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Abstract

B lasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that
unlike expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] (COLT 2024)
gave a non-constructive argument establishing the existence of a randomized online predictor that can
obtain O(

√

T ) distance to calibration in expectation in the adversarial setting, which is known to be
impossible for ECE. They leave as an open problem ûnding an explicit, eûcient, deterministic algorithm.
We resolve this problem and give an extremely simple, eûcient, deterministic algorithm that obtains
distance to calibration error at most 2

√

T + 1.



1 Introduction

Probabilistic predictions of binary outcomes are said to be calibrated, if, informally, they are unbiased
conditional on their own predictions. For predictors that are not perfectly calibrated, there are a variety of
ways to measure calibration error. Perhaps the most popular measure is Expected Calibration Error (ECE),
which measures the average bias of the predictions, weighted by the frequency of the predictions. ECE has
a number of diûculties as a measure of calibration, not least of which is that it is discontinuous in the
predictions. Motivated by this, B lasiok et al. [2023] propose a diûerent measure: distance to calibration,
which measures how far a predictor is in 31 distance from the nearest perfectly calibrated predictor. In the
online adversarial setting, it has been known since Foster and Vohra [1998] how to make predictions with
ECE growing at a rate of O(T 2/3). Qiao and Valiant [2021] show that obtaining O(

:
T ) rates for ECE is

impossible. Recently, in a COLT 2024 paper, Qiao and Zheng [2024] showed that it was possible to make
sequential predictions against an adversary guaranteeing expected distance to calibration growing at a rate
of O(

:
T ). Their algorithm is the solution to a minimax problem of size doubly-exponential in T . They leave

as an open problem ûnding an explicit, eûcient, deterministic algorithm for this problem. In this paper we
resolve this problem, by giving an extremely simple such algorithm with an elementary analysis.

Algorithm 1: Almost-One-Step-Ahead

Input: Sequence of outcomes y1:T * {0, 1}T
Output: Sequence of predictions p1:T * {0, 1

m , ..., 1}T for some discretization parameter m > 0
for t = 1 to T do

Given look-ahead predictions Þp1:t−1, deûne the look-ahead bias conditional on a prediction p as:

³p̃1:t−1(p) :=

t−1
∑

s=1

1[Þps = p](Þps 2 ys)

Choose two adjacent points pi = i
m , pi+1 = i+1

m satisfying:

³p̃1:t−1(pi) f 0 and ³p̃1:t−1(pi+1) g 0

Arbitrarily predict pt = pi or pt = pi+1;
Upon observing the (adversarially chosen) outcome yt, set look-ahead prediction

Þpt = argminp∈{pi,pi+1} |p2 yt|

2 Setting

We study a sequential binary prediction setting: at every round t, a forecaster makes a prediction pt * [0, 1],
after which an adversary reveals an outcome yt * {0, 1}. Given a sequence of predictions p1:T and outcomes
y1:T , we measure expected calibration error (ECE) as follows:

ECE(p1:T , y1:T ) =
∑

p∈[0,1]

∣

∣

∣

∣

∣

T
∑

t=1

1[pt = p](pt 2 yt)

∣

∣

∣

∣

∣

Following Qiao and Zheng [2024], we deûne distance to calibration to be the minimum 31 distance between
a sequence of predictions produced by a forecaster and any perfectly calibrated sequence of predictions:

CalDist(p1:T , y1:T ) = min
q1:T ∈C(y1:T )

‖p1:T 2 q1:T ‖1

where C(y1:T ) = {q1:T : ECE(q1:T , y1:T ) = 0} is the set of predictions that are perfectly calibrated against
outcomes y1:T . First we observe that distance to calibration is upper bounded by ECE.
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Lemma 1 (Qiao and Zheng [2024]). Fix a sequence of predictions p1:T and outcomes y1:T . Then, CalDist(p1:T , y1:T ) f
ECE(p1:T , y1:T ).

Proof. For any prediction p * [0, 1], deûne

yT (p) =

T
∑

t=1

1[pt = p]
∑T

t=1 1[pt = p]
yt

to be the average outcome conditioned on the prediction p. Consider the sequence q1:T where qt = yT (pt).
Observe that q1:T is perfectly calibrated. Thus, we have that

CalDist(p1:T , y1:T ) f ‖p1:T 2 q1:T ‖1

=

T
∑

t=1

|pt 2 qt|

=
∑

p∈[0,1]

T
∑

t=1

1[pt = p]|p2 yT (p)|

=
∑

p∈[0,1]

|p2 yT (p)|
T
∑

t=1

1[pt = p]

=
∑

p∈[0,1]

∣

∣

∣

∣

∣

p

T
∑

t=1

1[pt = p] 2 yT (p)

T
∑

t=1

1[pt = p]

∣

∣

∣

∣

∣

=
∑

p∈[0,1]

∣

∣

∣

∣

∣

T
∑

t=1

1[pt = p](p2 yt)

∣

∣

∣

∣

∣

= ECE(p1:T , y1:T )

The upper bound is not tight, however. The best known sequential prediction algorithm obtains ECE
bounded by O(T 2/3) [Foster and Vohra, 1998], and it is known that there is no algorithm guaranteeing ECE
below O(T 0.54389) [Qiao and Valiant, 2021, Dagan et al., 2024]. Qiao and Zheng [2024] give an algorithm
that is the solution to a game of size doubly-exponential in T that obtains expected distance to calibration
O(

:
T ). Here we give an elementary analysis of a simple eûcient deterministic algorithm (Algorithm 1) that

obtains distance to calibration 2
:
T + 1.

Theorem 1. Algorithm 1 (Almost-One-Step-Ahead) guarantees that against any sequence of outcomes,
CalDist(p1:T , y1:T ) f 2

:
T + 1.

3 Analysis of Algorithm 1

Before describing the algorithm, we introduce some notation. We will make predictions that belong to a
grid. Let Bm = {0, 1/m, ..., 1} denote a discretization of the prediction space with discretization parameter
m > 0, and let pi = i/m. For a sequence of predictions Þp1, ..., Þpt and outcomes y1, ..., yt, we deûne the bias
conditional on a prediction p as:

³p̃1:t(p) =

t
∑

s=1

1[Þps = p](Þps 2 ys)

To understand our algorithm, it will be helpful to ûrst state and analyze a hypothetical <lookahead=
algorithm that we call <One-Step-Ahead=, which is closely related to the algorithm and analysis given by
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Gupta and Ramdas [2022] in a diûerent model. One-Step-Ahead produces predictions Þp1, ..., ÞpT as follows.
At round t, before observing yt, the algorithm ûxes two predictions pi, pi+1 satisfying ³p̃1:t−1 (pi) f 0 and
³p̃1:t−1(pi+1) g 0. Such a pair is guaranteed to exist, because by construction, it must be that for any history,
³p̃1:t−1(0) f 0 and ³p̃1:t−1(1) g 0. Note that a well known randomized algorithm obtaining diminishing ECE
(and smooth calibration error) uses the same observation to carefully randomize between two such adjacent
predictions [Foster, 1999, Foster and Hart, 2018]. Upon observing the outcome yt, the algorithm outputs
prediction Þpt = argminp∈{pi,pi+1} |p 2 yt|. Naturally, we cannot implement this algorithm, as it chooses its
prediction only after observing the outcome, but our analysis will rely on a key property this algorithm
maintains4namely, that it always produces a sequence of predictions with ECE upper bounded by m + 1,
the number of elements in the discretized prediction space.

Theorem 2. For any sequence of outcomes, One-Step-Ahead achieves ECE(Þp1:T , y1:T ) f m + 1.

Proof. We will show that for any pi * Bm, we have |³p̃1:T (pi)| f 1, after which the bound on ECE will follow:
ECE(Þp1:T , y1:T ) =

∑

pi∈Bm
|³p̃1:T (pi)| f m + 1. We proceed via an inductive argument. Fix a prediction

pi * Bm. At the ûrst round t1 in which pi is output by the algorithm, we have that |³p̃1:t1 (pi)| = |pt12yt1 | f 1.
Now suppose after round t2 1, we satisfy |³p̃1:t−1(pi)| f 1. If pi is the prediction made at round t, it must
be that either: ³p̃1:t−1 (pi) f 0 and pi 2 yt g 0; or ³p̃1:t−1(pi) g 0 and pi 2 yt f 0. Thus, since ³p̃1:t−1(pi)
and pi 2 yt either take value 0 or diûer in sign, we can conclude that

|³p̃1:t(pi)| = |³p̃1:t−1(pi) + pi 2 yt| f max{|³p̃1:t−1(pi)|, |pi 2 yt|} f 1

which proves the theorem.

Algorithm 1 (Almost-One-Step-Ahead) maintains the same state ³p̃1:t(p) as One-Step-Ahead (which it can
compute at round t after observing the outcome yt−1). In particular, it does not keep track of the bias of its
own predictions, but rather keeps track of the bias of the predictions that One-Step-Ahead would have made.
Thus it can determine the pair pi, pi+1 that One-Step-Ahead would commit to predict at round t. It cannot
make the same prediction as One-Step-Ahead (as it must ûx its prediction before the label is observed) 4 so
instead it deterministically predicts pt = pi (or pt = pi+1 4 the choice can be arbitrary and does not aûect
the analysis). Since we have that |pi2pi+1| f 1

m , it must be that for whichever choice One-Step-Ahead would
have made, we have |Þpt2pt| f 1

m . In other words, although Almost-One-Step-Ahead does not make the same
predictions as One-Step-Ahead, it makes predictions that are within 31 distance T/m after T rounds. The
analysis then follows by the ECE bound of One-Step-Ahead, the triangle inequality, and choosing m =

:
T .

Proof of Theorem 1. Observe that internally, Algorithm 1 maintains the sequence Þp1, ..., Þpt which corre-
sponds exactly to predictions made by One-Step-Ahead. Thus, by Lemma 1 and Theorem 2, we have that
CalDist(Þp1:T , y1:T ) f ECE(Þp1:T , y1:T ) f m + 1. Then, we can compute the distance to calibration of the
sequence p1, ..., pT :

CalDist(p1:T , y1:T ) = min
q1:T∈C(y1:T )

‖p1:T 2 q1:T ‖1

= min
q1:T∈C(y1:T )

‖p1:T 2 Þp1:T + Þp1:T 2 q1:T ‖1

f ‖p1:T 2 Þp1:T ‖1 + min
q1:T∈C(y1:T )

‖Þp1:T 2 q1:T ‖1

f T

m
+ m + 1

where in the last step we use the fact that |pt 2 Þpt| f 1/m for all t and thus ‖p1:T 2 Þp1:T‖1 f T/m. The
result then follows by setting m =

:
T .
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