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Abstract. The ability to quantify how well an action is carried out,
also known as action quality assessment (AQA), has attracted recent
interest in the vision community. Unfortunately, prior methods often
ignore the score rubric used by human experts and fall short of quan-
tifying the uncertainty of the model prediction. To bridge the gap, we
present RICA2—a deep probabilistic model that integrates score rubric
and accounts for prediction uncertainty for AQA. Central to our method
lies in stochastic embeddings of action steps, defined on a graph structure
that encodes the score rubric. The embeddings spread probabilistic den-
sity in the latent space and allow our method to represent model uncer-
tainty. The graph encodes the scoring criteria, based on which the quality
scores can be decoded. We demonstrate that our method establishes new
state of the art on public benchmarks, including FineDiving, MTL-AQA,
and JIGSAWS, with superior performance in score prediction and uncer-
tainty calibration. Our code is available at https://abrarmajeedi.github.
io/rica2 aqa/.

Keywords: Action Quality Assessment · Video Understanding

1 Introduction

Action quality assessment (AQA), aiming at quantifying how well an action is
carried out, has been widely studied across scientific disciplines due to its broad
range of applications. AQA is key to sports science and analytics. The right way
of performing actions maximizes an athlete’s performance and minimizes injury
risk. AQA is crucial to occupational safety and health. High-quality actions
mitigate the physical stress and strain in the workspace. AQA is pivotal for
physical therapies. The quality of actions reveals the progress in rehabilitation.
AQA also plays a major role in surgical education. Proficient actions improve
the outcome and reduce complications.

Observational methods for AQA have been well established for various tasks,
e.g ., gymnastics [27], manual material handling [41], and surgery [19]. These
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methods involve a human expert observing an action and decomposing it into a
series of key steps. Each of these steps, or a subset of them, can be grouped into
a factor and then evaluated using a Likert scale [17] following a pre-defined cri-
terion. Ratings for individual factors, sometimes complemented with impression-
based global ratings, are then summarized into a final quality score [19]. Multi-
ple expert ratings are often considered to account for the variance in the scores.
While these methods are commonly adopted, they require significant input from
human experts and are thus costly and inefficient.

Fig. 1. RICA2 integrates score rubric used by human experts and accounts for predic-
tion uncertainty, resulting in accurate predictions and calibrated uncertainty estimates.

There is a burgeoning interest in the vision community to develop video-based
AQA [25,26,35,43]. While current solutions have made steady progress across
benchmarks [10,24,44], their decision-making processes differ largely from prior
observational methods. Almost all prior solutions learn deep models to directly
map input videos to scores. Many of them employ an exemplar-based approach,
in which a model predicts relative scores by referencing exemplar videos with
similar actions and known scores [2,44,47]. Few of them have considered the
structure of the actions or their scoring criteria used by observational methods.

Further, existing AQA methods face a key challenge in the accurate quan-
tification of model uncertainty i.e., the uncertainty of model prediction that is
calibrate to the expected error [12]. Knowing this uncertainty is particularly
helpful for AQA, e.g ., when assessing the quality of high-stakes competitions or
surgical procedures. With proper calibration, videos that have uncertain predic-
tions can be passed to human experts for a thorough evaluation. Several recent
works have started to consider the variance among scores from multiple human
experts [35,48,50,51]. Unfortunately, they still fall short of considering predic-
tion uncertainty, leaving this challenge largely unaddressed.

To bridge the gap, we develop a deep probabilistic model for AQA by inte-
grating score rubrics and modeling the uncertainty of the prediction (see Fig. 1).
Central to our method lies in the stochastic embedding of action steps, defined
on a graph structure that encodes the score rubric. The embeddings spread
probabilistic density in latent space and allow our method to represent model
uncertainty. The graph encodes the scoring criteria, based on which the qual-
ity scores can be decoded. We also present a training scheme and describe an
approach to estimate uncertainty. Putting things together, our method, dubbed
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RICA2 (Rubric-informed, Calibrated Assessment of Actions), yields accurate
action scores with additional uncertainty estimates.

We evaluate RICA2 on several public AQA datasets, covering sports and
surgical videos. Particularly, RICA2 establishes new state of the art on FineDiv-
ing [44], MTL-AQA [24] and JIGSAWS [10]. On FineDiving [44] – the largest
and most challenging AQA benchmark, RICA2 outperforms latest methods in
prediction accuracy (a boost of +0.94% in Spearman’s Rank Correlation Coeffi-
cient (SRCC)) and demonstrates significantly improved uncertainty calibration
(a gain of +0.178 in Kendall Tau [13]). Similarly, on MTL-AQA [24], the most
commonly used dataset for AQA, RICA2 attains state-of-the-art SRCC, and
again largely improved calibration (a gain of +0.444 in Kendall Tau). On JIG-
SAWS [10], RICA2 beats the previous best results by a relative margin of +3.37%
in SRCC. Further, we present extensive experiments to evaluate the key design
of RICA2.

Our main contributions are summarized into three folds.

• We propose RICA2, a novel deep probabilistic method that incorporates scor-
ing rubrics and uncertainty modeling for AQA, resulting in accurate scores
and calibrated uncertainty estimates.

• Our technical innovations lie in (a) a graph neural network to model the scor-
ing rubric in conjunction with stochastic embeddings on the graph to account
for prediction uncertainty and (b) a training scheme under the variational
information bottleneck framework.

• Our extensive set of experiments demonstrates that RICA2 achieves state-
of-the-art results in AQA, significantly outperforming prior methods in both
prediction accuracy and calibration of uncertainty estimates.

2 Related Work

Action quality assessment (AQA). Early works in AQA [11,26] employed
handcrafted features to estimate quality scores in videos. More recent meth-
ods developed various deep models, including convolutional [35,47], graph [23],
recurrent [25,43], and Transformer [2,44] networks. AQA has also been widely
considered in surgical education [18], rehabilitation [28], and ergonomics [5].

Recently, exemplar-based methods [2,44,47] have emerged as a promising
solution for AQA due to their impressive performance across benchmarks. These
methods predict the relative score of an input video by comparing it to selected
exemplar videos with similar action steps and known scores. A limitation of this
paradigm is the requirement of exemplar videos at inference time. This strategy
largely deviates from existing observational methods used by human experts and
leads to significantly higher computational costs. While RICA2 also uses action
steps in the input video, it further integrates the scoring rubric of these steps
and offers a solution for no-reference AQA i.e. without using exemplars.

Several recent works have started to consider the modeling of score uncer-
tainty in AQA [35,48,50,51]. For example, Tang et al. [35] proposed to model
the final scores using a Gaussian distribution. They presented a model (MUSDL)
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trained to predict the score distribution. This distribution learning idea was
further extended in [48,50,51]. However, modeling the score distribution does
not warrant the quantification of model uncertainty, as the output distributions
might not be calibrated with prediction errors. While RICA2 also predicts a
Gaussian distribution for the scores, our key design is to consider stochastic
embeddings to quantify prediction uncertainty, resulting in calibrated uncertainty
estimates.

The most relevant work is IRIS [20]. IRIS incorporates score rubric into a con-
volutional network for AQA. This is done by segmenting key steps in the video
and predicting sub-scores for individual steps. Similar to IRIS, RICA2 also con-
siders rubric in a deep model. However, RICA2 adapts a graph network, treats
sub-scores as latent embeddings, predicts the final score, and further quantifies
prediction uncertainty. These differences allow RICA2 to be trained on major
public datasets with only final scores, and to output calibrated uncertainty esti-
mates, both of which cannot be achieved by IRIS.

Modeling Uncertainty with Stochastic Embedding. Stochastic embed-
ding, initially introduced in NLP [21,38], treats each embedding as a distribution.
This approach has gained recent attention for modeling uncertainty in deep mod-
els. Oh et al. [22] considered probabilistic embeddings for metric learning and
proposed to model uncertainty based on the stochasticity of embeddings. This
idea was further adopted in many vision tasks, including face verification [32],
age estimation [16], pose estimation [34], and cross-modal retrieval [6]. Another
related line of work is the conditional variational autoencoder [33], where a prob-
abilistic representation of the input is used for a prediction task. Our approach
shares a similar idea of using stochastic embeddings to model uncertainty yet
is specifically designed for AQA. Our method significantly extends prior idea
to embed action steps on a graph structure, and to propagate these stochastic
embeddings on the graph.

Graph Neural Networks (GNNs). GNNs [8,15,30] offer a powerful tool to
leverage the relational inductive bias inherent in data [3,45]. This inductive bias
is beneficial to aggregate a global representation from a group of local ones [29].
Recently, Zhou et al. [51] proposed a hierarchical graph convolutional network
for AQA, in which a GNN was used for video representation learning. In contrast,
we adapt graph networks to model score rubrics used by observational methods.

3 AQA with Score Rubric and Uncertainty Modeling

Our goal is to assess the quality of an action within an input video. Let X be the
video with the action and Y as its quality score. Our method further considers
the structure of the action and a scoring rubric based on the structure.

Action Steps. We assume that the action in X comprises a known, ordered set
of key steps, denoted as S = (s1, s2, ..., sk). Each s1 represents a necessary sub-
action for successfully executing the action. Further, s is associated with a text
1 For the sake of brevity, we omit the subscript as long as there is no confusion.
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description that elucidates the specifics of the corresponding step, e.g ., “a front-
facing takeoff” for diving. This assumption is especially well suited for structured
actions, such as diving or surgery, where the key steps are predetermined and
follow a specific sequence. Note that the timing of the key steps is not presumed.
Even if key steps are unavailable, they can be detected using action recognition
methods [4,9] (see supplement Sec. C.4).

Scoring Rubric. We further assume a pre-specified scoring rubric based on the
key steps—a common strategy in technical skill assessment [19,27,41]. Specifi-
cally, each action step sk is independently scored, i.e., sk �→ yk. Subsequently, a
rule-based rubric is employed to aggregate individual scores {yk} and calculate
a final quality score Y , i.e., {yk} �→ Y , in which steps might be grouped into
intermediate stages (see an example in Fig. 2 (a-b)). This rubric follows a deter-
ministic yet often non-injective mapping, e.g . a many-to-one mapping such as
summation.

Method Overview. We now present RICA2—a deep probabilistic model for
AQA that leverages known action steps and incorporates the scoring rubric for
modeling. Importantly, RICA2 accounts for prediction uncertainty, i.e., when
the model prediction can and cannot be trusted. Figure 2 presents an overview
of RICA2. It consists of two main model components: (a) a graph neural network
that integrates the key steps and scoring rubric (Sect. 3.1); and (b) stochastic
embeddings defined on the graph to capture prediction uncertainty (Sect. 3.2),
coupled with (c) a learning scheme under the variational information bottleneck
framework (Sect. 3.3). In what follows, we delve into the details of RICA2.

Fig. 2. Overview of RICA2. Leveraging scoring rubrics (a), RICA2 integrates a
graph representation of action step and rubric with uncertainty modeling (b). Specif-
ically, RICA2 takes an input of the video and its key action steps, encodes the input
into embeddings (c), refines the embeddings through a deep probabilistic model, and
outputs an action score in tandem with its uncertainty estimate.
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3.1 Integrating Actions Steps and Scoring Rubric with Graph

Steps and Rubric as Graph. We encode action steps and the corresponding
scoring rubric with a directed acyclic graph (DAG). This DAG is denoted as
G = (V,E) with V as the set of nodes and E as the set of directed edges. V

consists of three types of nodes: (1) the leaf nodes, denoted as V s, correspond
to individual action steps performed in the input video X; (2) the intermediate
nodes capturing possible intermediate stages in the scoring criteria; and (3) a
designated root node V r representing the final score of the action. Further, the
edges E indicate the scoring rubric, connecting steps (leaf nodes) to stages (inter-
mediate nodes), and stages (intermediate nodes) to the final score (root node).
We note that G varies for every input video X (assuming a single action), as
different steps might be performed. Figure 2 (a-b) show the example in diving
where the key steps and scoring rubric are encoded using our DAG. Additional
examples can be found in our supplement Fig. B.

Learning for Quality Assessment. Our approach involves a two-step process
for quality assessment. First, we employ an embedding function f , designed to
map individual steps into a latent space representing action quality. Secondly,
we leverage the key step embeddings {Zs} along with the score rubric encoded
in G to learn a scoring function h. These functions f and h are defined as follows:

f : X,G �→ {Zs}; h : {Zs},G �→ Y, (1)

where {Zs} are the embeddings for the set of steps S in X, corresponding to the
leaf nodes {V s} on the DAG.

3.2 Modeling Score Uncertainty with Stochastic Embeddings

To model the prediction uncertainty, we adopt stochastic step embeddings defined
on the leaf nodes, such that Zs ∈ R

D ∼ p(Zs|X, {V s}). Unlike deterministic
embeddings, where Zs would be a fixed vector, stochastic embedding charac-
terizes the distribution of Zs, allowing for uncertainty control. Specifically, we
model p(Zs|X,V s) as a Gaussian distribution in R

D with mean μs and diagonal
covariance Σs. The embedding function f is thus tasked to predict the mean
and covariance for the key steps S, i.e., {μs, Σs} = f(X, {V s}).

Propagating Stochastic Embeddings on the Graph. Our scoring function
h takes the stochastic embeddings Zs for leaf nodes in G (provided by f), fur-
ther computes the embeddings for all nodes in G, and finally decodes a quality
score Y from the embedding Zr of the root node V r. To this end, we propose
an extension of graph neural networks (GNNs), in which stochastic embeddings
Zs are propagated from leaf nodes V s to the root node V r based on the graph
structured informed by the scoring rubric of a particular task. Key to this GNN
lies in a lightweight MLP that operates on each node, taking as input the embed-
dings of its direct predecessors, and generating a new embedding that is further
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propagated to its successors. This scoring function h is thus given by

Zs ∼ N (μs, Σs) , ∀s ∈ S
︸ ︷︷ ︸

Sampling from leaf nodes

; Z¬s = G
(

ΣV j∈P(V ¬s)Z
j
)

︸ ︷︷ ︸

Propagating on the DAG

; Ŷ = S (Zr)
︸ ︷︷ ︸

Deocoding the score

(2)
where V ¬s denotes a non-leaf node with its embedding Z¬s. P(V ¬s) is the set
of predecessors of V ¬s, G(·) is the MLP aggregating features from predecessors,
and S(·) is another MLP decoding the final score Ŷ from the root node V r.

It is important to note that each leaf embedding Zs is stochastic, charac-
terized by a Gaussian distribution (p(Zs|X,G) = N (μs, Σs)), with parameters
predicted by f . The non-leaf embeddings are however deterministic given sam-
ples from leaf distributions. This design is motivated by our assumption of the
scoring rubric, where uncertainty lies only in assessing action steps and identical
individual scores will yield the same final score.

3.3 Learning with Variational Information Bottleneck

With stochastic embeddings, training of RICA2 is a challenge. We design a train-
ing scheme under the variational information bottleneck framework.

Variational Information Bottleneck (VIB). To train our model p(Y |X,G)
with stochastic step embeddings {Zs}, we adopt the information bottleneck prin-
ciple [36], leading to the maximization of the following objective

I({Zs};Y |G) − βI({Zs};X|G), (3)

where I is the conditional mutual information, and β > 0 controls the tradeoff
between the sufficiency of using step embeddings {Zs} for predicting Y given G,
and the size of the embeddings {Zs} derived from X and G.

While mutual information is computationally intractable for high dimen-
sional {Zs}, a common solution [1] is to assume Markov property (p(Z|X,Y,G) =
p(Z|X, G)) and conditional independence (p({Zs}|X,G) =

∏

s p(Zs|X, G)), fol-
lowed by the variational approximation for a tractable lower bound

−LVIB = EZs∼p(Zs|X,G),∀s∈S [log p(Y |{Zs},G)]−βΣs∈S KL (p(Zs|X, G)||p(Zs|G)) ,
(4)

where p(Y |{Zs},G) is modeled by the scoring function h, KL denotes the
Kullback–Leibler divergence, and p(Zs|G) is an approximate marginal prior.

VIB Loss. The first term in Eq. (4) defines the log-likelihood of the score given
the input. By assuming that output scores follow a Gaussian with a fixed variance
σ, this term can be reduced to a mean squared error (MSE) loss

LMSE =
1
N

ΣN
i (Ŷi − Yi)2/σ2, (5)

where Yi is the predicted score for a video indexed by i, Ŷi is the corresponding
ground-truth score, and N is the total number of videos in the training set.
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The second term in Eq. (4) regularizes the latent space and encodes prediction
uncertainty. By assuming a marginal prior of N (0, I) for p(Zs|G), we have

LKL = Σs∈S KL (N (μs(x), Σs(x)||N (0, I))

=
1
2
Σs∈S ΣD

j=1

(

(μs
j)

2 + (σs
j )

2 − log(σs
j )

2 − 1
)

,
(6)

where μs
j and σs

j , respectively, are the j-th dimension of the mean (μs(x)) and
variance (square root of the diagonal of Σs(x)), for the step s.

The VIB loss (LV IB) is thus given by

LV IB = LMSE + βLKL. (7)

LV IB consists of (a) the MSE loss LMSE from the negative log-likelihood of
the predicted scores, aiming at minimizing prediction errors; and (b) the KL
divergence LKL between the predicted Gaussian and the prior, regularizing
the stochastic embeddings. Further, the coefficient β balances between two loss
terms.

During training, samples are drawn to compute the loss function. The output
is matched to the Gaussian distribution with its mean equal to the average of
the judge scores. The reparameterization trick [14] is used to allow the backprop-
agation of gradients through the sampling process.

Estimating Uncertainty. The diagonal covariance Σs(X) models the uncer-
tainty of the predicted quality score of a step s for an input video X. A larger
value in its diagonal represents a wider distribution of scores and, hence, a lower
confidence in the prediction. Following [16,22] we generate uncertainty scores by
summing up the harmonic means of the predicted variances for individual steps

uncertainty(Y ) = Σs∈SD/ΣD
j=1(σ

s
j )

−1, (8)

where D is the dimensionality of the stochastic embeddings. Again, σs
j is the

j-th dimension of the predicted variance.

Stochastic vs. Deterministic Modeling. An interesting variant of RICA2 is
to disable its stochastic component. Conceptually, this is equal to considering
step embeddings Zr as vectors and removing the KL loss LKL. We refer to this
deterministic version of our model as RICA2†. Without stochastic embeddings,
RICA2† is unable to estimate prediction uncertainty, yet often yields slightly
lower prediction errors. This trade-off is also observed in prior works [6,16,32].
We include this variant of our model in the experiments.

3.4 Model Instantiation and Implementation

Video and Step Representation. For an input video X, we adapt a pre-
trained video backbone(e.g ., I3D [4]) to extract its clip-level features, which are
further pooled to produce video features (x1, x2, ..., xT ) with fixed-length T . To
represent action steps, we make use of a pre-trained language model [7] (Flan-T5)
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to extract text features from their step descriptions, resulting in an ordered set
of text embeddings (s1, s2, ..., sK) for K steps. Note that the language model is
not part of RICA2. It is used solely to extract embeddings for text descriptions
of the action steps (see supplement Tables I-L).

Embedding Function f . Our embedding function f is realized using a Trans-
former model [37] (see Fig. 2(c)). f first processes video features (x1, x2, ..., xT )
with a self-attention block and text embeddings (s1, s2, ..., sK) using a MLP. It
further makes use of cross-attention blocks (2x) to fuse video and text features,
where video features are used to compute keys and values, and text embeddings
of steps are projected into queries. Further, f decodes stochastic embeddings of
individual steps by predicting a mean vector μs ∈ R

D and a diagonal covariance
vector Σs ∈ R

D for each step s.

Scoring Function h. With Gaussian distributions for all steps specified by
{μs, Σs}, we encode the steps and score rubric into a video-specific DAG G,
and realize h as a GNN defined on G following Eq. (2). h is parameterized by
its aggregation function G, which is shared among nodes of the same type. G is
implemented using an averaging operation followed by a MLP (2 layers). Finally,
h decodes the final score at the root note V r of G.

Training with Auxiliary Losses. While the VIB loss (Eq. (7)) is sufficient
for training, it falls short of considering the temporal ordering of steps. This is
because of the conditional independence assumption needed for the derivation
of VIB, i.e., p({Zs}|X, G) =

∏

s p(Zs|X,G), where the ordering of {Zs} is dis-
carded. To bridge the gap, we incorporate an auxiliary loss term LAux inspired
by [2]. Specifically, we re-purpose the last cross-attention map (RK×T ) from f as
a step detector. This is done by computing a temporally-weighted center across
the attention of each action step to every video time step (i.e., column-wise).
We then enforce that (a) this center is co-located with the peak of the attention
along video time steps using a sparsity loss [2]; and (b) all centers follow the
temporal ordering of corresponding action steps using a ranking loss [2]. These
two terms are summed up as the auxiliary loss, and further added to the VIB
loss with a small weight (0.1). In our ablation, we empirically verify that adding
the auxiliary loss leads to a minor performance boost.

Inference with Sampling. At the inference time, we enhance robustness by
sampling 20 times and averaging their predictions to compute the final score.

4 Experiments and Results

Datasets. Our evaluations are primarily reported on three publicly avail-
able benchmark datasets, namely FineDiving [44], MTL-AQA [24], and JIG-
SAWS [10] in the main paper. In supplement Sec. B, we also include results on
the Cataract-101 [31] with cataract surgery videos.

Evaluation Metrics. For all our experiments, we consider metrics on both the
accuracy of the prediction and the calibration of the uncertainty estimates.
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• For accuracy, we use two widely adopted metrics for AQA [2,35,44], namely
Spearman’s rank correlation (SRCC) and relative L2 distance (R�2). SRCC
measures how well the predicted scores are ranked w.r.t. the ground truth, while
R�2 summarizes the prediction errors. A model with more accurate predictions
will have higher SRCC and lower R�2.

• For calibration, we report the uncertainty versus error curve following [16,22].
To plot this curve, test samples are sorted by increasing uncertainty and divided
into 10 equal-sized bins. The mean absolute error (MAE) is then computed for
items in each bin. We also follow [16,22] in employing Kendall’s tau (τ) [13], a
numerical measure ranging from -1 to 1 to quantify the correlation between the
uncertainties and the prediction errors. A higher τ indicates better calibration,
signifying that a model’s uncertainty better aligns with prediction errors.

Baselines. RICA2 is benchmarked against a set of strong baselines, including
exemplar-free methods such as DAE [48], USDL and MUSDL [35], and exemplar-
based ones such as CoRE [47], TPT [2] and TSA [44]. We further include the
deterministic version of our model RICA2†, which trades the ability of uncer-
tainty estimation for a minor boost in accuracy. Several baselines adopt a direct
regression approach, without providing a confidence or uncertainty measure for
predictions. USDL [35] and TPT [2] implicitly offer a confidence value. In these
works, the probability of the predicted score bin serves as a proxy for uncertainty,
computed as (1.0−confidence). DAE [48] outputs the standard deviation of the
score distribution, which represents uncertainty.

We seek to ensure a fair comparison yet recognize that methods in our bench-
mark may consider different settings and/or various types of input. Most prior
exemplar-free methods only consider a video as input. While RICA2 does not
utilize exemplars, it takes additional input of step information, i.e., step pres-
ence and their temporal ordering. On the other hand, previous exemplar-based
methods also require the step information as used by RICA2, in addition to
an input video and an exemplar database. Notably, step information is used to
select exemplars, leading to improved results. For example, for diving videos,
CoRE [47], TPT [2] and TSA [44] use the diving number (DN) encoding steps
and their ordering. Further, TSA [44] also requires the timing of individual steps
during training. While it is infeasible to standardize the settings of all methods,
we compare to the best reported results in our experiments.

4.1 Results on FineDiving

Dataset. FineDiving [44] is the largest public dataset for AQA, with 3000 video
samples capturing various diving actions. The dataset covers 52 different action
types, 29 sub-action types, and 23 difficulty degree types, providing a rich and
diverse set of examples for AQA. While this dataset contains temporal annota-
tions for the steps, which can be used to improve the performance of AQA as
demonstrated in [44], we do not use these annotations for RICA2.

Experiment Setup. We adhere to the experimental setup of the most recent
baseline [44] using their train-test split, with 2251 videos for training and 749



RICA2: Rubric-Informed, Calibrated Assessment of Actions 153

videos for testing. We follow the input video settings used in [44] for RICA2 and
the baselines. Specifically, for each video, we uniformly sample 96 frames, which
are segmented into 9 overlapping clips, each containing 16 consecutive frames.
We refer to supplement Sec. A.1 for further implementation details.

Results. Table 1a presents our results on FineDiving. Both our stochastic and
deterministic versions (RICA2 and RICA2†) outperform the state-of-the-art
TPT [2], an exemplar-based method. RICA2 shows a relative margin of 0.7%
/ 1.4% on SRCC / R�2, and RICA2† has a relative margin of 0.9% / 9.6%
on SRCC / R�2. This improvement is more pronounced when compared with
the exemplar-free methods (MUSDL, DAE-MT) showcasing a significant relative
gain of 4.9%, 1.5% on SRCC and 29.8%, 21.6% on R�2. While the deterministic
RICA2† has slightly higher accuracy, our stochastic RICA2 demonstrates supe-
rior calibration of its uncertainty estimate (τRICA2 = 0.64 vs. τTPT = −0.56).
Figure 3a further shows uncertainty calibration results. Uncertainty estimates
from RICA2 have a clear upward trend, indicating a higher calibration level.
While MUSDL [35] also exhibits a reasonable level of calibration (τMUSDL = 0.47
vs. τRICA2 = 0.64), the errors are significantly higher than RICA2 across all
uncertainty levels.

Table 1. Main results on (a) FineDiving and (b) MTL-AQA. Prediction accuracy
(SRCC and R�2) and uncertainty calibration (τ) metrics are reported. We compare
our method with exemplar-based and exemplar-free baselines.

(a) Results on FineDiving

Metrics

SRCC(↑) R�2(↓) τ(↑)

Exemplar
based

CoRe [47] 0.9061 0.3615 -

TSA [44] 0.9203 0.3420 -

TPT [2] 0.9333 0.2877 -0.5556

Exemplar
free

USDL [35,44] 0.8913 0.3822 0.3778

MUSDL [35,44] 0.8978 0.3704 0.4667

DAE[48] 0.8820 0.4919 -0.1999

DAE-MT [48] 0.9285 0.3320 -0.4667

RICA2 (Ours) 0.9402 0.2838 0.6444

RICA2† (Ours) 0.9421 0.2600 -

(b) Results on MTL-AQA

Metrics

SRCC(↑) R�2(↓) τ(↑)

Exemplar
based

TSA-Net [40] 0.9422 - -

CoRe [47] 0.9512 0.2600 -

DAE-CoRe [48] 0.9589 - -

TPT [2] 0.9607 0.2378 -0.1111

Exemplar
free

C3D-AVG-MTL [24] 0.9044 - -

USDL [35] 0.9231 0.4680 0.1556

MUSDL [35] 0.9273 0.4510 -0.0667

DAE [48] 0.9231 - -

DAE-MT [48] 0.9490 0.2738 -0.4222

RICA2 (Ours) 0.9594 0.2580 0.6000

RICA2† (Ours) 0.9620 0.2280 -

4.2 Results on MTL-AQA

Dataset. MTL-AQA [24] is one of the most commonly used datasets for AQA. It
consists of 1412 samples collected from 16 events with diverse views. The dataset
has a rich set of annotations, including the steps performed during the dive, the
difficulty score associated with the dive, and the individual judge scores.
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Fig. 3. Uncertainty vs. prediction error (MAE) on (a) Finediving and (b) MTL-
AQA. Results are reported on the test splits, with the X-axis as the uncertainty bin
index (uncertainty increases from left to right) and the Y-axis as the MAE in the bin. In
comparison to baselines, RICA2 has improved calibration with lower prediction errors.

Experiment Setup. We follow the evaluation protocol of [2,43,47], dividing
the dataset into the standard train set of 1059 videos and a test set of 353 videos.
Further, we use the same input video settings as TPT [2] in our experiments to
ensure a fair comparison. Specifically, for each video, we uniformly sample 103
frames segmented into 20 overlapping clips, each containing 8 continuous frames.
Please refer to supplement Sec. A.2 for more details.

Results. Table 1b summarizes our results on MTL-AQA. Similar to FineDiv-
ing, RICA2 shows state-of-the-art results on MTL-AQA across all evaluation
metrics. Specifically, our RICA2† outperforms the best exemplar-free model
(DAE-MT) by a relative margin of 1.4% / 16.7% on SRCC / R�2. When
compared with the competitive exemplar-based TPT, our has slightly better
SRCC (SRCCTPT = 0.9607 vs SRCCRICA2† = 0.9620) and R�2 (+4.1% rela-
tive margin). Again, compared to previous methods, our stochastic model shows
improved calibration (τRICA2 = 0.60 vs. τUSDL = 0.16 vs. τTPT = −0.11) as
shown in Fig. 3b.

4.3 Results on JIGSAWS

Dataset. In addition to diving videos, we also evaluate RICA2 on JIG-
SAWS [10]—a robotic surgical video dataset. The dataset includes three tasks:
“Suturing (S),” with 39 recordings, “Needle Passing (NP),” with 26 recordings
and “Knot Tying (KT)” with 36 recordings. JIGSAWS is widely used for action
quality assessment, despite its small scale.

Experiment Setup. Due to the limited number of samples in the dataset (as
few as 7 videos in the test set), cross-validation is often considered for evaluation
on JIGSAWS. To ensure a fair comparison, we follow the commonly adopted
splits from [35], and the input video setting from [2]. Specifically, for each video,
we uniformly sample 160 frames which are segmented into 20 non-overlapping



RICA2: Rubric-Informed, Calibrated Assessment of Actions 155

Table 2. Results on JIGSAWS [10] dataset. Only prediction accuracy (SRCC) is
considered due to the limited sample size. RICA2 outperforms all prior approaches.

Task

S NP KT Avg

Exemplar
based

CoRe [47] 0.84 0.86 0.86 0.85

TPT [2] 0.88 0.88 0.91 0.89

Exemplar
free

ST-GCN [46] 0.31 0.39 0.58 0.43

TSN [39] 0.34 0.23 0.72 0.46

JRG [23] 0.36 0.54 0.75 0.57

USDL [35] 0.64 0.63 0.61 0.63

MUSDL [35] 0.71 0.69 0.71 0.70

DAE [48] 0.73 0.72 0.72 0.72

DAE-MT [48] 0.78 0.74 0.74 0.76

RICA2† (Ours) 0.88 0.93 0.88 0.90

RICA2 (Ours) 0.920.940.900.92

clips. We opt to not include score calibration curves due to the limited sample size
of the test sets. Additionally, the key steps in JIGSAWS are general motions (e.g .
reaching for the needle, orienting the needle, etc.) and thus cannot be localized
to any specific section of the video. Thus, we do not use the auxiliary losses for
this experiment. More details are described in supplement Sec. A.3.

Results. Table 2 summarizes our results on JIGSAWS. Similar to previous
datasets, our models exhibit notable advancements over the previous state-of-
the-art model TPT [35], showcasing substantial improvements of 1.1% (RICA2)
to 3.4% (RICA2†) in terms of average SRCC relative to the exemplar-based
state-of-the-art TPT [2]. When compared to the exemplar-free methods, our
approach demonstrates an impressive 18.4% (RICA2) to 21.0% (RICA2†) rela-
tive gain in average SRCC compared to the latest method DAE-MT [48].

4.4 Ablation Studies

To understand our model design choices, we conduct ablation studies on the
MTL-AQA [24] dataset. Additional ablations are in supplement Sec. C.2.

Experiment Setup. To simplify our experiments, we opt for running our abla-
tions using fixed I3D features. This allows us to precisely evaluate the contribu-
tion of different components of our model. Specifically, we choose I3D weights
from an intermediate checkpoint of our trained model and extract features for
all videos with the frozen backbone.

Base model. Our ablation constructs a base model using randomly initialized
step embeddings, an averaging of these embeddings after cross attention with
the video features, followed by an MLP for scoring. This base model is trained
using only the MSE loss. We then gradually add modules from RICA2 and study
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their effects. Table 3 presents our results using the same features and training
epochs, with our base model in row 1.

Table 3. Ablation studies of model components on MTL-AQA dataset. * indicates
that the text embeddings were frozen during training.

Step DAG LKL LAux
Metrics

Rep. (Rubric) SRCC (↑) R�2(↓) τ (↑) Avg. Rank (↓)

Random × × × 0.9426 0.3882 - 5.50

Text × × × 0.9431 0.3509 - 4.50

Text � × × 0.9430 0.3336 - 4.50

Text* � × × 0.9437 0.3335 - 3.50

Text* � � × 0.9448 0.3329 0.4222 1.83

Text* � � � 0.9460 0.3303 0.4222 1.17

Text Embeddings as Step Representations. We first replace randomly ini-
tialized step representations with the text embeddings of step descriptions. This
leads to a major boost in R�2 (Table 3 row 1 vs. row 2), by leveraging knowledge
encoded in the LLM [7]. Further, we find that freezing the text embeddings leads
to comparable results and faster convergence (Table 3 row 3 vs. row 4).

Does the Scoring Rubric Help? We also investigate the effects of encoding
steps and rubric as a DAG—a key design of our model. Adding the DAG results
in a noteworthy boost in R�2 (Table 3 row 2 vs. row 3). This improvement can be
ascribed to the DAG’s proficiency in dissecting the action quality across steps.

Effects of Loss Functions. We now study the loss terms. Our loss function has
three terms (a) the MSE loss (LMSE) to minimize prediction error, (b) the KL
loss (LKL) to regularize the stochastic embeddings, and (c) the auxiliary loss
(LAux) to ensure temporal ordering of steps. Adding the KL loss LKL yields
similar results in SRCC and R�2, yet enables calibrated uncertainty estimation.
Further attaching the auxiliary loss LAux leads to improvement in both SRCC
and R�2, while maintaining the calibration performance.

Evaluating the Cross-Attention Maps. To gain insight into RICA2, we now
examine the cross-attention maps between the step representations and video
features in our learned embedding function f . Figure 4 visualizes the attention
map on two test videos on FineDiving. These maps reveal that a step representa-
tion is likely to attend to video features during which the step occurs, indicating
that RICA2 learns to encode the temporal location of individual steps.

We further evaluate this localization ability following the Pointing game pro-
tocol [49], widely considered in weakly supervised / unsupervised localization
tasks [42,52]. Pointing Game compares a generated heatmap with an annotated
time interval and counts the chance of the heatmap’s peak falling into the spec-
ified interval. Our evaluation focuses on the FineDiving dataset since it is the



RICA2: Rubric-Informed, Calibrated Assessment of Actions 157

Fig. 4. Visualization of the cross-attention maps. Y-axis : attention value; Y-axis:
clip indices (time). Each curve shows an attention map from a step representation to
the temporal video features. The frames shown above are aligned with the timing of
the corresponding attention plot. Curves and steps are colored accordingly.

only dataset providing annotated time intervals for individual steps. When eval-
uated on the full test set, attention maps from our model attain an accuracy
of 61.4% in the Pointing game protocol, significantly outperforming the chance
level accuracy of 30.7% (given each video has 3.26 steps on average). Note that
we did not use any annotated segmentation data for training.

5 Conclusion and Discussion

In this paper, we present a deep probabilistic model for action quality assessment
in videos. Our key innovation is to integrate score rubrics and to model prediction
uncertainty. Specifically, we propose to adapt stochastic embeddings to quantify
the uncertainty of individual steps, and to decode action scores using a variant
of graph neural network operating on a DAG encoding the score rubric. Our
method offers an exemplar-free approach for AQA, achieves new state-of-the-art
results in terms of prediction accuracy on public benchmarks, and demonstrates
superior calibration of the output uncertainty estimates. We believe that our
work provides a solid step towards AQA. We hope that our method and findings
can shed light on the challenging problem of trustworthy video recognition.
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