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Abstract

We extend a recent breakthrough result relating expectation thresholds and actual thresholds to
include some rainbow versions.

1 Introduction

It has long been observed that the threshold for the existence of various combinatorial objects in random
graphs and hypergraphs occurs close to where the expected number of such objects tends to infinity. This
informal observation has been given rigorous validation in recent breakthrough papers. First of all, Frankston,
Kahn, Narayanan and Park [13] showed that under fairly general circumstances, the threshold for the existence
of combinatorial objects is within a factor of O(logn) of the point where the expected number of objects begins
to take off. In a follow up paper, Kahn, Narayanan and Park [I5] tightened their analysis for the case of
the square of a Hamilton cycle and solved the existence problem up to a constant factor: a remarkable
achievement, given the complexity of proofs of earlier weaker results. A key notion in this analysis is that of
spread, see (1)), first used in the paper of Alweiss, Lovett, Wu and Zhang [I] that made significant progress in
the resolution of the Sunflower Conjecture of Erdés and Rado.

Spiro [19] describes a refinement of the notion of spread. Espuny Diaz and Person [6] generalised the approach
of [15] to handle some questions on spanning structures from Frieze [§].

There has been considerable research on random graphs where the edges have been randomly colored. Most
notably several authors have considered the existence of rainbow colored combinatorial objects. A set of
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colored edges will be called rainbow if each edge has a different color. Improving on earlier results of Cooper
and Frieze [4] and Frieze and Loh [I0], Ferber and Krivelevich [7] showed that w.h.p. at the threshold for
Hamiltonicity, randomly coloring the edges of G,,, with n+o(n) colors yields a rainbow Hamilton cycle. Our
aim in this short paper is to show that the proof in [I3] can be modified to incorporate rainbow questions.
We begin by summarising the results of the papers [15] and [13].

A hypergraph H (thought of as a set of edges) is r-bounded if e € H implies that |e| < r. The most important
notion comes next. For a set S C X = V(H) we let (S) ={T": S CT C X} denote the subsets of X that
contain S. Let (H) = (Jycq (H) be the collection of subsets of X that contain an edge of H. We say that H
is k-spread if we have the following bound on the number of edges of H that contain a particular set S:

K|
HO(S) < 5 YSCX. (1)

In our proof, we also use the slightly weaker definition that H is (K, k)-spread if

K[H]|
KIST

H N (SY] < VS C X 2)

Let X,, denote a random m-subset of X and X, denote a subset of X where each x € X is included
independently in X, with probability p. The following theorem is from [I3]:

Theorem 1. Let H be an r-bounded, k-spread hypergraph and let X =V (H). There is an absolute constant

C > 0 such that if
(Clogr)|X|

K

m >

(3)
then w.h.p. X,, contains an edge of H. Here w.h.p. assumes that r — oo.

Remark 1. Let p = 1/k and Z denote the number of edges of H that are contained in X,. Then, assuming
that H is r-uniform, we have from with H € H that |H| > k" and then E(Z) = |H|p" > 1. This gives the
connection between spread and the expected value of Z. Theorem [1] inflates p by a factor of order logr.

Suppose now that the elements of X are uniformly and independently colored from a set @@ = [¢]. A set
S C X is rainbow colored if no two elements of S have the same color. We modify the proof of Theorem [1] to
prove

Theorem 2. Let H be an r-bounded, r-spread hypergraph and let X =V (H) be randomly colored from Q = [q]
where q¢ > r. Suppose also that (i) k = Q(r), that is, there exists a constant L > 0 such that k > Lr for all
valid v, and that (ii) | X| < k% /log’ r. Then there is a constant C > 0 such that if

K

then X,, contains a rainbow colored edge of H w.h.p.

Remark 2. The constraint k = Q(r) is used in . Intuitively, we need this condition in order for each
iterative step in the proof to lose only a constant fraction of the hypergraph we create to coloring conflicts. The
constraint | X| < k*r/log’r is needed for an application of Janson’s inequality, see . It plays a similar
role in (15). We use N to denote | X]|.



Applications: We see that our additional restriction (i) is satisfied by many important applications and
that in these cases, it implies the other extra condition, (ii).

Ex. 1 Taking X = ([g]) (the edges of K,,), this shows for example that if ¢ = n and m = Knlogn then
w.h.p. a randomly edge colored copy of G, ,,, contains a rainbow Hamilton cycle, see Bal and Frieze
[2]. Here H is the n-uniform hypergraph with (n — 1)!/2 edges, one for each Hamilton cycle of K,

r=nand kK > n/e.

Ex. 2 Dudek, English and Frieze [5] studied rainbow Hamilton cycles in random hypergraphs. Theorem
improves Theorem 6 of that paper. Here X = ([Z}) and H is the n/(k — 1)-uniform hypergraph with

W(f;)% edges, one for each loose Hamilton cycle. We can take k = Q(n*~1).

Ex. 3 Similarly, if ¢ = n and m = Cinlogn and T is an n-vertex tree with bounded maximum degree
A = O(1) then w.h.p. G,,,,, contains a rainbow copy of T'. It suffices to take k = n/A. The uncolored
version is due to Montgomery [I7]. One can easily extend this result to hypergraphs. Spanning trees
can be replaced by spanning cacti/hypertrees. Let K, denote the complete k-uniform hypergraph
on vertex set [n]. A single edge is a cactus and a cactus C; with m + 1 edges is obtained from a
cactus Cp with m edges by selecting a vertex v € V(Cy) and adding an edge {v = vy, v, ..., v} where
Vo, Vg, ..., v & V(Cp). A cactus is spanning if its vertex set V(C,) = [n]. A cactus with m edges
contains m(k — 1) + 1 vertices and so we need (k —1) | (n —1). Let C,, be a sequence of spanning
cacti of K, all of maximum degree A = O(1). We take X = ([Z]) and the edges of H correspond to
the copies of C,, in K,, . We prove that holds with x = (Zj)/A If S C X is not isomorphic to
a subset of E(C,) then E(H) N (S) =0 and (1)) holds. Suppose then that S C X is isomorphic to a
subset of E(C),). Then, where 7 is a random permutation of [n| and

7(Cp) = (In], {{m(v1), m(v2), ..., m(vk)} : {v1,v2,...,0x} € E(Cp)},
we have
[E(H) N ()]
|E(H)]
To see , suppose that S = {ej,...,es}. Fix a vertex v that occurs in one of the edges of S and
suppose that v € ey, es,...,ep. Then we have

= P(S C 7(Cy)) < w75, (5)

P(ehe??' S, 6 € 71-(CY)) <

Furthermore, after removing ey, es, ..., e, and v from the cactus C we can apply induction. Applying
we see that O(nlogn) randomly colored random edges are needed for a rainbow coloring.

Ex. 4 We also obtain a rainbow version of Shamir’s problem, Corollary 1.2 of Bal and Frieze [2]. Here
X = ([Z}) and H is the n/k-uniform hypergraph with (n/k;lw edges, one for each perfect matching.
It suffices to take x = n*~1/k!.

The paper [15] focusses exclusively on the square of Hamilton cycles. It removed a logn factor. So, given
this we know that there are constants 0 < ¢; < ¢y such that w.h.p. G, . 32 does not contain the square of
a Hamilton cycle and that w.h.p. G,, .,,,3/2 does contain the square of a Hamilton cycle. The proof is similar
to that of Theorem [l Here x = O(n'/?) and the constraint that x = Q(r) prevents us from generalising
this result in exactly the same way. On the other hand, Bell and Frieze 3] prove a rainbow version using a
different but related argument.



Remark 3. An obvious line of attack here is to (i) replace each edge e = {vy,vq,..., v} from the original
hypergraph H by a set of edges {{(v1,c1), (va,ca),..., (g, ck)} C X* = X X [g] with all ¢; distinct}, (i)
verify that the new hypergraph is k'-spread for some value k' and then apply [15] or [13]. The appropriate
value of k' seems to be qr/e, see (7). The only problem with this approach is that a random m-subset of X*
may not correspond to a randomly colored subset of X. Let B denote the subsets of X, thal contain a pair
(z,c1), (x,co) i.e. where x € X has been given two colors. If N = |X| then the expected number of such pairs

m. 2 _ O Nlog?r
qN - K2
— 00. Otherwise, we have to work around the problem.

in a random subset X is about NTq2 . ( ) So we see immediately that Theorem |1| holds if

Kk
N1/2logr

2 Proof of Theorem

We use a superscript * to indicate colored objects. Let X* = X x [¢]. For z* = (x,¢) € X*, define ¢(z*) = ¢
(called the color of x*) and &(2*) = z. For S* C X*, define £(5*) = {&(z) : © € S*}. We say that a set
S* C X* is rainbow if c(z*) # c(y*) for all distinct z*, y* € S*. Let

EF={W* CX*: &™) #&(y") for any distinct z*,y* € W*}.

We say that A*, B* C X* are compatible, and write A* ~ B*, if A* U B* € £*, that is, for all a*,b* € A* U B*,
&(a*) = £(b%) implies c(a*) = ¢(b%).

2.1 Single-stage Refinement

In this section, following the general framework of [I], 13, 18], our main result is Lemma , which will later
be used iteratively to bound the number of sets of H in Theorem [2] that are “bad”.

Suppose now that #H is an r-uniform (K, k)-spread hypergraph on vertex set X and that Q = [¢] is a set of
colors for X. Let
H* ={(H,cy) :HeH,cy: H— Q,cyis 1-1}. (6)

Thus H* consists of rainbow colored edges.

Lemma 3. With H* as defined in (6), H* is (K, gr/e)-spread.

Proof. Let X* = X x Q. If §* C X* is rainbow and |S*| = s, then as H is x-spread,

H _ (@ =s)s [H"] _ [H]
H NS = q—8)r—s < (@ —8)r—s—0 = < . 7
AN = 3 - e <l o = R < O )
H2¢(S")
If S* is not rainbow or [£(S*)| # |S*| then H* N (S*) = 0. Thus, H* is ¢k /e spread. O

For the remainder of this section, let H* be any multi-hypergraph (that is, allowing repeated edges) on
X* = X X [q] that is r-bounded and (K, gr/e)-spread for some r < ¢,x > 1 and K > 1. Assume also that
every H* € H* is in £* and rainbow, that is, V (z1,¢1), (z2,¢2) € H*, x1 = 19 <= ¢ = Co.



Set p = <2 for Cy large, N = |X|, and let m = Np. Let W}, be chosen randomly from &, = {E* € £* : |E*| = m}.
In other words, W is the same as choosing m random vertices and randomly coloring them. Let

Hyyr ={H € H*": H ~W"*}, (8)
that is, the set of rainbow hyperedges that are compatible with W*.

For H* € H* such that H* is compatible to W*, let T* = T*(H*,W*) be G* \ W* for a set G* € H*
such that G* C H* U W* and |G* \ W*| is minimized. For 1 < ¢t < r, let G;(W*) = {H* € H* :
H* ~ W™, |T*(H*, W*)| = t).

Lemma 4. For H* as above, W* chosen uniformly from £, and 1 <t <,

K2ret

B (lC(W)) < =&

|H*| (9)
Proof. Note that there are (z) q™ equally likely choices for W*. Thus, it suffices to show that

) N\ , K2t
> el = ()t

Wreesx,

We will give a procedure that uniquely specifies every possible (W*, H*) pair such that |T*| = ¢. Fix some
function y : 2% — H* such that x(Y*) C Y* whenever possible.

Step 1. Specify E(W* U T*(H*,W*)). There are (m]it) < (Z) (c%)t choices here.

Step 2. Specify Z* = W* U T*. There are ¢ choices here.

Step 3. Note that we must have T* C x(Z*) by the minimality of 7%, as x(Z*) is a valid choice for G*,
X(ZN\W* CT* =T*\W*, and |T*\ W*| < |x(Z*)\W*|. Thus, we can specify T*(H*, W*) C x(Z*)
with at most (‘X(f*”) < 2@ < 97 choices.

Step 4. Specify H* D T*. As H* is (K, gr/e)-spread and |T*| = t, there are at most (qr/e) " K|H*| choices

Thus, (W*,T*) has been specified with at most

N g\ Tt e\’ N K2ret
A mttor [ 7 ) p|*| = m *
() (&) o (5) mowe= ()55 e

choices. =

Lemma 5. Let H*, W* be as above. Now, let H* € H* be good with respect to W* of H* ~ W* and
|T*(W*, H*)| < r/2. Let

S be the event |{H* € H*: H* is good} | < (1 —&)|H"|(1 —p)".

e?k%q(1 —p) 2K
P(S) < exp {_—1663N } + —05/35 TS

Then



Proof. Let Hy,. = {H* € H* : €(H*) N E(W*) = 0}. Let S be the event that |Hyy.| < (1 —e/2)|H*|(1 —p)
and let Sy be the event that 3/, [C,(W*)| > e|H*[(1 — p)’/2. Then S C S U S,. This is because every

H* € Hy,. is compatible with W* and if S; fails then there must be at least e|H*|(1 — p)"/2 sets H* with
|T*(W*, H*)| > r/2

then we have

We will use the Janson inequality. If Z = |H .
E(Z) = [H*|(1 = p)".
If H;, Hi € H* then we write H ~ Hj if €(H?) N E(H) # 0. Then,

A= Y P(Hj Hj € Hy.)

H} HjeH*
H~H}

<M Y > ey H; e Hy)

s=1 S*CX* Hy,H525*
|S*|=s

<3 ( ) (@ier) 00
<01y (%) (=)
z:: (qf@?geg p) )
(qﬁfi )
And by Janson’s inequality,
P(2<(1-5)B(2) sen{-Tog - | <o {- I, (10)

As for Ss, by Lemma [4]

S el <K!H|Z < T/S\ .

t>r/2 t>r/2

And thus by Markov’s inequality,
2K

P(S) < ——.
LR

We next let Hjy. = {T(W*, H*) : H* is good with respect to W*}. Then,
Lemma 6. If H* is (K, qr/e) spread and S does not occur then Hjy. is (K/((1 —¢)(1 —p)"), qr/e) spread.

Proof.

KIH| _ K|H.

[Hiv- NS <M NS < s S G0 = pr (@i



2.2 Completing the proof

Let H be as in Theorem [2 an r-bounded, x-spread hypergraph on a set X of size N such that » < Cik for
some constant C;. Then let

H*={S* C X*:£(S") € H, and c(x¥) # c(y*) and (") # &(y*) for any distinct ¥, y* € S*}, (11)
be the set of possible rainbow edges of H.

We follow the basic idea of [13] and [18] and account for the coloring. We choose a small randomly colored
random set W*, throw away the H* that are not compatible with W* and replace the other H* with
T*(W*, H*). We argue that the way we do this causes most H* to become relatively smaller. We then repeat
the argument with respect to the hypergraph consisting of these 7*. In this way, we build up W* piece by
piece and find members of H* which are mostly contained in W*. After O(log ) iterations, one of those pieces
is likely to be fully contained in a larger W*. It is important to realise that the edge sets of the hypergraphs
encountered in these iterations are multi-sets, i.e., the same edge can be repeated many times. Recall that
asymptotics refer to r.

Let (o be the least i such that /2" < logr and let ¢ be the least ¢ > {; such that r/2" < 1. Note that r, > 1/2.
Let p; = C;/k where

C, </ i 1<i<d.
C’i:{ggr 2_9 : 51':{(”1)12 T _O; ri:%foriz().
loglogr go <i<t (loglogr)? v > go'
: 1
K, =K —.
J1_11 (1—g;) (L—p;)"”
Here () is some sufficiently large constant. Note that
‘ 2Cyr ‘ log r 2Cyr ‘ 1
S g < 20 3T S @y and J] = e,
A K 4 kloglogr K A ~ ToaleaZ
j=1 j=lo+1 i=0o+1 (loglogT)

So, using 1/(1 — z) < €*® for small z, we obtain
() 1 L
1SKigexp{ng—I—O(l)—l—Q;ijj}SA, (12)

where A = B+ e3°0/L for some absolute constant B. (We have used the fact that k-spread can be interpreted
as (1, k)-spread.)

Let Xo = X and X = X x [q]. Fori=1,...,¢ let X; = X, 1 \ &(W}), where W/ is chosen uniformly at
random from £, on X7, (that is, {W; € &, : W7 C X/ ,}). Let

Hy ={T"(H"\W}): H" e Hj |, H* ~ W}, |T*| < r;}.
Thus H? is an r;-bounded collection of subsets of X;.

Note that IH* € H'H* C W} whenever some T*(H*, W) = () for H* € H} ;. As r; < 1, eventually we will

(2
either have some T*(H*, W) = () or |H}| = 0. So to prove the claim, we just need to show

P(H; = 0) = o(1), (13)

7



(where the PP refers to the entire sequence Wy ... W/).

Let A; be the event that S; does not occur, where S; is the Hj equivalent of the event S in Lemma and let
Aci =g Aj-

)4
If A<y occurs then [H| > [H*| J](1 —&:)(1 - pi)" > 0. (14)
=1
Lemma [5] implies that

e2k%q(1 — p) 2K;
P(A<; i-1) > 1— —= ( - : 15
(et e 2 1= o { =SB - o B =
K2q 2A
>1— — _
> 1 — /400 _ 24 > 0.

(2

G =)

1
Note that C["/%¢; > C¢ 87 log?r = Q(r) for i < £y and Cri/3e; > (logr/loglog r)'/3/(loglog r)? = Q(log"* )
for 0y <1 < L.

So,

- 1 - e=Co/L 1
P =11 (-0 () AL (1~ oo © (W))
= (1 —o(1)).
Applying and completes the proof of Theorem [2|

3 Final Remarks

An earlier version claimed to have full generalisations of the threshold results of [13], [I5]. Excellent reviewing
pointed out significant errors and we can only claim a partial generalisation of [13] due to the restriction
k= Q(r) and N < k%r/log’r. We nevertheless are confident that the threshold results of these papers can
be generalised to rainbow versions.

Acknowledgement We thank Sam Spiro and Lutz Warnke and Erlang Surya for pointing out issues in
previous versions. We also thank the referees for their help and dedication in correcting the paper.
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4 Subsequent developments

Subsequent to the initial production of this paper, there have been two significant developments.
First of all, Han and Yuan [14] have proved a version of Theorem |2l without the extra conditions.

Also, Bell and Frieze [3] amend the proof in [15] to prove
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Theorem 7. Let ¢,e1 > 0 be arbitrary positive constants. Suppose that H is a k-spread, r-uniform and edge
transitive hypergraph, subject to a technical condition C. Let X = V(H) be randomly colored from Q = [q]
where ¢ > (1 +e1)r. Then there exists C = C(e,e1) such that for sufficiently large 7, K,

Cl1X]
K

m >

implies that P(X), contains a rainbow colored edge of H) > 1 — ¢. (16)

m

Powers of Hamilton cycles give rise to hypergraphs satisfying C and so p = n~'/* is the threshold for the kth
power of a Hamilton cycle, given ¢ = (1 + £1)n random colors.
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