 

(Hot knob turns, Cold knob turns)  Yes 
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Ariana developed situational epistemological justifications that supported her in 

determining if certain quantitative relationships had the property of univalence. However, 

univalence was a natural (although not always conscious) aspect of her quantitative structures; 

Ariana never experienced a perturbation if a relationship was not (or was) univalent. Hence, 

Ariana did not experience any intellectual need for explicitly considering the possible univalence 

of the relationships. Ariana only determined if a relationship was univalent because the TR 

prompted her to do so. Rabin et al. (2013) referred to such a situation as entailing a social need, 

rather than intellectual need, and noted “for students to learn the mathematics we intend to teach 

them, they must see a need for it, where ‘need’ means intellectual need, not social or cultural 

need” (p. 652). In such situations, we agree with Harel (2008) who argued students are less likely 

to learn what teachers or researchers intend when “students’ actions are socially rather than 

intellectually driven” (p. 488).  

Univalence, intellectual need, and function 

Like Ariana, there is little evidence most students (or teachers) experience any type of 

intellectual need that motivates constructing an epistemological justification for univalence, a 

property critical to a set-theoretic definition of function. For example, Even (1990) noted, “Some 

serious questions are raised by the fact that, without prompting, none of the subjects could come 

up with a reasonable explanation for the need for the property of univalence” (p 531). 

Compatible with Harel’s (2018a) description of presenting mathematics that makes students feel 

like aliens in their knowledge construction, Even (1990) characterized current approaches to the 

teaching of function as contributing “to making mathematics look like an arbitrary collection of 

rules and definitions” (p. 531).  
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Reflecting on the collective body of research on students’ understandings of a set-

theoretic function definition, Even and Bruckheimer (1998) questioned emphasizing univalence 

for pedagogical purposes, instead suggesting researchers and educators consider the historical 

development of function including its initial roots in relationships between variables. The 

covariational meaning of function characterized by Thompson and Carlson (2017), described in 

the opening of this paper, and as exemplified in Ariana’s thinking, fits this suggestion. Rather 

than foregrounding univalence, Thompson and Carlson’s (2017) covariational meaning 

emphasizes a student initially constructing invariant relationship(s) between quantities. Once a 

student has constructed such a relationship (and potentially a complex network of relationships), 

she can investigate properties of the relationship(s). Univalence is one possible property of a 

relationship (or a property common across a network of relationships; see Table 1). As Ariana’s 

example illustrates, a student can construct an invariant relationship situationally, and consider 

certain properties of that relationship, without concerning herself with formal mathematical 

representations such as graphs or algebraic rules (Paoletti & Moore, 2017, 2018; Thompson, 

2011).  

Concluding remarks  

In this paper, we extend Harel’s (2008, 2018a, 2018b) constructs by defining situational 

intellectual need and situational epistemological justification in the context of constructing 

quantitative structures. We then present an anti-deficit story (Adiredja, 2019) exemplifying 

Ariana’s powerful sensemaking as she experienced situational intellectual needs, which she 

resolved via the creation of a situational epistemological justification.  

Like the Arya, the undergraduate student in Paoletti and Moore (2018), Ariana’s 

quantitative structure supported her in reasoning emergently to (re)construct and interpret graphs 
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as representing “simultaneously what is made (a trace) and how it is made (covariation)” (Moore 

& Thompson, 2015, p. 785). Further, her case highlights the extent to which a student can 

(re)construct a situational epistemological justification that entails a quantitative structure to 

consider various relationships in and properties of this structure, regardless if these relationships 

maintain the property of univalence.  

We are not surprised students may not be motivated spontaneously to determine whether 

a relationship is univalent when asked to mathematize a novel situation. Univalence is unlikely 

to be critical to their reasoning as it is merely a byproduct of their constructing quantitative 

structures. Ariana, and possibly the pre-service teachers in Even’s (1990) study, had not yet 

experienced any intellectual need for the property of univalence. Consistent with Harel’s (2008, 

2018a, 2018b) arguments, we contend it is unlikely for students (or teachers) to appreciate the 

importance of univalence until they have experienced some intellectual need for it, and it is only 

then that they will come to value the property of something we, as mathematicians or 

mathematics educators, refer to as ‘function’.  

We question current approaches to teaching a function definition early in students’ school 

experiences (e.g., Ayalon & Wilkie, 2019), and then focusing almost solely on functional 

relationships in secondary school. In fact, we conjecture this approach makes certain topics more 

complicated than if we allowed for non-functional relationships. For instance, Paoletti et al. 

(2015) found that most pre-service teachers used procedures when asked to graph the inverse of 

trigonometric function that was distinct from the procedures they used for non-trigonometric 

functions. However, this is unsurprising given the time and attention standard approaches to 

teaching inverse trigonometric functions dedicate to students memorizing various domain and 

range restrictions for different trigonometric functions. We conjecture an approach focusing on 



INTELLECTUAL NEED, COVARIATIONAL REASONING, AND FUNCTION 

 32 

supporting students in developing meanings for trigonometric functions and their inverses as 

representing the same underlying relationship, regardless of function-ness, as in Paoletti (2020), 

would be more productive.  

Collectively, we believe current approaches to function in school mathematics are likely 

over-privileging the use of formal mathematical definitions, which can “insidiously de-value 

students’ informal mathematical knowledge and emerging understandings” (Adiredja & Louie, 

2020, p. 43). Returning to the horse and cart analogy, Ariana’s activity exemplifies reasoning 

covariationally can provide a younger student the horse needed to pull the cart that is properties 

critical to a formal set-theoretic function definition. However, her covariational reasoning did not 

lead to Ariana experiencing an intellectual need for the cart itself. Although other researchers 

may view this as a deficit in Ariana’s reasoning, we argue the anti-deficit story illustrates what 

was important to Ariana’s sense making (constructing relationships between quantities) and what 

was not significant (set-theoretic properties of function). As such, and contrary to the suggestions 

of others (cf. Ayalon & Wilkie, 2019), we propose introducing a set-theoretic function definition 

to students only after they have experienced an intellectual need for it and its properties (e.g., 

exploring the analysis of relationships in the context of concepts like differentiation and 

integration). We suggest freeing the horse from the cart as the horse can do the same work for 

the student with, or without, the cart. Just as we do not introduce the definition of “polygon” 

prior to introducing students to triangles and rectangles, nor the definition of “group” prior to 

introducing students to the lines of symmetry of a square, we question the value of introducing a 

set-theoretic definition of function early in students’ mathematical experiences that can serve to 

make students feel like “aliens in knowledge construction” (Harel, 2018a, p. 38).  
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