
CRESTE: Scalable Mapless Navigation with
Internet Scale Priors and Counterfactual Guidance

Arthur Zhang, Harshit Sikchi, Amy Zhang, Joydeep Biswas
The University of Texas at Austin

Fig. 1: CRESTE predicts bird’s eye view (BEV) feature and reward maps for mapless navigation in urban environments. Our
RGB-D and BEV backbone work together to predict a structured BEV feature map consisting of separate feature maps for
static/dynamic entities and elevation, which our reward function uses to predict expert-aligned rewards. To learn this feature
map, CRESTE proposes a novel method of distilling internet scale priors from visual foundation models. We also introduce
an active learning framework and training objective that improves reward alignment using counterfactual demonstrations. We
integrate CRESTE in a modular navigation system that uses coarse GPS guidance and reward maps to reach navigation goals
safely.

Abstract—We address the long-horizon mapless navigation
problem: enabling robots to traverse novel environments without
relying on high-definition maps or precise waypoints that specify
exactly where to navigate. Achieving this requires overcoming two
major challenges — learning robust and generalizable perceptual
representations of the environment without pre-enumerating all
possible navigation factors and forms of perceptual aliasing, and
utilizing these learned representations to plan human-aligned
navigation paths. Existing solutions struggle to generalize due to
their reliance on: (a) hand-curated object lists, which overlook
new, unforeseen factors, (b) end-to-end learning of navigation-
relevant features, which is constrained by the limited availability
of real robot data, (c) large sets of expert demonstrations, which
provide insufficient guidance on the most critical perceptual cues,
or (d) handcrafted reward functions for learning, which are
difficult to design and adapt for new scenarios. To overcome
these limitations, we propose CRESTE, the first method that
learns representations and rewards capable of addressing the
full mapless navigation problem without relying on large-scale
robot datasets or manually curated features. CRESTE leverages
visual foundation models trained on internet-scale data to learn
continuous bird’s-eye-view representations capturing elevation,
semantics, and instance-level features. To utilize learned repre-
sentations for planning, we propose a counterfactual-based loss
and active learning procedure to focus on the perceptual cues
that matter most by querying humans for counterfactual trajec-
tory annotations in challenging scenes. We evaluate CRESTE
in kilometer-scale navigation tasks across six distinct urban
environments. CRESTE significantly outperforms all existing

state-of-the-art approaches with 70% fewer human interventions
per mission, including a 2-kilometer mission in an unseen
environment with just 1 intervention; showcasing its robustness
and effectiveness for long-horizon mapless navigation. Videos
and additional materials can be found on the project page:
https://amrl.cs.utexas.edu/creste.

I. INTRODUCTION

Mapless navigation is the task of reaching user-specified
goals without high-definition (HD) maps and precise naviga-
tion waypoints. Instead, mapless navigation approaches rely
on egocentric sensor observations (e.g. RGB images, point
clouds, GPS), coarse waypoints from public routing services,
and satellite imagery to plan safe paths aligned with human
preferences. While this task is relevant to many settings, our
work focuses on mapless navigation for challenging urban
scenes like downtowns, parks, and residential neighborhoods.

Mapless navigation is desirable as it enables rapid de-
ployment of robots to novel environments without laborious
map construction and maintenance. Furthermore, solutions to
mapless navigation broadly improve robustness to real-world
factors that affect both map-centric and mapless methods, such
as unexpected environment changes and traffic patterns for
dynamic entities.

Geometric-only methods [3, 46] are one approach to map-
less navigation that considers geometric factors like static

ar
X

iv
:2

50
3.

03
92

1v
1

 [c
s.R

O
]

5
M

ar
 2

02
5

https://amrl.cs.utexas.edu/creste

obstacles. While understanding geometric factors is important,
they are insufficient alone for explaining navigation prefer-
ences in diverse urban scenes that require jointly reasoning
about terrain preferences (grass vs. concrete), semantic cues
(crosswalks and crossing signs), and uneven terrain (sharp
curb dropoffs). Furthermore, methods need to reason about
the factors above without pre-enumerating the list of semantic
classes and entities a priori to scale gracefully in diverse en-
vironments. Lastly, planning modules that reason about these
factors must identify the most salient features and understand
how they influence which paths are most likely to be aligned
with human preferences.

Mapless navigation approaches that consider factors beyond
geometry broadly consist of single-factor perception, hand-
curated multi-factor perception, end-to-end learning, and zero-
shot pre-trained large language model (LLM)/visual language
model (VLM) transfer. Single-factor [23, 47, 13] and multi-
factor perception [24, 37] approaches encode either single
or multiple factors (e.g. terrain, elevation, semantics) to a
learned representation and use analytical methods like model
predictive control [35] for path planning. Single-factor meth-
ods generalize poorly to complex settings, while multi-factor
methods, though more flexible, rely on a hand-curated list of
semantic classes and terrains, limiting generalization to unseen
classes. End-to-end learning methods [38, 40, 39] jointly learn
the representation and policy from expert demonstrations,
but are prone to overfitting without access to large-scale
robot datasets. While recent works [48, 25] show that pre-
trained factors in LLMs and VLMs can be leveraged for
navigation, we empirically demonstrate that they are not well-
attuned to urban navigation, leading to poor zero-shot transfer
performance in complex scenes.

We address the aforementioned limitations with CRESTE,
Counterfactuals for Reward Enhancement with Structured
Embeddings, the first method that learns generalizable percep-
tual representations for the full mapless navigation problem in
urban environments. Our key insights lie in how we leverage
visual foundation models and counterfactual demonstrations
to learn structured representations and policies for mapless
navigation. First, CRESTE learns a perceptual encoder by
synergizing navigation priors from multiple visual foundation
models (VFMs) trained on internet-scale data, yielding se-
mantic, geometric, and entity aware representations that are
robust to perceptual aliasing and geometrically grounded in
the robot’s navigation horizon. We find it is essential to unify
priors from multiple VFMs as each model is best suited for
different factors: SegmentAnything [33, 20] for distinguishing
between entities and CLIP [32]/Dino [5, 28] for inferring
visual-language and semantic features. Second, CRESTE
learns a reward function for navigation using our principled
active learning framework and IRL objective that queries hu-
mans for counterfactuals to align learned policies with human
preferences. Counterfactuals (i.e. alternate trajectories that do
not align with preferences) enable reward functions to reason
about the most salient perceptual features and learn complex
navigation behaviors under a unified objective, removing the

need for large-scale robot datasets or careful reward design.
We summarize these contributions below:
• Representation Learning Through Model Distillation.

A new model architecture and distillation objective for
distilling navigation priors from visual foundation models
to a lightweight image to BEV map backbone.

• Counterfactually Aligned Rewards. An active learning
framework and principled counterfactual IRL formulation
for reward alignment using counterfactual and expert
demonstrations.

We demonstrate our approach’s effectiveness through real-
world kilometer-scale navigation experiments, such as the one
shown in Fig. 5. In total, we evaluate our approach in 6 distinct
seen and unseen urban environments, outperforming exist-
ing state-of-the-art imitation learning, inverse reinforcement
learning, and heuristic-based methods on the task of mapless
navigation.

II. RELATED WORK

In this section, we position our work within the broader con-
text of methods that perform mapless navigation by learning
representations and policies for safe local path planning. Ex-
isting solutions broadly consist of hybrid approaches that com-
bine single/multi-factor learned representations with analytical
path planning, end-to-end methods that learn representations
and policies jointly from data, and VLM/LLM-based methods
that leverage large foundation models zero-shot for navigation.
Underlying these approaches are two key challenges: learning
robust, generalizable perceptual representations that encode
a sufficient set of navigation factors, and identifying and
reasoning about the important factors to plan safe paths.

Single [16, 23] or multi-factor [10, 24, 37] approaches
explicitly learn high-level representations that consider factors
such as terrain, semantic, or geometric understanding. Using
manually curated cost functions to balance these factors,
these methods map representations to scalar costmaps for
analytical planning and control methods like model predictive
control (MPC) [35]. While these methods can jointly reason
about many navigation factors, they assume the full set of
semantic classes and terrains are static and known apriori,
and consequently generalize poorly to unexpected semantic
classes, terrains, or other factors not seen during training.
Furthermore, they require expert tuning of complex multi-
objective cost functions to jointly consider multiple factors.

End-to-end methods learn a representation and policy to-
gether using either behavior cloning, RL, or IRL. Behavior
cloning methods [17, 40] implicitly learn representations with
navigation cues and how to reason about them by mimicking
the expert policy. These approaches scale effectively given
large-scale datasets with expert demonstrations but are prone
to overfitting otherwise. RL [12] and IRL [50] methods also
mimic the expert policy, but additionally leverage handcrafted
reward functions (e.g. minimize vibrations [14] and likelihood
of interventions [15]) to guide representation and policy learn-
ing. This improves learning efficiency at the cost of careful
reward tuning to learn fine-grained behaviors that are difficult

to infer from expert demonstrations alone (e.g. avoid collisions
with walls but not tall grass). Reward functions also offer
more interpretability, particularly during failures where reward
functions make it possible to identify the root cause.

An emerging class of methods [25, 48] leverage pre-trained
factors present in VLMs and LLMs, large foundation models
pre-trained on internet-scale data, zero-shot for navigation.
These foundation models leverage geographic hints in the
form of satellite imagery and topological maps, along with
image observations and text instructions to predict safe lo-
cal waypoints for analytical planning and control methods.
While promising, it is not well understood how to best guide
VLMs/LLMs to reason about the most important navigation
factors for long-horizon navigation tasks.

CRESTE is a hybrid approach that learns perceptual rep-
resentations by distilling navigation factors from VFMs.pre-
trained on internet-scale data and leverages IRL to efficiently
learn expert-aligned behavior. This stands in contrast to prior
work that either learn the representation from expert demon-
strations or bespoke datasets, and approaches that extract
navigation factors from VLMs/LLMs in a zero-shot manner.
This provides a number of benefits when scaling to diverse
urban settings: 1) Improving robustness to perceptual aliasing
due to lighting, weather, and viewpoint variations; 2) Promot-
ing generalizability to unseen semantic entities; 3) Encoding
semantic and entity aware priors without dense human labels.
Additionally, CRESTE replaces complex multi-objective re-
ward functions common for IRL and RL methods with a
unified counterfactual-based learning objective. Counterfactual
demonstrations provide a theoretically principled way to com-
municate complex navigation operator preferences that would
be otherwise difficult to specify from expert demonstrations
alone.

III. THE MAPLESS URBAN NAVIGATION PROBLEM

We now develop the mapless navigation problem for urban
environments. We first formulate the path planning problem
in this context in Sec. III-A and then discuss the problem
of learning general expert-aligned costs in Sec. III-B. Fi-
nally, Sec. III-C highlights key challenges in our problem
formulation that this work addresses. In this work, we refer to
costs as negated rewards and use them interchangeably.

A. Path Planning for Mapless Navigation

For each timestep, we assume the robot has access to
the current observation ot and pose xt ∈ X in the global
frame, where the robot state space X lies in SE(2) for
ground vehicles. The robot must plan a finite trajectory
ΓS = [xt, ..., xt:t+S] from xt to goal G, either given by the
user or obtained from public routing services. ΓS consists of S
current and future states x ∈ X which minimize the following
objective function:

ΓS = argΓmin||xt+S −G||+ λtJ (Γ), (1)

where ||xt+S−G|| is the distance between the final state xt+S

and G, and J (Γ) is a cost function for path planning scaled

by a relative weight λt. In mapless urban environments, the
robot pose xt and goal G may be highly noisy, causing J (Γ)’s
importance to vary dynamically across time. In this work, we
do not address this problem and assume λt to be static.

B. General Preference-Aligned Cost Functions

To properly define our cost function J (Γ), we first need to
introduce the notion of an observation function Θ : O → T
that maps observations ot to a joint distribution T that encap-
sulates a set of relevant factors for navigation in the world.
In general, the sufficient set of factors is unknown but can be
approximated for each environment. Let T : X → T be a
function that maps a robot pose x ∈ X to a feature τ ∈ T ,
where τ captures the relevant set of factors necessary to reason
about J (Γ). The relationship and set of relevant factors may
consist of geometric, semantic, and social costs as follows:

J (Γ) = σ(Jgeometric(Γ),Jsemantic(Γ),Jsocial(Γ)) (2)

where σ is a nonlinear function that combines individual cost
terms.

We assume the operator has an underlying true cost function
H : T → R0+ mapping the sufficient set of factors to scalar
real-valued costs based on their preferences. Let H ∈ H,
where H is the continuous space of underlying cost functions.
In general, H is unknown and often depends on the robot
embodiment, environment, and task. For mapless navigation,
we define this task to be goal-reaching.

C. Open Challenges

In this work, we are concerned with learning both Θ(ot)
and J (Γ). This is difficult as the sufficient set of factors
for navigating diverse, urban environments is unknown and
the relationship between factors may be highly nonlinear. Our
approach to learning Θ(ot) distills features from VFMs, which
provide a breadth of factors including but not limited to:
geometry, semantics, and entities. This promotes learning a
joint distribution T sufficient for mapless urban navigation.
Furthermore, we propose a counterfactual-based framework
for learning J (Γ), which becomes important when dealing
with complex feature distributions T and nonlinear relation-
ships between factors σ.

IV. APPROACH

We now present CRESTE, an end-to-end learning-based
system that predicts general-purpose, egocentric reward maps
for local path planning in complex, urban environments.
Unlike prior works [40, 49] that learn solely from expert
demonstrations, our method leverages large visual foundation
models (VFMs) to learn robust perceptual representations rich
with navigation priors and counterfactual demonstrations to
align reward maps more closely with operator preferences.

CRESTE is a modular approach with two key components:
1) A perceptual encoder Θ(orgb, t, odepth, t) that takes the robot’s
current RGB and sparse depth observation and predicts a
completed depth image ydepth, t and structured BEV feature
map ybev, t; 2) A reward function rϕ(ybev, t) that takes ybev, t

Fig. 2: Training procedure and model architecture for the CRESTE perceptual encoder Θ. Our RGB-D backbone extracts
semantic features and performs depth completion from a single RGB and sparse depth image pair. Next, we lift and splat
the image features zrgbd to an unstructured BEV feature map before predicting continuous static panoptic, dynamic panoptic,
and elevation feature maps. Finally, we stack the predicted BEV features to construct a structured BEV representation for our
learned reward function. We supervise Θ using semantic feature maps, completed depth, and BEV map labels generated by
our SegmentAnythingv2 [20] and Dinov2 [28]-powered distillation label generator. We define the dimensions for important
feature maps in the Feature Dimension Legend on the bottom right.

and outputs a BEV scalar reward map yreward, t. Θ captures
key semantic, geometric, and entity factors crucial for urban
navigation and rϕ jointly reasons about these factors to pro-
duce local BEV reward maps for local path planning. Both
components are learned from VFMs, expert demonstrations,
and offline counterfactual annotations, without relying on
dense human labels, exhaustive semantic categories, or large-
scale expert datasets.

In the remainder of this section, we describe the following:
1) Sec. IV-A - The CRESTE model architecture, highlighting
key innovations for learning the perceptual encoder Θ in
Sec. IV-A1 and reward function rϕ in Sec. IV-A2. 2) Sec. IV-B
- The CRESTE training procedure, where Sec. IV-B1 presents
our learning and VFM distillation procedure for Θ and
Sec. IV-B2 presents our active reward learning framework for
learning rϕ from expert and counterfactual demonstrations.

A. CRESTE Model Architecture

CRESTE implements Θ and rϕ using four major com-
ponents. Fig. 2 illustrates the first three components that
constitute Θ: 1) RGB-D encoder (frgbd) encodes important
semantic cues for navigation (e.g. crosswalk markings, objects,
terrains) and geometric information (dense depth), 2) Lift-
splat module (fsplat) lifts and grounds image features into a
local BEV map, and 3) BEV Inpainting Backbone (fbev)
completes the scene, predicting a structured BEV feature

map ybev with continuous entity-aware semantic and elevation
layers. The fourth component is our reward function rϕ(ybev),
which consumes the BEV representation ybev and predicts a
scalar reward map yreward for navigation. We define specific
details regarding the dimensions of each feature in Fig. 2 and
present our architecture and innovations for Θ in Sec. IV-A1
and rϕ in Sec. IV-A2.

1) Perceptual Encoder Model Architecture: Our 25.5M-
parameter perceptual encoder draws inspiration from the Ter-
rainNet [24] architecture while introducing two key model
innovations that improve generalizability to diverse urban
scenes. These innovations are our semantic decoder head
fsemantic and BEV map decoders (fbev,static, fbev,dynamic) that
predict continuous panoptic features for static and dynamic en-
tities. We borrow the term “panoptic” [19] from the computer
vision community, where it refers to the task of understanding
both the semantics and instances in the scene. We present an
overview of these components next.

RGB-D Encoder. frgbd(orgb, odepth) processes the RGB and
sparse depth image using an EfficientNet-B0 [45] encoder and
outputs a latent feature map zrgbd. We pass zrgbd to two decoder
heads: 1) a depth completion head fdepth(zrgbd) that outputs a
completed depth map ydepth and 2) a semantic decoder head
fsemantic(zrgbd) that regresses a semantic feature map ysemantic.

Lift-Splat Module. Adopting TerrainNet’s soft-quantization
approach, fsplat(zrgbd, ydepth) lifts the output of frgbd to 3D space

using ydepth and “splats” them onto a BEV grid to produce an
unstructured feature map zbev, splat. We learn weights to bilin-
early interpolate each image feature to its corresponding cell
and 4 neighboring map cells, which simultaneously grounds
features to the robot’s local planning horizon and corrects
depth prediction inconsistencies.

BEV Inpainting Backbone. We implement the final com-
ponent fbev(zbev, splat) using a U-Net [36] architecture with a
shared BEV map encoder fbev, enc and three decoder heads,
fbev, static(zbev, enc), fbev, dynamic(zbev, enc), and fbev, elev(zbev, enc),
where zbev, enc is the latent feature map produced by fbev, enc.
Our three decoder heads predict static panoptic feature maps
ybev, static, dynamic panoptic feature maps ybev, dynamic, and ele-
vation maps ybev, elev respectively. We stack these BEV feature
maps along the channel dimension to construct a structured
BEV feature map ybev for downstream reward learning.

Design Rationale and Key Innovations. Our architectural
innovations aim to address three challenges to perceptual rep-
resentation learning for mapless urban navigation: 1) Robust-
ness to perceptual aliasing, where representations are lighting,
viewpoint, and weather invariant; 2) Generalization beyond
the training data to unseen semantic classes and terrains; 3)
Panoptic understanding without exhaustively enumerating all
possible semantic classes and terrains a priori.

We address challenges 1 and 2 by using fsemantic to learn
representations that regress to the features produced by large-
scale Visual Foundation Models (VFMs) such as Dinov2 [28].
By matching Dinov2’s learned representations given the same
RGB observations, our model inherits robust semantic and
geometric priors. Furthermore, these priors capture high-level
semantic cues without restricting the model to a fixed set of
semantic classes. As a result, Θ is expected to generalize
beyond the classes and terrain types present in the robot’s
training data.

However, Dinov2 alone lacks the entity-awareness needed
to accurately project and inpaint features in heavily occluded
urban scenes, particularly when working with noisy and sparse
depth inputs. fbev, static and fbev, dynamic remedy this by learning
a map representation aligned with BEV instance labels derived
from SegmentAnythingv2 (SAM2) [20]. This ensures our
model can identify and localize individual entities—both static
and dynamic—within a local BEV horizon, thus bolstering its
capacity to handle complex occlusions and ambiguous depth
cues. Working together, our decoder heads synergistically
balance learning a perceptual representation that is simulta-
neously semantic, entity-aware, and geometrically discrimi-
native, all while maintaining strong robustness to perceptual
aliasing.

2) Reward Function Model Architecture: We implement
rϕ using a 0.5M parameter Multi-Scale Fully Convolutional
Network (MS FCN) first used by Wulfmeier et al. [50]. We
select this model architecture as it enforces spatial invariance
and considers features at multiple scales.

B. CRESTE Training Procedure

To train CRESTE, we first optimize Θ and freeze the
parameters before training rϕ using our active reward learning
framework with counterfactuals. Altogether, our full learning
objective is:

LCRESTE = Lrgbd + Lbev + LIRL (3)

where Lrgbd and Lbev supervise Θ and LIRL supervise rϕ.
Sec. IV-B1 breaks down the objective terms Lrgbd and Lbev and
how we leverage VFMs to generate training labels. Sec. IV-B2
defines our counterfactual-based IRL objective LIRL, proce-
dure for obtaining counterfactual annotations, and theoretical
derivation for LIRL.

1) Training the Perceptual Encoder Θ: To train Θ, we pro-
pose a distillation label generation module that leverages large
VFMs to generate training labels. Our labels enable us to learn
representations that are robust to perceptual aliasing, spatially
grounded, and rich in navigation priors. As shown in Fig. 2, we
generate semantic feature maps ŷsemantic and completed depth
labels ŷdepth to distill semantic and geometric priors to frgbd.
Then, we generate BEV map labels for static and dynamic
entities (ŷbev, static, ŷbev, dynamic) and BEV elevation map labels
ŷbev, elev to distill entity priors and enforce robustness to lifting
artifacts when training fbev. Next, we present our distillation
label generator and training procedure for frgbd and fbev.

Distillation Label Generator. Fig. 2 visually depicts the
inputs and outputs for our label generator. Using sequential
SE(3) robot poses and synchronized RGB–point cloud pairs
(orgb, 1:t, ocloud, 1:t), our Distillation Label Generator produces
five training labels for supervising Θ. Below, we detail the
label generation procedure for a single timestep t, separating
it into two parts: (i) labels supervising frgbd, and (ii) labels
supervising fbev.

i) Generating Training Labels for the RGB-D Encoder
frgbd. We generate ŷsemantic by passing orgb, t through a frozen
Dinov2 encoder and bilinearly interpolating the spatial dimen-
sion of our output feature map to match the spatial resolution
of ysemantic. We generate ŷdepth by projecting ocloud, t to the
image and applying bilateral filtering [31] for edge-aware
inpainting, producing a dense depth map that respects object
boundaries.

ii) Generating Training Labels for the BEV Inpainting
Backbone fbev. To generate ŷbev, dynamic, we prompt SAM2
with bounding box detections from a set of commonly en-
countered dynamic categories (e.g. vehicles, pedestrians) to
obtain dynamic entity labels. We follow the approach in Osep.
et al. [29], backprojecting dynamic labels to 3D using the
corresponding point cloud ocloud, t and clustering the points at
multiple density thresholds using DBSCAN [7]. We retain the
DBSCAN clusters that exceed a minimum intersection-over-
union (IoU) overlap with the entity-labeled clusters and project
the matched points to the dynamic entity BEV map.

To generate ŷbev, static, we first obtain static entity labels by
prompting SAM2 with a grid of query points (generating dy-
namic entity labels via bounding box queries as before), mask

out overlapping regions between grid-queried and dynamic
labels to isolate the static masks in each frame, and then apply
an iterative greedy merging strategy that fuses overlapping
masks (above an IoU threshold) across consecutive frames —
treating unmatched IDs as new entities. Finally, we project
and accumulate these entity-consistent multi-frame labels in
BEV using known robot poses to produce the final static entity
BEV map. To see our algorithmic formulation describing this
procedure, please refer to the Appendix.

To generate ŷbev, elev, we accumulate static entity-labeled 3D
points across sequential frames using robot poses (generating
static entity labels as before), assign each 3D point to a grid
cell, and compute each cell’s minimum elevation by averaging
the N lowest 3D points that fall into that cell.

Training the RGB-D Encoder frgbd. We jointly train
frgbd via backpropagation from fsemantic and fdepth. First, the
semantic decoder head fsemantic is supervised via an L2/MSE
loss that minimizes the error between ysemantic and ŷsemantic.
Second, the depth completion head fdepth is supervised using a
cross-entropy classification loss LCE , where ŷdepth is uniformly
discretized into bins. Empirically, this captures depth discon-
tinuities better than regression [34]. Altogether the training
objective for the RGB-D backbone is:

Lrgbd = α1l2(ysemantic, ŷsemantic) + α2LCE(ydepth, ŷdepth) (4)

where α1 and α2 are tunable hyperparameters.
Training the BEV Inpainting Backbone fbev. We train

fbev with three losses, one for each BEV decoder head, that
leverage ŷbev, static, ŷbev, dynamic, and ŷbev, elev to distill entity pri-
ors, mitigate projection artifacts from noisy depth predictions,
and teach our model to reason about occluded areas. We train
fbev, static and fbev, dynamic with Supervised Contrastive Loss [18]
(Lcontrastive) using BEV map labels ŷbev, static and ŷbev, dynamic.
Lcontrastive optimizes the embedding space such that features
of the same entity remain close while repelling those from
different entities. This is key to learning continuous feature
maps from discrete BEV map labels. We train fbev, elev to
predict ŷbev, elev using l1 regression loss. Our full training
objective for fbev is:

Lbev = β1Lcontrastive(ystatic, ŷstatic)+

β2Lcontrastive(ydynamic, ŷdynamic) + β3l1(yelev, ŷelev)
(5)

where β1, β2, and β3 are tunable hyperparameters. Trained
together, Lrgbd and Lbev guide the network to learn robust
semantic, geometric, and entity-level representations, even
for regions that are partially or fully hidden from direct
view. For specific hyperparameter settings, please refer to
Appendix Sec. X-A.

2) Training the Reward Function rϕ: Even with perceptual
representations that encode relevant features for navigation,
prior works [8, 15] demonstrate that is difficult to identify
the most salient features and how they influence operator
preferences. This problem is exacerbated for real-world de-
ployments, where limited expert demonstrations further reduce
generalizability. To improve policy learning under limited ex-
pert demonstrations, we propose an active learning framework

that supplements expert demonstrations with counterfactual
annotations obtained via offline operator feedback. Our ap-
proach teaches policies to learn rewards that simultaneously
penalize suboptimal behavior while rewarding expert-aligned
behavior, thereby improving sample efficiency, generalizabil-
ity, and interpretability.

More formally, suboptimal trajectories enable learning more
discriminative reward functions that map scene features to
their scalar utilities. Let us define a state-action visitation
distribution to be the discounted probability of reaching a
state s under a policy π and taking action a: ρπ(s, a) =
(1 − γ)

∑
γtp(st = s, at = a|π). We define each state s

to be an xy location on the local BEV grid and our actions
a along the 8 connected grid. Overall, our objective for
reward learning, referred to as Counterfactual IRL, is simple:
For each BEV observation ybev , given state-actions sampled
from the expert’s visitation distribution ρE and state-actions
sampled from the suboptimal visitation distribution ρS ; we
obtain a reward function and policy by solving the following
optimization problem:

min
π

max
ϕ

EρE [rϕ(s, a, ybev)]

− (αEρS [rϕ(s, a, ybev)] + (1− α)Eρπ [rϕ(s, a, ybev)]) (6)

where ρπ denotes current policy visitation and α is a tunable
hyperparameter that balances the relative importance between
suboptimal and expert demonstrations. Using the relationship
defined in Eq. 10, we can rewrite Eq. 6 in terms of the state-
action visitation distribution to obtain our Counterfactual IRL
training objective:

LIRL = ρE(s, a)− (αρS(s, a) + (1− α)Eπ[ρ
π(s, a)])rϕ (7)

Intuitively, the above objective learns a reward function such
that the difference between the expert’s return and agent
policy’s return is minimized while ensuring suboptimal coun-
terfactuals have a low return. Assuming non-trivial rewards,
which can be enforced using gradient regularization tech-
niques [22], our objective effectively leverages expert and
counterfactual demonstrations to learn more discriminative
rewards. Next, we describe our active learning framework
for learning rϕ from counterfactuals and how we generate
these counterfactual annotations. We conclude by deriving the
reward learning objective using the Bradley-Terry model of
preferences and show connections to Inverse Reinforcement
Learning (IRL).

Active Reward Learning from Counterfactuals. We in-
troduce an active reward learning framework that leverages
counterfactual demonstrations to teach our reward function rϕ
to map features from our BEV feature map ybev to operator-
aligned scalar rewards. Fig. 3 illustrates this framework, which
consists of three phases that we shall describe next:

Phase I: Warmstart We first set α equal to zero in LIRL,
effectively training rϕ using only expert demonstrations. This
provides a base policy to use for the next phase.

Phase II: Synthetic Counterfactual Generation For each
training sample, we infer rewards using rϕ from Phase I and

Fig. 3: Framework for Active Reward Learning with Counterfactuals. Before reward learning, we train and freeze the perceptual
encoder Θ and use the output BEV feature map ybev with rϕ to predict BEV reward maps yreward. In phase I, we train rϕ using
our counterfactual IRL objective LIRL using only expert demonstrations ΓE . In phase II, we plan goal-reaching paths using
yreward and identify samples that align poorly with human preferences. We generate alternate trajectories for these samples and
query the operator to select counterfactual demonstrations ΓS using orgb for context. In phase III, we retrain rϕ using LIRL,
this time with ΓE and ΓS . We repeat phases II and III to iteratively improve rϕ until it is aligned with human preferences.

plan trajectories using the same start and goal as the expert
trajectory. For samples where the learned and expert policies
diverge, we generate alternate trajectories from the start to
the goal and prompt the operator to identify which alternate
trajectories are counterfactuals (i.e exhibit unwanted behavior).

Phase III: Counterfactual Reward Alignment We retrain rϕ
using LIRL with expert and counterfactual annotations. We set
α to be nonzero to balance the relative importance of expert
and counterfactual demonstrations. We repeat phases II and III
using the current rϕ until rϕ aligns with operator preferences.

Generating Counterfactual Annotations. To obtain coun-
terfactual annotations for a training sample t in our dataset,
we first require the expert trajectory ΓE

t , orgb, t, and odepth, t
for the sample. We uniformly sample a handful of ”control”
states along ΓE

t , excluding the start and goal states. Then,
we randomly perturb these control states before planning a
kinematically feasible path from the start and goal states such
that it reaches all of the perturbed control states. Practically,
we implement this using Hybrid A* [6] - however, any kine-
matic planner will suffice. We generate a handful of alternate
trajectories in this manner and prompt the operator to identify
the suboptimal trajectories given orgb, t and odepth, t. We use
the selected suboptimal trajectories to retrain rϕ in our active
reward learning framework. For additional implementation
details regarding generating alternate trajectories, we refer
readers to Appendix Sec. X-B.

Counterfactual IRL Derivation LIRL. In this section, we
derive LIRL, our IRL objective that leverages expert and coun-
terfactual demonstrations. For context, IRL methods [53, 26]
allow for learning reward functions rϕ, parameterized by
ϕ, given expert demonstrations. However, they provide no
mechanism to incorporate suboptimal trajectories. Suboptimal
trajectories are easy to obtain and enable a data flywheel for
navigation; the BEV observations obtained from expert runs
can simply be relabelled with suboptimal of unsafe trajectories
offline without any more environmental interactions. Moti-
vated by this idea, we derive LIRL, a general and principled
way to learn from suboptimal and expert trajectories jointly
under a single objective.

Our approach builds on the ranking perspective of imitation

learning [43] which uses visitation distributions to denote
long-term behavior of an agent. We denote ρπ(s, a), ρE(s, a),
ρS(s, a) to be the agent, expert, and suboptimal state-action
visitation distributions respectively. We assume the reward
function is conditioned on ybev as before, but drop it from the
derivation for conciseness. Under this notation the problem of
return maximization becomes finding a visitation induced by
a policy π that maximizes the expected return given by:

max
π

Jπ(rϕ) = max
π

Eρπ(s,a)[rϕ(s, a)]. (8)

The reward function of the expert should satisfy the ranking
ρπ(s, a) ⪯ ρE(s, a), which implies that the expert’s visitation
distribution obtains a return that is greater or equal to any
other policy’s visitation distribution in the environment:

ρπ(s, a) ⪯ ρE(s, a) =⇒ Eρπ(s,a)[rϕ(s, a)]

≤ EρE(s,a)[rϕ(s, a)]. (9)

This property extends to any suboptimal visitations, and
as a consequence of linearity of expectations, to any convex
combination of the current policy’s visitation and any other
suboptimal visitation distribution. Mathematically,

αρπ(s, a) + (1− α)ρS(s, a) ⪯ ρE(s, a) ∀α ∈ [0, 1]. (10)

Thus, given suboptimal visitation distributions, we can cre-
ate a number of pairwise preferences by choosing a suboptimal
visitation and a particular α. We turn to the Bradley-Terry
model of preferences to satisfy these pairwise preferences
which assumes that preferences are noisy-rational and that the
probability of a preference can be expressed as:

P (ρE(s, a) ⪰ αρπ(s, a) + (1− α)ρS(s, a)) =

eJ
E(rϕ)

eJ
E(rϕ) + eαJ

π(rϕ)+(1−α)JS(rϕ)

=
1

1 + eα(J
S(rϕ)−JE(rϕ))+(1−α)(Jπ(rϕ)−JE(rϕ))

.

(11)

Finding a reward function implies maximizing the like-
lihood of observed preferences while the policy optimizes
the learned reward function. Since, the convex combination
holds for all values of α ∈ [0, 1], we consider optimizing

against the worst-case to obtain the following two-player
counterfactual IRL objective, where the reward player learns
to satisfy rankings against the worst-possible α:

max
ϕ

min
α

P
(
ρE(s, a) ⪰ αρπ(s, a) + (1− α)ρS(s, a)

)
(12)

and the policy player maximizes expected return:

max
π

Jπ(rϕ). (13)

In practice, optimizing for worst-case α for each BEV
scene ybev can quickly make solving the optimization objective
challenging due to the large number of scenes we train the
reward function on. We make two mild approximations that we
observed to make learning more efficient and tractable: First,
we replace the worst-case α with a fixed α, and second, we
consider maximizing a pointwise monotonic transformation
to the Bradley Terry loss function that directly maximizes
α(JS(rϕ)− JE(rϕ)) + (1−α)(Jπ(rϕ)− JE(rϕ)) instead of
its sigmoid transformation. With these changes, we can rewrite
our practical counterfactual IRL objective as:

min
π

max
ϕ

(
JE(rϕ)− (αJS(rϕ) + (1− α)Jπ(rϕ)

)
. (14)

This objective reveals a deeper connection between ap-
prenticeship learning (Eq 6 [1]) obtained by setting α to 0
and learning from preferences [4] obtained by setting α to
1. The loss function goes beyond the apprenticeship learning
objective that only learns from expert by incorporating sub-
optimal demonstrations. Second, it goes beyond the offline
nature of prior algorithms that learn from preferences alone
by instead learning a policy that attempts to match expert
visitation making use of the suboptimal demonstrations.

V. IMPLEMENTATION DETAILS

In this section, we cover implementation details for our
local planning and control modules depicted in Fig. 1. For
additional information regarding model training hyperparame-
ters and generating counterfactual annotations, please refer to
Appendix Sec. X.

1) Global and Local Planning and Controls: Our global
and local planning modules work together to identify the next
local subgoal for local path planning. Given a user-specified
GPS end goal GN , we use OpenStreetMap [27] to obtain a
semi-dense sequence of coarse GPS goals G = [G1, ..., GN]
spaced 10 meters apart. To select the next GPS subgoal, we
compute the set of distances D = {||g−GN || | g ∈ G∪{Gt}},
where D contains the distance of the robot Gt from GN and
the distance of each GPS subgoal in G from GN . From the set
of subgoals with a smaller distance to GN than Gt, we select
the farthest subgoal to use as the next subgoal. We project
this subgoal on the edge of the local planning horizon, a 6
meter circle around the robot, giving us a carrot for local path
planning.

We adopt a DWA [9] style approach to local path planning,
where we enumerate a set of constant curvature arcs (31 in
our case) from the egocentric robot frame. We compute learned

cost for each trajectory by sampling points along each each
arc and computing the discounted cost at each point using
our predicted reward map. We simply invert and normalize
our reward map to the range [0, 1] to convert it to a costmap.
Finally, we compute the distance between the last point on
the arc with the local carrot to obtain a goal-reaching cost.
We multiply the learned and goal-reaching costs by tunable
weights before selecting the trajectory with the lowest cost.
Finally, we perform 1D time optimal control [30] to generate
low-level actions to follow this trajectory. Empirically, we find
that sampling 30 points and using a discount factor of 0.95 is
sufficiently dense. We find that that tuning the goal-reaching
cost to be 1/10th the importance of the learned cost achieves
good balance between goal-reaching and adhering to operator
preferences.

VI. EXPERIMENTS

In this section, we describe our evaluation methodology for
CRESTE and answer the following questions to understand
the importance of our contributions and overall performance
on the task of mapless urban navigation.

• (Q1) How well does CRESTE generalize to unseen urban
environments for mapless urban navigation?

• (Q2) How important are structured BEV perceptual rep-
resentations for downstream policy learning?

• (Q3) How much do counterfactual demonstrations im-
prove learned policies in challenging urban scenes?

• (Q4) How well does CRESTE perform long horizon
mapless urban navigation compared to other top state-
of-the-art approaches?

Fig. 6: Mobile robot test-
ing platform for real-
world experiments. We
annotate the locations of
the monocular camera,
3D LiDAR, and cellu-
lar phone (not visible) on
our testing platform, the
Clearpath Jackal.

We investigate Q1 by com-
paring CRESTE’s performance
against other methods in unseen
environments. Additionally, we
evaluate the relative performance
between different input modali-
ties and observation encoders for
CRESTE. To answer Q2 and
Q3, we conduct ablation stud-
ies that isolate the methodological
contribution in question. Finally,
we evaluate Q4 by conducting a
kilometer-scale experiment com-
paring CRESTE against the top-
performing baseline.

A. Robot Testing Platform

We conduct all experiments us-
ing a Clearpath Jackal mobile
robot. We observe 512×612 RGB
images from a 110◦ field-of-view
camera and point cloud observa-

tions from a 128-channel Ouster LiDAR. We obtain coarse
GPS measurements and magnetometer readings from a cellular
smartphone. We use the open source OpenStreetMap [27]
routing service to obtain coarse navigation waypoints. Our

Fig. 4: Satellite image of testing locations for short horizon mapless navigation experiments. We evaluate baselines across 2
seen (green) and 4 unseen (red) urban locations. Our testing locations consist of residential neighborhoods, urban shopping
centers, urban parks, and offroad trails. In each location, each baseline must start from an endpoint on the annotated blue
trajectory and navigate to the opposite end of the trajectory. We denote each location’s ID with a numerical superscript.

Fig. 5: Satellite image of our 2 kilometer long-horizon testing area, with examples with front view RGB image observations
and CRESTE’s predicted BEV costmap (converted from the predicted BEV reward map). We annotate successful examples in
green with a brief description of the situation. We annotate unsuccessful examples in red, present the observation right before
the intervention, and provide a brief description of the cause of failure.

onboard compute platform has an Intel i7-9700TE 1.80 GHz
CPU and Nvidia RTX A2000 GPU. We run CRESTE at 20
Hz alongside our mapless navigation system, which operates
at 10Hz.

B. Training Dataset

We collect a robot dataset with 3 hours of expert navigation
demonstrations spread across urban parks, downtown centers,
residential neighborhoods, and college campuses. Our dataset
consists of synchronized image LiDAR observation pairs and
ground truth robot poses computed using LeGO-LOAM [42],
a LiDAR-based SLAM algorithm. We train all methods on the
same dataset for 150 epochs or until convergence.

C. Testing Methodology

We evaluate all questions through physical robot experi-
ments performing the task of mapless urban navigation in

urban environments. We present aerial images in Fig. 4
depicting the urban environments where we perform short
horizon (∼100m) quantitative experiments. These consist of
six challenging seen and unseen environments with trails, road
crossings, narrow pathways, different terrains, and obstacle
hazards. For locations 1-5, we repeat the same experiment
twice for each approach. For location 6, we repeat the same
experiment five times for each approach. We evaluate the
highest performing methods on a long-horizon quantitative
experiment, which we conduct at a 2-kilometer urban trail
shown in Fig. 5. We pre-emptively terminate the long-horizon
experiment if the baseline is unable to complete the mission
within a predefined time. Next, we explain evaluation metrics
1 to 3, which we use for the short-horizon experiments, and
evaluation metrics 4 and 5, which we use exclusively for the
long-horizon experiments.

In Distribution Out of Distribution
Location Sherlock North Woolridge Square Sherlock South Trader Joes Hemphill Park
Method AST ↓ %S↑ NIR ↓ AST ↓ %S↑ NIR ↓ AST ↓ %S↑ NIR ↓ AST ↓ %S↑ NIR ↓ AST ↓ %S↑ NIR ↓
Geometric Only 17.64 61.60 11.21 18.56 86.36 9.50 15.56 92.50 7.80 15.22 94.74 12.05 14.21 95.00 13.21
PACER+G [23] 25.79 96.15 9.42 26.51 90.90 8.83 22.11 95.00 7.67 24.38 87.14 17.93 23.94 92.85 9.47
ViNT [40] 20.38 65.51 10.36 17.85 90.36 7.94 17.06 92.30 7.19 22.10 84.21 18.36 23.92 95.00 10.96
PIVOT [25] 46.56 83.33 26.03 57.36 84.11 20.22 45.41 75.00 21.91 41.77 74.44 40.67 33.85 85.00 28.36
CRESTE - cfs - st 21.26 96.15 12.99 20.53 91.66 9.79 21.13 92.80 5.65 23.17 93.75 14.87 26.85 94.11 11.11
CRESTE - cfs 25.86 96.29 9.20 19.84 90.90 6.12 13.27 92.30 2.41 25.39 91.66 10.49 28.43 83.33 8.57
CRESTE - st 19.09 96.29 6.10 17.80 92.90 3.03 12.88 94.65 2.04 22.01 92.85 7.83 16.32 93.42 2.16
CRESTE (ours) 14.01 96.60 4.60 14.70 100.0 0.00 12.60 95.23 0.86 15.28 95.65 3.73 15.42 100.0 0.00

TABLE I: Quantitative evaluation comparing CRESTE against existing navigation baselines for short horizon mapless
navigation experiments. In distribution locations are present in the training dataset while out-of-distribution locations are
absent from the training data. We bold the best performing method for each metric in each location, and annotate each metric
with an up or down arrow to indicate if higher or lower numbers are better. We define the following evaluation metrics in the
evaluation metric section of this work and denote their abbreviations as: AST - average subgoal completion time (s), %S -
percentage of subgoals reached in mission, NIR - Number of interventions required per 100 meters driven.

Out of Distribution
Location Blanton Museum
Method AST ↓ %S↑ NIR ↓
CRESTE-RGB-FROZEN 17.14±2.51 97.91±2.59 1.69±0.96
CRESTE-RGB 17.25±3.83 97.38±2.43 1.38±0.90
CRESTE-STEREO 17.72±1.32 97.43±1.88 1.07±0.49
CRESTE (ours) 13.81±2.38 98.36±1.55 0.76±0.48

TABLE II: Quantitative evaluation comparing the impact
of different input modalities and observation encoders on
CRESTE. All baselines are evaluated on the same experiment
area. We compute the mean and standard deviation over 5
trials and bold the best performing method for each metric in
each location. We annotate each metric with an up or down
arrow to indicate if higher or lower numbers are better.

Our evaluation metrics are defined as follows: 1) Average
Subgoal Completion Time (AST) - the average time to complete
each subgoal where all subgoals are evenly spaced 10 meters
apart 2) Percentage of Subgoals Reached (%S) - the percentage
of subgoals reached by the end of the mission 3) Normalized
Intervention Rate (NIR) - the number of operator interventions
required for every 100 meters driven 4) Total Distance Driven
(Dist. (m)) - the total distance driven before mission failure or
completion 5) Total Interventions (Total Int.) - the total number
of interventions required per mission. During evaluation, we
only consider interventions that were incurred by the method
(e.g. overrides performed to give right of way to vehicular
traffic are not considered interventions).

D. Baselines

We supplement all baselines with the same analytical ge-
ometric avoidance module to prevent catastrophic collisions.
Even with this module, operators preemptively intervene when
the baseline deviates from general navigation preferences
(e.g. stay on sidewalks, follow crosswalk markings, etc). All
baselines, with the exception of PIVOT [25], perform all
computations using onboard compute to fairly evaluate real-
time performance. Next, we describe our evaluation baselines.

For questions 1 and 3, we compare CRESTE against
four existing navigation baselines and six variations of the
CRESTE architecture. We first describe the existing baselines:
1) ViNT [40] - a foundation navigation model trained on goal-

guided navigation 2) PACER+Geometric [23] (PACER+G) - a
multi-factor perception baseline that considers learned terrain
and geometric costs in a dynamic window [9] (DWA) style
approach 3) Geometric-Only - a DWA style approach that
only considers geometric costs 4) PIVOT [25] - a VLM-
based navigation method that uses the latest version of GPT4o-
mini [2] to select local goals from image observations.

We test six variations of CRESTE to evaluate the effect of
different observation encoders and sensor modalities. These
consist of 1) CRESTE-RGB, the same RGB encoder but
using only monocular RGB images, 2) CRESTE-STEREO,
the same RGB encoder with a stereo processing backbone
that fuses features from stereo RGB images, 3) CRESTE-
RGB-Frozen, the same depth prediction head but with a
frozen Dinov2 [28] encoder that only uses monocular RGB
images. The remaining variations ablate our methodological
contributions: 4) CRESTE-cfs, our model trained without
counterfactual demonstrations, but otherwise identical to the
original, 5) CRESTE-st, our model trained without the BEV
inpainting backbone, but otherwise identical to the original,
6) CRESTE-cfs-st, our model trained without counterfactual
demonstrations or the BEV inpainting backbone. For archi-
tectures 5 and 6, we directly pass the unstructured BEV
feature map zbev, splat to the reward function rϕ and train the
splat module fsplat using expert demonstrations. We still freeze
the RGB-D backbone frgbd when training rϕ. For additional
details regarding the CRESTE architecture variations, we refer
readers to Appendix Sec. X-C2. Next, we will describe high-
level implementation details for each non-CRESTE baseline.

Since ViNT is pre-trained for image goal navigation, we
are unable to deploy this model in unseen environments where
image goals are not known apriori. Thus, we finetune ViNT by
freezing the pre-trained ViNT backbone and changing the goal
modality encoder to accept 2D xy coordinate goals rather than
images. We follow the same model architecture and match the
training procedure from the original paper for reaching GPS
goals. We reproduce the PACER and PIVOT models faithfully
to the best of our abilities as no open-source implementation
is available.

Location Mueller Loop
Method AST ↓ %S↑ NIR ↓ Dist. (m) ↑ Total Int. ↓
PACER+G [23] 15.8 61.53 3.56 1345.07 48
CRESTE (ours) 12.94 99.45 0.052 1919.44 1

TABLE III: Quantitative evaluation for long horizon mapless
navigation experiments. All baselines are evaluated on the
same 1.9 kilometer urban area. We bold the best performing
method for each metric in each location, and annotate each
metric with an up or down arrow to indicate if higher or
lower numbers are better. We define the following evaluation
metrics in the evaluation metric section of this work and denote
their abbreviations as: AST - average subgoal completion time
(s), %S - percentage of subgoals reached in mission, NIR -
Number of interventions required per 100 meters driven, Dist.
(m) - total distance driven in meters, Total Int. - total number
of interventions required for the entire mission.

E. Quantitative Results and Analysis

We present the quantitative results of the short horizon and
long-horizon experiments in Table I, Table II, and Table III
respectively, and analyze these results to answer Q1 - Q4 in
the following section.

1) Evaluating Generalizability to Unseen Urban Environ-
ments.: Comparing CRESTE against all other baselines in Ta-
ble I, we find that our approach achieves superior performance
in all metrics for both seen and unseen environments. We
present qualitative analysis for each learned baseline in Ap-
pendix Sec. X-C. Quantitatively, PACER+G, the next best ap-
proach, requires two times more interventions than CRESTE
in seen environments and five times more interventions in
unseen environments. Furthermore, we find that PIVOT, our
VLM-based navigation baseline, performs poorly relative to
other methods, corroborating our claim that VLMs and LLMs
are not well attuned for urban navigation despite containing
internet-scale priors. We hypothesize this is because naviga-
tion requires identifying which priors are most important for
navigation, a task seen rarely by VLMs and LLMs during
pre-training. Notably, we achieve an intervention-free traversal
in one unseen environment (Hemphill Park), a residential
park with diverse terrains, narrow curb gaps, and crosswalk
markings. From these findings, we conclude that CRESTE is
remarkably more generalizable for mapless urban navigation
than existing approaches.

In Table II, our approach performs most favorably us-
ing RGB and LiDAR inputs, followed by stereo RGB and
monocular RGB respectively. This occurs because LiDAR
offers robustness to severe lighting artifacts like lens flares
that affect costmap prediction quality. We present qualitative
examples of this in Fig. 10. Interestingly, we find that distilled
Dinov2 features perform favorably compared to frozen Dinov2
features. Prior works corroborate this observation [51, 52]
and verify that Dinov2 features contain positional embedding
artifacts that disrupt multi-view consistency. We postulate that
our distillation objective enables our RGB-D encoder frgbd
to focus on learning artifact-free features while the semantic
decoder fsemantic learns how to reconstruct these artifacts. For
additional analysis comparing these architectural variations,

we refer readers to Appendix Sec. X-C1.
2) Evaluating the Importance of Structured BEV Percep-

tual Representations.: We assess the impact of structured
perceptual representations by evaluating CRESTE-cfs-st and
CRESTE-st against CRESTE in Table I, where the only dif-
ference is whether structured representations and counterfac-
tuals are used. Without structured representations, CRESTE-
st incurs 28% more interventions on average across all envi-
ronments. Performance further deteriorates without structured
representations or counterfactuals, incurring 41% more inter-
ventions on average across all environments. We hypothesize
that this occurs because structured representations encode
higher-level features that are more generalizable and easier
for policies to reason about compared to lower-level features
that capture less generalizable high-frequency information.

3) Evaluating the Importance of Counterfactual Demon-
strations.: We compare CRESTE against CRESTE-cfs, the
exact same approach but without using counterfactuals to train
the reward function. On average, we find in Table I that using
counterfactuals reduces the number of interventions by 70%
in seen environments and 69% in unseen environments. Both
of these baselines distill the same features for navigation from
VFMs, thus vindicating our claim that even with sufficiently
informative perceptual representations, it is important to lever-
age our counterfactual-based objective to properly identify and
reason about the most salient features for navigation.

4) Evaluating Performance on Kilometer-Scale Mapless
Navigation.: Table III compares CRESTE against the top-
performing baseline from Table I, PACER+G, on long hori-
zon mapless navigation. Fig. 5 show qualitative examples of
CRESTE’s predicted BEV costmaps along the route. While
PACER+G still drives over a kilometer before timing out, it
requires significantly more interventions to do so. We observe
that the majority of PACER+G failures that occur result from
either not adequately considering geometric factors like curb
gaps or predicting poor costmaps due to differences in lighting
and weather compared to the conditions from which the train-
ing dataset was collected. Contrastingly, CRESTE is robust to
perceptual aliasing from lighting and weather variations and
predicts accurate costmaps even during failures. From this,
we conclude that CRESTE achieves superior performance in
long-horizon mapless urban navigation as well.

VII. LIMITATIONS AND FUTURE WORK

CRESTE infers reward maps using observations from a
single timestep, discarding past information. This limits our
approach in scenes that require temporal reasoning, such
as recovering from dead ends or negotiating paths with
dynamic entities like pedestrians. Extending CRESTE to
consider multiple observations is a promising direction that
addresses these issues. Extending CRESTE’s counterfactual-
based IRL objective to reason about temporal dynamics is
another promising direction for improving performance in
crowded dynamic environments. Additionally, CRESTE must
be manually tuned to balance goal-reaching and reward-map
aligned behavior, which poses an issue for urban environments

with sporadic global guidance. Extending CRESTE to jointly
reason about task-specific goals along with navigation affor-
dances will further improve real-world robustness for mapless
urban navigation. While the IRL objective presented in the
paper only considers expert and suboptimal demonstrations,
this framework can be extended to incorporate preferences
following the same derivation from the ranking perspective.
This would not only allow the reward to reason about what
paths are best but allow is to learn how to discriminate
between two suboptimal paths should the need arise. From
the perceptual aspect, a promising future direction is to extend
CRESTE to learn robust navigation priors from internet-scale
egocentric videos.

VIII. CONCLUSION

In this paper, we introduce Counterfactuals for Reward
Enhancement with Structured Embeddings (CRESTE), the
first framework for learning representations and policies for
the full mapless navigation problem. CRESTE learns robust,
generalizable perceptual representations with internet-scale
semantic, geometric, and entity priors by distilling features
from multiple visual foundation models. We demonstrate that
our perceptual representation encodes a sufficient set of factors
for urban navigation, and introduce a novel counterfactual-
based loss and active learning framework that teaches policies
to hone in on the most important factors and infer how they
influence fine-grained navigation behavior. These contributions
culminate to form CRESTE, a local path planning module
that significantly outperforms state-of-the-art alternatives on
the task of long-horizon mapless urban navigation. Through
kilometer-scale real-world robot experiments, we demonstrate
our approach’s effectiveness, gracefully navigating an unseen
2 kilometer urban environment with only a handful of inter-
ventions.

IX. ACKNOWLEDGEMENTS

This work has taken place in the Autonomous Mobile
Robotics Laboratory (AMRL) and Machine Decision-making
through Interaction Laboratory (MIDI) at UT Austin. AMRL
research is supported in part by NSF (CAREER-2046955,
PARTNER-2402650) and ARO (W911NF-24-2-0025). MIDI
research is supported in part by NSF (CAREER-2340651,
PARTNER-2402650), DARPA (HR00112490431), and ARO
(W911NF-24-1-0193). Any opinions, findings, and conclu-
sions expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learn-
ing via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine
learning, page 1, 2004.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[3] Joydeep Biswas and Manuela Veloso. The 1,000-km
challenge: Insights and quantitative and qualitative re-
sults. IEEE Intelligent Systems, 31(3):86–96, 2016. doi:
10.1109/MIS.2016.53.

[4] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and
Scott Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from obser-
vations. In International conference on machine learning,
pages 783–792. PMLR, 2019.

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé
Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 9650–9660,
2021.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,
and James Diebel. Practical search techniques in path
planning for autonomous driving. Ann Arbor, 1001
(48105):18–80, 2008.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996.

[8] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

[9] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The
dynamic window approach to collision avoidance. IEEE
Robotics & Automation Magazine, 4(1):23–33, 1997.

[10] Nikhil Gosala, Kürsat Petek, Paulo LJ Drews-Jr, Wolfram
Burgard, and Abhinav Valada. Skyeye: Self-supervised
bird’s-eye-view semantic mapping using monocular
frontal view images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14901–14910, 2023.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[12] Noriaki Hirose, Catherine Glossop, Ajay Sridhar, Dhruv
Shah, Oier Mees, and Sergey Levine. Lelan: Learning a
language-conditioned navigation policy from in-the-wild
videos. arXiv preprint arXiv:2410.03603, 2024.

[13] Sanghun Jung, JoonHo Lee, Xiangyun Meng, Byron
Boots, and Alexander Lambert. V-strong: Visual self-
supervised traversability learning for off-road navigation.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 1766–1773. IEEE, 2024.

[14] Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr:
An autonomous self-supervised learning-based naviga-
tion system. IEEE Robotics and Automation Letters, 6
(2):1312–1319, 2021.

[15] Gregory Kahn, Pieter Abbeel, and Sergey Levine. Land:

Learning to navigate from disengagements. IEEE
Robotics and Automation Letters, 6(2):1872–1879, 2021.

[16] Haresh Karnan, Elvin Yang, Daniel Farkash, Garrett
Warnell, Joydeep Biswas, and Peter Stone. Sterling: Self-
supervised terrain representation learning from uncon-
strained robot experience. In 7th Annual Conference on
Robot Learning, 2023.

[17] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw
Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu Lam,
Alex Bewley, and Amar Shah. Learning to drive in a
day. In 2019 international conference on robotics and
automation (ICRA), pages 8248–8254. IEEE, 2019.

[18] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in neural information processing
systems, 33:18661–18673, 2020.

[19] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9404–9413, 2019.

[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross Girshick. Segment anything.
arXiv:2304.02643, 2023.

[21] I Loshchilov. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[22] Yecheng Jason Ma, Andrew Shen, Dinesh Jayaraman,
and Osbert Bastani. Smodice: Versatile offline imitation
learning via state occupancy matching. arXiv preprint
arXiv:2202.02433, 1(2):3, 2022.

[23] Luisa Mao, Garrett Warnell, Peter Stone, and Joy-
deep Biswas. Pacer: Preference-conditioned all-terrain
costmap generation. arXiv preprint arXiv:2410.23488,
2024.

[24] Xiangyun Meng, Nathan Hatch, Alexander Lam-
bert, Anqi Li, Nolan Wagener, Matthew Schmittle,
JoonHo Lee, Wentao Yuan, Zoey Chen, Samuel Deng,
et al. Terrainnet: Visual modeling of complex terrain
for high-speed, off-road navigation. arXiv preprint
arXiv:2303.15771, 2023.

[25] Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky
Liang, Ishita Dasgupta, Annie Xie, Danny Driess, Ayzaan
Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting
elicits actionable knowledge for vlms. arXiv preprint
arXiv:2402.07872, 2024.

[26] Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejus Gupta,
Lisa Lee, and Ben Eysenbach. f-irl: Inverse reinforce-
ment learning via state marginal matching. In Conference
on Robot Learning, pages 529–551. PMLR, 2021.

[27] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org,
2017.

[28] Maxime Oquab, Timothée Darcet, Théo Moutakanni,
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-

nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. Dinov2: Learning robust visual features
without supervision. arXiv preprint arXiv:2304.07193,
2023.

[29] Aljoša Ošep, Tim Meinhardt, Francesco Ferroni, Neehar
Peri, Deva Ramanan, and Laura Leal-Taixé. Better call
sal: Towards learning to segment anything in lidar. In
European Conference on Computer Vision, pages 71–90.
Springer, 2025.

[30] Lev Semenovich Pontryagin. Mathematical theory of
optimal processes. Routledge, 2018.

[31] Cristiano Premebida, Luis Garrote, Alireza Asvadi, A Pe-
dro Ribeiro, and Urbano Nunes. High-resolution lidar-
based depth mapping using bilateral filter. In 2016 IEEE
19th international conference on intelligent transporta-
tion systems (ITSC), pages 2469–2474. IEEE, 2016.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[33] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Ro-
man Rädle, Chloe Rolland, Laura Gustafson, et al. Sam
2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024.

[34] Cody Reading, Ali Harakeh, Julia Chae, and Steven L
Waslander. Categorical depth distribution network for
monocular 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8555–8564, 2021.

[35] Jacques Richalet, André Rault, JL Testud, and J Papon.
Model predictive heuristic control. Automatica (journal
of IFAC), 14(5):413–428, 1978.

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image seg-
mentation. In Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, pro-
ceedings, part III 18, pages 234–241. Springer, 2015.

[37] Pascal Roth, Julian Nubert, Fan Yang, Mayank Mittal,
and Marco Hutter. Viplanner: Visual semantic imperative
learning for local navigation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
5243–5249. IEEE, 2024.

[38] Dhruv Shah and Sergey Levine. Viking: Vision-based
kilometer-scale navigation with geographic hints. arXiv
preprint arXiv:2202.11271, 2022.

[39] Dhruv Shah, Benjamin Eysenbach, Gregory Kahn,
Nicholas Rhinehart, and Sergey Levine. Ving: Learning
open-world navigation with visual goals. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 13215–13222. IEEE, 2021.

[40] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Sta-
chowicz, Kevin Black, Noriaki Hirose, and Sergey

 https://www.openstreetmap.org

Levine. Vint: A foundation model for visual navigation.
arXiv preprint arXiv:2306.14846, 2023.

[41] Faranak Shamsafar, Samuel Woerz, Rafia Rahim, and
Andreas Zell. Mobilestereonet: Towards lightweight deep
networks for stereo matching. In Proceedings of the
ieee/cvf winter conference on applications of computer
vision, pages 2417–2426, 2022.

[42] Tixiao Shan and Brendan Englot. Lego-loam:
Lightweight and ground-optimized lidar odometry and
mapping on variable terrain. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 4758–4765. IEEE, 2018.

[43] Harshit Sikchi, Akanksha Saran, Wonjoon Goo, and Scott
Niekum. A ranking game for imitation learning. arXiv
preprint arXiv:2202.03481, 2022.

[44] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value iteration networks. Advances in
neural information processing systems, 29, 2016.

[45] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

[46] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard,
Armin B Cremers, Frank Dellaert, Dieter Fox, Dirk
Hahnel, Charles Rosenberg, Nicholas Roy, Jamieson
Schulte, et al. Minerva: A second-generation museum
tour-guide robot. In Proceedings 1999 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.
99CH36288C), volume 3. IEEE, 1999.

[47] Kasun Weerakoon, Adarsh Jagan Sathyamoorthy, Utsav
Patel, and Dinesh Manocha. Terp: Reliable planning in
uneven outdoor environments using deep reinforcement
learning. In 2022 International Conference on Robotics
and Automation (ICRA), pages 9447–9453. IEEE, 2022.

[48] Kasun Weerakoon, Mohamed Elnoor, Gershom Senevi-
ratne, Vignesh Rajagopal, Senthil Hariharan Arul, Jing
Liang, Mohamed Khalid M Jaffar, and Dinesh Manocha.
Behav: Behavioral rule guided autonomy using vlms
for robot navigation in outdoor scenes. arXiv preprint
arXiv:2409.16484, 2024.

[49] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner.
Maximum entropy deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015.

[50] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar
Posner. Watch this: Scalable cost-function learning for
path planning in urban environments. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 2089–2095. IEEE, 2016.

[51] Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng,
Seung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja
Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-
temporal scene decomposition via self-supervision. arXiv
preprint arXiv:2311.02077, 2023.

[52] Jiawei Yang, Katie Z Luo, Jiefeng Li, Congyue Deng,
Leonidas Guibas, Dilip Krishnan, Kilian Q Weinberger,
Yonglong Tian, and Yue Wang. Denoising vision trans-

formers. In European Conference on Computer Vision,
pages 453–469. Springer, 2024.

[53] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

X. APPENDIX

We organize the appendix into the following sections: 1)
Details for training CRESTE and other baselines in Sec. X-A,
2) Details regarding generating counterfactual annotations
in Sec. X-B, and 3) Qualitative analysis for the short horizon
experiments in Sec. X-C.

A. Model Training Details

In this section, we supplement the implementation details
for CRESTE and each baseline described in Sec. VI-D.

1) CRESTE: We provide specific architecture and train-
ing hyperparameters settings in Table IV and Table V, and
supplement the CRESTE training procedure in Sec. IV-B1
with additional details for training our observation encoder Θ.
We warm-start the RGB-D backbone for 50 epochs or until
convergence. We set α1 and α2, the loss weights for semantic
feature regression and completion, to 1 and 0.5 respectively
and keep this fixed for the rest of training. After this, we
freeze the RGB-D backbone and train the fbev using the
BEV inpainting backbone loss Lbev for five epochs before
unfreezing the RGB-D backbone and training end-to-end for
another 45 epochs or until convergence. This enables faster
convergence by stabilizing fbev before joint training. We set
β1, β2, and β3 to 1, 2, and 3 for Lbev, but find that training
remains stable for any reasonable combination of values.
Finally, we empirically find that replacing the Supervised
Contrastive loss [18] with Cross Entropy loss while training
the dynamic panoptic head fbev, dynamic empirically improves
overall performance. Thus, we use this model for our long-
horizon navigation experiments presented in Table III.

As mentioned in Sec. IV-B2, we train our reward function
rϕ in two phases. During both phases, we freeze Θ, thus only
training rϕ. During initialization (Phase I), we train for 25
epochs, setting α = 0 only to use expert demonstrations.
During finetuning (Phase III), we initialize rϕ from scratch,
train for 50 epochs, setting α = 0.5 and a reward regularization
term [22] αreg = 1.0. Empirically, we find that our objective
is stable for a range of α values and benefits from a larger
reward regularization penalty to encourage more discrimina-
tive rewards. In total, we train the perceptual encoder Θ and
reward function rϕ for a combined 150 epochs.

2) ViNT [40]: To modify ViNT to follow XY goal guidance
instead of image goal guidance, we follow the architecture
design details in the ViNT paper for adapting the backbone to
GPS goal guidance. We only train the XY goal encoder and
freeze the remaining model parameters. We sample XY goals
from future odometry between 8 to 10 seconds to generate
training data.

3) PIVOT [25]: We condition PIVOT using an annotated
satellite view image, annotated front view image, and text
instructions. As shown in Fig. 7, we annotate a satellite image
containing the robot’s current position, heading, and next goal
GPS coordinates. Fig. 7 also presents the annotated front view
RGB image with each numbered circle indicating a potential
goal that our VLM must choose from. Finally, we provide the
text prompt below:

Fig. 7: Qualitative Example of context images provided to
PIVOT [25], our VLM-based navigation baseline. We annotate
satellite images with the robot GPS and heading (red) and
current GPS goal (blue). Additionally, we annotate the front
view image with potential subgoals from which we prompt
the model to choose from.

I am a wheeled robot that cannot go over objects.
This is the image I’m seeing right now. I have
annotated it with numbered circles. Each number
represents a general direction I can follow. I have
annotated a satellite image with my current location
and direction as a red circle and arrow and the goal
location as a blue circle. Now you are a five-time
world champion navigation agent and your task is
to tell me which circle I should pick for the task of:
going forward X degrees to the Y? Choose the best
candidate number. Do NOT choose routes that go
through objects AND STAY AS FAR AS POSSIBLE
AWAY from untraversable terrains and regions. Skip
analysis and provide your answer at the end in a json

file of this form: ”points”: []
where X is replaced by the degrees from the goal computed
using the magnetometer heading and goal GPS location, and
Y is either left or right depending on the direction of the
goal. During testing, we use our geometric obstacle avoidance
module to safely reach the current goal selected by PIVOT.

4) PACER [23]: PACER is a terrain-aware model that
predicts BEV costmaps from BEV images. It requires pre-
enumerating an image context that specifies the preference
ordering for terrains. In all environments, we would like the
robot to prefer traversing terrains in the following preference
order: sidewalk, dirt, grass, rocks. Thus, we condition PACER
on this preference order for all environments.

TABLE IV: Architecture Hyperparameters for CRESTE.

Hyperparameter Value
RGB-D Encoder (frgbd)
Base Architecture EfficientNet-B0 [45]
Number of Input Channels 4
Input Spatial Resolution 512× 612
Output Spatial Resolution 128× 153
Output Channel Dimension 256
Semantic Decoder Head (fsemantic)
Input Spatial Resolution 128× 153
Input Channel Dimension 256
Output Spatial Resolution 128× 153
Output Channel Dimension 128
Number of Hidden Layers 4
Depth Completion Head (fdepth)
Input Spatial Resolution 128× 153
Input Channel Dimension 256
Output Spatial Resolution 128× 153
Number of Depth Bins 128
Number of Hidden Layer 2
Depth Discretization Method Uniform
Number of Intermediate Layers 2
Lift Splat Module (fsplat)
Total Input Channel Dimension 288
Input Semantic Channel Dimension 256
Input Depth Channel Dimension 32
Map Cell Resolution 0.1m× 0.1m× 3
Output Channel Dimension 96
Output Spatial Resolution 256× 256
BEV Inpainting Backbone (fbev)
Base Architecture ResNet18 [11]
Input Channel Dimension 96
Input Spatial Resolution 256× 256
Output Static Panoptic Channel Dimension 32
Output Dynamic Panoptic Channel Dimension 32
Output Elevation Channel Dimension 1
Reward Function (rϕ)
Base Policy Architecture Value Iteration Network [44]
Base Reward Architecture MultiScale-FCN [49]
Input Spatial Resolution 256× 256
Input Channel Dimension 65
Prepool Channel Dimensions [64, 32]
Skip Connection Channel Dimensions [32, 16]
Trunk Channel Dimensions [32, 32]
Postpool Channel Dimensions [48]
Future Actions 50
Actions Per State 8
Discount Factor 0.99

B. CRESTE Counterfactual Generation Details
We supplement Sec. IV-B2 with additional details regard-

ing the hyperparameters used for generating counterfactual

TABLE V: Training Hyperparameters for CRESTE.

Hyperparameter Value
RGB-D Backbone Training (frgbd)
Semantic Loss Weight (α1) 2.0
Depth Completion Loss Weight (α2) 0.5
Training Epochs 50
Batch Size 12
Optimizer AdamW [21]
Adam β1 0.9
Adam β2 0.999
Learning Rate 5× 10−3

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay γ 0.98
BEV Inpainting Backbone Training (fbev)
Static Panoptic Loss Weight (β1) 1.0
Dynamic Panoptic Loss Weight (β2) 2.0
Elevation Loss Weight (β3) 3.0
Warmup Epochs 5
Training Epochs 50
Batch Size 24
Optimizer AdamW [21]
Adam β1 0.9
Adam β2 0.999
Learning Rate 5× 10−4

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay γ 0.98
Reward Function Training (rϕ)
Batch Size 30
Optimizer AdamW [21]
Adam β1 0.9
Adam β2 0.999
Learning Rate 5× 10−4

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay γ 0.96
Reward Learning Weight LIRL 1.0
Reward Smoothness Penalty Weight 2.0

demonstrations. To encourage generating diverse counterfac-
tuals that explore more of the state space, we perturb 3
control points along the expert trajectory according to a non-
zero Gaussian distribution. More specifically, for half of the
generated trajectories, we sample control points according to
a positive mean µ = 1 with standard deviation σ = 0.5 to
perturb these trajectories to one side of the expert trajectory.
We repeat this for the other half, setting µ = −1 and σ = 0.5
to generate trajectories on the opposite side. Additionally, we
empirically find that replacing the Hybrid A* path planner
by fitting a polynomial line on the control points provides
comparable performance gains and is more robust when it is
difficult to find a kinematically feasible path between control
points.

In total, we generate 10 alternate trajectories for each
training sample. On average, we find that providing just
1-5 counterfactual annotations for each non-expert-aligned
sample significantly improves reward learning for rϕ. Fig. 8
presents our counterfactual annotation tool showing qualitative
examples of the front view and BEV image observation pre-
sented to the human annotator when selecting counterfactual
trajectories.

C. Qualitative Short Horizon Experiment Analysis

In this section, we present a qualitative analysis of the short
horizon experiments for each location. For each experiment

Fig. 8: Counterfactual annotation tool used for labelling coun-
terfactuals for training the reward function rϕ. We provide the
front view RGB image and BEV RGB image to the human
annotator for context. In the image below, the trajectories
annotated in red are counterfactuals and the trajectories in
green are considered acceptable.

area illustrated in Fig. 4, we compare the planned path for
each learned baseline in approximately the same location.
We will first compare CRESTE against existing navigation
baselines in Sec. X-C1 before comparing different variations
of the CRESTE architecture in Sec. X-C2.

1) Comparing CRESTE Against Existing Baselines: Fig. 9
provides additional context to understand the inputs given
to each baseline and the planned path, which we describe
as follows: 1) CRESTE - The input RGB and sparse depth
image (not shown) and predicted BEV cost map where
darker regions correspond to low cost, 2) PACER+Geometric
(PACER+G) [23] - The input BEV image and predicted BEV
cost map where darker regions correspond to lower cost, 3)
PIVOT [25] - The annotated satellite image with the robot’s

current location (blue circle), heading (blue arrow), and goal
location (red circle). The front view RGB image annotated
with numbered circles for prompting the VLM along with the
chosen circle highlighted in green, 4) ViNT [40] - The front
view image annotated with the local path waypoints predicted
by ViNT.

Analyzing each model, we find that PACER+G struggles
to infer the cost for terrains that are underrepresented in the
training dataset, such as dome mats. Furthermore, when two
terrains look visually similar, such as the sidewalk and road
pavement for the Trader Joes location, PACER infers the
costs incorrectly. PIVOT can select the correct local waypoint
in scenes with a large margin for error, but struggles at
dealing with curb cuts (Hemphill Park, Sherlock North) and
narrow sidewalks (Trader Joes). Long latency between VLM
queries negatively impacts the model’s ability to compensate
for noisy odometry. This effect is particularly apparent in
narrow corridors or sidewalks where even minor deviation
from the straight line path results in failure. ViNT can suc-
cessfully maintain course in straight corridors and sidewalks,
but struggles to consider factors like curb cuts and terrains. We
hypothesize this is because our dataset is not sufficiently large
for learning generalizable features from expert demonstrations
alone. Furthermore, demonstrations with straight line paths
dominate our dataset, making it difficult for behavior cloning
methods like ViNT to learn which factors influence the expert
to diverge from the straight line path.

2) Comparing Different Variations of CRESTE: We eval-
uate four variations of CRESTE in the same geographic
location under adverse lighting conditions in Fig. 10. Our
monocular RGB only model, CRESTE-RGB, is identical
to the original model but does not process sparse depth
inputs. In CRESTE-RGB-FROZEN, we replace the original
RGB-D encoder with a frozen Dinov2 encoder (VIT-S14),
a 21M parameter pre-trained model, and downsample the
input images from 512x612 to 210x308. This is essential
for performing real-time inference using the onboard GPU.
CRESTE-STEREO uses an EfficientNet-B0 [45] encoder to
extract features from a rectified stereo RGB pair and the
MobileStereoNet [41] backbone to classify the depth of each
pixel. For CRESTE-STEREO, we backproject image features
from the RGB backbone zrgb from the left image only to
maintain a consistent field-of-view with other variations.

We find that CRESTE-RGB and CRESTE-RGB-FROZEN
are adversely affected by heavy lighting artifacts. While they
are robust to most perceptual aliasing, heavy aliasing (e.g.
lens flares) degrades costmap quality. As shown in Fig. 10,
the monocular RGB only models inflate low cost regions
beyond the traversable area under heavy perceptual aliasing.
We find that CRESTE-STEREO, our stereo RGB architecture
variation, performs more robustly than the monocular RGB
only models, but still predicts low cost regions incorrectly
at the boundaries between traversable regions. In contrast,
CRESTE, which fuses monocular RGB and sparse depth
from LiDAR, predicts accurate costmaps even under adverse
lighting conditions. We believe this occurs because LiDAR

Fig. 9: Qualitative comparison of local paths planned by different learned baselines in different geoegraphic locations: Hemphill
Park, Sherlock North, Sherlock South, Trader joes, Woolridge. We visualize each chosen path either in bird’s eye view (BEV)
or on the front view RGB image in aqua blue. For PACER+Geometric [23], we provide the BEV image used by the model.
For PIVOT [25], we show the annotated satellite image and front view image used to prompt the VLM. For ViNT [40], we
front view RGB image given as input. For more information regarding each baseline, we refer readers to Appendix Sec. X-C1.
is unaffected by lighting artifacts, allowing the model to
compensate for degraded image features.

Fig. 10: Qualitative comparison of different CRESTE architecture variations in geographic location 6, Blanton Museum. These
variants consist of: 1) CRESTE-RGB-FROZEN (top left), our model but only using monocular RGB inputs and a frozen
Dinov2 [28] encoder, 2) CRESTE-RGB (top right), our model but only using monocular RGB inputs with a distilled RGB
encoder, 3) CRESTE-STEREO (bottom left), our model but only using stereo RGB inputs and an additional stereo RGB
backbone [41] for depth prediction, 4) CRESTE (bottom right), our original model using monocular RGB and sparse depth
from LiDAR as inputs. We visualize the predicted bird’s eye view (BEV) costmap and front view RGB image with the chosen
trajectory in aqua. For more information regarding each baseline, we refer readers to Appendix Sec. X-C2.

	Introduction
	Related Work
	The Mapless Urban Navigation Problem
	Path Planning for Mapless Navigation
	General Preference-Aligned Cost Functions
	Open Challenges

	Approach
	CREStE Model Architecture
	Perceptual Encoder Model Architecture
	Reward Function Model Architecture

	CREStE Training Procedure
	Training the Perceptual Encoder
	Training the Reward Function r

	Implementation Details
	Global and Local Planning and Controls

	experiments
	Robot Testing Platform
	Training Dataset
	Testing Methodology
	Baselines
	Quantitative Results and Analysis
	Evaluating Generalizability to Unseen Urban Environments.
	Evaluating the Importance of Structured BEV Perceptual Representations.
	Evaluating the Importance of Counterfactual Demonstrations.
	Evaluating Performance on Kilometer-Scale Mapless Navigation.

	Limitations and Future Work
	Conclusion
	Acknowledgements
	Appendix
	Model Training Details
	CREStE
	ViNT shah2023vint
	PIVOT nasiriany2024pivot
	PACER mao2024pacer

	CREStE Counterfactual Generation Details
	Qualitative Short Horizon Experiment Analysis
	Comparing CREStE Against Existing Baselines
	Comparing Different Variations of CREStE

