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Abstract
This study introduces an innovative method for an-
alyzing the impact of various interventions on cus-
tomer churn, using the potential outcomes frame-
work. We present a new causal model, the ten-
sorized latent factor block hazard model, which
incorporates tensor completion methods for a prin-
cipled causal analysis of customer churn. A cru-
cial element of our approach is the formulation
of a 1-bit tensor completion for the parameter
tensor. This captures hidden customer character-
istics and temporal elements from churn records,
effectively addressing the binary nature of churn
data and its time-monotonic trends. Our model
also uniquely categorizes interventions by their
similar impacts, enhancing the precision and prac-
ticality of implementing customer retention strate-
gies. For computational efficiency, we apply a
projected gradient descent algorithm combined
with spectral clustering. We lay down the theo-
retical groundwork for our model, including its
non-asymptotic properties. The efficacy and supe-
riority of our model are further validated through
comprehensive experiments on both simulated
and real-world applications.

1. Introduction
Customer retention, loyalty, and churn are increasingly im-
portant topics across industries. Customer churn, or attrition,
occurs when customers disengage from a company by end-
ing subscriptions, moving to competitors, or changing their
buying habits (Buckinx et al., 2007). Analyzing and prevent-
ing churn is critical for sustainable growth and profitabil-
ity. Companies often explore diverse retention strategies,
such as customized incentives, to extend customer lifetimes.
Understanding the causality behind customer churn helps
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companies adopt proper retention strategies and essentially
increase the customer lifetime value and the company’s
business value.

In our approach to analyzing causal churn, we define po-
tential outcomes as the indicators of churn over time under
different levels of treatment. Thus, the potential outcomes
can be envisioned as a three-dimensional tensor, indexed
by the customer, time, and intervention, where each entry
represents whether a customer would churn at a particular
time under a specific treatment (see Figure 1). In practice,
only actual churn trajectories are observed. To address this,
tensor completion methods can be employed to fill in all
missing potential outcomes and facilitate the analysis of
various treatment strategies. Tensors effectively uncover the
hidden multiway data structure, often using low-rankness,
which decomposes the tensor into a low-dimensional core
tensor and matrix factors for each dimension. However,
applying these existing tensor completion methods presents
several challenges in our context.

Firstly, unlike tensors with continuous values, our churn
analysis tensor is binary, with entries as 0/1 indicators.
Moreover, once a customer churns at a certain time, it
remains churned, resulting in a monotone churn pattern.
Therefore, applying low-rankness to the original potential
outcome tensor may not be suitable in this case. Secondly,
many retention interventions might have similar effects on
customers, suggesting a potential benefit in grouping these
interventions for more accurate estimation and streamlined
implementation in practice. Previous research has proposed
integrating interventions based on prior knowledge (Laber
et al., 2014; Liu et al., 2018; Pan & Zhao, 2021). However,
a data-driven approach to identify and cluster interventions
with similar effects is desirable. For instance, Ma et al.
(2022) introduced a method using adaptive fusion penalty
for clustering interventions, but it is limited to single-stage
outcomes and parametric treatment effect models. Explor-
ing and autonomously grouping interventions with similar
effects over time to streamline the dimension space is there-
fore a significant area of interest. Finally, a major challenge
arises from the uniform missing mechanisms in current ma-
trix/tensor completion methods, which fail to consider the
endogeneity in treatment assignment. As a result, directly
applying these methods could lead to confounding biases.
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We develop a novel tensorized latent factor block hazard
model in (3) to conduct causal analysis on customer churn
trajectories in relation to various treatment strategies. This
model redefines the problem into a 1-bit tensor completion
problem for the parameter tensor, leveraging structural in-
formation, such as low rankness and clustering blocks. In
particular, it captures the customer attributes and temporal
features by the latent factors inferred from the churn history.
Besides, a block structure is adopted for the interventions
based on their impact on the churn statuses to reduce the
number of interventions. This data-driven clustering allows
us to automatically identify the homogeneous intervention
groups. To our knowledge, little work has explored the
causality of customer churn analysis with grouped latent
factors and we are among the first to provide non-asymptotic
error analysis for this low-rank tensor block hazard model.

Our contributions are summarized as follows:

1) Tensorized Latent Factor Block Hazard Model: We
introduce a model applying low-rankness to the pa-
rameter tensor (rather than the data tensor) to leverage
latent unit and temporal factors and identify homoge-
nous intervention groups more effectively.

2) Computational Methodology: We use a projected gradi-
ent descent algorithm with spectral clustering to solve
the inverse probability treatment weighted (IPTW) loss,
adjusting for confounding effects and scaling well to
large datasets.

3) Optimal Treatment Search and Learning: The proposed
framework provide the survival probabilities under all
interventions and thus enables one to identify the indi-
vidual optimal interventions that maximize retention
time, closely related to the optimal policy search and
Q-learning in causal inference (Qian & Murphy, 2011);
and

4) Theoretical Underpinnings and Empirical Evidence:
We have established the non-asymptotic properties of
our proposed model, including the upper bound on the
tensor recovery accuracy and the clustering misclas-
sification rate. Besides, we demonstrate the practical
benefits and effectiveness of our framework via com-
prehensive synthetic experiments and a real-data appli-
cation. Our implementation codes will be made pub-
licly available after the acceptance of this manuscript.

2. Related Work
Customer churn prediction can be naturally perceived as
a classification task. With the rise of machine learning al-
gorithms, various methods have been proposed for churn
analysis, including support vector machines (Coussement
& Van den Poel, 2008), random forest (Xie et al., 2009),

and other ensemble methods such as bagging and boosting
(Lu et al., 2012). Deep neural networks (DNN) have also
been employed to extract valuable features related to cus-
tomer churn, which significantly improve the performance
on real-world datasets (Mishra & Reddy, 2017; Zhang et al.,
2017; Umayaparvathi & Iyakutti, 2017; Rudd et al., 2021).
However, these classification models mainly focus on deter-
mining churn status at a fixed time point, often overlooking
the information contained in time to churn.

Considering customer lifetime as a time-to-churn metric and
using survival analysis offers deeper insights into customer-
company engagement (Lu, 2002; Larivière & Van den Poel,
2004). Traditional survival analysis, though, relies on po-
tentially restrictive assumptions about hazard functions. Ad-
vanced survival models like survival random forests (Ish-
waran et al., 2008), Cox boosting (Binder et al., 2009),
survival Super-Learner (Van der Laan & Rose, 2011), and
time-to-event reinforcement learning (Maystre & Russo,
2022) have been developed to better handle more complex
data. Similarly, DNNs have also been utilized for survival
analysis to handle the special loss function induced by the
censored data (Zhu et al., 2016; Katzman et al., 2018; Ching
et al., 2018; Zhao & Feng, 2020). However, these models
may not accurately reflect the causal impact of interventions
on churn due to confounding biases (Yang, 2021). For ex-
ample, if incentives are offered only to at-risk customers,
it may be falsely ineffective as this group naturally shows
higher retention and shorter churn times compared to others.
Therefore, a more principled approach is necessary for the
causal analysis of retention interventions.

We use the potential outcomes framework of different inter-
vention strategies for churn analysis. Here, the potential out-
come is defined as the potential outcome (possibly contrary
to fact) had the unit (customer) received a specific treat-
ment (intervention). The fundamental problem of causal
inference is that each unit receives only one treatment, leav-
ing other potential outcomes unknown. Thus, the causal
analysis problem is essentially a missing data problem. To
address this, matrix or tensor completion techniques (Dav-
enport et al., 2014; Mao et al., 2023), commonly used for
filling in missing data, are applicable. Tensor completion
problem is initially addressed by unfolding tensors into ma-
trices (Tomioka et al., 2010; Gandy et al., 2011; Liu et al.,
2012). However, such unfolding-based methods might dis-
card the multi-way structure of the tensor, rendering them
less efficient. A non-convex approach is motivated to solve
this problem in Xia & Yuan (2017); Xia et al. (2021); Cai
et al. (2021), where the authors apply low-rank tensor factor-
ization to enforce the low-rankness and update the factors
iteratively.

Most of these matrix or tensor completion methods assume
that the missingness occurs completely at random. However,
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the treatment assignment is typically an endogenous process,
as it may be affected by some prognostic factors of that unit
(Pearl, 2009). A stream of work employing the debiased ma-
trix/tensor completion method has been proposed in Mandal
& Parkes (2019); Agarwal et al. (2020); Athey et al. (2021);
Agarwal et al. (2021); Mao et al. (2023), which re-weights
each unit inversely to its probability of being assigned the
actualized treatments. Admittedly, it is more challenging
to recover the low-rank latent parameter matrix/tensor from
the binary outcomes. A few methods have been proposed to
handle such quantized and possibly corrupted outcomes, uti-
lizing the properties of the matrix/tensor norm (Davenport
et al., 2014; Cai & Zhou, 2013) or enforcing the latent pa-
rameters lying in a low-rank matrix/tensor subspace (Wang
& Li, 2020; Ashraphijuo & Wang, 2020; Mao et al., 2024).

3. Basic setup
3.1. Notation and preliminaries

Before presenting our framework, let us present some basics
of tensor algebra. Scalars are denoted by lowercase letters
(e.g., x, y), while vectors and matrices use bold lowercase
(e.g., x,y) and uppercase letters (e.g., X,Y ), respectively.
The outer product of vectors x ∈ Rp1 and y ∈ Rp2 is
x⊗ y ∈ Rp1×p2 . Higher-order tensors are represented by
calligraphic letters (e.g., X ,Y). The entry-wise and inner
products of tensors X and Y are X ⊙ Y and ⟨X ,Y⟩ =∑

i1,i2,i3
Xi1,i2,i3Yi1,i2,i3 , respectively.

Tensors are unfolded into matrices on mode-k using oper-
ator M(k)(·). For example, after unfolding the tensor X
on its first mode, we have M(1)(X ) ∈ Rp1×p2p3 , where
[M(1)(X )]i1,i2+p2(i3−1) = Xi1,i2,i3 . Also, mode-k Tensor-
matrix products are denoted by X ×k Uk. For example,
let U1 ∈ Rr1×p1 , the mode-1 tensor-matrix multiplication
is X ×1 U1 ∈ Rr1×p2×p3 , where (X ×1 U1)i1,i2,i3 =∑p1

j1=1 Xj1,i2,i3Ui1,j1 . The multi-linear rank of a tensor
X is (r1, r2, r3) = {rank(M(1)(X )), rank(M(2)(X )),
rank(M(3)(X ))}. Tucker decomposition (Tucker, 1966)
factorizes a tensor X into a core tensor S ∈ Rr1×r2×r3 and
orthogonal matrices Ui ∈ Rpi×ri as

X = S ×1 U1 ×2 U2 ×3 U3 = [[S;U1,U2,U3]]. (1)

In this decomposition, S can be considered as the principal
components with Ui being the mode-i loading matrices.
Tensor norms including spectral norm ∥X∥, nuclear norm
∥X∥∗, Frobenius norm ∥X∥F , and max norm ∥X∥max are
used; see Kolda & Bader (2009) for a comprehensive review.
Finally, c0, C0 represent generic positive constants, ≍ (≲
and ≳) indicates equality (inequality) up to multiplicative
numerical constants, and [r] denotes the r-set {1, · · · , r}.

3.2. Potential outcomes and causal assumptions

For each unit i, Vi = (Xi,Ai, δi,Yi) represent a d-
dimensional covariate vector, a k-dimensional binary treat-
ment vector Ai = (Ai,1, · · · , Ai,k), a churn indicator δi
taking values from {0, 1}, and a T -dimensional vector
of retention statutes with possible censoring over T time
points Yi = (Yi,1, . . . , Yi,T )

T, respectively. The censor-
ship of churn statuses is determined by the churn indi-
cator δi. For examples, (Yi, δi) = {(1, 1, 0, . . . , 0)T, 1}
implies that customer i is retained until time point 2 and
churns at time point 3, i.e., the churn status is observed;
(Yi, δi) = {(1, 1, 0, . . . , 0)T, 0} implies that customer i
stays for the first two time points and does not churn, i.e.,
the churn status is censored.

Under the potential outcomes framework (Rubin, 1974),
Y

(a)
i denotes the potential churn trajectory of unit i had the

treatment be set to a ∈ A, where A contains all possible bi-
nary treatment vectors of dimension k, i.e., a exhaustive set
of size 2k. The ”survival” function for retention at each time
point t is defined as S

(a)
i (t) = E(Y (a)

i,t ) = P(Y (a)
i,t = 1)

under treatment a. Similarly, the treatment-specific life-
time is defined by

∑T
t=1 Y

(a)
i,t . Since each unit receive only

one treatment, not all potential outcomes are observable,
necessitating certain assumptions for causal analysis:

A1) (Stable Unit Treatment Value) Yi = Y
(a)
i for Ai = a;

A2) (No Unmeasured Confounders) Ai⊥⊥Y
(a)
i | Xi for

all a ∈ A

A3) (Non-informative Censoring) δi⊥⊥Y
(a)
i | Xi,Ai; and

A4) (Positivity) The generalized propensity score π(a |
Xi) = P(Ai = a | Xi) for any a ∈ A is bounded
away from 0 and 1 almost surely.

A1) rules out interference between units and multiple ver-
sions of treatment, A2) requires that Xi accounts for all
variables influencing both the treatment uptake and out-
come, A3) is a common censoring at random assumption
for survival analysis, which is a special case of the coars-
ening at random (Tsiatis, 2006); and A4) ensures that ev-
ery unit has a non-zero probability of receiving each level
of treatment. Under Assumptions A1)–A4), the survival
probability S(a)(t) are identifiable under all interventions.
Moreover, in discrete survival analysis, we approximate the
expected treatment-specific lifetime by the sum of the sur-
vival probabilities up to T , that is,

∑T
t=1 S

(a)(t). Therefore,
the individual optimal treatment Dopt can be derived from
Di,opt = argmaxa∈A

∑T
t=1 S

(a)
i (t) for the i-th customer.
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3.3. Tensorized hazard model

We model potential churn statuses of N units over T time
points and L treatments as a 3-mode tensor

Y =
(
Y

(a)
i,t

)
i=1,··· ,N, t=1,··· ,T, a∈A = (Yi,t,l) ,

where a is a binary treatment vector converted to decimal
form l, e.g., l = (00011)10 = 3 for a = (00011). Likewise,
(l)2 = a is for binary conversion. Since a and l have one-
to-one correspondence, we will use them interchangeably.

Our objective is to leverage the tensor structures to impute
the missing potential outcomes in Y and provide valid esti-
mates for the causal parameters. As the entries of the poten-
tial outcome tensor, representing churn status, are binary (0
or 1) and demonstrate a time-monotone pattern, direct low-
rank constraints on Y are inappropriate. We propose a low-
rank hazard model for Y | Θ ∼ Bernoulli{P(Y = 1 | Θ)},
where Θ = (θi,t,l) is an unknown parameter tensor of the
same dimension as Y . In this model, θi,t,l is the parameter
in the hazard probability

P (Yi,t,l = 1 | Yi,t−1,l = 1,Xi) = f(θi,t,l), (2)

with f(·) being a strictly increasing and log-concave link
function. We further assume that the link function f(·)
is twice differentiable, satisfying f(θ) + f(−θ) = 1,
f ′(θ) = f ′(−θ) and f ′′(θ) = −f ′′(−θ). These condi-
tions are typically employed in the community of one-bit
matrix/tensor completion and some common choices of f(·)
that satisfy these conditions include the logistic link, the
probit link, and the Laplacian link (Wang & Li, 2020). The
individual probability of retention at one time point t is
S
(a)
i (t) =

∏t
s=1 f(θi,s,l) for treatment a = (l)2, ensuring

a decreasing retention probability over time.

Although the individual survival probabilities S(a)
i (t) can be

approximated, we only observe Yi,t,l, which is a binary and
quantized version of θi,t,l. This is similar to the threshold
model used in 1-bit matrix/tensor completion (Cai & Zhou,
2013; Ghadermarzy et al., 2018); see Figure 1. As Θ is la-
tent, structural assumptions are needed for its identification
and estimation.

i
=

1
,
··

·,
N

t
=
1,
· · ·

, T

l = 1, · · · , L

= sgn

{ (
U1 ∈ RN×r1

U2 ∈ RT×r2

M
3
∈
RL
×r 3

G ∈ Rr1×r2×r3 + E

})

Figure 1. A new tensor representation of potential outcomes with
three modes (customer × time × intervention).

3.4. Low-rank structure and treatment clustering

Tensor structures, particularly low-rankness, aid in parame-
ter identification. Additionally, in a large treatment space,

certain treatments may exhibit similar effects. Often, reten-
tion strategies involve a mix of various incentives, and al-
tering one or two of these incentives might not significantly
impact the overall effectiveness of the strategy. Additionally,
some retention strategies, though targeting different aspects,
are based on similar behavioral models and mechanisms.
Identifying and clustering these treatments can reduce the
treatment space.

We assume our parameter tensor, Θ, admits the latent factor
block model with a single discrete structure on the third
mode:

Θ = S ×1 U1 ×2 U2 ×3 M

=

r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

Sj1j2j3u1,j1 ⊗ u2,j2 ⊗mj3 , (3)

with S ∈ Rr1×r2×r3 as the core tensor, U1 =
(· · ·u1,j1 · · · ) ∈ RN×r1 and U2 = (· · ·u2,j2 · · · ) ∈
RT×r2 as the factor matrices, and M = (· · ·mj3 · · · ) ∈
{0, 1}L×r3 as the membership matrix such that (M)ij = 1
if the i-th treatment belongs to the j-th cluster.

Under this representation, the multi-linear ranks r1, r2, and
r3 are constrained to be no greater than the dimensions N ,
T , and L, respectively. In this model, U1 and U2 capture la-
tent customer characteristics (like age, gender) and temporal
patterns, respectively. The membership matrix corresponds
to a cluster label vector z = (z1, . . . , zL), with zl = j if
and only if (M)ij = 1. Thus, we use M and z interchange-
ably to denote the clustering structure for the third mode.
The membership matrix M clusters treatments with simi-
lar effects, reducing the number of treatments. Lastly, the
core tensor S indicates the interactions among these latent
factors within each treatment cluster.

3.5. Weighted likelihood estimation for Θ

For parameter estimation, we propose a weighted maximum
likelihood estimation. In specific, the log-likelihood func-
tion of Θ given the hazard probability model (2) is

l(Θ) =
∑

i,t,l

1(Yi,t−1,l = 1) [Yi,t,l log{f(θi,t,l)}

+(1− Yi,t,l)δi log{1− f(θi,t,l)}] .

However, the log-likelihood function is infeasible to com-
pute directly due to the counterfactuals; specifically, only
N × T realizations Yobs is observable, leaving other parts
of Y missing. This missing data is not completely random,
as it is determined by the treatment mechanism, possibly
confounded by indication, leading to potential biases in es-
timating Θ when relying only on the observed data. To
mitigate this issue, we use the inverse probability treatment
weighting (IPTW) based on the propensity scores π(a | Xi)
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to adjust for confounding biases:

l(Θ) =
∑

i,t,l=(Ai)10

wi1(Yi,t−1,l = 1) [Yi,t,l log{f(θi,t,l)}

+(1− Yi,t,l)δi log{1− f(θi,t,l)}] ,
(4)

where wi = π{(l)2 | Xi}−1. This weighting effectively
generates a pseudo-population where the missingness in the
data is uniform.

Besides, we can exploit additional structural relationships
between outcomes Yi and covariates Xi to improve the
estimation algorithm. For example, in the loading matrix
U1, rows corresponding to customers with similar covariates
might exhibit similarity. To utilize this insight, we proposed
to decompose U1 into U1 = Xu10 + u11 where u10 and
u11 are matrices of unknown parameters. This covariate-
assisted formulation of U1 can be easily incorporated by
our projected gradient descent in Algorithm 1, which not
only refines our understanding of the data structure but also
potentially improves the precision of our estimation.

4. Algorithm

4.1. Propensity score estimation

Typically, the propensity scores π(a | Xi) are unknown
in the observational studies and thus require estimation.
However, for a high-dimensional treatment vector (L = 2k),
likelihood-based estimation can yield nearly zero values and
weighting by their inverse {π(a | Xi; α̂)}−1 is unstable
(Yang et al., 2016). To improve the stability, we adopt the
covariate balance propensity score (CBPS) methodology
in Imai & Ratkovic (2014). In particular, the following
moment conditions are formulated for j = 1, · · · , k and,
a = 0, 1:

E [ρi,j1(Ai,j = a)b(Xi)] = E [b(Xi)] , (5)

where ρ−1
i,j = P(Ai,j | Xi) and b(X) is a set of ar-

bitrary basis functions, which can be the first, second,
and higher-order moments of X . The key insight of
(5) stems from the central role of the propensity scores,
which balance the covariate distribution within the treat-
ment groups in terms of the basis functions. To increase
the stability of propensity score weighting, we propose to
estimate the weights by minimizing the entropy balance
function: −minρi,j

∑N
i=1 ρi,j log ρi,j ,subject to ρi,j ≥ 0,∑N

i=1 ρi,j1(Ai,j = a) = 1, and
∑N

i=1 ρi,j1(Ai,j =

a)b(Xi) = N−1
∑N

i=1 b(Xi). The loss function is the en-
tropy function of the weights that enforces the weights to be
as close to one as possible, which reduces the variability due
to heterogeneous weights (Hainmueller, 2012; Lee et al.,

2022; 2023). The final propensity score weights for the treat-
ment vector become ŵi =

∏k
j=1 ρ̂i,j . Challenges may arise

when we are facing a large number of moment constraints,
which increases the chance of conflicting restrictions and
thus do not produce a feasible solution space. One remedy
is to couple the objective function (i.e., entropy balance)
with regularization on the moment constraints to carefully
select the important subset for balancing (Ning et al., 2020).

4.2. Projected gradient descent and spectral clustering

To maximize the weighted log-likelihood function (4) with
wi replaced by ŵi under model (3), we use the projected
gradient descent method to obtain (Ŝ, Û1, Û2) along with
the spectral clustering on the third mode to find the optimal
membership M̂ . In particular, we first compute the partial
gradient of l(Θ) with respect to (S,U1,U2):

∂l(Θ)

∂S = ∇l ×1 U
⊺
1 ×2 U

⊺
2 ×3 M

⊺,

∂l(Θ)

∂U1
= M(1)(∇l)(U2 ⊗M)M(1)(S)⊺,

∂l(Θ)

∂U2
= M(2)(∇l)(U1 ⊗M)M(2)(S)⊺,

where ∇l = ∂l(Θ)/∂Θ. Next, we update the current so-
lution (Ŝ, Û1, Û2) by subtracting η · ∂l(Θ)/∂(Ŝ, Û1, Û2),
which moves it towards the opposite direction of partial
gradients with step size η. To find the optimal membership
for the third mode, we perform the nearest-neighbor search
to update our estimate for the clustering labels z:

ẑl = arg min
b∈[r3]

∥M(3)(F̂)l,: −M(3)(Ŝ)b,:∥22,

where l = 1, · · · , L, F̂ = Θ̂ ×1 (Û1)
⊺ ×2 (Û2)

⊺ is the
projected mode-3 slices, Ŝ = Θ̂ ×1 (Û1)

⊺ ×2 (Û2)
⊺ ×3

(Ŵ )⊺ is the projected mode-3 block means, and Ŵ =

M̂(diag(1⊺
LM̂))−1. Intuitively, M(3)(F̂)l,: contains the

information of the l-th treatment, and M(3)(Ŝ)b,: contains
the information of the b-th cluster. Our strategy is to find b
for each l such that M(3)(Ŝ)b,: is the closest to M(3)(F̂)l,:.
Besides, F̂ and Ŝ utilize the information from the other two
modes for projection, which can significantly reduce the
noise level within the estimated parameter tensor Θ̂.

We provide the details of our procedure for optimizing (4)
in Algorithm 1. In practice, we recommend a BIC-type
criterion to select the rank parameters (r1, r2, r3), and all
the tuning parameters are tuned sequentially (Ibriga & Sun,
2023).

5. Statistical theory

In this section, we study the statistical properties of Θ̂ under
the tensorized latent factor block hazard model (3). Mainly,
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Algorithm 1 Projected gradient descent and spectral clustering for minimizing (4)
Input: Observed data tuple Vi = (Xi,Ai, δi,Yi), estimated weights ŵ, stepsize η, ranks r1, r2 and r3
//Initialization
Initialize the parameter tensor estimator Θ̂(0) via the logistic regression classifier
for k = 1, 2 do

Initialize the singular space estimator for the first two modes via Û
(0)
k = SVDrk{M(k)(Θ̂

(0))}
end for
Compute F̂ (0) = M(3)(Θ̂

(0))(Û
(0)
1 ⊗ Û

(0)
2 )

Find ẑ(0) ∈ [r3]
L and centroids x̂1, · · · , x̂r3 ∈ RNT such that

∑L
l=1 ∥(F̂ )⊺l: − x̂

ẑ
(0)
l

∥22 ≤ minx,z
∑L

l=1 ∥(F̂ )⊺l: − xzl
∥22

Compute Ŵ (0) = M̂ (0)(diag(1⊺
LM̂

(0)))−1, where M̂ (0) is determined by ẑ(0)

Initialize the core tensor Ŝ(0) = Θ̂(0) ×1 (Û
(0)
1 )⊺ ×2 (Û

(0)
2 )⊺ ×3 (Ŵ

(0))⊺

//Updating
for I = 1, · · · , Imax do

for k = 1, 2 do
Û

(I)
k = Û

(I−1)
k − η

∂L(S(I−1),Û
(I−1)
1 ,Û

(I−1)
2 ,M̂(I−1))

∂Uk

Û
(I)
k = Pk(Û

(I)
k ), where Pk(·) is the projection operator for Uk

end for
Update F̂ (I), ẑ(I), M̂ (I), and Ŵ (I) via the nearest-neighbor search

Update Ŝ(I) = Ŝ(I−1) − η
∂L(S(I−1),Û

(I)
1 ,Û

(I)
2 ,M̂(I))

∂Ŝ(I−1)

end for
//Final results
Ŝ = Ŝ(Imax), Û1 = Û

(Imax)
1 , Û2 = Û

(Imax)
2 and M̂ = M̂ (Imax)

Output: Estimated the parameter tensor Θ̂ = Ŝ ×1 Û1 ×2 Û2 ×3 M̂

we focus on evaluating the performance in two metrics: 1)
estimation: the estimation accuracy for the parameter tensor
Θ (Section 5.1); 2) clustering: the correct recovery rate
of the membership M (Section 5.2). To begin with, we
provide a summary of the notation in Table 1.

Notation Definition

F Θ×1 (U1)
⊺ ×2 (U2)

⊺

S Θ̂×1 (U1)
⊺ ×2 (U2)

⊺ ×3 (W )⊺

W M(diag(1⊺
LM))−1

pmin pmin ≤ P(δi = 1,Yi,t,l = 1) ∀ i, t and l
wmin, wmax wmin ≤ π(a | Xi)

−1 ≤ wmax

r1, r2 number of latent unit and temporal factors
r3 number of groups for the treatments

Table 1. Summary of notation

5.1. Upper bound error for estimation

The estimation accuracy of Θ̂ is evaluated by its
deviation to Θ in Frobenius norm. First, we de-
fine two quantities Lα and γα to control the steep-
ness and convexity of the link function f(·), where
Lα = sup|θ|≤α [f ′(θ)/f(θ), f ′(θ)/{1− f(θ)}] and
γα = inf |θ|≤α[{f ′(θ)}2/f2(θ)− f ′′(θ)/f(θ), f ′′(θ)/{1−
f(θ)}+ {f ′(θ)}2/{1− f(θ)}2], where f ′(θ) = df(θ)/dθ.

Theorem 5.1 establishes the upper bound of the estimation
error of Θ̂.

Theorem 5.1. Under Assumptions A1) to A4) and some
regularity conditions, suppose Y is the binary tensor char-
acterized by the parameter tensor Θ as model (2) with the
link function f(·). Let Θ̂ be the local maximizer of (4), there
exist constants c0, C0, C1 and C2, such that with probability
greater than 1− c0(N + T + L)−2, we have

∥Θ̂−Θ∥2F
NT

≤ C0
∥Θ∥2max

Npmin
log(N + T + L)

∨ C1
L2
α

γ2
α

w2
max

w2
min

r1r2r3(N ∨ T )

NTp2min max(r1, r2, r3)
log2(N + T + L)

∨ C2
r1r2r3(N ∨ T )∥Θ∥2max

NTp2min max(r1, r2, r3)
log(N + T + L).

Theorem 5.1 shows that the upper bound for estimation error
converges to zero as the sample size N increases; see Ap-
pendix for the experimental evidence. The parameter pmin

plays an important role in our theoretical analysis as the
recovery of Θ will be harder when pmin becomes smaller.
Intuitively, if pmin is too small, it is unlikely to observe
the churn statuses for all the customers and thus recover-
ing their churn patterns will be impossible. Furthermore,
the estimation error for the survival probabilities is also
bounded if f(·) satisfies the local Lipschitz condition, that

6



Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

is, ∥f(Θ̂)− f(Θ)∥F ≤ c1∥Θ̂−Θ∥F for some constant c1.
Below, we present a special case of Theorem 5.1 under the
logistic link function.
Corollary 5.2. Assume the logistic model for Yi,t,l with
link function f(θ) = eθ/σ/(1 + eθ/σ), it can be shown that

L2
α/γ

2
α =

(1 + eα/σ)4σ2

e2α/σ
=

(
2 + eα/σ +

1

eα/σ

)2

σ2.

Further, suppose wmin ≍ wmax, pmin is bounded and
∥Θ∥max ≍ σ, the estimation error in Theorem 5.1 becomes

∥Θ̂−Θ∥2F
NT

≲
r1r2r3(N ∨ T )

NT max(r1, r2, r3)

× (σ2 ∨ ∥Θ∥2max)poly log(N + T + L),

(6)

where poly log(·) is a certain polynomial of the logarithmic
function. This non-asymptotic bound (6) is similar to the
risk bound in Theorem 3, Xia et al. (2021).

5.2. Upper bound error for clustering

Next, we examine the clustering accuracy of our proposed
model for the third mode. The most common metric to
assess the clustering performance is the classification er-
ror rate, defined by h(c,d) = minπ∈Πr3

∑L
l=1 1{cl ̸=

π(d)l}/L, for two label vectors c = (c1, · · · , cL)⊺ and
d = (d1, · · · , dL)⊺, where Πr3 is the collection of all per-
mutations of {1, · · · , r3}. Let ẑ be the estimated clustering
labels, we claim that ẑ is a consistent clustering for z if
P{h(ẑ, z) > ε} → 0 when the sample size N goes to in-
finity for any ε > 0. In order to facilitate our theoretical
analysis, we introduce the concept of misclassification loss:

g(c,d) = min
π∈Πr3

1

L

L∑

l=1

∥M(3)(S)(c)l,:−M(3)(S)π(d)l,:∥22,

which is a more convenient measure compared to h(c,d).
Moreover, a close relationship between h(c,d) and g(c,d)
can be formulated as h(c,d) ≤ g(c,d)/∆2

min (Lemma 1,
Han et al. (2022)), which implies that it suffices to bound
g(c,d) for establishing the clustering consistency.
Theorem 5.3. Under the same condition in Theorem 5.1.
Assume the signal-to-noise ratio (SNR) satisfies

SNR =
∆2

min

∥Θ∥2max ∨ (L2
α/γ

2
α)

≳
w2

max(N ∨ T )r21r
2
2r3µ

2
0 log

2(N + T + L)

w2
minp

2
minNTLmax(r1, r2, r3)

,

where ∆min measures the minimum separation of the pro-
jected block means, and µ0 measures the incoherence of Θ;
see details in the Appendix. There exists a constant c0, such
that, with probability greater than 1− c0(N + T + L)−2,

h(ẑ, z) ≤ g(ẑ, z)/∆2
min ≲

∥Θ∥2max ∨ (L2
α/γ

2
α)

∆2
min(N + T + L)2

.

The notion of SNR under the proposed model is quantified
by the minimum gaps between the projected means on the
third mode, i.e., ∆min, over the level of noises induced by
the parameter tensor and the Bernoulli model (2). If the
SNR is large enough as stated in Theorem 5.3, the consis-
tency of the clustering will be established; see Appendix for
the experimental evidence. A similar SNR condition also
appears in Theorem 2, Han et al. (2022).

6. Numerical studies
In this section, we examine the performance of our pro-
posed model under various settings. For starter, the base-
line covariates X ∈ RN×d are generated by Xi

i.i.d.∼
N (0, Id) with d = 3. We generate the true parame-
ter tensor Θ with each entry θi,t,l defined by: θi,t,l =
(X⊺

i ηN ) · (tηT /T ) · cum{(l)2}ηL, where ηN = (1, 1, 1),
ηT = 1, ηL = 1, and cum{(l)2} indicates the number
of active treatments in (l)2. The potential outcome Yi,t,l

is generated sequentially with the conditional probability
P (Yi,t,l = 1 | Yi,t−1,l = 1,Xi) = expit(θi,t,l) when
Yi,t−1,l = 1 and Ai = (l)2; otherwise, Yi,t,l = 0 by
definition. The lifetime for each customer i is computed
by Timei =

∑T
t=1

∑L
l=1 1{Ai = (l)2}Yi,t,l, and we ran-

domly select 20% patients to be right-censored with random
censoring time uniformly drawn from [0,Timei]. Next, each
entry of the k-dimensional binary treatment vector Ai is
generated independently for j = 1, · · · , k:

Ai,j | Xi ∼ Bernoulli
{

exp(α⊺
AXi)

1 + exp(α⊺
AXi)

}
,

where αA = (.5, .5, .5). The CBPS method in Section 4.1 is
utilized for propensity score estimation with the basis func-
tions b(X) being the first moment of X . We consider the
setting where T = 5, 10, N = 100, 300, 500, 1000, 2000,
and k = 2, 3, 4. All simulation results are reported based
on 100 data replications.

One primary goal for the customer churn analysis is to
identify the optimal treatment that leads to the longest cus-
tomer retention time. With the estimated parameter tensor
Θ̂, one can find the individual optimal treatment D̂i,opt by
maxl

∑T
t=1

∏t
s=1 expit(θ̂i,s,l), which maximize the esti-

mated expected lifetime for each customer i. We showcase
the effectiveness of our proposed model for identifying the
optimal treatment compared with other methods. In par-
ticular, we consider the competitive methods within two
categories. 1) binary classification: logistic regression clas-
sifier (logit), random forest classifier (RF), neural network
classifier (NN), support vector machine (SVM), gradient-
boosted classifier (gradBoost), adaptive boosting classifier
(AdaBoost), and a soft voting classifier combining all men-
tioned binary classifiers (Vote); 2) survival models: Cox pro-
portional hazard model (Cox-PH), survival random forest
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(surv-RF), gradient-boosted Cox PH model with regression
trees as base learners (Cox-modelBoost), gradient boosting
with component-wise least squares as base learners (Cox-
gradBoost). The hyperparameters for these algorithms are
chosen by default from packages sklearn and sksurv.

We assess the performance by the cumulative regret and deci-
sion accuracy using the true optimal treatment Di,opt; more
definitions are deferred to the Appendix. Specifically, cumu-
lative regret is defined as the average difference between the
survival probabilities evaluated under the estimated and the
true optimal treatments summing over all the time points.
Therefore, the regret captures how the estimated incorrect
decisions impair the outcome. The decision accuracy de-
scribes the proportion of estimated optimal treatment that
matches the true optimal treatment. We evaluate different
methods by their cumulative regrets and decision accuracy
(Figure 2) for varying N , T and k. One can observe the
proposed model outperforms the other methods by large
margins in all cases.

Method
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RF
NN

SVM
gradBoost
AdaBoost

Vote
Cox−PH
surv−RF

Cox−gradBoost
Cox−modelBoost
Proposed
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Figure 2. Cumulative regret (top) and decision accuracy (bot-
tom) of the proposed method and other competitors when N =
100, 300, 500, 1000, 2000, T = 5, 10 and k = 2, 3.

7. Real-data application
In this section, we apply our proposed method to one bank
customer churn data from a Kaggle competition1. Four im-
portant indicators of customer loyalty are considered: card
types (0 for Silver and Gold, and 1 for Platinum and Dia-
mond), the number of bank products (0 for only one product,
and 1 for more than one), whether the customer has com-
plained or not, and the post-complaint scores (0 for rates
less than 3, and 1 otherwise). It is known that companies
might employ different interventions based on different sub-
groups of customers to avoid customer churn. Therefore, we
formulate the binary treatment vector Ai according to these
indicators. Next, we consider eight customer characteris-
tics Xi, including age, gender, geography, estimated salary,
account balance, earned credit points, and two customer
characteristic indicators: whether or not the customers have
credit cards and whether or not the customers are active.
The customer retention time Yi is measured by the number
of years that the customers have engaged with the bank
and the churn status δi is an indicator of whether or not the
customers left the bank.

For the model training, we divide the dataset into 80%
training data and 20% test data, implementing 5-fold cross-
validation. Continuous variables are standardized, and cate-
gorical variables are one-hot encoded. The goodness-of-fit
metrics for assessing different methods are the concordance
index (C-index) and the average time-dependent area under
the curve (AUC). C-index, a widely used index for survival
analysis, examines the performance by the fraction of pairs
whose predicted retention times have the correct order com-
pared to their observed retention times in the test set. The
time-dependent ROC curve evaluates the model’s ability to
distinguish the customers who exit by a given time t from
those who exit after t. Table 2 compares the results of our
method with other methods in terms of their goodness-of-
fit. In conclusion, our proposal performs well, exhibiting
notably superior performance compared to other methods.

To better explore the homogeneity of the intervention ef-
fect, we estimate the expected customer lifetime within
each intervention group under our model. Figure 3 shows
that the customers with more bank products tend to have
longer retention times. This finding aligns with our expecta-
tions, as customers associated with more bank products are
more loyal and inclined to remain engaged with the com-
pany. Conversely, customers who have fewer bank products
and complained previously exhibit the shortest customer
lifetimes regardless of their post-complaint scores. Hence,
these customers are more likely to leave the company. Given
the higher cost involved in acquiring new customers rather
than retaining the existing ones, our churn analysis alerts

1https://www.kaggle.com/datasets/radheshyamkollipara/bank-
customer-churn.
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C-index (↑) average AUC (↑)

logit 0.19 ± 0.08 0.43 ± 0.04
RF 0.44 ± 0.01 0.46 ± 0.01
NN 0.31 ± 0.02 0.36 ± 0.01
SVM 0.49 ± 0.04 0.47 ± 0.12
gradBoost 0.50 ± 0.01 0.47 ± 0.02
AdaBoost 0.45 ± 0.03 0.39 ± 0.04
Vote 0.44 ± 0.01 0.39 ± 0.03
Cox-PH 0.30 ± 0.01 0.30 ± 0.01
surv-RF 0.46 ± 0.01 0.40 ± 0.01
Cox-gradBoost 0.43 ± 0.01 0.40 ± 0.01
Cox-modelBoost 0.46 ± 0.01 0.42 ± 0.01
Proposed 0.58 ± 0.02 0.57 ± 0.02

Table 2. Evaluation metrics on the bank customer churn data.

the need for the company to design retention campaigns
targeting the customers with fewer bank products who have
raised complaints before.

Card Type

Number of Products

Complaint

Post−complaint Score

low median high
Estimated Customer Lifetime

 0
1

Figure 3. Estimated intervention structure by the proposed model
for the bank customer churn data. All interventions are clustered
by blocks and ordered by their expected customer lifetimes.

8. Discussion
In this paper, we focus on the causal analysis of the customer
churn problem with multiple interventions. In particular,
we adopt the idea of 1-bit tensor completion to estimate the
survival probabilities under all interventions. Moreover, we
propose the tensorized latent factor block hazard model to
cluster the interventions with similar impacts. This model
enables us to identify the optimal intervention group, which
improves the practicality of implementing the optimal re-
tention strategies in practice. The proposed method can
be extended into several aspects. First, we only consider
the time-invariant treatment in this paper. When treatment
is time-varying, two classes of models namely marginal
structural models (Yang et al., 2018) and structural failure
time models (Yang et al., 2020) are useful, which, how-
ever, often posit parametric structural model assumptions.
The proposed framework can be extended to this setting by
expanding the treatment mode. Second, our current identifi-
cation assumption requires the treatment ignorability in the
sense that all confounders are captured and adjusted. One in-

teresting future direction is to extend the current framework
under the latent ignorability of treatment assignment in the
sense that treatment ignorability holds when conditioning
on the latent factors (Lewis & Syrgkanis, 2021; Agarwal &
Syrgkanis, 2022).

Software and Data
Our Python codes with illustrative examples are avail-
able at https://github.com/Gaochenyin/
Low-Rank-Tensor-Block-Hazard-Model

Acknowledgements
We would like to thank the anonymous (meta-)reviewers of
ICML 2024 for helpful comments. This work is partially
supported by the U.S. National Science Foundation and
National Institute of Health.

Impact Statement
This paper presents work aimed at predicting customer
churn and developing informed strategies to improve cus-
tomer retention. The potential societal consequences of this
work could be significant, including fostering more sustain-
able business practices, enhancing customer satisfaction,
promoting economic stability by reducing the frequency of
business failures, and contributing to higher levels of service
quality and consumer trust in various industries.

References
Agarwal, A. and Syrgkanis, V. Synthetic blip effects: Gen-

eralizing synthetic controls for the dynamic treatment
regime. arXiv preprint arXiv:2210.11003, 2022.

Agarwal, A., Shah, D., and Shen, D. Synthetic interventions.
arXiv preprint arXiv:2006.07691, 2020.

Agarwal, A., Dahleh, M., Shah, D., and Shen, D. Causal
matrix completion. arXiv preprint arXiv:2109.15154,
2021.

Ashraphijuo, M. and Wang, X. Union of low-rank tensor
spaces: Clustering and completion. Journal of Machine
Learning Research, 21:1–36, 2020.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and
Khosravi, K. Matrix completion methods for causal panel
data models. Journal of the American Statistical Associa-
tion, 116:1–15, 2021.

Binder, H., Allignol, A., Schumacher, M., and Beyersmann,
J. Boosting for high-dimensional time-to-event data with
competing risks. Bioinformatics, 25:890–896, 2009.

9

https://github.com/Gaochenyin/Low-Rank-Tensor-Block-Hazard-Model
https://github.com/Gaochenyin/Low-Rank-Tensor-Block-Hazard-Model


Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

Buckinx, W., Verstraeten, G., and Van den Poel, D. Pre-
dicting customer loyalty using the internal transactional
database. Expert systems with applications, 32:125–134,
2007.

Cai, C., Li, G., Poor, H. V., and Chen, Y. Nonconvex
low-rank tensor completion from noisy data. Operations
Research, 70:1–19, 2021.

Cai, T. and Zhou, W.-X. A max-norm constrained mini-
mization approach to 1-bit matrix completion. Journal of
Machine Learning Research, 14:3619–3647, 2013.

Candès, E. J. and Recht, B. Exact matrix completion via con-
vex optimization. Foundations of Computational Mathe-
matics, 9:717–772, 2009.

Cao, Y., Zhang, A., and Li, H. Multisample estimation
of bacterial composition matrices in metagenomics data.
Biometrika, 107:75–92, 2020.

Ching, T., Zhu, X., and Garmire, L. X. Cox-nnet: an arti-
ficial neural network method for prognosis prediction of
high-throughput omics data. PLoS computational biology,
14:e1006076, 2018.

Coussement, K. and Van den Poel, D. Churn prediction in
subscription services: An application of support vector
machines while comparing two parameter-selection tech-
niques. Expert systems with applications, 34:313–327,
2008.

Davenport, M. A., Plan, Y., Van Den Berg, E., and Wootters,
M. 1-bit matrix completion. Information and Inference:
A Journal of the IMA, 3:189–223, 2014.

Gandy, S., Recht, B., and Yamada, I. Tensor completion
and low-n-rank tensor recovery via convex optimization.
Inverse Problems, 27:025010, 2011.

Gao, C. and Zhang, A. Y. Iterative algorithm for discrete
structure recovery. The Annals of Statistics, 50:1066–
1094, 2022.

Ghadermarzy, N., Plan, Y., and Yilmaz, O. Learning tensors
from partial binary measurements. IEEE Transactions on
Signal Processing, 67:29–40, 2018.

Hainmueller, J. Entropy balancing for causal effects: A
multivariate reweighting method to produce balanced
samples in observational studies. Political Analysis, 20:
25–46, 2012.

Han, R., Luo, Y., Wang, M., and Zhang, A. R. Exact clus-
tering in tensor block model: Statistical optimality and
computational limit. Journal of the Royal Statistical Soci-
ety Series B: Statistical Methodology, 84(5):1666–1698,
2022.

Ibriga, H. S. and Sun, W. W. Covariate-assisted sparse
tensor completion. Journal of the American Statistical
Association, 118:2605–2619, 2023.

Imai, K. and Ratkovic, M. Covariate balancing propensity
score. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 76:243–263, 2014.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and
Lauer, M. S. Random survival forests. The Annals of
Applied Statistics, 2:841 – 860, 2008. doi: 10.1214/
08-AOAS169. URL https://doi.org/10.1214/
08-AOAS169.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment rec-
ommender system using a cox proportional hazards deep
neural network. BMC medical research methodology, 18:
1–12, 2018.

Kolda, T. G. and Bader, B. W. Tensor decompositions and
applications. SIAM Review, 51:455–500, 2009.

Laber, E. B., Lizotte, D. J., and Ferguson, B. Set-valued
dynamic treatment regimes for competing outcomes. Bio-
metrics, 70:53–61, 2014.

Larivière, B. and Van den Poel, D. Investigating the role
of product features in preventing customer churn, by us-
ing survival analysis and choice modeling: The case of
financial services. Expert Systems with Applications, 27:
277–285, 2004.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces: Isoperimetry and Processes, volume 23. Springer
Science & Business Media, 1991.

Lee, D., Yang, S., and Wang, X. Doubly robust estimators
for generalizing treatment effects on survival outcomes
from randomized controlled trials to a target population.
Journal of Causal Inference, 10:415–440, 2022.

Lee, D., Yang, S., Dong, L., Wang, X., Zeng, D., and Cai,
J. Improving trial generalizability using observational
studies. Biometrics, 79:1213–1225, 2023.

Lewis, G. and Syrgkanis, V. Double/debiased machine
learning for dynamic treatment effects. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 22695–22707, 2021.

Liu, J., Musialski, P., Wonka, P., and Ye, J. Tensor comple-
tion for estimating missing values in visual data. IEEE
transactions on pattern analysis and machine intelligence,
35:208–220, 2012.

10

https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169


Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

Liu, Y., Wang, Y., Kosorok, M. R., Zhao, Y., and Zeng, D.
Augmented outcome-weighted learning for estimating op-
timal dynamic treatment regimens. Statistics in Medicine,
37:3776–3788, 2018.

Lu, J. Predicting customer churn in the telecommunications
industry—-an application of survival analysis modeling
using sas. SAS User Group International (SUGI27) On-
line Proceedings, 114:27, 2002.

Lu, N., Lin, H., Lu, J., and Zhang, G. A customer churn pre-
diction model in telecom industry using boosting. IEEE
Transactions on Industrial Informatics, 10:1659–1665,
2012.

Luo, Z., Qi, L., and Toint, P. L. Tensor bernstein concentra-
tion inequalities with an application to sample estimators
for high-order moments. Frontiers of Mathematics in
China, 15:367–384, 2020.

Ma, H., Zeng, D., and Liu, Y. Learning individualized treat-
ment rules with many treatments: A supervised clustering
approach using adaptive fusion. Advances in Neural In-
formation Processing Systems, 35:15956–15969, 2022.

Ma, Z., Ma, Z., and Yuan, H. Universal latent space model
fitting for large networks with edge covariates. Journal
of Machine Learning Research, 21:86–152, 2020.

Mandal, D. and Parkes, D. Weighted tensor comple-
tion for time-series causal inference. arXiv preprint
arXiv:1902.04646, 2019.

Mao, X., Wang, Z., and Yang, S. Matrix completion un-
der complex survey sampling. Annals of the Institute of
Statistical Mathematics, 75:463–492, 2023.

Mao, X., Wang, H., Wang, Z., and Yang, S. Mixed matrix
completion in complex survey sampling under hetero-
geneous missingness. Journal of Computational and
Graphical Statistics, pp. 1–19, 2024.

Massart, P. About the constants in talagrand’s concentra-
tion inequalities for empirical processes. The Annals of
Probability, 28:863–884, 2000.

Maystre, L. and Russo, D. Temporally-consistent survival
analysis. Advances in Neural Information Processing
Systems, 35:10671–10683, 2022.

Mishra, A. and Reddy, U. S. A novel approach for churn pre-
diction using deep learning. In 2017 IEEE international
conference on computational intelligence and computing
research (ICCIC), pp. 1–4. IEEE, 2017.

Ning, Y., Sida, P., and Imai, K. Robust estimation of causal
effects via a high-dimensional covariate balancing propen-
sity score. Biometrika, 107:533–554, 2020.

Pan, Y. and Zhao, Y.-Q. Improved doubly robust estimation
in learning optimal individualized treatment rules. Jour-
nal of the American Statistical Association, 116:283–294,
2021.

Pearl, J. Causal inference in statistics: An overview. John
Wiley & Sons, 2009.

Qian, M. and Murphy, S. A. Performance guarantees for
individualized treatment rules. Annals of statistics, 39:
1180, 2011.

Rubin, D. B. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology, 66:688, 1974.

Rudd, D. H., Huo, H., and Xu, G. Causal analysis of cus-
tomer churn using deep learning. In 2021 International
Conference on Digital Society and Intelligent Systems
(DSInS), pp. 319–324. IEEE, 2021.

Tomioka, R., Hayashi, K., and Kashima, H. Estimation of
low-rank tensors via convex optimization. arXiv preprint
arXiv:1010.0789, 2010.

Tsiatis, A. A. Semiparametric theory and missing data.
Springer, 2006.

Tucker, L. R. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279–311, 1966.

Umayaparvathi, V. and Iyakutti, K. Automated feature se-
lection and churn prediction using deep learning models.
International Research Journal of Engineering and Tech-
nology (IRJET), 4:1846–1854, 2017.

Van der Laan, M. J. and Rose, S. Targeted learning:
causal inference for observational and experimental data.
Springer Science & Business Media, 2011.

Wang, M. and Li, L. Learning from binary multiway data:
Probabilistic tensor decomposition and its statistical opti-
mality. Journal of Machine Learning Research, 21, 2020.

Xia, D. and Yuan, M. On polynomial time methods
for exact low rank tensor completion. arXiv preprint
arXiv:1702.06980, 2017.

Xia, D., Yuan, M., and Zhang, C.-H. Statistically optimal
and computationally efficient low rank tensor completion
from noisy entries. The Annals of Statistics, 49:76–99,
2021.

Xie, Y., Li, X., Ngai, E., and Ying, W. Customer churn pre-
diction using improved balanced random forests. Expert
Systems with Applications, 36:5445–5449, 2009.

Yang, S. Semiparametric Estimation of Structural Nested
Mean Models with Irregularly Spaced Longitudinal Ob-
servations. Biometrics, 78:937–949, 04 2021.

11



Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

Yang, S., Imbens, G. W., Cui, Z., Faries, D. E., and Kadzi-
ola, Z. Propensity score matching and subclassification
in observational studies with multi-level treatments. Bio-
metrics, 72:1055–1065, 2016.

Yang, S., Tsiatis, A. A., and Blazing, M. Modeling survival
distribution as a function of time to treatment discontinu-
ation: A dynamic treatment regime approach. Biometrics,
74:900–909, 2018.

Yang, S., Pieper, K., and Cools, F. Semiparametric estima-
tion of structural failure time models in continuous-time
processes. Biometrika, 107:123–136, 2020.

Yu, Y., Wang, T., and Samworth, R. J. A useful variant of
the davis–kahan theorem for statisticians. Biometrika,
102:315–323, 2015.

Zhang, R., Li, W., Tan, W., and Mo, T. Deep and shallow
model for insurance churn prediction service. In 2017
IEEE International Conference on Services Computing
(SCC), pp. 346–353. IEEE, 2017.

Zhao, L. and Feng, D. Deep neural networks for survival
analysis using pseudo values. IEEE journal of biomedical
and health informatics, 24:3308–3314, 2020.

Zhu, X., Yao, J., and Huang, J. Deep convolutional neural
network for survival analysis with pathological images. In
2016 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 544–547. IEEE, 2016.

12



Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

A. Additional Numerical Experiments
A.1. Convergence analysis for estimation and clustering

We first assess the effectiveness of the proposed model in recovering the parameter tensor Θ. The performance is evaluated
by the normalized tensor mean squared error as ℓ2(Θ̂) = ∥Θ̂ − Θ∥2F /∥Θ∥2F , and the classification error rate. Figure A1
shows that the estimation and clustering errors decrease as the sample size N increases. This shows that larger sample sizes
enhance the performance of the proposed model, which corroborates our theoretical results in Theorems 5.1 and 5.3.

Treatment Number 2^2 2^3 2^4

T: 5 T: 10

500 1000 1500 2000 500 1000 1500 2000

0.20

0.25

0.30

0.35

0.40

N

E
st

im
at

io
n 

E
rr

or

T: 5 T: 10

500 1000 1500 2000 500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

N

M
is

cl
as

si
fic

at
io

n 
R

at
e

Figure A1. Normalized mean squared error (left) and the misclassification error rate (right) when T = 5 and N =
100, 300, 500, 1000, 2000 over 100 data replications.

Since the parameter tensor Θ is estimated, the average survival function S(a)(t) under any treatment can be obtained by
Ŝ(a)(t) = N−1

∑N
i=1

∏t
s=1 expit(θ̂i,s,l). In particular, we plot the average estimated survival functions for all treatments

over100 data replications when N = 1000 to assess the clustering results in Figure A2. The results imply that the more
active treatments one receives, the higher the survival probabilities will be, which aligns with our data generation process of
θi,t,l as it relies on the number of active treatments cum{(l)2}.
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Figure A2. Plot of the average estimated survival probabilities for all treatments when N = 1000, T = 10, k = 2 (left) and k = 3 (right)
over 100 data replications.

Next, we provide the complexity of the algorithm by presenting the running time and the normalized tensor mean squared
errors ℓ2 for our numerical experiments. Empirically, we present the results in Table A1 for both the 10000-iteration and
1000-iteration projected gradient descent algorithms. In summary, the running time of the proposed framework is linear
with respect to N , T , k, and the number of iterations, which aligns with the theory for the gradient descent algorithm.
Additionally, we suggest using the 1000-iteration projected gradient descent if saving time is a priority (the running time is
significantly reduced), as the performance, in terms of normalized tensor mean squared error, does not decrease significantly
when reducing the number of iterations from 10000 to 1000. All experiments are conducted on a computer with an Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz and 32GB RAM.
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N T k running time(10000) running time(1000) ℓ
(10000)
2 ℓ

(1000)
2

100 5 2 23.95 (0.7) 1.86 (0.09) 0.42 (0.07) 0.57 (0.02)
100 5 3 21.49 (1.18) 2.05 (0.13) 0.31 (0.07) 0.59 (0.03)
100 10 2 26.14 (0.47) 1.79 (0.05) 0.44 (0.06) 0.54 (0.03)
100 10 3 19.53 (0.73) 1.91 (0.21) 0.43 (0.09) 0.6 (0.03)
300 5 2 35.18 (1.4) 3.54 (0.16) 0.24 (0.03) 0.53 (0.02)
300 5 3 32.10 (3.66) 3.28 (0.28) 0.21 (0.03) 0.47 (0.05)
300 10 2 35.46 (1.48) 3.40 (0.11) 0.31 (0.05) 0.52 (0.02)
300 10 3 39.49 (3.34) 5.34 (0.22) 0.29 (0.05) 0.51 (0.04)
500 5 2 43.20 (3.01) 5.29 (0.19) 0.20 (0.02) 0.48 (0.02)
500 5 3 46.93 (10.18) 5.30 (0.31) 0.20 (0.03) 0.36 (0.05)
500 10 2 58.33 (1.96) 4.78 (0.19) 0.25 (0.04) 0.48 (0.03)
500 10 3 60.42 (7.21) 6.96 (0.19) 0.26 (0.04) 0.42 (0.06)
1000 5 2 90.55 (19.42) 11.48 (0.74) 0.19 (0.01) 0.36 (0.03)
1000 5 3 125.23 (28.41) 10.91 (0.41) 0.19 (0.01) 0.24 (0.02)
1000 10 2 124.75 (12.86) 13.33 (0.72) 0.23 (0.02) 0.41 (0.02)
1000 10 3 103.95 (27.14) 14.29 (0.58) 0.24 (0.03) 0.3 (0.03)
2000 5 2 234.79 (71.89) 24.28 (1.42) 0.18 (0.01) 0.24 (0.02)
2000 5 3 239.01 (48.26) 28.42 (1.88) 0.17 (0.01) 0.19 (0.01)
2000 10 2 266.46 (60.08) 35.39 (2.26) 0.21 (0.02) 0.29 (0.03)
2000 10 3 266.57 (91.04) 35.37 (1.38) 0.22 (0.02) 0.24 (0.01)

Table A1. Average running time in second and normalized tensor mean squared error (with standard error in the parenthesis) for the
10000-iteration and 1000-iteration projected gradient descent algorithm over 100 replicated experiments.

Lastly, the cumulative regret and decision accuracy for model comparison are defined by:

regret(D̂opt, Dopt) = N−1
N∑

i=1

T∑

t=1

(Pi,t,Di,opt − Pi,t,D̂i,opt
), acc(D̂opt, Dopt) = N−1

N∑

i=1

1(Di,opt = D̂i,opt).

A.2. Ablation analysis

In this section, we conduct the ablation studies to assess the effectiveness of our proposed framework. In particular, the
mean squared error ℓgroup-w

2 of the proposed framework is compared with other losses yielded by omitting three components
individually:

1) The latent factor structures U1 and U2: compare with the loss ℓGLM-w
2 yielded by the logistic regression model stratified

by the true membership of the treatments.

2) The grouping structure M : compare with the loss ℓfactor-w
2 yielded by the latent factor model with the membership

matrix M replacing by a latent factor matrix U3.

3) The inverse probability treatment weighting (IPTW): compare with the loss ℓgroup
2 yielded by the unweighted minimiza-

tion under the same latent factor block model.

Table A2 presents the ablation studies with the smallest normalized tensor mean squared error bolded, leading to the
following conclusions: 1) The comparison of the proposed framework versus others highlights the advantages of leveraging
latent factors across units and time for estimation; 2) The IPTW noticeably improves the results when the sample size N is
small; 3) The hazard model adopting the grouping structure is particularly beneficial when the sample size is small. This is
reasonable, as there may not be enough observations for certain treatments due to the limited sample size, and grouping
treatments with homogeneous effects can enhance the estimation.
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N T k ℓGLM-w
2 ℓfactor-w

2 ℓgroup
2 ℓgroup-w

2

100 5 2 0.53 (0.02) 0.58 (0.02) 0.54 (0.03) 0.42 (0.07)
100 10 2 0.54 (0.03) 0.54 (0.03) 0.51 (0.03) 0.44 (0.06)
100 5 3 0.56 (0.02) 0.62 (0.02) 0.57 (0.03) 0.31 (0.07)
100 10 3 0.58 (0.03) 0.61 (0.03) 0.57 (0.03) 0.43 (0.09)
300 5 2 0.51 (0.01) 0.54 (0.02) 0.41 (0.03) 0.24 (0.03)
300 10 2 0.53 (0.02) 0.52 (0.02) 0.43 (0.03) 0.31 (0.05)
300 5 3 0.54 (0.01) 0.51 (0.05) 0.39 (0.03) 0.21 (0.03)
300 10 3 0.58 (0.01) 0.55 (0.04) 0.42 (0.04) 0.29 (0.05)
500 5 2 0.51 (0.01) 0.48 (0.03) 0.3 (0.03) 0.20 (0.02)
500 10 2 0.52 (0.01) 0.49 (0.03) 0.33 (0.04) 0.25 (0.04)
500 5 3 0.54 (0.01) 0.37 (0.06) 0.27 (0.03) 0.20 (0.03)
500 10 3 0.57 (0.01) 0.44 (0.07) 0.31 (0.03) 0.26 (0.04)
1000 5 2 0.51 (0.01) 0.31 (0.03) 0.21 (0.01) 0.19 (0.01)
1000 10 2 0.52 (0.01) 0.38 (0.04) 0.24 (0.01) 0.23 (0.02)
1000 5 3 0.54 (0.01) 0.18 (0.02) 0.2 (0.01) 0.19 (0.01)
1000 10 3 0.57 (0.01) 0.23 (0.04) 0.24 (0.01) 0.24 (0.03)
2000 5 2 0.5 (0.01) 0.15 (0.02) 0.18 (0.01) 0.18 (0.01)
2000 10 2 0.52 (0.01) 0.19 (0.03) 0.22 (0.01) 0.21 (0.02)
2000 5 3 0.53 (0.01) 0.16 (0.02) 0.18 (0.01) 0.17 (0.01)
2000 10 3 0.57 (0.01) 0.20 (0.03) 0.22 (0.01) 0.22 (0.02)

Table A2. Ablation analyses in terms of the normalized tensor mean squared error (with standard error in the parenthesis) over 100
replicated experiments

A.3. Additional real-data application

We provide an additional real-data application involving customer churn analysis of online retail to provide more empirical
evidence. The data2 are collected by an E-commerce company. Five important indicators for customer churn are considered:
total number of registered devices (0 if less than 3, and 1 otherwise), the total number of used coupons in the last month
(0 if less than the 50% quantile and 1 otherwise), the distance between warehouse to the customer (0 if less than the 50%
quantile and 1 otherwise), whether the customer has complained or not, and post-complaint scores (0 for rates less than 3,
and 1 otherwise). Next, we consider ten customer characteristics Xi, including gender, marital status, city tier, preferred
login device, preferred payment method, preferred order category, the total number of added addresses, percentage increases
in orders from the last year, days since last order and the average cashback in the last month. We evaluate the models using
the same cross-validation scheme as in Section 7, using the C-index and the average AUC to assess model performance. The
best is bolded, and the second best is underlined. Our proposed framework continues to perform well on this E-commerce
dataset based on these performance metrics.

B. Proofs
B.1. Assumptions

We first assume some regularity conditions to proceed with our illustrations of the theoretical results.

R1) (Positive Retention Probability) Let pi,t,l = P (δi = 1,Yi,t,l = 1 | Yi,t−1,l = 1), we have pmin ≤ pi,t,l for any i, t and
l;

R2) (Incoherent Tensor Parameter) Suppose U1 and U2 have orthonormal columns, there exists some constant µ0 such that

max

{
N

r1
∥U1∥22,∞,

T

r2
∥U2∥22,∞

}
≤ µ0, max

k∈{1,2,3}
∥M(k)(S)∥ ≤ ∥Θ∥max

√
NTL

µ
3/2
0 (r1r2r3)1/2

,

2https://www.kaggle.com/datasets/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction
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C-index (↑) average AUC (↑)
logit 0.33 ± 0.04 0.36 ± 0.03
RF 0.42 ± 0.01 0.37 ± 0.02
NN 0.40 ± 0.00 0.41 ± 0.01
SVM 0.27 ± 0.03 0.38 ± 0.04
gradBoost 0.37 ± 0.01 0.25 ± 0.01
AdaBoost 0.27 ± 0.02 0.37 ± 0.01
Vote 0.38 ± 0.01 0.22 ± 0.01
Cox-PH 0.37 ± 0.01 0.37 ± 0.01
surv-RF 0.35 ± 0.01 0.33 ± 0.01
Cox-gradBoost 0.23 ± 0.01 0.18 ± 0.01
Cox-modelBoost 0.23 ± 0.01 0.26 ± 0.01
Proposed 0.41 ± 0.03 0.44 ± 0.03

Table A3. Evaluation metrics on the E-commerce customer churn data.

where ∥U∥22,∞ = maxi ∥Ui,:∥2 and Ui,: is the i-th row vector of U .

R3) (Non-degenerate Separation) The projected block means of Θ is defined as S = Θ×1 U
⊺
1 ×2 U

⊺
2 ×3 W

⊺, where

∆2
min = ∆min(S)2 = min

i1 ̸=i2
∥M(3)(S)i1,: −M(3)(S)i2,:∥22 > 0.

R4) (Balanced Clustering) There exists generic positive constants c and C such that

cL/r3 ≤ |{l ∈ [L] : zl = a}| ≤ CL/r3, ∀a = 1, · · · , r3,

where | · | represents the cardinality of a set.

Assumption R1) requires each unit to have a non-zero probability of maintaining the subscription at each time point t. This
condition is necessary to establish the restricted strong convexity of the objective function l(Θ) in Section 5.1. Assumption
R2) entails that the loading matrices U1 and U2 should satisfy the incoherence condition, which is commonly imposed
in the matrix/tensor completion literature (Candès & Recht, 2009; Ma et al., 2020; Cao et al., 2020; Cai et al., 2021). In
particular, this condition indicates that each tensor entry contains a similar amount of information so that missing any of
them will not prevent us from being able to recover the entire tensor. In addition, we also require an upper bound on the
spectral norm of each matricization of the core tensor S , which leads to an entry-wise upper bound on the absolute value of
Θ together with the incoherence conditions. Assumption R3) requires that the projected mode-3 slices M(3)(S) should
have distinct rows; otherwise the number of the clustering size should be reduced to smaller. Assumption R4) is imposed to
control the spectral norm of M , and is widely used in mixture model clustering literature (Gao & Zhang, 2022; Han et al.,
2022).

B.2. Proof of Theorem 5.1

The objective function for maximization is

l(Θ) =
∑

i,t,l

wi1(Yi,t−1,l = 1)Yi,t,l log{f(θi,t,l)}

+
∑

i,t,l

δiwi1(Yi,t−1,l = 1)(1− Yi,t,l) log{1− f(θi,t,l)},
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where the link function f(θ) is monotonically increasing. We further assume that f(θ) + f(−θ) = 1, f ′(θ) = f ′(−θ) and
f ′′(θ) = −f ′′(−θ). It follows from the expression of l(Θ) that

∂l(Θ)

∂θi,t,l
= wi1(Yi,t−1,l = 1)Yi,t,l

f ′(θi,t,l)
f(θi,t,l)

− δiwi1(Yi,t−1,l = 1)(1− Yi,t,l)
f ′(θi,t,l)

1− f(θi,t,l)
,

∂l2(Θ)

∂θ2i,t,l
= −wi1(Yi,t−1,l = 1)Yi,t,l

[{f ′(θi,t,l)}2
f2(θi,t,l)

− f ′′(θi,t,l)
f(θi,t,l)

]

− δiwi1(Yi,t−1,l = 1)(1− Yi,t,l)

[
f ′′(θi,t,l)

1− f(θi,t,l)
+

{f ′(θi,t,l)}2
{1− f(θi,t,l)}2

]
.

Define

S(Θ) =

s
∂l(Θ)

∂θi,t,l

{
, H(Θ) =

s
∂l(Θ)

∂θi,t,l∂θi′,t′,l′

{
,

where S(Θ) and H(Θ) are the collection of the first and second derivatives of l(Θ). By the second-order Taylor’s Theorem,
we expand l(Θ̂) around the true parameter Θ and obtain

l(Θ̂) = l(Θ) + ⟨S(Θ), Θ̂−Θ∗⟩+ 1

2
vec(Θ̂−Θ∗)⊺H(Θ̃)vec(Θ̂−Θ∗), (7)

where Θ̃ = γΘ+ (1− γ)Θ̂ for some γ ∈ [0, 1], and

vec(Θ̂−Θ∗)⊺H(Θ̃)vec(Θ̂−Θ∗) =
∑

i,t,l

{
∂l2(Θ)

∂θ2i,t,l

∣∣∣∣
Θ=Θ̃

}
(θ̂i,t,l − θ∗i,t,l)

2.

Let

Lα = sup
|θ|≤α

[
f ′(θi,t,l)
f(θi,t,l)

,
f ′(θi,t,l)

1− f(θi,t,l)

]
, γα = inf

|θ|≤α

[{f ′(θi,t,l)}2
f2(θi,t,l)

− f ′′(θi,t,l)
f(θi,t,l)

,
f ′′(θi,t,l)

1− f(θi,t,l)
+

{f ′(θi,t,l)}2
{1− f(θi,t,l)}2

]
,

where α = ∥Θ∥max is the bound on the entry-wise magnitude of Θ. First, we bound the quadratic term in (7) as:

∑

i,t,l

{
∂l2(Θ)

∂θ2i,t,l

∣∣∣∣
Θ=Θ̃

}
(θ̂i,t,l − θ∗i,t,l)

2 ≤ −γαwmin

∑

i,t,l

δi1(Yi,t−1,l = 1)(θ̂i,t,l − θ∗i,t,l)
2.

Lemma B.1. Under the same conditions in Theorem 5.1 and ∥Θ̂ − Θ∥2F ≥ C0∥Θ∥2maxT log(N + T +K)/pmin, there
exists an constant c0, such that, with probability greater than 1− c0(N + T +K)−2,

∑

i,t,l

δi1(Yi,t−1,l = 1)(θ̂i,t,l − θ∗i,t,l)
2 ≥ pmin

2
∥∆Θ∥2F − 2ϑ,

where

ϑ =
C ′′r1r2r3(N ∨ T )

max(r1, r2, r3)pmin
∥Θ∥2max log(N + T +K).

By Lemma B.1, we have

l(Θ̂) ≤ l(Θ) + ⟨S(Θ), Θ̂−Θ⟩ − γαwminpmin

2
∥Θ̂−Θ∥2F + 2γαwminϑ,

where γαwminpmin/2 is curvature of l(Θ), and γαwminϑ is the tolerance term induced by the Rademacher complexity of
l(Θ). Next, we bound the linear term in (7) as:

|⟨S(Θ), Θ̂−Θ⟩| ≤ ∥S(Θ)∥ · ∥Θ̂−Θ∥∗

≤ ∥S(Θ)∥ · 2
√

r1r2r3
max(r1, r2, r3)

∥Θ̂−Θ∥F ,

where the last inequality is justified by Lemma 1, Wang & Li (2020).
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Lemma B.2. (Tensor Bernstein Inequality, Theorem 4.3, Luo et al. (2020)) Let Z1, · · · , ZN be independent tensor in
Rd×d×d, such that E (Zi) = 0 and ∥Zi∥ ≤ DZ for all i = 1, · · · , N . Let σ2

Z be such that

σ2
Z ≥ max

{∥∥∥∥∥E
(

N∑

i=1

Zi□
N∑

i=1

Zi

)∥∥∥∥∥ ,
∥∥∥∥∥E
(

N∑

i=1

Zi□
N∑

i=1

Zi

)∥∥∥∥∥

}
.

Then for any α ≥ 0

P



∥∥∥∥∥

N∑

i=1

Zi

∥∥∥∥∥

□

≥ α


 ≤ d2 exp

{ −α2

2σ2
Z + (2DZα) /3

}
,

where □ and □ are two generalized Einstein products of tensors.

From Lemma B.2, we know

P (∥S(Θ)∥ ≥ α) ≤ (N + T + L)2 exp

{
− α2

2σ2
S + (2DSα)/3

}
,

where

DS = wmaxLαT
1/2 log(N + T + L), σ2

S = w2
maxLα(N ∨ T ) log(N + T + L).

Hence, implies that

∥S(Θ)∥ ≤ wmax

√
Lα(N ∨ T ) log(N + T + L)

holds with probability greater than 1− c0(N + T + L)−2. Since Θ̂ is the local maximizer, i.e., Θ̂ = argmaxΘ l(Θ), we
have

0 ≤ l(Θ̂)− l(Θ) ≤ ⟨S(Θ), Θ̂−Θ⟩ − γαwminpmin

2
∥Θ̂−Θ∥2F + 2γαwminϑ,

which it gives us

∥Θ̂−Θ∥2F ≤ C1

γαwminpmin
∥S(Θ)∥ · ∥Θ̂−Θ∥∗

+
C2r1r2r3(N ∨ T )

max(r1, r2, r3)p2min

∥Θ∥2max log(N + T + L)

≤ C1

γαwminpmin
∥S(Θ)∥ ·

√
r1r2r3

max(r1, r2, r3)
∥Θ̂−Θ∥F

+
C2r1r2r3(N ∨ T )

max(r1, r2, r3)p2min

∥Θ∥2max log(N + T + L).

Therefore, with at least 1− c0(N + T +K)−2, we have ab ≤ (a2 + b2)/2 and

∥Θ̂−Θ∥2F ≤ C1wmaxLα

γαwminpmin

√
r1r2r3(N ∨ T )

max(r1, r2, r3)
log(N + T + L) · ∥Θ̂−Θ∥F

+
C2r1r2r3(N ∨ T )

p2min max(r1, r2, r3)
∥Θ∥2max log(N + T + L)

≤ C
′
1w

2
maxL

2
α

γ2
αw

2
minp

2
min

r1r2r3(N ∨ T )

max(r1, r2, r3)
log2(N + T + L) +

∥Θ̂−Θ∥2F
2

+
C2r1r2r3(N ∨ T )

p2min max(r1, r2, r3)
∥Θ∥2max log(N + T + L).
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To sum up, we conclude, with probability 1− c0(N + T + L)−2, we have

∥Θ̂−Θ∥2F ≤ C0∥Θ∥2max

T

pmin
log(N + T + L)

∨ C1
L2
α

γ2
α

w2
max

w2
min

r1r2r3(N ∨ T )

p2min max(r1, r2, r3)
log2(N + T + L)

∨ C2
r1r2r3(N ∨ T )

p2min max(r1, r2, r3)
∥Θ∥2max log(N + T + L).

B.3. Proof of Theorem 5.3

The proof of Theorem 5.3 is divided into several steps to ease the understanding.

B.3.1. STEP 1

We lay out some notations and technical Lemmas that will be useful for our main proof. First, we define the normalized
membership matrices W = M(diag(1⊺

LM))−1. Next, we define the estimators of the projected block mean S and the
projected mode-3 slices F by

F = Θ×1 U
⊺
1 ×2 U

⊺
2 , S = Θ×1 U

⊺
1 ×2 U

⊺
2 ×3 W

⊺,

F̂ = Θ̂×1 (Û1)
⊺ ×2 (Û2)

⊺, Ŝ = Θ̂×1 (Û1)
⊺ ×2 (Û2)

⊺ ×3 (Ŵ )⊺

F̃ = Θ̂×1 U
⊺
1 ×2 U

⊺
2 , S̃ = Θ̂×1 U

⊺
1 ×2 U

⊺
2 ×3 W

⊺.

Next, we define the matricizations of each tensor (S,F) for the mode 3 by

S = M(3)(S), Ŝ = M(3)(Ŝ), S̃ = M(3)(S̃),
F = M(3)(F) = M(3)(Θ)(U1 ⊗U2) = M(3)(Θ)V ,

F̂ = M(3)(F̂) = M(3)(Θ̂)(Û1 ⊗ Û2) = M(3)(Θ̂)V̂ ,

F̃ = M(3)(F̃) = M(3)(Θ̂)(U1 ⊗U2) = M(3)(Θ̂)V ,

where V = U1 ⊗U2 and V̂ = Û1 ⊗ Û2.
Lemma B.3. Under the same assumptions in Theorem 5.1, we have

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V ∥ ≲

r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

, (8)

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V̂ ∥ ≲

r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

+
κ2r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
L

, (9)

∥Ŵ ⊺
:,bM(3)(Θ̂)(V − V̂ )∥ ≲ κ2

√
r3/L∥Θ̂−Θ∥F , (10)

g(ẑ, z) ≲ ∆2
min/r3 (11)

√
r3/L ≲ λr3(W ) ≲ ∥W ∥ ≲

√
r3/L, (12)

√
L/r3 ≲ λr3(M) ≲ ∥M∥ ≲

√
L/r3, (13)

∥V̂ − V ∥ ≲
κ∥Θ̂−Θ∥F

λmin
, (14)

∥V̂ − V ∥2,max ≲
κ∥Θ̂−Θ∥F
min(δr1 , δr2)

. (15)

B.3.2. STEP 2

In our nearest neighbor search algorithm, the estimated clustering label vector ẑ should satisfy:

ẑl = arg min
a∈[r3]

∥F̂l,: − Ŝa,:∥22,
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for l = 1, · · · , L. Therefore, it is important to analyze the probably of the event:

1(ẑl = b) = 1
(
ẑl = b, ∥F̂l,: − Ŝb,:∥22 ≤ ∥F̂l,: − Ŝ(z)l,:∥22

)
. (16)

Assume zl = a, we can check ∥F̂l,: − Ŝb,:∥22 ≤ ∥F̂l,: − Ŝa,:∥22 is equivalent to

2⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −∥Sa,: − Sb,:∥2 + Fl(a, b; ẑ) +Gl(a, b; ẑ) +Hl(a, b),

where

F̂l = Fl(a, b; ẑ) = 2⟨M(3)(Θ̂−Θ)l,:V̂ , (S̃a,: − Ŝa,:)− (S̃b,: − Ŝb,:)⟩
+ 2⟨M(3)(Θ̂−Θ)l,:(V − V̂ ), S̃a,: − S̃b,:⟩,

Ĝl = Gl(a, b; ẑ) =
(
∥Θl:V̂ − Ŝa,:∥2F − ∥Θl:V̂ −W ⊺

:,aΘ̂V̂ ∥2F
)

−
(
∥Θl:V̂ − Ŝb,:∥2F − ∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F
)
,

Ĥl = Hl(a, b) = ∥Θl:V̂ −W ⊺
:,aΘ̂V̂ ∥2F − ∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F
+ ∥Sa,: − Sb,:∥2.

From these three error terms, the first two Fl(a, b; ẑ) and Gl(a, b; ẑ) are controlled by the differences between (Ŝ, F̂) and
(S̃, F̃), the last one Hl(a, b) is controlled by the differences between (S̃, F̃) and (S,F). If we ignore all these error terms,
the event 2⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −∥Sa,: − Sb,:∥2 will constitute the oracle statistical loss after applying our
algorithm if we are given the true label vector z. Then, we can show that

(ẑl = b) ⊂
{
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −1

4
∥Sa,: − Sb,:∥2

}

⋃{
ẑl = b,

1

2
∥Sa,: − Sb,:∥2 ≤ F̂l + Ĝl + Ĥl

}
.

Recall the definition of g(a, b), the misclassification loss for the estimated clustering label vector ẑ versus the truth will be:

g(ẑ, z) = min
π∈Πr3

1

L

L∑

l=1

∥Sa,: − Sπ(ẑ)l,:∥22

= min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

1{π(ẑ)l = b}∥Sa,: − Sb,:∥22

≤ min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

{1(E1) + 1(E2)} × ∥Sa,: − Sb,:∥22

= ĝ1 + ĝ2,

where

E1 =

{
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −1

4
∥Sa,: − Sb,:∥2

}
,

E2 =

{
ẑl = b,

1

2
∥Sa,: − Sb,:∥22 ≤ F̂l + Ĝl + Ĥl

}
.

The following steps (Step 3 and Step 4) aim to bound ĝ1 and ĝ2, respectively.

B.3.3. STEP 3

In this step, we focus on proving the upper bound for ĝ1 = minπ∈Πr3

∑L
l=1

∑r3
b=1 1(E1)∥Sa,: − Sb,:∥22/L. Recall that

E1 =

{
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −1

4
∥Sa,: − Sb,:∥2

}
,
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we can decompose the probability of event E1 into three parts:

P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −1

4
∥Sa,: − Sb,:∥2

)

≤P

(
⟨M(3)(Θ̂−Θ)l,:V ,Sa,: − Sb,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)

+ P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − Sa,:⟩ ≤ − 1

16
∥Sa,: − Sb,:∥2

)

+ P

(
⟨M(3)(Θ̂−Θ)l,:V ,Sb,: − S̃b,:⟩ ≤ − 1

16
∥Sa,: − Sb,:∥2

)
.

Lemma B.4. Under the same assumptions in Theorem 5.1, if the signal-to-noise ratio satisfies the condition in Theorem 5.3,
there exist generic constants c1 and c2 such that

P

(
⟨M(3)(Θ̂−Θ)l,:V ,Sa,: − Sb,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)
≤ c1

(N + T + L)2
,

P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − Sa,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)
≤ c1

(N + T + L)2
.

With Lemma B.4, we can bound the expectation of ĝ1 if the signal-to-noise ratio satisfies the condition in Theorem 5.3:

Eĝ1 = min
π∈Πr3

1

L

L∑

l=1

∑

b∈[r3]/a

P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − S̃b,:⟩ ≤ −1

4
∥Sa,: − Sb,:∥2

)
· ∥Sa,: − Sb,:∥22

≲ min
π∈Πr3

1

L

L∑

l=1

∑

b∈[r3]/a

exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
· ∥Sa,: − Sb,:∥22.

Since ∆2
min ≤ ∥Sa,: − Sb,:∥2 for any a, b ∈ [r3], it implies that

L∑

l=1

∑

b∈[r3]/a

∥Sa,: − Sb,:∥22 · exp
{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}

≲ {∥Θ∥2max ∨ (L2
α/γ

2
α)}

L∑

l=1

∑

b∈[r3]/a

∥Sa,: − Sb,:∥22
∥Θ∥2max ∨ (L2

α/γ
2
α)

· exp
{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}

≲ {∥Θ∥2max ∨ (L2
α/γ

2
α)}

L∑

l=1

∑

b∈[r3]/a

exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}

≲ {∥Θ∥2max ∨ (L2
α/γ

2
α)}L exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
.

By Markov inequality, it yields that

P

[
ĝ1 ≤ Eĝ1 · exp

{
c0
2

w2
minp

2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}]

≥ 1− exp

{
−c0

2

w2
minp

2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
.

Therefore, with probability at least 1− c(N + T + L)−2, we have

ĝ1 ≲ {∥Θ∥2max ∨ (L2
α/γ

2
α)} exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0{∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
,

for some constant c.
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B.3.4. STEP 4

This step aims to derive the upper bound for ĝ2 = minπ∈Πr3

∑L
l=1

∑r3
b=1 1(E2)∥Sa,: − Sb,:∥22/L, i.e., the deterministic

bounds for the error terms F̂l, Ĝl and Ĥl:

ĝ2 = min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

∥Sa,: − Sb,:∥22 · 1
{
ẑl = b,

1

2
∥Sa,: − Sb,:∥22 ≤ F̂l + Ĝl + Ĥl

}
.

Hereafter, we provide the deterministic upper bounds for F̂l, Ĝl and Ĥl, respectively.

(a) Upper bound for Fl(a, b; ẑ).

Fl(a, b; ẑ)
2 ≤ 8|⟨M(3)(Θ̂−Θ)l,:V̂ , (S̃a,: − Ŝa,:)− (S̃b,: − Ŝb,:)⟩|2

+ 8|⟨M(3)(Θ̂−Θ)l,:(V − V̂ ), S̃a,: − S̃b,:⟩|2

≤ 32∥M(3)(Θ̂−Θ)l,:V̂ ∥2max · max
b∈[K]

∥S̃b,: − Ŝb,:∥2F

+ 8∥M(3)(Θ̂−Θ)l,:(V − V̂ )∥2max · ∥S̃a,: − S̃b,:∥2

≤ 64
{
∥M(3)(Θ̂−Θ)l,:V ∥2max + ∥M(3)(Θ̂−Θ)l,:(V − V̂ )∥2max

}
· max
b∈[K]

∥S̃b,: − Ŝb,:∥22

+ 8∥M(3)(Θ̂−Θ)l,:(V − V̂ )∥2max · ∥S̃a,: − S̃b,:∥2, (17)

where

∥S̃b,: − Ŝb,:∥2F = ∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V + Ŵ ⊺

:,bM(3)(Θ̂)(V − V̂ )∥2

≤ 2∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V ∥2 + 2∥Ŵ ⊺

:,bM(3)(Θ̂−Θ)(V − V̂ )∥2

(8),(10)

≲

{
r3g(ẑ, z)

∆min

}2

+

{
µ0r

1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

}2

+
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL

≲ r3g(ẑ, z) +
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
, (18)

and

∥S̃a,: − S̃b,:∥2 = ∥S̃a,: − Sa,: + Sa,: − Sb,: + Sb,: − S̃b,:∥2

≤ 3∥Sa,: − Sb,:∥2 + 6 max
a∈[r3]

∥S̃a,: − Sa,:∥2

= 3∥Sa,: − Sb,:∥2 + 6 max
a∈[r3]

∥W ⊺
:,aM(3)(Θ̂−Θ)V ∥2

≲ ∥Sa,: − Sb,:∥2 + ∥W:,a∥2 · ∥M(3)(Θ̂−Θ)V ∥2max

(12)

≲ ∥Sa,: − Sb,:∥2 + r3/L · ∥M(3)(Θ̂−Θ)∥2F ∥V ∥22,max

(12)

≲ ∥Sa,: − Sb,:∥2 +
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
. (19)

Combing (17), (18) and (19), we obtain

Fl(a, b; ẑ)
2

∥Sa,: − Sb,:∥2
≲ ∥M(3)(Θ̂−Θ)l,:V ∥2max ·





r3g(ẑ, z) +
µ2
0r1r2r3∥Θ̂−Θ∥2

F

NTL

∆2
min





+ ∥M(3)(Θ̂−Θ)l,:(V − V̂ )∥2max ·


1 +

r3g(ẑ, z) +
µ2
0r1r2r3∥Θ̂−Θ∥2

F

NTL

∆2
min


 ,
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which is bounded by

Fl(a, b; ẑ)
2

∥Sa,: − Sb,:∥22

≲
1

L

L∑

l=1

∥M(3)(Θ̂−Θ)l,:V ∥2max ·





r3g(ẑ, z) +
µ2
0r1r2r3∥Θ̂−Θ∥2

F

NTL

∆2
min





+
1

L

L∑

l=1

∥M(3)(Θ̂−Θ)l,:(V − V̂ )∥2max ·


1 +

r3g(ẑ, z) +
µ2
0r1r2r3∥Θ̂−Θ∥2

F

NTL

∆2
min




≲
∥Θ̂−Θ∥2F

L
· ∥V ∥22,max ·

r3g(ẑ, z)

∆2
min

+
∥Θ̂−Θ∥2F

L
· ∥V − V̂ ∥22,max ·

r3g(ẑ, z)

∆2
min

≲
µ2
0r1r2r3g(ẑ, z)∥Θ̂−Θ∥2F

∆2
minNTL

. (20)

(b) Upper bound for Gl(a, b; ẑ).

Gl(a, b; ẑ) =
(
∥Θl:V̂ − Ŝa,:∥2F − ∥Θl:V̂ −W ⊺

:,aΘ̂V̂ ∥2F
)

−
(
∥Θl:V̂ − Ŝb,:∥2F − ∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F
)

=
(
∥Θl:V̂ −W ⊺

:,aΘ̂V̂ +W ⊺
:,aΘ̂V̂ − Ŝa,:∥2F − ∥Θl:V̂ −W ⊺

:,aΘ̂V̂ ∥2F
)

−
(
∥Θl:V̂ −W ⊺

:,bΘ̂V̂ +W ⊺
:,bΘ̂V̂ − Ŝb,:∥2F − ∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F
)

= ∥W ⊺
:,aΘ̂V̂ − Ŝa,:∥2F − ∥W ⊺

:,bΘ̂V̂ − Ŝb,:∥2F (21)

+ 2⟨Θl:V̂ −W ⊺
:,aΘ̂V̂ ,W ⊺

:,aΘ̂V̂ − Ŝa,:⟩ (22)

− 2⟨Θl:V̂ −W ⊺
:,bΘ̂V̂ ,W ⊺

:,bΘ̂V̂ − Ŝb,:⟩, (23)

where Θl: = W ⊺
:,(z)l

Θ = W ⊺
:,a{Θ̂− (Θ̂−Θ)}. For the second part (22), we have

⟨Θl:V̂ −W ⊺
:,aΘ̂V̂ ,W ⊺

:,aΘ̂V̂ − Ŝa,:⟩
=⟨W ⊺

:,a{Θ̂− (Θ̂−Θ)}V̂ −W ⊺
:,aΘ̂V̂ ,W ⊺

:,aΘ̂V̂ − Ŝa,:⟩
=− ⟨W ⊺

:,a(Θ̂−Θ)V̂ ,W ⊺
:,aΘ̂V̂ ⟩+ ⟨W ⊺

:,a(Θ̂−Θ)V̂ , Ŝa,:⟩
=− ⟨W ⊺

:,a(Θ̂−Θ)V̂ , (W:,a − Ŵ:,a)
⊺Θ̂V̂ ⟩⟩

+ ⟨W ⊺
:,a(Θ̂−Θ)V̂ , Ŝa,: − Ŵ ⊺

:,aΘ̂V̂ ⟩
=− ⟨W ⊺

:,a(Θ̂−Θ)V̂ , (W:,a − Ŵ:,a)
⊺Θ̂V̂ ⟩⟩,

where Ŝa,: = Ŵ ⊺
:,aΘ̂V̂ . For the third part (23), we have

⟨Θl:V̂ −W ⊺
:,bΘ̂V̂ ,W ⊺

:,bΘ̂V̂ − Ŝb,:⟩
=⟨W ⊺

:,a{Θ̂− (Θ̂−Θ)}V̂ −W ⊺
:,bΘ̂V̂ ,W ⊺

:,bΘ̂V̂ − Ŝb,:⟩
=⟨W ⊺

:,aΘV̂ −W ⊺
:,bΘV̂ +W ⊺

:,bΘV̂ −W ⊺
:,bΘ̂V̂ , (W:,b − Ŵ:,b)

⊺Θ̂V̂ ⟩
=⟨(W:,a −W:,b)

⊺ΘV̂ +W ⊺
:,b(Θ− Θ̂)V̂ , (W:,b − Ŵ:,b)

⊺Θ̂V̂ ⟩
=− ⟨W ⊺

:,b(Θ̂−Θ)V̂ , (W:,b − Ŵ:,b)
⊺Θ̂V̂ ⟩

+ ⟨(W:,a −W:,b)
⊺ΘV̂ , (W:,b − Ŵ:,b)

⊺Θ̂V̂ ⟩.

23



Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

Combined with (21), we further have

|Gl(a, b; ẑ)| ≤
∣∣∣∥W ⊺

:,aΘ̂V̂ − Ŝa,:∥2F − ∥W ⊺
:,bΘ̂V̂ − Ŝb,:∥2F

∣∣∣

+ 4 max
a∈[r3]

⟨W ⊺
:,a(Θ̂−Θ)V̂ , (W:,a − Ŵ:,a)

⊺Θ̂V̂ ⟩

+ 2
∣∣∣⟨(W:,a −W:,b)

⊺Θ̂V̂ , (W:,b − Ŵ:,b)
⊺Θ̂V̂ ⟩

∣∣∣ .

Then, we analyze these three terms separately. First, the first term is
∣∣∣∥W ⊺

:,aΘ̂V̂ − Ŝa,:∥2F − ∥W ⊺
:,bΘ̂V̂ − Ŝb,:∥2F

∣∣∣
2

≤ max
a∈[r3]

∥W ⊺
:,aΘ̂V̂ − Ŝa,:∥4F

= max
a∈[r3]

∥(W:,a − Ŵ:,a)
⊺Θ̂V̂ ∥4F

(8)

≲
r43g

4(ẑ, z)

∆4
min

+
µ4
0r

2
1r

2
2r

6
3g

4(ẑ, z)∥Θ̂−Θ∥4F
∆8

minN
2T 2L2

+
κ8r63g

4(ẑ, z)∥Θ̂−Θ∥4F
∆8

minL
2

(11)

≲ ∆4
min +

µ4
0r

2
1r

2
2r

4
3g

2(ẑ, z)∥Θ̂−Θ∥4F
∆4

minN
2T 2L2

+
κ8r43g

2(ẑ, z)∥Θ̂−Θ∥4F
∆4

minL
2

. (24)

The second term is:

max
a

∣∣∣⟨W ⊺
:,aM(3)(Θ̂−Θ)V̂ , (W:,a − Ŵ:,a)

⊺Θ̂V̂ ⟩
∣∣∣
2

≤max
a

∥W ⊺
:,aM(3)(Θ̂−Θ)V̂ ∥2 ·max

a
∥(W:,a − Ŵ:,a)

⊺Θ̂V̂ ∥2

≤max
a

∥W:,a∥2 · ∥M(3)(Θ̂−Θ)∥2F · ∥V ∥22,max

×
{
r23g

2(ẑ, z)

∆2
min

+
µ2
0r1r2r

3
3g

2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minNTL
+

κ4r33g
2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minL

}

≲
r3
L

· ∥Θ̂−Θ∥2F · µ
2
0r1r2
NT

×
{
∆2

min +
µ2
0r1r2r

3
3g

2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minNTL
+

κ4r33g
2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minL

}

≲
µ2
0r1r2r3∆

2
min∥Θ̂−Θ∥2F

NTL
. (25)

The last term is:
∣∣∣⟨(W:,a −W:,b)

⊺ΘV̂ , (W:,b − Ŵ:,b)
⊺Θ̂V̂ ⟩

∣∣∣
2

≤∥(W:,a −W:,b)
⊺ΘV̂ ∥2 · ∥(W:,b − Ŵ:,b)

⊺Θ̂V̂ ∥2

≤∥(S:,a − S:,b)V
⊺V̂ ∥2 · ∥(W:,b − Ŵ:,b)

⊺Θ̂V̂ ∥2

≲∥S:,a − S:,b∥2 ×
{
∆2

min +
µ2
0r1r2r

3
3g

2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minNTL

}
, (26)

where W ⊺
:,aΘ = Sa,:V

⊺. Combining (24), (25) and (26), we obtain

Gl(a, b; ẑ)
2

∥Sa,: − Sb,:∥2
≲ ∆2

min +
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
+

µ2
0r1r2r3∥Θ̂−Θ∥2F

∆2
minNTL

· µ
2
0r1r2r

3
3g

2(ẑ, z)∥Θ̂−Θ∥2F
∆4

minNTL

≲ ∆2
min +

µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
≲ ∆2

min, (27)
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where ∥Θ̂−Θ∥2F ≲ NTL∆2
min/(µ

2
0r1r2r3) holds with high probability by Theorem 5.1.

(c) Upper bound for Hl(a, b).

Ĥl = ∥Θl:V̂ −W ⊺
:,aΘ̂V̂ ∥2F − ∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F + ∥Sa,: − Sb,:∥2

= ∥W ⊺
:,a(Θ̂−Θ)V̂ ∥2F +

(
∥Sa,: − Sb,:∥2 − ∥Θl:V̂ −W ⊺

:,bΘV̂ ∥2F
)

−
(
∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F − ∥Θl:V̂ −W ⊺
:,bΘV̂ ∥2F

)

= ∥W ⊺
:,a(Θ̂−Θ)V̂ ∥2F +

(
∥Sa,: − Sb,:∥2 − ∥Θl:V̂ −W ⊺

:,bΘV̂ ∥2F
)

−
(
∥Θl:V̂ −W ⊺

:,bΘ̂V̂ ∥2F − ∥Θl:V̂ −W ⊺
:,bΘV̂ ∥2F

)

=
(
∥Sa,: − Sb,:∥2 − ∥Θl:V̂ −W ⊺

:,bΘV̂ ∥2F
)

+ ∥W ⊺
:,a(Θ̂−Θ)V̂ ∥2F − ∥W ⊺

:,b(Θ̂−Θ)V̂ ∥2F
+ 2⟨(Sa,: − Sb,:)V

⊺V̂ −W ⊺
:,b(Θ̂−Θ)V̂ ⟩,

where Θl: = W ⊺
:,(z)l

Θ = W ⊺
:,a{Θ̂− (Θ̂−Θ)} and W ⊺

:,aΘ = Sa,:V
⊺. For the first term, we have

∣∣∣∥Sa,: − Sb,:∥2 − ∥Θl:V̂ −W ⊺
:,bΘV̂ ∥2F

∣∣∣

=
∣∣∣∥Sa,: − Sb,:∥2 − ∥(Sa,: − Sb,:)V

⊺V̂ ∥2F
∣∣∣

≲∥Sa,: − Sb,:∥2.

And the second term is bounded by:

∣∣∣∥W ⊺
:,a(Θ̂−Θ)V̂ ∥2F − ∥W ⊺

:,b(Θ̂−Θ)V̂ ∥2F
∣∣∣

≤max
a

∥W ⊺
:,a(Θ̂−Θ)V̂ ∥2F

≤max
a

∥W:,a∥2 · ∥M(3)(Θ̂−Θ)∥2F · ∥V ∥22,max

≲
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
.

The third term is

⟨(Sa,: − Sb,:)V
⊺V̂ −W ⊺

:,b(Θ̂−Θ)V̂ ⟩
≤∥(Sa,: − Sb,:)V

⊺V̂ ∥ · ∥W ⊺
:,b(Θ̂−Θ)V̂ ∥

≲∥Sa,: − Sb,:∥ ·
µ2
0r1r2r3∥Θ̂−Θ∥2F

NTL
.

Thus, we have

|Hl(a, b)|
∥Sa,: − Sb,:∥2

≤ c+
µ2
0r1r2r3∥Θ̂−Θ∥2F

∆2
minNTL

≤ 1

4
. (28)
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Combining (20), (27) and (28), we obtain

ĝ2 = min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

∥Sa,: − Sb,:∥22 · 1
{
ẑl = b,

1

2
∥Sa,: − Sb,:∥22 ≤ F̂l + Ĝl + Ĥl

}

≤= min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

∥Sa,: − Sb,:∥22 · 1
{
ẑl = b,

1

4
∥Sa,: − Sb,:∥22 ≤ F̂l + Ĝl

}

≤ min
π∈Πr3

1

L

L∑

l=1

r3∑

b=1

∥Sa,: − Sb,:∥22 · 1
{
ẑl = b, ∥Sa,: − Sb,:∥42 ≤ 64(F̂ 2

l + Ĝ2
l )
}

≤ min
π∈Πr3

1

L

L∑

l=1

∑

b∈[r3]/a

1 {ẑl = b} · 64
(

F̂ 2
l

∥Sa,: − Sb,:∥22
+

Ĝ2
l

∥Sa,: − Sb,:∥22

)

≤ min
π∈Πr3

64

L

L∑

l=1

max
b∈[r3]/a

F̂ 2
l

∥Sa,: − Sb,:∥22
+ min

π∈Πr3

64

L

L∑

l=1

1 {ẑl ̸= zl} max
b∈[r3]/a

Ĝ2
l

∥Sa,: − Sb,:∥22

≤ g(ẑ, z)

8

µ2
0r1r2r3∥Θ̂−Θ∥2F

∆2
minNTL

+ min
π∈Πr3

1

L

L∑

l=1

1 {ẑl ̸= zl}
∆2

min

16

≤ g(ẑ, z)

8

µ2
0r1r2r3∥Θ̂−Θ∥2F

∆2
minNTL

+
g(ẑ, z)

16

≤ g(ẑ, z)

16

(
1 +

2µ2
0r1r2r3∥Θ̂−Θ∥2F
∆2

minNTL

)
≤ g(ẑ, z)

16

(
1 +

1

32

)
≤ g(ẑ, z)

10
.

Step 5 By combining Step 4 and Step3, we obtain

g(ẑ, z) ≤ ĝ1 + ĝ2

≤
{
∥Θ∥2max ∨ (L2

α/γ
2
α)
}
exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0 {∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
+

g(ẑ, z)

10
,

which implies that

g(ẑ, z) ≲
{
∥Θ∥2max ∨ (L2

α/γ
2
α)
}
exp

{
− w2

minp
2
minNTLmax(r1, r2, r3)∆

2
min

w2
max(N ∨ T )r21r

2
2r3µ

2
0 {∥Θ∥2max ∨ (L2

α/γ
2
α)}

}
,

with probability at least 1− c0(N + T + L)−2.

B.4. Proof of Lemmas

B.4.1. PROOF OF LEMMA B.1

We aim to prove that
∑

i,t,l 1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 is larger than ∥∆Θ∥2F = ∥Θ̂ − Θ∥2F up to an additive term.

Denote

∥∆Θ∥2E = E




∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2



 ≥ pmin∥∆Θ∥2F , (29)

∥∆Θ∥2max = max
i,t,l

|(∆Θ)i,t,l| ≤ 2|Θmax|,
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where the expectation is taken with respect to 1(Yi,t−1,l = 1). Given (29), we can show that

P





pmin

2
∥∆Θ∥2F ≥

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 + 2∥∆Θ∥2maxϑ





≤P





∥∆Θ∥2E
2

≥
∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 + 2∥∆Θ∥2maxϑ



 . (30)

Therefore, our goal reduces to prove (30) is negligible.

Our proof for the restricted strong convexity proceeds by using the standard peeling argument. Let ξ be a constant larger
than 1 (i.e., ξ = 2) and define for every ρ ≥ 0,

Bρξl−1 =

{
∆Θ ∈ B : ρξl−1 ≤ ∥∆Θ∥2E

∥Θ∥2max

≤ ρξl
}
, l = 1, 2, · · · ,

and therefore B = ∪∞
l=1Bρξl−1 . For some l ≥ 1 and ∆Θ ∈ Bθξl−1 , denote the event in (30) by

El =



∃∆Θ ∈ Bρξl−1 :

∣∣∣∣∣∣
∥∆Θ∥2E −

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2

∣∣∣∣∣∣
≥ 1

2
∥∆Θ∥2E + 2ϑ ≥ 1

2ξ
∥Θ∥2maxρξ

l + 2ϑ



 ,

and E ⊂ ∪∞
l=1El. Let

Z̃ρ = sup
∆Θ∈B

ρξl−1

∣∣∣∣∣∣
∥∆Θ∥2E −

N∑

i=1




∑

t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2





∣∣∣∣∣∣
,

where ∆Θ ∈ Bρξl−1 . Since each unit is at most being observed for T times for only one treatment, we know

σ2
Z̃ρ

= sup
∆Θ∈B

ρξl−1

N∑

i=1

var




∑

t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2





≤ sup
∆Θ∈B

ρξl−1

N∑

i=1

E




∑

t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2





2

≤ T sup
∆Θ∈B

ρξl−1

N∑

i=1

E




∑

t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2





≤ T sup
∆Θ∈B

ρξl−1

∥∆Θ∥2E ≤ T∥Θ∥2maxρξ
l,

by the definition of Bρξl−1 which provides upper bounds for ∥∆Θ∥2E and ∥∆Θ∥2max. By the symmetrization argument
(Lemma 6.3, Ledoux & Talagrand (1991)),

E(Z̃ρ) ≤ 2E



 sup

∆Θ∈B
ρξl−1

∣∣∣∣∣∣

N∑

i=1

ζi
∑

t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2

∣∣∣∣∣∣





≤ 4

√
r1r2r3∥Θ∥2maxρξ

l

max(r1, r2, r3)pmin
E

{
sup

∆Θ∈B
ρξl−1

∥∆Rad
Θ ∥

}

≤ C1∥Θ∥2maxρξ
l +

r1r2r3
max(r1, r2, r3)pmin

[
E

{
sup

∆Θ∈B
ρξl−1

∥∆Rad
Θ ∥

}]2
,
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where E
{
sup∆Θ∈B

ρξl−1
∥∆Rad

Θ ∥
}

is the Rademacher complexity. Each entry of ∆Rad
Θ is defined by

(∆Rad
Θ )i,t,l = ζi1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l) · ei(N)⊗ et(T )⊗ el(L),

where ei(N)⊗ et(T )⊗ el(K) is a zero tensor except its (i, t, l)-entry and {ζi}Ni=1 are i.i.d Rademacher random variables.

Our next step is to obtain a close form of E
{
sup∆Θ∈B

ρξl−1
∥∆Rad

Θ ∥
}

by tensor inequality. By Lemma B.2, we can show
that

P

(
sup

∆Θ∈B
ρξl−1

∥∆Rad
Θ ∥ ≥ α

)
≤ (N + T + L) exp

[
−α2

2σ2
∆Θ

+ {T 1/2∥Θ∥max log(N + T + L)α}/3

]

≤ (N + T + L) exp

{
−3

4

α2

(N ∨ T )∥Θ∥2max log(N + T + L)

}
,

where σ2
∆Θ

≲ (N ∨ T )∥Θ∥2max log(N + T + L). By Hölder’s inequality, we have

E

{
sup

∆Θ∈B
ρξl−1

∥∆Rad
Θ ∥

}
≲
√
(N ∨ T )∥Θ∥max{log(N + T + L)}1/2.

Then, we invoke the Theorem 3 in Massart (2000) with ε = 1:

P(El) ≤P

{
Z̃ρ ≥ 1

2ξ
∥Θ∥2maxρξ

l +
2r1r2r3(N ∨ T )

max(r1, r2, r3)pmin
∥Θ∥2max log(N + T + L)

}

≤P
{
Z̃ρ ≥ 2σZ̃ρ

√
x+ 34.5Tx+ 2E(Z̃ρ)

}

≤ exp (−C3x) ,

where x = C3ρξ
l/T . Therefore, we have

P(El) = P



 sup

∆Θ∈B
ρξl−1

∣∣∣∣∣∣
∥∆Θ∥2E −

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2

∣∣∣∣∣∣
≥ 1

2ξ
ρξl + 2ϑ





≤ exp

(
−C3ρξ

l

T

)
≤ exp

(
−C3ρl log(ξ)

T

)
≤ exp

(
−C ′

3ρl

T

)
,

since ξl ≥ l log(ξ) for ξ = 2 and

ϑ =
r1r2r3(N ∨ T )

max(r1, r2, r3)pmin
∥Θ∥2max log(N + T + L).

Thus,

P(E) ≤
∞∑

l=1

{
exp

(
−C ′

3ρ

T

)}l

=
exp

(
−C′

3ρ
T

)

1− exp
(
−C′

3ρ
T

) ≤ 2 exp

(
−C ′

3ρ

T

)
,

and

P





1

2
∥∆Θ∥2E ≥

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 + 2ϑ



 ≤ 2 exp

(
−C ′

3ρ

T

)
≲

1

(N + T + L)2
,

where ρ = C ′T log(N + T + L) is determined to match the tail probability. To sum up, when ∥Θ̂ − Θ∥2F ≥
C0∥Θ∥2maxT log(N + T + L)/pmin, we have

P





pmin

2

∑

i,t,l

(θ̂i,t,l − θi,t,l)
2 ≥

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 + 2ϑ





≤P





1

2
∥∆Θ∥2E ≥

∑

i,t,l

1(Yi,t−1,l = 1)(θ̂i,t,l − θi,t,l)
2 + 2ϑ



 ≲

1

(N + T + L)2
,
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where

ϑ =
C ′′r1r2r3(N ∨ T )

max(r1, r2, r3)pmin
∥Θ∥2max log(N + T + L).

Thus, the proof of Lemma B.1 is completed.

B.4.2. PROOF OF LEMMA B.3

Proof. To prove (8), we notice that M(3)(Θ)V = MM(3)(S) and therefore

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ)V ∥

=∥(W:,b − Ŵ:,b)
⊺MS∥

=

∥∥∥∥∥M(3)(S)b,: −
∑L

l=1 M(3)(S)(z)l,:1(ẑl = b)
∑L

l=1 1(ẑl = b)

∥∥∥∥∥

=

∥∥∥∥∥∥
1

∑L
l=1 1(ẑl = b)

L∑

l=1

∑

b′∈[r3]/b

1(zl = b, ẑl = b′){M(3)(S)b,: −M(3)(S)b′,:}

∥∥∥∥∥∥

≤C0
r3

L∆min

L∑

l=1

∑

b′∈[r3]/b

1(zl = b, ẑl = b′)∥M(3)(S)b,: −M(3)(S)b′,:∥2

≤C0
r3g(ẑ, z)

∆min
.

Also, we know that

∥W − Ŵ ∥ ≤ {λr3(M)}−1 · ∥M⊺W −M⊺Ŵ ∥
≤ {λr3(M)}−1 · ∥M⊺W −M⊺Ŵ ∥
≤ {λr3(M)}−1 · ∥I −M⊺Ŵ ∥F
(13)

≤
√

r3
L
∥I −M⊺Ŵ ∥F , (31)

where M⊺W = I by definition. For any b ∈ [r3], denote n̂b =
∑L

l=1 1{ẑl = b}. For any b ̸= b′, we have

(M⊺Ŵ )b′b =

∑L
l=1 1{zl = b′, ẑl = b}

n̂b
, δb =

∑

b′∈[r3]/b

(M⊺Ŵ )b′b = 1− (M⊺Ŵ )bb.
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Therefore,

∥I −M⊺Ŵ ∥F =

√√√√√
∑

b∈[r3]



δ2b +

∑

b′∈[r3]/b

(M⊺Ŵ )2b′b





≤

√√√√√√
∑

b∈[r3]




δ2b +


 ∑

b′∈[r3]/b

(M⊺Ŵ )b′b




2




≤
√

2
∑

b∈[r3]

δ2b

≤
√
2
∑

b∈[r3]

δb

≤
√
2
∑

b∈[r3]

∑L
l=1 1{zl ̸= b′, ẑl = b}

n̂b

≤
√
2 max
b∈[r3]

(n̂b)
−1

L∑

l=1

1(zl ̸= ẑl)

≲
r3
L

· Lh(ẑ, z) ≲ r3g(ẑ, z)

∆2
min

,

where the last two inequalities are justified by (12). Then, we can show that

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂−Θ)V ∥ ≤ ∥W:,b − Ŵ:,b∥ · ∥M(3)(Θ̂−Θ)V ∥max

(31)

≤ C1
r
3/2
3 g(ẑ, z)

∆2
min

√
L

· ∥M(3)(Θ̂−Θ)∥F · ∥V ∥2,max

≤ C1
µ0r

1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

.

By triangle inequality, it completes the proof for (8)

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V ∥ ≤ ∥(W:,b − Ŵ:,b)

⊺M(3)(Θ)V ∥
+ ∥(W:,b − Ŵ:,b)

⊺M(3)(Θ̂−Θ)V ∥

≲
r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

.
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To prove (9),

∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V̂ ∥

≤ ∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)V ∥

+ ∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂)(V − V̂ )∥

(8)

≲
r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

+ ∥(W:,b − Ŵ:,b)
⊺M(3)(Θ)(V − V̂ )∥

+ ∥(W:,b − Ŵ:,b)
⊺M(3)(Θ̂−Θ)(V − V̂ )∥

≲
r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

+ ∥W:,b − Ŵ:,b∥ · ∥M(3)(Θ)∥ · ∥V − V̂ ∥
+ ∥W:,b − Ŵ:,b∥ · ∥M(3)(Θ̂−Θ)∥F · ∥V − V̂ ∥2,max

(31),(14)

≲
r3g(ẑ, z)

∆min
+

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
NTL

+
κ2r

3/2
3 g(ẑ, z)∥Θ̂−Θ∥F

∆2
min

√
L

.

To prove (10),

∥Ŵ ⊺
:,bM(3)(Θ̂)(V − V̂ )∥ ≤ ∥Ŵ ⊺

:,bM(3)(Θ)(V − V̂ )∥
+ ∥Ŵ ⊺

:,bM(3)(Θ̂−Θ)(V − V̂ )∥
≤ ∥W ⊺

:,bM(3)(Θ)(V − V̂ )∥+ ∥(Ŵ ⊺
:,b −W ⊺

:,b)M(3)(Θ)(V − V̂ )∥
+ ∥W ⊺

:,bM(3)(Θ̂−Θ)(V − V̂ )∥+ ∥(Ŵ ⊺
:,b −W ⊺

:,b)M(3)(Θ̂−Θ)(V − V̂ )∥

≲
√
r3/L · ∥M(3)(Θ)∥ · ∥V − V̂ ∥+ r

3/2
3 g(ẑ, z)

∆2
min

√
L

· ∥M(3)(Θ)∥ · ∥V − V̂ ∥

+
√
r3/L · ∥M(3)(Θ̂−Θ)∥F · ∥V − V̂ ∥2,max

+
r
3/2
3 g(ẑ, z)

∆2
min

√
L

· ∥M(3)(Θ̂−Θ)∥F · ∥V − V̂ ∥2,max

(14)

≲
√
r3/L · κ2∥Θ̂−Θ∥F +

r
3/2
3 g(ẑ, z)

∆2
min

√
L

· κ2∥Θ̂−Θ∥F

+
µ0r

1/2
1 r

1/2
2 r

1/2
3√

NTL
∥Θ̂−Θ∥F +

µ0r
1/2
1 r

1/2
2 r

3/2
3 g(ẑ, z)

∆2
min

√
NTL

∥Θ̂−Θ∥F

≲ κ2
√
r3/L∥Θ̂−Θ∥F .

To prove (14), we have

∥V̂ − V ∥ = ∥Û1 ⊗ Û2 −U1 ⊗U2∥
= ∥Û1 ⊗ (Û2 −U2) + (Û1 −U1)⊗U2∥
≤ ∥Û1 ⊗ (Û2 −U2)∥+ ∥(Û1 −U1)⊗U2∥

≲
{
∥Û1 −U1∥+ ∥Û2 −U2∥

} LemmaB.5

≲
κ∥Θ̂−Θ∥F

λmin
.

Since U1 and U2 are only identifiable up to rotation and permutation, we instead focus on the upper bound of
minR1∈Or1

∥Û1 − U1R1∥ and minR2∈Or2
∥Û2 − U2R2∥, where Or is the collection of all r-by-r matrices with or-

thonormal columns. Lemma B.5 is a variant of the Davis-Kahan sin(Θ) Theorem from Yu et al. (2015), which bound the
distance between subspaces spanned by the population eigenvectors and their sample versions.
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For (14) and (15), the proof is similar to Theorem 4, Yu et al. (2015):

∥V ∥22,max = max
j

∥e⊺j (U1 ⊗U2)∥22
≤ max

i,t
∥e⊺i U1∥2 · ∥e⊺tU2∥2 (Cauchy-Schwatz inequality)

≤ ∥U1∥22,max∥U2∥22,max

≤ µ2
0r1r2
NT

,

and

∥V − V̂ ∥2,max = max
j

∥e⊺j (U1 ⊗U2 − Û1 ⊗ Û2)∥

= max
j

∥e⊺j (U1 ⊗U2 −U1 ⊗ Û2 +U1 ⊗ Û2 − Û1 ⊗ Û2)∥

≤ max
j

∥e⊺j (U1 ⊗U2 −U1 ⊗ Û2)∥+max
j′

∥e⊺j′(U1 ⊗ Û2 − Û1 ⊗ Û2)∥

≤ ∥U1∥2,max∥Û2 −U2∥2,max + ∥Û2∥2,max∥Û1 −U1∥2,max

≤
√

µ0r1
N

∥Û2 −U2∥2,max +

√
µ0r2
T

∥Û1 −U1∥2,max.

Under the assumption of eigengap, we are able to bound the perturbation of individual eigenvectors:

∥û2,i − u2,i∥2 ≲
λmax∥Θ̂−Θ∥F

min(λ2
i−1 − λ2

i , λ
2
i − λ2

i+1)
.

Assume for any i ∈ [r2], the interval [λi − δr2 , λi + δr2 ] does not contain any eigenvalues of M(2)(Θ) other than λi:

∥û2,i − u2,i∥2 ≲
λmax∥Θ̂−Θ∥F

min(λ2
i−1 − λ2

i , λ
2
i − λ2

i+1)
≲

κ∥Θ̂−Θ∥F
δr2

,

which implies ∥Û2 −U2∥2,max ≤ κ∥Θ̂−Θ∥F /δr2 . Identical bounds also hold if û2,i and u2,i are replaced with û1,i and
u1,i. Suppose

δr1 ≥
√

N

µ0r1
· κ∥Θ̂−Θ∥F , δr2 ≥

√
T

µ0r2
· κ∥Θ̂−Θ∥F ,

we claim that ∥V − V̂ ∥22,max ≤ ∥V ∥22,max.
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B.4.3. PROOF OF LEMMA B.4

First, we want to prove the probability P
(
⟨M(3)(Θ̂−Θ)l,:V ,Sa,: − Sb,:⟩ ≤ − 1

8∥Sa,: − Sb,:∥2
)

is negligible. We can
show that

P

(
⟨M(3)(Θ̂−Θ)l,:V ,Sa,: − Sb,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)

≤ P (−∥M(3)(Θ̂−Θ)l,:∥ · ∥(Sa,: − Sb,:)V
⊺∥max ≤ −1

8
∥Sa,: − Sb,:∥2)

≤ P (∥M(3)(Θ̂−Θ)l,:∥ · ∥Sa,: − Sb,:∥ · ∥V ∥2,max ≥ 1

8
∥Sa,: − Sb,:∥2)

≤ P (∥M(3)(Θ̂−Θ)l,:∥ · ∥U1∥2,max∥U2∥2,max ≥ 1

8
∥Sa,: − Sb,:∥)

≤ P

(
∥M(3)(Θ̂−Θ)l,:∥2 ≥ 1

64

∥Sa,: − Sb,:∥2
∥U1∥22,max∥U2∥22,max

)

≤ P

(
L∑

l=1

∥M(3)(Θ̂−Θ)l,:∥2 ≥ 1

64

L∆2
min

∥U1∥22,max∥U2∥22,max

)

≤ P

(
∥Θ̂−Θ∥2F ≥ 1

64

NTL∆2
min

µ2
0r1r2

)
,

where under Assumption R2):
∥U1∥22,max ≤ µ0r1

N
, ∥U2∥22,max ≤ µ0r2

T
.

To ensure the event ∥Θ̂−Θ∥2F ≤ NTL∆2
min/(64µ

2
0r1r2) holds with high probability, we need to have

NTL∆2
min

µ2
0r1r2

≥ c0(N ∨ T )r1r2r3 log(N + T + L)∥Θ∥2max

p2min max(r1, r2, r3)
, (32)

NTL∆2
min

µ2
0r1r2

≥ c0w
2
max(N ∨ T )r1r2r3 log

2(N + T + L)(L2
α/γ

2
α)

w2
minp

2
minγ

2
α max(r1, r2, r3)

, (33)

under the estimation error in Theorem 5.1. Thus, we claim that

P

(
∥Θ̂−Θ∥2F ≥ 1

64

NTL∆2
min

µ2
0r1r2

)
≤ c

(N + T + L)2
,

under the conditions (32) and (33). Next, we show that P
(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − Sa,:⟩ ≤ − 1

8∥Sa,: − Sb,:∥2
)

is
negligible

P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − Sa,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)

≤ P (−∥M(3)(Θ̂−Θ)l,:∥ · ∥(S̃a,: − Sa,:)V
⊺∥max ≤ −1

8
∥Sa,: − Sb,:∥2)

≤ P (∥M(3)(Θ̂−Θ)l,:∥ · ∥S̃a,: − Sa,:∥ · ∥V ∥2,max ≥ 1

8
∥Sa,: − Sb,:∥2)

≤ P (∥M(3)(Θ̂−Θ)l,:∥ · ∥S̃a,: − Sa,:∥ · ∥U1∥2,max∥U2∥2,max ≥ 1

8
∥Sa,: − Sb,:∥). (34)

One can observe that

∥S̃a,: − Sa,:∥ = ∥M⊺
:,aM(3)(Θ̂−Θ)V ∥

≤ ∥M⊺
:,aM(3)(Θ̂−Θ)∥ · ∥V ∥max

≤ ∥M⊺
:,a∥ · ∥M(3)(Θ̂−Θ)∥F ·max

i,j
∥e⊺i V ej∥

≤
√

r3
L
∥U1∥2,max∥U2∥2,max · ∥M(3)(Θ̂−Θ)∥F .
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Plug it back to (34), we obtain

P

(
⟨M(3)(Θ̂−Θ)l,:V , S̃a,: − Sa,:⟩ ≤ −1

8
∥Sa,: − Sb,:∥2

)

≤ P

(
∥M(3)(Θ̂−Θ)l,:∥∥M(3)(Θ̂−Θ)∥F ≥ ∥Sa,: − Sb,:∥2

8
√

r3
L ∥U1∥22,max∥U2∥22,max

)

≤ P

(
L∑

l=1

∥M(3)(Θ̂−Θ)l,:∥∥M(3)(Θ̂−Θ)∥F ≥ L∥Sa,: − Sb,:∥2
8
√

r3
L ∥U1∥22,max∥U2∥22,max

)

≤ P

(
∥Θ̂−Θ∥2F ≥ NTL3/2∆2

min

8µ2
0r1r2

√
r3

)
,

which is negligible implied by the signal-to-noise ratio condition since L ≥ r3:

NTL3/2∆2
min

µ2
0r1r2

√
r3

≥ NTL∆2
min

µ2
0r1r2

≥ c0L
2
α(N ∨ T )r1r2r3(∥Θ∥2max ∨ σ2) log2(N + T + L)

p4minγ
2
α max(r1, r2, r3)

.

Thus, which completes our proof of Lemma B.4.

Lemma B.5. Let

λmax = max{∥M(1)(Y)∥, ∥M(2)(Y)∥, ∥M(3)(Y)∥},
λmin = min

[
λr1{M(1)(Y)}, λr2{M(2)(Y)}, λr3{M(3)(Y)}

]
,

and κ = λmax/λmin, then we have:

min
R1∈Or1

∥Û1 −U1R1∥F ≤ C
κ∥Θ̂−Θ∥F

λmin
, min

R2∈Or2

∥Û2 −U2R2∥ ≤ C
κ∥Θ̂−Θ∥F

λmin
.

The proof of Lemma B.5 is provided in Yu et al. (2015), Theorem 4.

Lemma B.6. Under condition (11), we have r3/L ≲ |l ∈ [L] : (ẑ)l = a| ≲ r3/L for any a ∈ [r3]. Moreover,
√

L/r3 ≲ λr3(M) ≤ ∥M∥ ≲
√

L/r3,√
r3/L ≲ λr3(W ) ≤ ∥W ∥ ≲

√
r3/L.

The above inequalities also hold by replacing M , W with M̂ and Ŵ , respectively.

The proof of Lemma B.6 is provided in Han et al. (2022), Lemma 4.
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