Interactive Multilayer Gaussian Garments for Low-Cost Try-On
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Figure 1: We present a novel method for interactive mix-and-match avatar dressing of multilayer Gaussian garments. To address
penetrations between the body and the garment, as well as between the garment layers, we incorporate a novel screenspace
visibility culling method inside the 3D Gaussian splatting renderer. We also show a webcam-based interactive virtual try-on.

ABSTRACT

Numerous recent works have utilized 3D Gaussian Splatting to rep-
resent high-fidelity digital avatars. However, none have enabled in-
teractive multilayer Gaussian garments for virtual try-ons without
relying on expensive hardware, such as a camera array and/or mul-
tiple GPUs. To enable affordable mix-and-match dressing—dressing
3D avatars with realistic and complex combinations of garments—it
is crucial to handle the interactions between multiple layers of gar-
ments using consumer-level capturing hardware. To address this,
we present a novel screenspace layer resolution method combined
with physical simulation and Gaussian garments to enable realistic
multilayer mix-and-match avatar dressing at interactive rates using
low-cost hardware. As an offline process, we capture multiple static
garments individually using only a single mobile camera on a static
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mannequin and then perform a dual reconstruction of Gaussians
and simulation mesh. During runtime, these Gaussians are driven
by a fast but simple physics simulator, whose output may contain
inter-penetrations across garment layers. Our method fixes these
in screenspace by rasterizing the simulation mesh from various
camera views and culling the Gaussians that are skinned to un-
seen mesh triangles. We show the effectiveness of our approach by
demonstrating mix-and-match dressing results at interactive rates
using short-sleeves, long-sleeves, a fur vest, and a singlet. Addition-
ally, we showcase a webcam-based interactive try-on application
to further illustrate the capabilities of our system.
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1 INTRODUCTION

Realistic and animatable 3D clothed human avatars play an im-
portant role in many graphics applications, such as telepresence
and virtual try-on. The quality of these avatars has significantly
improved due to recent advancements in shape representation and
rendering techniques [70, 71], including those based on NeRF [13,
14, 50, 63] and 3D Gaussian Splatting (3DGS) [29, 31, 34, 35, 37, 74].
These works typically capture the entire human body with cloth-
ing as a whole and represent the whole human body as a single
layer. There are few works that support modeling the body and
garments as separate layers, enabling garment transfer between
avatars [13, 14, 35, 70].

However, these methods still have several limitations. First, they
rely on data captured in a studio setup with camera arrays and
custom lighting configurations, which restricts their applicability.
Second, they typically model a single layer of garment, limiting
the dressing to a single layer or pre-defined combinations of gar-
ments on avatars. Finally, while some multilayer garment dressing
is achievable [70], their method cannot handle the case where the
inner layers are significantly occluded, and requires extensive com-
puting power to achieve an interactive rate.

In this paper, we propose an interactive multilayer mix-and-
match avatar dressing framework based on 3DGS garment represen-
tation. The key idea of our framework is to use a screenspace layer
resolution method, rather than a 3D collision resolution method,
so that we can use a simple, lightweight physics simulator to drive
the motion of the multilayer garment meshes with the Gaussian
particles skinned to them. We generate collision-aware (but not nec-
essarily collision-free) motions through physical simulation rather
than relying on skinning and other geometric constraints used in
previous works, such as D3GA [74]. Additionally, these Gaussians
are reconstructed from static captures of individual garments, and
their spherical harmonics are transformed at runtime based on the
deformation of the cloth. This facilitates a simple capturing process
that allows us to reconstruct the Gaussian particles and the physics
simulation mesh simultaneously, with a monocular RGB camera
and a single GPU.

Our system is agnostic to how the garment motion is generated—
it simply takes as input the motion over time of possibly over-
lapping layers of garments. This input can in theory come from
any traditional physics simulator [2, 6, 46] or a neural simulator
[4, 18, 58, 59]. Despite the existence of many high-performance
GPU cloth simulators [26, 33, 68] and collision resolution tech-
niques [3, 7, 28, 43, 65, 69], it remains a challenge to incorporate
these works into an interactive try-on system for two reasons. First,
these techniques still require non-trivial collision parameter tuning
or collision proxy tweaks by experts, often for each simulation
garment, to generate penetration-free results. Second, it requires
significant engineering to incorporate these techniques without
adversely affecting the performance of the 3DGS renderer. Extreme
care must be taken to not only keep the simulation cost low but
also to minimize the amount of memory transfers and copies. There
has also been recent work on mixing 3DGS and simulation [72],
but extending this work for multilayer cloth is challenging for the
same two reasons: collision parameters must be tuned carefully for
cloth-cloth interactions, all the while maintaining interactive rates.
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Therefore, we use a simple GPU cloth simulator based on Position-
Based Dynamics (PBD) [44] that can directly communicate with the
3DGS renderer with minimal overhead. Any body-cloth or cloth-
cloth intersections produced by this light-weight simulator are
then fixed by our screenspace layer resolution method, which is
particularly well-suited for facilitating an interactive application
with frequently switched contexts under limited GPU resources.
Additionally, the robustness of PBD is advantageous for handling
the potentially noisy initial conditions. Due to our mix-and-match
system, we inevitably start the simulation with some initial pene-
trations between the cloth and body, as well as between the cloth
layers.

Our main contributions can be summarized as:

e A novel screenspace layer resolution method for multilayer
garment visibility checking (§3.1).

o A simple yet effective method for the dual reconstruction of
Gaussian particles and simulation meshes from static gar-
ment captures (§3.2).

o An end-to-end interactive system, including a webcam-based
interface, for dressing 3D avatars using low-cost hardware
for capture and visualization, avoiding prohibitive techniques
such as camera arrays (§3.3 and 3.4).

2 RELATED WORK
2.1 Clothed Human Avatars

The task of reconstructing and animating a photorealistic human
avatar has been a recent research focus in graphics. Early attempts
using RGB-D cameras and mesh-based representations [51, 52, 57]
enable applications such as movie production, VR, and telepres-
ence. However, the 3D data required to reconstruct these avatars
is limited and expensive to acquire. In recent years, avatars rep-
resented by NeRF [13, 14, 50] and 3DGS [29, 31, 34, 35, 37, 53, 74],
just to name a few, have gained attention due to the ease of ob-
taining input data and the higher rendering quality. Initially, these
methods represented a clothed human avatar using a single-layer
representation [34] for simplicity, meaning that the body and the
cloth are modeled together, preventing their use in virtual try-on
applications. Later, methods have been proposed to solve this prob-
lem using two-layer representation such as mesh+NeRF [13, 14]
and compositions of 3DGS [35, 74]. Among them, only LayGA [35]
considers the collision between the body layer and the cloth layer
and achieves high-quality garment transfer results. However, their
method is not real-time, and is limited to handling a single layer of
garment and generating motions using simple skinning techniques
and geometric constraints rather than physical simulation. There-
fore, they cannot achieve realistic mix-and-match avatar dressing.
In contrast, our method reconstructs 3DGS for each garment sep-
arately and generates realistic mix-and-match multilayer avatar
dressing driven by a physical simulation with a screenspace scheme
to resolve the different layers of garments. Similarly, while Gauss-
ian Garments [56] achieve multilayer try-on, they still require an
expensive camera setup and fail to produce realtime interactive
try on. While many other multilayer clothed human techniques
exists, mesh based methods often fail to be realtime [27, 61], and
often have many limitations such as pose restrictions [60] or lack of
dynamics [10]. In the same vein, screenspace try-on methods based
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Figure 2: Overview of our pipeline. For each individual garment, we optimize surface-aligned Gaussians and skin them to
a co-optimized garment mesh. (A) Given a set of garments and a predefined order (outer to inner), our method generates a
multilayer clothed human avatar in the following steps. (B) At each frame, we first perform a real-time physics simulation,

which may contain erroneous protrusions. (C) We then fix the remaining layering problems in screenspace, and (D) render

Gaussians only if their skinning triangle is visible in our processed triangle map.

on diffusion [9, 73] or image warping [30] fail to be interactive,
though we view these as orthogonal to our approach. Additionally,
many methods of mesh reconstruction exist. Splatting based meth-
ods [19, 21, 67] are often not well suited for simulation without
further processing. Sewing patten methods [32, 36] are in princi-
ple compatible with our method, though Gaussian correspondence
may face difficulties. We opt for a simple, effective solution for
reconstruction, and our online method is compatible with meshes
generated by any methods, provided they are simulation-ready,
elements are reasonably sized, and splats are surface-aligned.

2.2 Screenspace Collisions

Screenspace collision resolution approaches have been used to com-
pute collisions for many decades [45, 62]. With the advent of GPUs,
these approaches became highly efficient, able to find potentially
colliding sets of triangles at interactive rates [15-17]. More recently,
raycasting on GPUs has been used to detect and minimize intersec-
tion volumes [12, 66]. Although related, these approaches are not
directly applicable in our context. Critically, related work on image-
based collisions focuses primarily on collisions between volumetric
objects [1, 11], whereas our method focuses on a more specific
problem of resolving the visibility of cloth layers with known order-
ing. Our screenspace approach is designed specifically for layered
garments and is used not for determining overlapping primitives
or volumes but as a way to show or hide Gaussian particles.

3 METHODS

We now present our methods for achieving interactive multilayer
clothed avatars using 3D Gaussians skinned to garment meshes.
As illustrated in Fig. 2, our method first reconstructs garments in-
dividually for mix-and-match try-on. Then, users select ordered
garments, and we perform a lightweight, real-time cloth simulation
using the garment meshes, which may contain many erroneous
protrusions of inner garments through outer garments. Then, our
screenspace layer resolution method corrects them by iteratively
identifying incorrectly ordered triangles from multiple viewpoints,
and aggregates this information among these viewpoints. The ma-
jor advantage of our method is we replace expensive 3D collision
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Figure 3: The propagation of layer penetration information
between virtual viewpoints. We illustrate how our method
handles penetrations of a blue inner garment with an or-
ange outer garment. (1) Penetrations seen from the current
viewpoint (A) are easily detected—we can check if triangles
on this ray are out of order. (2) Some penetrations may not
be detectable from the current viewpoint (A) by traversing
the triangles along a ray from that viewpoint, but can be
detected from virtual viewpoints (B). (3) Virtual viewpoints
share penetration information to remove penetrations from
the current viewpoint.

processes with a rasterization-based visibility check to determine
which Gaussians can be seen from a given viewpoint. We describe
our layer resolution method in §3.1, the preprocessing steps in §3.2,
and other details in §3.3 and 3.4.

3.1 Screenspace Garment Layer Resolution

In our system, multiple garments, represented as Gaussian splats
skinned to triangle meshes, are simulated and displayed based on a
predefined garment order. Perfectly maintaining this garment order
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Figure 4: We illustrate how our method handles intersect-
ing triangles. In our intra-view pass (1), our method detects
when garment triangles have the wrong ordering. This wrong
ordering is only detectable from some viewpoints—from cam-
era (A), but not camera (B). In our inter-view pass (2), view-
points share culling information, so penetrating triangles
can be removed from all viewpoints (3).

everywhere is challenging for simulations at realtime framerates.
To achieve visually pleasing multilayer clothed avatar rendering,
we use the knowledge of the intended garment order to design a
screenspace layer resolution strategy.

Intuitively, a Gaussian, which is skinned to a simulation triangle,
should be displayed only if that simulation triangle can be seen
from the current camera viewpoint. However, penetrating trian-
gles (e.g., those from the inner garment) may be visible from the
camera since we do not rely on the interactive physics simulator
to be collision-free. A fundamental question is therefore, how do
we identify penetrations while rendering the Gaussians? Consider
tracing a ray from the camera. Along this ray, if there is a pene-
tration between garment layers, one would expect to incorrectly
encounter an inner garment before an outer garment. In reality,
such an ordering is neither a sufficient nor necessary condition to
determine if a penetration is present—more information is needed.
For example, as demonstrated in yellow in Fig. 3, a garment may
be penetrating perpendicularly to the view direction, in which case
the ray would hit the inner garment without encountering the
outer garment. Using information from a single camera view is not
sufficient to address such cases.

To address this issue, at each frame, we render our simulated
garment meshes at low resolutions from several virtual viewpoints,
in addition to the current camera viewpoint. At each viewpoint,
we render triangle maps (or “depth peels”) for the first k triangles
encountered per pixel. We then perform culling in order to reject
certain triangles from being considered as visible from any virtual
viewpoint. If a triangle of an inner garment is seen penetrating
from one viewpoint, that triangle should be discarded from all
viewpoints. Our method is therefore based on iteratively identifying
and discarding penetrating triangles from multiple viewpoints.

From each viewpoint, we rasterize a triangle ID map, a normal
map, and a depth map for k depth-peeling layers. We rasterize all
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garment meshes and body mesh (SMPL-X [49]) together, using
an orthographic projection, from n virtual viewpoints. (We use
n = 17 in our implementation.) In order to detect penetrating
triangles, we iterate between two steps. First, we perform intra-
view culling, which detects triangles that are penetrating from each
virtual viewpoint. Then, we propagate the triangles that are found
to be penetrating between each virtual viewpoint in inter-view
culling. The intuition behind this is visualized in Fig. 3 and Fig. 4.
In short, penetrations occurring parallel to a camera’s viewing
direction can be caught by considering following triangles along
that ray, but penetrations perpendicular to the viewing direction
are not easily detected—we solve this issue by using cameras from
many viewpoints which share penetration information. We now
explain our two passes in more detail.

In our intra-view pass, we perform pixel-wise analysis on our
rasterized maps in order to mark pixels (and their corresponding
triangles) as penetrating. At the i iteration of our method, we
compare the top depth peel against the ith depth peel. For each
viewpoint, we identify pixels in the depth peels that 1) face that
camera, 2) have an incorrect garment order, and 3) are within a
depth threshold of each other. If such a pixel is identified, we mark
the corresponding triangle as penetrating, and aim to remove this
triangle in subsequent inter-view passes.

In our inter-view pass, which we illustrate in Fig. 4, we propagate
identified penetrating triangles across all viewpoints. In particular,
we aim to identify any pixels in the top depth peel corresponding
to penetrating triangles, across all viewpoints. In order to do this
efficiently, we re-rasterize the identified penetrating triangles and
use them as a candidate mask. Finally, if a pixel in this candidate
mask is determined to correspond to a penetrating triangle in the
top depth peel, we update the top depth peel’s pixel’s data with
that of the corresponding pixel in the ith depth peeling layer.

We iterate these two passes for all depth-peeling layers. Multiple
iterations are required to solve complex layering orderings, such as
a body with three garments, or folds from physics-simulated gar-
ments. After all iterations are completed, we render the Gaussian
particles that are skinned to triangles visible in the resulting top
depth-peel ID map. To counter any instability due to the low resolu-
tion of these rasterization cameras, we add a simple history filter—
we only render Gaussian particles that are skinned to triangles
visible from any of the last m frames. Our method is summarized
in Alg. 1.

3.2 Dual Gaussian/Mesh Reconstruction

While some methods use camera arrays for capturing humans in
motion [35, 74], we opt for an approach that is more accessible to
the average user. We dress a mannequin in a single garment and
capture a short monocular video showing the garment from many
angles under a neutral pose using a cell phone camera. We sample
200-300 frames from this video and segment the garment from the
scene using Segment Anything [24, 54], placing the garment on a
black background.

We perform the dual reconstruction of the 3D Gaussian splats
and the simulation mesh by first optimizing the Gaussians, fitting a
template mesh, and then reoptimizing the Gaussians. We optimize
an initial set of Gaussians, with two regularization losses in addition
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Algorithm 1 Triangle Culling Algorithm. Here, id, depth, and
normal are rasterized maps across all cameras, with subscripts
indexing the depth peeling layer.

1: procedure TRIANGLECULLING(id, depth, normal)
2 bad — 0

3 fori=1,...,#depthpeels do

4 // Intra-view pass

5: id_mask « id; > idy

6 d_mask «— dy —d; < ¢4

7 n_mask < nj.z > &,

8 mask «— id_mask & d_mask & n_mask
9 bad < bad U idy[mask]

10: // Inter-view pass

11 candidate < Rasterize(V, F[bad])

12: replace < id_mask[candidate] in bad

13: ido[candidate][replace] <« id;[candidate][replace]

14: do[candidate][replace] < d;i[candidate][replace]

15: no[candidate][replace] « n;[candidate][replace]
return id,

to traditional L1 and SSIM losses. Namely, loss on the largest and
smallest scaling parameters per Gaussian i, || max(S;) — min(S;)||2,
and difference between the scaling parameters and the median
Gaussian size, ||S; —med(S)||2. Together, these encourage uniformly
sized Gaussians that are roughly spherical. In practice, these losses
also encourage Gaussians to be roughly surface-aligned.

Next, we fit a template garment mesh to the Gaussians. We use
a cropped portion of SMPL-X as a template and fit using an Adam
optimizer [23], though other reconstruction methods can also be
used. We include losses on Chamfer distance, deviation from median
triangle area, and angles deviating from equilateral, (cos(6) — 0.5)2
for each triangle angle 6. Finally, we employ losses on triangle
normal consistency and median edge length from Pytorch3D [55].
These losses encourage garments to fit the Gaussians and to be
simulation-ready.

Finally, we reoptimize a new set of Gaussians with mesh-visibility
augmentation. In this second optimization, we seed Gaussians on
the garment mesh surface using Poisson-disc sampling [5]. We in-
clude losses on the distance of a Gaussian from the simulation mesh
surface, opacity, and size. Notably, we do not enforce Gaussians to
be surface aligned so as to capture volumetric details, as in our fur
vest example.

An important step we introduce in optimizing our Gaussians
is that of conditional rendering. During optimization, we render a
Gaussian only if its nearest triangle on the fitted simulation mesh
is visible from the current optimization camera. By doing so, Gaus-
sians are forced to form a full-opacity cover for each simulation
triangle. This aids in cases where a garment is uniform in color,
as the front of the garment may otherwise be at risk of relying on
Gaussians corresponding to the back of the garment, and vice-versa.
Moreover, including this technique in Gaussian optimization mim-
ics our method of layer resolution in our online method. After the
optimization passes, we perform minor semi-automated cleanup
of the generated Gaussians—filtering background-color splats and
removing remaining unwanted Gaussians manually in Blender.
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3.3 Transformation of Gaussians

In our visualizer, we transform the Gaussians by skinning them
to the simulation meshes. Unlike previous work [74], we do not
explicitly construct a tetrahedral cage around the mesh. Instead, we
compute the deformation gradient F for each triangle via an im-
plicitly defined tetrahedron [64]. The centers of Gaussian particles
can then be updated as X + F¥, where 7 is the rest pose offset from
triangle vertex Xo. We additionally use the rotational component
of F, obtained through singular value decomposition, to compute a
transformed view direction for spherical harmonics of Gaussians.

3.4 Implementation Details

We simulate our cloths in NVIDIA Warp [38], on an existing XPBD
cloth simulator [39, 42]. The simulation meshes contain 1000-2500
vertices and 2000-5000 triangles. We use a time step of 1/40s, with
30 substeps per time step. At each time step, we recompute the
SMPL-X joint locations, and interpolate these over substeps. In
order to handle collisions against the body, we attach collision cap-
sules between SMPL-X skeleton joint locations. We find that using
capsules provides a good balance between efficiency, accuracy, and
stability, which are crucial for real-time simulations. We handle
cloth-cloth collisions through a standard XPBD constraint, with
one-sided springs between outer-garment cloth particles and their
nearest inner-garment triangles. We apply a simple friction model
in either collision case. We evaluate our collision constraints ev-
ery substep. Critically, we prioritize efficiency and stability over
collision-free results—errors that our screenspace layer resolution
scheme is able to handle. We mark a subset of SMPL-X triangles,
including the head, hands, and legs, as always visible, in order to
focus camera placement on garments—close camera placement may
not include these regions fully, and high-density regions such as
the face are not suited for our method focused on low resolution
rasterization.

We implement the full pipeline in Pytorch [48], building off of pre-
vious Gaussian rasterization works [22, 74]. We use NVDiffRast [25]
for rasterization. By using both NVDiffRast for rasterization and
Warp for simulation, we keep our entire pipeline GPU-based. We
use 5 depth peeling layers at runtime, with a resolution of 512X 512,
across 17 camera viewpoints. We position cameras at rotations of
%, %, % and 3% in either direction about the Y and X axes (Y up),
in addition to the head-on viewpoint. In our intra-view pass, we
use a depth threshold of 5 cm, and only process triangles with a
normal vector within 70 degrees of facing the camera.

4 RESULTS

Video data was recorded on Samsung S10 and S24 phones. Garments
used range in size from medium to large, including multiple tee
shirts, a running singlet, a hoodie, and a fur vest. The garments
were placed on a consumer-grade mannequin with men’s size L. We
evaluate our implementation on a Windows 10 desktop machine
with an Intel Core i9-14900KF @ 3200MHz, with 64GB RAM, 2TB
SSD, and a single RTX 4090 GPU with 24GB of RAM. We note that
our method relies only on static capture of garments rather than
expensive hardware such as camera arrays or multi-view video,
making comparison to competing techniques infeasible. To our
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knowledge, no other method provides realtime interactive try-on
of Gaussian garments under these settings.

4.1 Performance

When playing back animations from the AMASS dataset [40], our
online method is able to achieve interactive framerates. With spher-
ical harmonics disabled, we attain framerates of 20-24 fps. With
spherical harmonics enabled, our performance is slightly reduced,
as we must perform singular value decomposition for each simula-
tion triangle, but we are able to maintain framerates of 18-21 fps.
We report more detailed numbers in Table 1. While not as fast as
the naive method that simply displays all Gaussians, our method
produces much better visual results, while maintaining interactive
framerates. Notice that our performance relative to naive increases
when spherical harmonics are on, as we are able to evaluate the
singular value decomposition for only seen triangles, whereas the
naive method must for all triangles. In Table 2, we provide informa-
tion about the size of each garment. Our implementation is written
in GPU-oriented Python, utilizing PyTorch and Warp—further per-
formance gains may be achieved through reimplementation in C++

Figure 5: We present many examples of different garment
combinations with 2-3 layers, in various layering orders and
poses.

Figure 6: By using physics simulation, our method can
achieve poses that are impossible for skinning-based ap-
proaches, such as this fur vest sliding off.
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and CUDA. Our mesh-visibility augmented Gaussian optimization
takes 20-30 minutes on our machine per garment, depending on gar-
ment complexity. For reference, standard 3DGS take approximately
5-8 minutes to optimize.

4.2 Qualitative Evaluation

In Fig. 5, we provide visual results of our method for various combi-
nations of 7 different garments. In addition to the layer of garments,
we also visualize Gaussian particles of the SMPL-X model itself.
We provide examples of our method of a user wearing 1-to-3 gar-
ments, in various layering orders. We test our method on a variety
of mocap sequences found in the AMASS database [40]. In Fig. 6,
we show a result where the outer fur vest slides off of the body, a
scenario that cannot be handled by skinning-based approaches [74].
We refer the reader to our supplemental material for videos of
our method in action, displayed at their real-time framerate. Our
method is able to consistently output high-quality renderings of
physically simulated clothed avatars at interactive framerates. Even
when large penetrations are present, as in Fig. 7, we still can recover
high-quality visual results.

4.3 Interactive Try-On

In our video, we demonstrate our method through interactive vir-
tual try-on of garments. Our simple Python implementation pro-
duces realistic try-ons of multilayer garments from webcam video.
We use the ExPose [8] implementation from MMHuman3D [41] on
a second thread for tracking, and SMPL-X is updated with the new
joint information. The tracking performance is not perfect, which
results in occlusion artifacts, but we note that this is not the focus
of our work. We segment visible garments in a simple process by
using a black background as well as a black SMPL body to handle
occlusions, and then composite resulting visible garments onto the

Table 1: We evaluate the
performance of our method
against a naive method of
displaying all Gaussians. We

Table 2: Details on the size
of our learned Gaussians

provide FPS for our method
with and without spheri-
cal harmonics (SHS) enabled,
and we evaluate on the “Bad
Books” (B), “Pigeons” (P),
and “Singlet” (S) garments in
this order.

(G) and their corresponding
meshes. We refer to each gar-
ment using a simple visual
identifier: “Bad Books” and
“Migrant” refer to the gar-
ments with the correspond-
ing text visible, and “Pigeons”
refers to the shirt with 5 pi-
geons.

Garms. SHS Method FPS

B Y Ours 21

B Y Naive 31 Garment #G #V #F

B N O 24

B R SMPL-X 12M 10k 20k
“Bad Books” 250k 2k 3.5k

B,p Y Ours 19 “Migrant” 350k 2k 3.5k

B,P Y Naive 26 “Pigeons” 500k 2k 3.5k

B,P N Ours 21 Plaid 250k 2k 4k

B,P N Naive 39 Hoodie 400k 2.5k 5k

ey ew g o kon

B,PS Y Naive 24

B,P,S N Ours 20

B,PS N Naive 34
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Figure 7: Even when simulation results in large penetrations
(left), we are often still able to recover high-quality visual re-
sults (center). A naive approach results in large penetrations,
in addition to other artifacts (right).

user’s live video. Our interactive try-on runs at 12-16 fps—thread
synchronization is a bottleneck, as compared to our examples via
mocap sequences. We use a 1080P Logitech Brio 100 webcam in
testing.

4.4 Ablation Study

We compare against alternative approaches for rendering multilayer
Gaussian garments. In particular, we consider alternative methods
that attempt to fix an existing cloth simulation state without affect-
ing physics simulation, while maintaining real-time performance.
First, we discuss the ablation results displayed in Fig. 10. In the
naive approach (B), we simply display all Gaussians skinned to all
garments. In Single View Processes (C), we perform our method,
but only use a single virtual camera, aligned with the user-chosen
viewpoint. In the Single View Visible method (D), we again rasterize
single virtual viewpoint, and display Gaussians skinned to visible
triangles with no further processing. We find that our proposed
method (A) generates results with far fewer artifacts as compared
to these ablations. In the naive approach (B) and unprocessed tri-
angle visibility method (D), large penetrations can easily occur, as
nothing is done to resolve these states. In our method with a single
viewpoint (C), errors remain—side penetrations, similar to those
shown in Fig. 3, remain unresolved.

In Fig. 8, we consider naive methods in which one updates the
simulation mesh to a penetration-free state per-frame before skin-
ning and displaying all Gaussian particles. As in our method, these
comparisons do not affect the physics simulation, only updating
vertices for rendering purposes. In both (A) and (B), we assign lay-
ered garments to different level sets of the SMPL-X body. In (A), we
project vertices that are inside their assigned level set to the surface
of that level set. In (B), we project all vertices to be exactly on their
assigned level sets. In either case, issues remain, and our method
(C) yields better results. When level set thresholds for (A) and (B)
are tuned to prevent visible artifacts on the front of the garment,
large penetrations and instabilities begin to occur between the arm
and side of the body.

In Fig. 9, we provide results with cloth-cloth collisions turned
off (A), where penetrations may be even greater. In this case, our
method (C) still resolves most collisions, though some poses may
be unrecoverable if garments deform in very different ways.
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Figure 8: We compare our method (C) against two methods
of quickly adjusting triangles in order to try and avoid pene-
trations. In both (A) and (B), we assign layered garments to
different level sets of the body. In (A), if a vertex is inside
its level set, we project it to this level set before rendering.
Large visible penetrations begin to occur when the arm is
down, while small penetrations still remain on the front of
the body. In (B), we project all vertices to be exactly on their
level sets after running the physics step. Again, issues occur
when garments hang closer to the arm than the body.

(A) (B) © (D)

Figure 9: Even with cloth-cloth collision disabled (A,B,C)
in our mesh simulation (A), our method (C) is still able to
improve over the naive method (B), so long as the garment
depth difference is within our tolerance. We provide the same
scene with our method and cloth-cloth collisions enabled for
reference (D). Note that the outer garment is pushed out by
the inner garment.

In Fig. 11, we provide a comparison of Gaussians optimized with
and without our mesh-visibility augmentation described in §3.2.
Without using our augmentation, Gaussian optimization often re-
sults in garments that rely on Gaussians skinned to both the front
and back of a garment. While these results often appear realistic in
a traditional Gaussian renderer, they appear patchy in our system
due to our online method of rendering Gaussians only if their sim-
ulation triangle is visible. Our augmentation technique removes
this issue. We similarly provide a comparison of Gaussians before
and after applying our entire second optimization pass in Fig. 12.
While alternate methods, such as GS2Mesh [67], may be used in
place of our first optimization pass, we similarly find that the re-
sulting Gaussians are not simulation ready, and transparency and
patchiness issues remain without our second optimization pass.
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Figure 10: We compare our method (D) against a naive approach rendering all Gaussians (A), our method only using a single
viewpoint (B), and a method using all visible triangles with no processing from a single viewpoint (C). In the naive approach,
even when simulation garments are not in collision, Gaussians may still penetrate. In our method with only a single viewpoint
(B), most visual artifacts are resolved, but artifacts remain where normal vector tolerances fail. In (C), Gaussians are displayed

incorrectly due to penetrating simulation garments.

Figure 11: We compare Gaussians optimized with (right)
and without (left) our mesh-visibility augmentation in our
second optimization pass. Without our mesh-visibility aug-
mentation, Gaussian optimization may result in front-facing
portions of a garment relying on Gaussians on the back of
the garment. This results in spotty final renders when only
Gaussians on front faces are rendered—notice how individual
Gaussians are distinguishable as blotches under close inspec-
tion. This is further exacerbated under deformations.

Figure 12: We compare Gaussians optimized with our second
optimization (right) and with only our first optimization
(left). By including our second optimization pass, we both
ensure Gaussians are well aligned to the mesh surface, and
form a full opacity cover of the mesh. In the circled section,
Gaussians fail to form a full cover—the black background
used in our visualizer is visible through the Gaussians.

Finally, in Fig. 14 we provide a comparison of our chosen number
of cameras (n = 17) against other evenly spaced camera designs.
We find that with fewer cameras, many artifacts are present, and
there is little benefit to introducing more.

Figure 13: When simulation garments have large penetra-
tions (Yellow), restricted visibility (Blue), or large boundary
triangles (Red), our method may leave minor artifacts while
still greatly improving against naive methods.

5 CONCLUSION & FUTURE WORK

We presented a novel interactive system for capturing and driving
multilayer Gaussian garments for dressing 3D human avatars using
low-cost hardware. Our capture method allows us to optimize the
Gaussian garments from static poses using a single phone camera.
Our system then combines physical simulation and Gaussian gar-
ments with a screenspace layer resolution method to synthesize
both realistic and interactive 3D avatar dressing results. By using
physically based simulation, our system is able to achieve dynamic
multilayer try-on, allowing for try-on settings that are impossible
for similar methods based on skinning.

Our work is not without limitations. In our method, we discard an
entire triangle if it is found to be violating, which may cause artifacts
if triangles are large (Fig. 13, right). On the converse, simulation
triangles must be large enough to be seen by our rasterization step,
or else they may not display their Gaussians. An approach that
accounts for barycentric coordinates could remedy this dichotomy,
but we leave this as future work. Similarly, if an inner garment
triangle is partially obscured but not intersecting, its Gaussians
may incorrectly appear on top of the outer garment, depending
on opacity and distance to the triangle. Enforcing surface-aligned
Gaussians may improve this case, at the cost of rendering quality.
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(C) 9 Cameras (D) 17 Cameras
(Horizontal) (Ours)

(B) 9 Cameras

Figure 14: We display the effect of the number of virtual cameras used in our pipeline. In addition to the “head on” view, we
place cameras at X and Y rotations of (A): Z; (B): %,%; (D): %,%,%,3%. In (C) we used the same angles as (D) but omit vertical
rotations. In (E) we use the same angles as (D) for X and Y axis rotations, as well as the diagonals between these. The results

generated with fewer cameras than ours (D) have more artifacts. On the other hand, there is no noticeable benefit using more

cameras.

Also, since we do not have any information about the inside of
the clothing, our system shows artifacts when the clothing flips
over (e.g., vest opening, as seen under the armpit in Fig. 6 ). We
assume users specify a garment order, which may not change during
simulation, though restarting with different garment orders is very
fast. Although we rotate the spherical harmonics at runtime, some
details, such as fine wrinkles, are baked into our splats, as we use
a static capture setup as opposed to an expensive camera array,
and we avoid related expensive runtime techniques in order to
remain interactive. Finally, extreme penetrations can cause our
depth thresholding to fail (Fig. 13, left). For these reasons, we expect
the physics simulator to produce plausible results, though they may
still be far from perfect, especially with self-collisions.

Human avatars are not the focus of this work, as we focus on
capturing static garments (which are then driven dynamically).
Therefore, we optimize Gaussians of SMPL-X itself as a baseline
character. However, our method is compatible with 3DGS avatars
produced by other methods [20, 47, 74], provided that Gaussian
particles are skinned near the surface of SMPL-X in order to form a
triangle correspondence. Finally, the quality of our webcam-based
interactive try-on depends on the quality of tracking. Occlusion
artifacts will be reduced if better tracking methods are available.

There are many interesting directions in which our work can
be extended. One could consider optimizing the locations of the
cameras used for triangle culling, such as skinning them to gar-
ments, or SMPL-X itself. Another direction would be to incorporate
lighting-aware or ambient-occlusion-aware Gaussians in order to
further improve realism. While our design is focused on correcting
collisions visually, one could extend our approach to update simu-
lation objects’ positions, or extend to more general Gaussian mesh
settings.
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