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Figure 1: We present a novel method for interactive mix-and-match avatar dressing of multilayer Gaussian garments. To address
penetrations between the body and the garment, as well as between the garment layers, we incorporate a novel screenspace
visibility culling method inside the 3D Gaussian splatting renderer. We also show a webcam-based interactive virtual try-on.

ABSTRACT
Numerous recent works have utilized 3D Gaussian Splatting to rep-

resent high-fidelity digital avatars. However, none have enabled in-

teractive multilayer Gaussian garments for virtual try-ons without

relying on expensive hardware, such as a camera array and/or mul-

tiple GPUs. To enable affordable mix-and-match dressing—dressing

3D avatars with realistic and complex combinations of garments—it

is crucial to handle the interactions between multiple layers of gar-

ments using consumer-level capturing hardware. To address this,

we present a novel screenspace layer resolution method combined

with physical simulation and Gaussian garments to enable realistic

multilayer mix-and-match avatar dressing at interactive rates using

low-cost hardware. As an offline process, we capture multiple static

garments individually using only a single mobile camera on a static
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mannequin and then perform a dual reconstruction of Gaussians

and simulation mesh. During runtime, these Gaussians are driven

by a fast but simple physics simulator, whose output may contain

inter-penetrations across garment layers. Our method fixes these

in screenspace by rasterizing the simulation mesh from various

camera views and culling the Gaussians that are skinned to un-

seen mesh triangles. We show the effectiveness of our approach by

demonstrating mix-and-match dressing results at interactive rates

using short-sleeves, long-sleeves, a fur vest, and a singlet. Addition-

ally, we showcase a webcam-based interactive try-on application

to further illustrate the capabilities of our system.
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1 INTRODUCTION
Realistic and animatable 3D clothed human avatars play an im-

portant role in many graphics applications, such as telepresence

and virtual try-on. The quality of these avatars has significantly

improved due to recent advancements in shape representation and

rendering techniques [70, 71], including those based on NeRF [13,

14, 50, 63] and 3D Gaussian Splatting (3DGS) [29, 31, 34, 35, 37, 74].

These works typically capture the entire human body with cloth-

ing as a whole and represent the whole human body as a single

layer. There are few works that support modeling the body and

garments as separate layers, enabling garment transfer between

avatars [13, 14, 35, 70].

However, these methods still have several limitations. First, they

rely on data captured in a studio setup with camera arrays and

custom lighting configurations, which restricts their applicability.

Second, they typically model a single layer of garment, limiting

the dressing to a single layer or pre-defined combinations of gar-

ments on avatars. Finally, while some multilayer garment dressing

is achievable [70], their method cannot handle the case where the

inner layers are significantly occluded, and requires extensive com-

puting power to achieve an interactive rate.

In this paper, we propose an interactive multilayer mix-and-

match avatar dressing framework based on 3DGS garment represen-

tation. The key idea of our framework is to use a screenspace layer

resolution method, rather than a 3D collision resolution method,

so that we can use a simple, lightweight physics simulator to drive

the motion of the multilayer garment meshes with the Gaussian

particles skinned to them.We generate collision-aware (but not nec-

essarily collision-free) motions through physical simulation rather

than relying on skinning and other geometric constraints used in

previous works, such as D3GA [74]. Additionally, these Gaussians

are reconstructed from static captures of individual garments, and

their spherical harmonics are transformed at runtime based on the

deformation of the cloth. This facilitates a simple capturing process

that allows us to reconstruct the Gaussian particles and the physics

simulation mesh simultaneously, with a monocular RGB camera

and a single GPU.

Our system is agnostic to how the garment motion is generated—

it simply takes as input the motion over time of possibly over-

lapping layers of garments. This input can in theory come from

any traditional physics simulator [2, 6, 46] or a neural simulator

[4, 18, 58, 59]. Despite the existence of many high-performance

GPU cloth simulators [26, 33, 68] and collision resolution tech-

niques [3, 7, 28, 43, 65, 69], it remains a challenge to incorporate

these works into an interactive try-on system for two reasons. First,

these techniques still require non-trivial collision parameter tuning

or collision proxy tweaks by experts, often for each simulation

garment, to generate penetration-free results. Second, it requires

significant engineering to incorporate these techniques without

adversely affecting the performance of the 3DGS renderer. Extreme

care must be taken to not only keep the simulation cost low but

also to minimize the amount of memory transfers and copies. There

has also been recent work on mixing 3DGS and simulation [72],

but extending this work for multilayer cloth is challenging for the

same two reasons: collision parameters must be tuned carefully for

cloth-cloth interactions, all the while maintaining interactive rates.

Therefore, we use a simple GPU cloth simulator based on Position-

Based Dynamics (PBD) [44] that can directly communicate with the

3DGS renderer with minimal overhead. Any body-cloth or cloth-

cloth intersections produced by this light-weight simulator are

then fixed by our screenspace layer resolution method, which is

particularly well-suited for facilitating an interactive application

with frequently switched contexts under limited GPU resources.

Additionally, the robustness of PBD is advantageous for handling

the potentially noisy initial conditions. Due to our mix-and-match

system, we inevitably start the simulation with some initial pene-

trations between the cloth and body, as well as between the cloth

layers.

Our main contributions can be summarized as:

• A novel screenspace layer resolution method for multilayer

garment visibility checking (§3.1).

• A simple yet effective method for the dual reconstruction of

Gaussian particles and simulation meshes from static gar-

ment captures (§3.2).

• An end-to-end interactive system, including a webcam-based

interface, for dressing 3D avatars using low-cost hardware

for capture and visualization, avoiding prohibitive techniques

such as camera arrays (§3.3 and 3.4).

2 RELATED WORK
2.1 Clothed Human Avatars
The task of reconstructing and animating a photorealistic human

avatar has been a recent research focus in graphics. Early attempts

using RGB-D cameras and mesh-based representations [51, 52, 57]

enable applications such as movie production, VR, and telepres-

ence. However, the 3D data required to reconstruct these avatars

is limited and expensive to acquire. In recent years, avatars rep-

resented by NeRF [13, 14, 50] and 3DGS [29, 31, 34, 35, 37, 53, 74],

just to name a few, have gained attention due to the ease of ob-

taining input data and the higher rendering quality. Initially, these

methods represented a clothed human avatar using a single-layer

representation [34] for simplicity, meaning that the body and the

cloth are modeled together, preventing their use in virtual try-on

applications. Later, methods have been proposed to solve this prob-

lem using two-layer representation such as mesh+NeRF [13, 14]

and compositions of 3DGS [35, 74]. Among them, only LayGA [35]

considers the collision between the body layer and the cloth layer

and achieves high-quality garment transfer results. However, their

method is not real-time, and is limited to handling a single layer of

garment and generating motions using simple skinning techniques

and geometric constraints rather than physical simulation. There-

fore, they cannot achieve realistic mix-and-match avatar dressing.

In contrast, our method reconstructs 3DGS for each garment sep-

arately and generates realistic mix-and-match multilayer avatar

dressing driven by a physical simulation with a screenspace scheme

to resolve the different layers of garments. Similarly, while Gauss-

ian Garments [56] achieve multilayer try-on, they still require an

expensive camera setup and fail to produce realtime interactive

try on. While many other multilayer clothed human techniques

exists, mesh based methods often fail to be realtime [27, 61], and

often have many limitations such as pose restrictions [60] or lack of

dynamics [10]. In the same vein, screenspace try-on methods based
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Figure 2: Overview of our pipeline. For each individual garment, we optimize surface-aligned Gaussians and skin them to
a co-optimized garment mesh. (A) Given a set of garments and a predefined order (outer to inner), our method generates a
multilayer clothed human avatar in the following steps. (B) At each frame, we first perform a real-time physics simulation,
which may contain erroneous protrusions. (C) We then fix the remaining layering problems in screenspace, and (D) render
Gaussians only if their skinning triangle is visible in our processed triangle map.

on diffusion [9, 73] or image warping [30] fail to be interactive,

though we view these as orthogonal to our approach. Additionally,

many methods of mesh reconstruction exist. Splatting based meth-

ods [19, 21, 67] are often not well suited for simulation without

further processing. Sewing patten methods [32, 36] are in princi-

ple compatible with our method, though Gaussian correspondence

may face difficulties. We opt for a simple, effective solution for

reconstruction, and our online method is compatible with meshes

generated by any methods, provided they are simulation-ready,

elements are reasonably sized, and splats are surface-aligned.

2.2 Screenspace Collisions
Screenspace collision resolution approaches have been used to com-

pute collisions for many decades [45, 62]. With the advent of GPUs,

these approaches became highly efficient, able to find potentially

colliding sets of triangles at interactive rates [15–17]. More recently,

raycasting on GPUs has been used to detect and minimize intersec-

tion volumes [12, 66]. Although related, these approaches are not

directly applicable in our context. Critically, related work on image-

based collisions focuses primarily on collisions between volumetric

objects [1, 11], whereas our method focuses on a more specific

problem of resolving the visibility of cloth layers with known order-

ing. Our screenspace approach is designed specifically for layered

garments and is used not for determining overlapping primitives

or volumes but as a way to show or hide Gaussian particles.

3 METHODS
We now present our methods for achieving interactive multilayer

clothed avatars using 3D Gaussians skinned to garment meshes.

As illustrated in Fig. 2, our method first reconstructs garments in-

dividually for mix-and-match try-on. Then, users select ordered

garments, and we perform a lightweight, real-time cloth simulation

using the garment meshes, which may contain many erroneous

protrusions of inner garments through outer garments. Then, our

screenspace layer resolution method corrects them by iteratively

identifying incorrectly ordered triangles from multiple viewpoints,

and aggregates this information among these viewpoints. The ma-

jor advantage of our method is we replace expensive 3D collision

(3)

Current
Viewpoint

(A)

Virtual
Viewpoints

(1)

(2)

(3)

(B)

Figure 3: The propagation of layer penetration information
between virtual viewpoints. We illustrate how our method
handles penetrations of a blue inner garment with an or-
ange outer garment. (1) Penetrations seen from the current
viewpoint (A) are easily detected—we can check if triangles
on this ray are out of order. (2) Some penetrations may not
be detectable from the current viewpoint (A) by traversing
the triangles along a ray from that viewpoint, but can be
detected from virtual viewpoints (B). (3) Virtual viewpoints
share penetration information to remove penetrations from
the current viewpoint.

processes with a rasterization-based visibility check to determine

which Gaussians can be seen from a given viewpoint. We describe

our layer resolution method in §3.1, the preprocessing steps in §3.2,

and other details in §3.3 and 3.4.

3.1 Screenspace Garment Layer Resolution
In our system, multiple garments, represented as Gaussian splats

skinned to triangle meshes, are simulated and displayed based on a

predefined garment order. Perfectly maintaining this garment order
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Figure 4: We illustrate how our method handles intersect-
ing triangles. In our intra-view pass (1), our method detects
when garment triangles have thewrong ordering. This wrong
ordering is only detectable from some viewpoints—from cam-
era (A), but not camera (B). In our inter-view pass (2), view-
points share culling information, so penetrating triangles
can be removed from all viewpoints (3).

everywhere is challenging for simulations at realtime framerates.

To achieve visually pleasing multilayer clothed avatar rendering,

we use the knowledge of the intended garment order to design a

screenspace layer resolution strategy.

Intuitively, a Gaussian, which is skinned to a simulation triangle,

should be displayed only if that simulation triangle can be seen

from the current camera viewpoint. However, penetrating trian-

gles (e.g., those from the inner garment) may be visible from the

camera since we do not rely on the interactive physics simulator

to be collision-free. A fundamental question is therefore, how do

we identify penetrations while rendering the Gaussians? Consider

tracing a ray from the camera. Along this ray, if there is a pene-

tration between garment layers, one would expect to incorrectly

encounter an inner garment before an outer garment. In reality,

such an ordering is neither a sufficient nor necessary condition to

determine if a penetration is present—more information is needed.

For example, as demonstrated in yellow in Fig. 3, a garment may

be penetrating perpendicularly to the view direction, in which case

the ray would hit the inner garment without encountering the

outer garment. Using information from a single camera view is not

sufficient to address such cases.

To address this issue, at each frame, we render our simulated

garment meshes at low resolutions from several virtual viewpoints,

in addition to the current camera viewpoint. At each viewpoint,

we render triangle maps (or “depth peels”) for the first 𝑘 triangles

encountered per pixel. We then perform culling in order to reject

certain triangles from being considered as visible from any virtual

viewpoint. If a triangle of an inner garment is seen penetrating

from one viewpoint, that triangle should be discarded from all

viewpoints. Our method is therefore based on iteratively identifying

and discarding penetrating triangles from multiple viewpoints.

From each viewpoint, we rasterize a triangle ID map, a normal

map, and a depth map for 𝑘 depth-peeling layers. We rasterize all

garment meshes and body mesh (SMPL-X [49]) together, using

an orthographic projection, from 𝑛 virtual viewpoints. (We use

𝑛 = 17 in our implementation.) In order to detect penetrating

triangles, we iterate between two steps. First, we perform intra-
view culling, which detects triangles that are penetrating from each

virtual viewpoint. Then, we propagate the triangles that are found

to be penetrating between each virtual viewpoint in inter-view
culling. The intuition behind this is visualized in Fig. 3 and Fig. 4.

In short, penetrations occurring parallel to a camera’s viewing

direction can be caught by considering following triangles along

that ray, but penetrations perpendicular to the viewing direction

are not easily detected—we solve this issue by using cameras from

many viewpoints which share penetration information. We now

explain our two passes in more detail.

In our intra-view pass, we perform pixel-wise analysis on our

rasterized maps in order to mark pixels (and their corresponding

triangles) as penetrating. At the 𝑖th iteration of our method, we

compare the top depth peel against the 𝑖th depth peel. For each

viewpoint, we identify pixels in the depth peels that 1) face that

camera, 2) have an incorrect garment order, and 3) are within a

depth threshold of each other. If such a pixel is identified, we mark

the corresponding triangle as penetrating, and aim to remove this

triangle in subsequent inter-view passes.

In our inter-view pass, which we illustrate in Fig. 4, we propagate

identified penetrating triangles across all viewpoints. In particular,

we aim to identify any pixels in the top depth peel corresponding

to penetrating triangles, across all viewpoints. In order to do this

efficiently, we re-rasterize the identified penetrating triangles and

use them as a candidate mask. Finally, if a pixel in this candidate

mask is determined to correspond to a penetrating triangle in the

top depth peel, we update the top depth peel’s pixel’s data with

that of the corresponding pixel in the 𝑖th depth peeling layer.

We iterate these two passes for all depth-peeling layers. Multiple

iterations are required to solve complex layering orderings, such as

a body with three garments, or folds from physics-simulated gar-

ments. After all iterations are completed, we render the Gaussian

particles that are skinned to triangles visible in the resulting top

depth-peel ID map. To counter any instability due to the low resolu-

tion of these rasterization cameras, we add a simple history filter—

we only render Gaussian particles that are skinned to triangles

visible from any of the last𝑚 frames. Our method is summarized

in Alg. 1.

3.2 Dual Gaussian/Mesh Reconstruction
While some methods use camera arrays for capturing humans in

motion [35, 74], we opt for an approach that is more accessible to

the average user. We dress a mannequin in a single garment and

capture a short monocular video showing the garment from many

angles under a neutral pose using a cell phone camera. We sample

200-300 frames from this video and segment the garment from the

scene using Segment Anything [24, 54], placing the garment on a

black background.

We perform the dual reconstruction of the 3D Gaussian splats

and the simulation mesh by first optimizing the Gaussians, fitting a

template mesh, and then reoptimizing the Gaussians. We optimize

an initial set of Gaussians, with two regularization losses in addition
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Algorithm 1 Triangle Culling Algorithm. Here, 𝑖𝑑 , 𝑑𝑒𝑝𝑡ℎ, and

𝑛𝑜𝑟𝑚𝑎𝑙 are rasterized maps across all cameras, with subscripts

indexing the depth peeling layer.

1: procedure TriangleCulling(𝑖𝑑, 𝑑𝑒𝑝𝑡ℎ, 𝑛𝑜𝑟𝑚𝑎𝑙 )

2: 𝑏𝑎𝑑 ← ∅
3: for 𝑖 = 1, . . . , #depthpeels do
4: // Intra-view pass
5: 𝑖𝑑_𝑚𝑎𝑠𝑘 ← 𝑖𝑑𝑖 > 𝑖𝑑0
6: 𝑑_𝑚𝑎𝑠𝑘 ← 𝑑0 − 𝑑𝑖 < 𝜀𝑑
7: 𝑛_𝑚𝑎𝑠𝑘 ← 𝑛𝑖 .𝑧 > 𝜀𝑛
8: 𝑚𝑎𝑠𝑘 ← 𝑖𝑑_𝑚𝑎𝑠𝑘 & 𝑑_𝑚𝑎𝑠𝑘 & 𝑛_𝑚𝑎𝑠𝑘

9: 𝑏𝑎𝑑 ← 𝑏𝑎𝑑 ∪ 𝑖𝑑0 [𝑚𝑎𝑠𝑘]
10: // Inter-view pass
11: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← Rasterize(𝑉 , 𝐹 [𝑏𝑎𝑑])
12: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ← 𝑖𝑑_𝑚𝑎𝑠𝑘 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] in 𝑏𝑎𝑑

13: 𝑖𝑑0 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒] ← 𝑖𝑑𝑖 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒]
14: 𝑑0 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒] ← 𝑑𝑖 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒]
15: 𝑛0 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒] ← 𝑛𝑖 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] [𝑟𝑒𝑝𝑙𝑎𝑐𝑒]

return 𝑖𝑑0

to traditional 𝐿1 and SSIM losses. Namely, loss on the largest and

smallest scaling parameters per Gaussian 𝑖 , | |max(𝑆𝑖 ) −min(𝑆𝑖 ) | |2,
and difference between the scaling parameters and the median

Gaussian size, | |𝑆𝑖−med(𝑆) | |2. Together, these encourage uniformly

sized Gaussians that are roughly spherical. In practice, these losses

also encourage Gaussians to be roughly surface-aligned.

Next, we fit a template garment mesh to the Gaussians. We use

a cropped portion of SMPL-X as a template and fit using an Adam

optimizer [23], though other reconstruction methods can also be

used.We include losses on Chamfer distance, deviation frommedian

triangle area, and angles deviating from equilateral, (cos(𝜃 ) − 0.5)2
for each triangle angle 𝜃 . Finally, we employ losses on triangle

normal consistency and median edge length from Pytorch3D [55].

These losses encourage garments to fit the Gaussians and to be

simulation-ready.

Finally, we reoptimize a new set of Gaussianswithmesh-visibility

augmentation. In this second optimization, we seed Gaussians on

the garment mesh surface using Poisson-disc sampling [5]. We in-

clude losses on the distance of a Gaussian from the simulation mesh

surface, opacity, and size. Notably, we do not enforce Gaussians to

be surface aligned so as to capture volumetric details, as in our fur

vest example.

An important step we introduce in optimizing our Gaussians

is that of conditional rendering. During optimization, we render a

Gaussian only if its nearest triangle on the fitted simulation mesh

is visible from the current optimization camera. By doing so, Gaus-

sians are forced to form a full-opacity cover for each simulation

triangle. This aids in cases where a garment is uniform in color,

as the front of the garment may otherwise be at risk of relying on

Gaussians corresponding to the back of the garment, and vice-versa.

Moreover, including this technique in Gaussian optimization mim-

ics our method of layer resolution in our online method. After the

optimization passes, we perform minor semi-automated cleanup

of the generated Gaussians—filtering background-color splats and

removing remaining unwanted Gaussians manually in Blender.

3.3 Transformation of Gaussians
In our visualizer, we transform the Gaussians by skinning them

to the simulation meshes. Unlike previous work [74], we do not

explicitly construct a tetrahedral cage around the mesh. Instead, we

compute the deformation gradient 𝐹 for each triangle via an im-
plicitly defined tetrahedron [64]. The centers of Gaussian particles

can then be updated as 𝑋0 + 𝐹 ®𝑟 , where ®𝑟 is the rest pose offset from
triangle vertex 𝑋0. We additionally use the rotational component

of 𝐹 , obtained through singular value decomposition, to compute a

transformed view direction for spherical harmonics of Gaussians.

3.4 Implementation Details
We simulate our cloths in NVIDIA Warp [38], on an existing XPBD

cloth simulator [39, 42]. The simulation meshes contain 1000-2500

vertices and 2000-5000 triangles. We use a time step of 1/40s, with
30 substeps per time step. At each time step, we recompute the

SMPL-X joint locations, and interpolate these over substeps. In

order to handle collisions against the body, we attach collision cap-

sules between SMPL-X skeleton joint locations. We find that using

capsules provides a good balance between efficiency, accuracy, and

stability, which are crucial for real-time simulations. We handle

cloth-cloth collisions through a standard XPBD constraint, with

one-sided springs between outer-garment cloth particles and their

nearest inner-garment triangles. We apply a simple friction model

in either collision case. We evaluate our collision constraints ev-

ery substep. Critically, we prioritize efficiency and stability over

collision-free results—errors that our screenspace layer resolution

scheme is able to handle. We mark a subset of SMPL-X triangles,

including the head, hands, and legs, as always visible, in order to

focus camera placement on garments—close camera placement may

not include these regions fully, and high-density regions such as

the face are not suited for our method focused on low resolution

rasterization.

We implement the full pipeline in Pytorch [48], building off of pre-

vious Gaussian rasterization works [22, 74]. We use NVDiffRast [25]

for rasterization. By using both NVDiffRast for rasterization and

Warp for simulation, we keep our entire pipeline GPU-based. We

use 5 depth peeling layers at runtime, with a resolution of 512×512,
across 17 camera viewpoints. We position cameras at rotations of

𝜋
8
,
𝜋
4
,
𝜋
2
, and

3𝜋
4

in either direction about the 𝑌 and 𝑋 axes (Y up),

in addition to the head-on viewpoint. In our intra-view pass, we

use a depth threshold of 5 cm, and only process triangles with a

normal vector within 70 degrees of facing the camera.

4 RESULTS
Video data was recorded on Samsung S10 and S24 phones. Garments

used range in size from medium to large, including multiple tee

shirts, a running singlet, a hoodie, and a fur vest. The garments

were placed on a consumer-grade mannequin with men’s size L. We

evaluate our implementation on a Windows 10 desktop machine

with an Intel Core i9-14900KF @ 3200MHz, with 64GB RAM, 2TB

SSD, and a single RTX 4090 GPU with 24GB of RAM. We note that

our method relies only on static capture of garments rather than

expensive hardware such as camera arrays or multi-view video,

making comparison to competing techniques infeasible. To our
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knowledge, no other method provides realtime interactive try-on

of Gaussian garments under these settings.

4.1 Performance
When playing back animations from the AMASS dataset [40], our

online method is able to achieve interactive framerates. With spher-

ical harmonics disabled, we attain framerates of 20-24 fps. With

spherical harmonics enabled, our performance is slightly reduced,

as we must perform singular value decomposition for each simula-

tion triangle, but we are able to maintain framerates of 18-21 fps.

We report more detailed numbers in Table 1. While not as fast as

the naïve method that simply displays all Gaussians, our method

produces much better visual results, while maintaining interactive

framerates. Notice that our performance relative to naïve increases

when spherical harmonics are on, as we are able to evaluate the

singular value decomposition for only seen triangles, whereas the

naïve method must for all triangles. In Table 2, we provide informa-

tion about the size of each garment. Our implementation is written

in GPU-oriented Python, utilizing PyTorch and Warp—further per-

formance gains may be achieved through reimplementation in C++

Figure 5: We present many examples of different garment
combinations with 2-3 layers, in various layering orders and
poses.

Figure 6: By using physics simulation, our method can
achieve poses that are impossible for skinning-based ap-
proaches, such as this fur vest sliding off.

and CUDA. Our mesh-visibility augmented Gaussian optimization

takes 20-30 minutes on our machine per garment, depending on gar-

ment complexity. For reference, standard 3DGS take approximately

5-8 minutes to optimize.

4.2 Qualitative Evaluation
In Fig. 5, we provide visual results of our method for various combi-

nations of 7 different garments. In addition to the layer of garments,

we also visualize Gaussian particles of the SMPL-X model itself.

We provide examples of our method of a user wearing 1-to-3 gar-

ments, in various layering orders. We test our method on a variety

of mocap sequences found in the AMASS database [40]. In Fig. 6,

we show a result where the outer fur vest slides off of the body, a

scenario that cannot be handled by skinning-based approaches [74].

We refer the reader to our supplemental material for videos of

our method in action, displayed at their real-time framerate. Our

method is able to consistently output high-quality renderings of

physically simulated clothed avatars at interactive framerates. Even

when large penetrations are present, as in Fig. 7, we still can recover

high-quality visual results.

4.3 Interactive Try-On
In our video, we demonstrate our method through interactive vir-

tual try-on of garments. Our simple Python implementation pro-

duces realistic try-ons of multilayer garments from webcam video.

We use the ExPose [8] implementation from MMHuman3D [41] on

a second thread for tracking, and SMPL-X is updated with the new

joint information. The tracking performance is not perfect, which

results in occlusion artifacts, but we note that this is not the focus

of our work. We segment visible garments in a simple process by

using a black background as well as a black SMPL body to handle

occlusions, and then composite resulting visible garments onto the

Table 1: We evaluate the
performance of our method
against a naïve method of
displaying all Gaussians. We
provide FPS for our method
with and without spheri-
cal harmonics (SHS) enabled,
and we evaluate on the “Bad
Books” (B), “Pigeons” (P),
and “Singlet” (S) garments in
this order.

Garms. SHS Method FPS

B Y Ours 21

B Y Naïve 31

B N Ours 24

B N Naïve 45

B,P Y Ours 19

B,P Y Naïve 26

B,P N Ours 21

B,P N Naïve 39

B,P,S Y Ours 18

B,P,S Y Naïve 24

B,P,S N Ours 20

B,P,S N Naïve 34

Table 2: Details on the size
of our learned Gaussians
(G) and their corresponding
meshes. We refer to each gar-
ment using a simple visual
identifier: “Bad Books” and
“Migrant” refer to the gar-
ments with the correspond-
ing text visible, and “Pigeons”
refers to the shirt with 5 pi-
geons.

Garment #G #V #F

SMPL-X 1.2M 10k 20k

“Bad Books” 250k 2k 3.5k

“Migrant” 350k 2k 3.5k

“Pigeons” 500k 2k 3.5k

Plaid 250k 2k 4k

Hoodie 400k 2.5k 5k

Singlet 200k 1k 2k

Fur 400k 1k 2k
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(Simulation) (Ours) (Naïve)

Figure 7: Even when simulation results in large penetrations
(left), we are often still able to recover high-quality visual re-
sults (center). A naïve approach results in large penetrations,
in addition to other artifacts (right).

user’s live video. Our interactive try-on runs at 12-16 fps—thread

synchronization is a bottleneck, as compared to our examples via

mocap sequences. We use a 1080P Logitech Brio 100 webcam in

testing.

4.4 Ablation Study
We compare against alternative approaches for renderingmultilayer

Gaussian garments. In particular, we consider alternative methods

that attempt to fix an existing cloth simulation state without affect-

ing physics simulation, while maintaining real-time performance.

First, we discuss the ablation results displayed in Fig. 10. In the

naïve approach (B), we simply display all Gaussians skinned to all

garments. In Single View Processes (C), we perform our method,

but only use a single virtual camera, aligned with the user-chosen

viewpoint. In the Single View Visible method (D), we again rasterize

single virtual viewpoint, and display Gaussians skinned to visible

triangles with no further processing. We find that our proposed

method (A) generates results with far fewer artifacts as compared

to these ablations. In the naïve approach (B) and unprocessed tri-

angle visibility method (D), large penetrations can easily occur, as

nothing is done to resolve these states. In our method with a single

viewpoint (C), errors remain—side penetrations, similar to those

shown in Fig. 3, remain unresolved.

In Fig. 8, we consider naïve methods in which one updates the

simulation mesh to a penetration-free state per-frame before skin-

ning and displaying all Gaussian particles. As in our method, these

comparisons do not affect the physics simulation, only updating

vertices for rendering purposes. In both (A) and (B), we assign lay-

ered garments to different level sets of the SMPL-X body. In (A), we

project vertices that are inside their assigned level set to the surface

of that level set. In (B), we project all vertices to be exactly on their

assigned level sets. In either case, issues remain, and our method

(C) yields better results. When level set thresholds for (A) and (B)

are tuned to prevent visible artifacts on the front of the garment,

large penetrations and instabilities begin to occur between the arm

and side of the body.

In Fig. 9, we provide results with cloth-cloth collisions turned
off (A), where penetrations may be even greater. In this case, our

method (C) still resolves most collisions, though some poses may

be unrecoverable if garments deform in very different ways.

(A) Project

Out

(B) Project

In/Out

(C) Ours

Figure 8: We compare our method (C) against two methods
of quickly adjusting triangles in order to try and avoid pene-
trations. In both (A) and (B), we assign layered garments to
different level sets of the body. In (A), if a vertex is inside
its level set, we project it to this level set before rendering.
Large visible penetrations begin to occur when the arm is
down, while small penetrations still remain on the front of
the body. In (B), we project all vertices to be exactly on their
level sets after running the physics step. Again, issues occur
when garments hang closer to the arm than the body.

(A) (B) (C) (D)

Figure 9: Even with cloth-cloth collision disabled (A,B,C)
in our mesh simulation (A), our method (C) is still able to
improve over the naïve method (B), so long as the garment
depth difference is within our tolerance.We provide the same
scene with our method and cloth-cloth collisions enabled for
reference (D). Note that the outer garment is pushed out by
the inner garment.

In Fig. 11, we provide a comparison of Gaussians optimized with

and without our mesh-visibility augmentation described in §3.2.

Without using our augmentation, Gaussian optimization often re-

sults in garments that rely on Gaussians skinned to both the front

and back of a garment. While these results often appear realistic in

a traditional Gaussian renderer, they appear patchy in our system

due to our online method of rendering Gaussians only if their sim-

ulation triangle is visible. Our augmentation technique removes

this issue. We similarly provide a comparison of Gaussians before

and after applying our entire second optimization pass in Fig. 12.

While alternate methods, such as GS2Mesh [67], may be used in

place of our first optimization pass, we similarly find that the re-

sulting Gaussians are not simulation ready, and transparency and

patchiness issues remain without our second optimization pass.
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(A) Naïve (B) Single View Process (C) Single View Visible (D) Ours

Figure 10: We compare our method (D) against a naïve approach rendering all Gaussians (A), our method only using a single
viewpoint (B), and a method using all visible triangles with no processing from a single viewpoint (C). In the naïve approach,
even when simulation garments are not in collision, Gaussians may still penetrate. In our method with only a single viewpoint
(B), most visual artifacts are resolved, but artifacts remain where normal vector tolerances fail. In (C), Gaussians are displayed
incorrectly due to penetrating simulation garments.

Figure 11: We compare Gaussians optimized with (right)
and without (left) our mesh-visibility augmentation in our
second optimization pass. Without our mesh-visibility aug-
mentation, Gaussian optimization may result in front-facing
portions of a garment relying on Gaussians on the back of
the garment. This results in spotty final renders when only
Gaussians on front faces are rendered—notice how individual
Gaussians are distinguishable as blotches under close inspec-
tion. This is further exacerbated under deformations.

Figure 12: We compare Gaussians optimized with our second
optimization (right) and with only our first optimization
(left). By including our second optimization pass, we both
ensure Gaussians are well aligned to the mesh surface, and
form a full opacity cover of the mesh. In the circled section,
Gaussians fail to form a full cover—the black background
used in our visualizer is visible through the Gaussians.

Finally, in Fig. 14 we provide a comparison of our chosen number

of cameras (𝑛 = 17) against other evenly spaced camera designs.

We find that with fewer cameras, many artifacts are present, and

there is little benefit to introducing more.

Figure 13: When simulation garments have large penetra-
tions (Yellow), restricted visibility (Blue), or large boundary
triangles (Red), our method may leave minor artifacts while
still greatly improving against naïve methods.

5 CONCLUSION & FUTUREWORK
We presented a novel interactive system for capturing and driving

multilayer Gaussian garments for dressing 3D human avatars using

low-cost hardware. Our capture method allows us to optimize the

Gaussian garments from static poses using a single phone camera.

Our system then combines physical simulation and Gaussian gar-

ments with a screenspace layer resolution method to synthesize

both realistic and interactive 3D avatar dressing results. By using

physically based simulation, our system is able to achieve dynamic

multilayer try-on, allowing for try-on settings that are impossible

for similar methods based on skinning.

Ourwork is not without limitations. In ourmethod, we discard an

entire triangle if it is found to be violating, whichmay cause artifacts

if triangles are large (Fig. 13, right). On the converse, simulation

triangles must be large enough to be seen by our rasterization step,

or else they may not display their Gaussians. An approach that

accounts for barycentric coordinates could remedy this dichotomy,

but we leave this as future work. Similarly, if an inner garment

triangle is partially obscured but not intersecting, its Gaussians

may incorrectly appear on top of the outer garment, depending

on opacity and distance to the triangle. Enforcing surface-aligned

Gaussians may improve this case, at the cost of rendering quality.
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(A) 5 Cameras (B) 9 Cameras

(C) 9 Cameras

(Horizontal)

(D) 17 Cameras

(Ours)

(E) 33 Cameras

(Diagonals)

Figure 14: We display the effect of the number of virtual cameras used in our pipeline. In addition to the “head on” view, we
place cameras at X and Y rotations of (A): 𝜋

2
; (B): 𝜋

4
, 3𝜋
4
; (D): 𝜋

8
,𝜋
4
,𝜋
2
, 3𝜋
4
. In (C) we used the same angles as (D) but omit vertical

rotations. In (E) we use the same angles as (D) for X and Y axis rotations, as well as the diagonals between these. The results
generated with fewer cameras than ours (D) have more artifacts. On the other hand, there is no noticeable benefit using more
cameras.

Also, since we do not have any information about the inside of

the clothing, our system shows artifacts when the clothing flips

over (e.g., vest opening, as seen under the armpit in Fig. 6 ). We

assume users specify a garment order, whichmay not change during

simulation, though restarting with different garment orders is very

fast. Although we rotate the spherical harmonics at runtime, some

details, such as fine wrinkles, are baked into our splats, as we use

a static capture setup as opposed to an expensive camera array,

and we avoid related expensive runtime techniques in order to

remain interactive. Finally, extreme penetrations can cause our

depth thresholding to fail (Fig. 13, left). For these reasons, we expect

the physics simulator to produce plausible results, though they may

still be far from perfect, especially with self-collisions.

Human avatars are not the focus of this work, as we focus on

capturing static garments (which are then driven dynamically).

Therefore, we optimize Gaussians of SMPL-X itself as a baseline

character. However, our method is compatible with 3DGS avatars

produced by other methods [20, 47, 74], provided that Gaussian

particles are skinned near the surface of SMPL-X in order to form a

triangle correspondence. Finally, the quality of our webcam-based

interactive try-on depends on the quality of tracking. Occlusion

artifacts will be reduced if better tracking methods are available.

There are many interesting directions in which our work can

be extended. One could consider optimizing the locations of the

cameras used for triangle culling, such as skinning them to gar-

ments, or SMPL-X itself. Another direction would be to incorporate

lighting-aware or ambient-occlusion-aware Gaussians in order to

further improve realism. While our design is focused on correcting

collisions visually, one could extend our approach to update simu-

lation objects’ positions, or extend to more general Gaussian mesh

settings.
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