
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.

August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the

33rd USENIX Security Symposium

is sponsored by USENIX.

That Doesn’t Go There: Attacks on Shared State
in Multi-User Augmented Reality Applications

Carter Slocum, Yicheng Zhang, Erfan Shayegani, Pedram Zaree,

and Nael Abu-Ghazaleh, University of California, Riverside;

Jiasi Chen, University of Michigan

https://www.usenix.org/conference/usenixsecurity24/presentation/slocum

That Doesn’t Go There: Attacks on Shared State in

Multi-User Augmented Reality Applications

Carter Slocum∗ 1, Yicheng Zhang∗1, Erfan Shayegani1, Pedram Zaree1, Nael Abu-Ghazaleh1, Jiasi Chen2

1University of California, Riverside
2University of Michigan

Abstract

Augmented Reality (AR) can enable shared virtual experi-

ences between multiple users. In order to do so, it is crucial

for multi-user AR applications to establish a consensus on

the ªshared stateº of the virtual world and its augmentations

through which users interact. Current methods to create and

access shared state collect sensor data from devices (e.g., cam-

era images), process them, and integrate them into the shared

state. However, this process introduces new vulnerabilities

and opportunities for attacks. Maliciously writing false data

to ªpoisonº the shared state is a major concern for the secu-

rity of the downstream victims that depend on it. Another

type of vulnerability arises when reading the shared state: by

providing false inputs, an attacker can view hologram aug-

mentations at locations they are not allowed to access. In this

work, we demonstrate a series of novel attacks on multiple

AR frameworks with shared states, focusing on three pub-

licly accessible frameworks. We show that these frameworks,

while using different underlying implementations, scopes,

and mechanisms to read from and write to the shared state,

have shared vulnerability to a unified threat model. Our eval-

uations of these state-of-the-art AR frameworks demonstrate

reliable attacks both on updating and accessing the shared

state across different systems. To defend against such threats,

we discuss a number of potential mitigation strategies that

can help enhance the security of multi-user AR applications

and implement an initial prototype.

1 Introduction

AR technologies have enabled a large variety of applications

that use real-world data to create environments enriched with

overlaid virtual holograms. These virtual holograms can take

many forms, from face filters to virtual characters, and they

are typically placed relative to some point in the real world,

such as a table, face, or recognizable landmark. Although AR

has been around for several decades [4], the recent ubiquity

∗Equal contributors.

of mobile devices and the availability of commercial AR

headsets have made it possible for AR applications to reach

the mass market [59]. Recent AR applications even allow

multiple users to interact with the same AR holograms. For

example, in 2019, Pokémon Go enabled users to view the

same virtual creatures at the same time in some shared space

using a ªBuddy Adventureº system [40]. In order for these

multi-user interactions to take place, some information about

the state of the real world (e.g., nearby flat planes, landmarks,

and virtual objects) must be sensed, processed, and shared

between users to provide a common frame of reference. We

call this information, together with the hologram information,

as the ªshared stateº of the AR application. Several multi-user

AR systems with cloud-based AR shared states exist and are

in use, including those by Google [12] and Meta [32]. Thus, a

natural question emerges after the rise of such systems: What

security threats can exist for AR frameworks involving

this shared state?

In this work, the attacks that we focus on relate to one of

the fundamental problems in AR: how to place a hologram ac-

curately in the real world and have it persist over time, space,

and across users. Successful manipulations of hologram lo-

cations could have serious impacts on both owners and users

of the system. As the number of users and businesses relying

on AR continues to increase, the incentives for attackers to

manipulate the shared state to their advantage also increase.

For example, suppose a construction company is using AR

to place and visualize markings in the environment. Con-

struction workers wearing AR glasses might visit the site and

visualize where a water pipe should be built or where to dig a

hole. A vulnerable AR construction application could cause

confusion, destruction of property, or danger to workers if

an attacker’s efforts result in a construction worker viewing

virtual demolition markers in unsafe real-world areas and

bulldozing those areas.

Our first goal is to identify the threat models that affect

the shared state. At a high level, interactions between users

and shared state in AR can be thought of as read and write

operations, which are provided by AR frameworks through

USENIX Association 33rd USENIX Security Symposium 2761

an API. One can write a new virtual hologram to the shared

state and read others’ virtual holograms in order to render

them on the device. Direct manipulation of the shared state is

impossible since it’s typically stored on cloud/edge servers

controlled by the AR service and is well-secured, requiring

physical or software exploitation not unique to AR. Instead,

we investigate exploits that allow attackers to remotely manip-

ulate the shared state using only the basic read/write API calls

available to users. Calls to the API typically involve associ-

ated location data consisting of one or more of the following:

Global Positioning System (GPS) coordinates, camera im-

ages, and/or Inertial Measurement Unit (IMU) sensor data.

This information allows the attacker to map the read or write

operation to a location within the AR space.

We seek to understand these threats and develop end-to-end

attacks on commercial systems, in order to demonstrate how

they work and inform designers and develop mitigations. We

develop a range of attacks targeting write or read operations

on the Google’s Cloud Anchor API [12], Google’s ARCore

Geospatial API [15], and Meta’s Mapillary system [32]. We

focus on these because they are major commercial players,

and their multi-user APIs work on many common AR devices.

We show that malicious reads and writes are possible on the

three systems despite the substantial differences in how they

perform these operations. We are able to write information

to different, potentially inaccessible, locations on the map,

as well as falsify our own location to access information at

potentially private or inaccessible locations. These end-to-end

attacks rely on known image and GPS spoofing methods; our

contribution lies in combining these methods with multi-user

AR, which brings unique challenges in that the interactions be-

tween the real world, virtual world, and downstream victims

must be accounted for in a successful attack.

In summary, we make the following contributions:

• We create a taxonomy of existing commercial AR frame-

works with shared state and identify their common vul-

nerabilities regarding the read and write operations. We

form a unified threat model that covers these current and

prospective AR applications.

• We demonstrate attacks on shared state in the novel AR

domain on three frameworks using real devices (smart-

phones), and quantify their success. To the best of our

knowledge, this is the first documented demonstration of

such attacks on AR using these frameworks.

• We repeat the attacks of these three scenarios in various

environments (e.g., different locations, lighting, clutter) to

demonstrate the attack’s robustness.

• We propose and evaluate a defense strategy that uses multi-

modal sensors (depth and visible light cameras) available

on some AR devices. The source code and dataset are

available online.1

1https://sites.google.com/view/multi-ar-defense/

Figure 1: AR processing pipeline. An AR device senses

the environment, processes the sensed data, and uploads in-

formation to the shared state. The shared state returns an

augmentation overlaid onto the user’s display.

Disclosures and ethics. We disclosed our findings to

Google and Meta. We performed all experiments either in

sandboxes or in our own local sessions, so no external public

users were affected by our experiments.

2 Background

In this section, we first introduce the background of shared

state in AR (Section 2.1). We then describe the current land-

scape of shared state in commercial AR systems (Section 2.2).

Finally, we define the general threat model (Section 2.3).

2.1 Shared State in Augmented Reality

To facilitate interactions between multiple users in AR, a

mutually agreed-upon model of the reality to augment, and

the augmentations within it, is needed between users [44,

57]. Ideally, this model should be consistent across devices

and thus is typically stored in the cloud, providing a central

access point. In such a model, multiple users interact with

the shared augmentations (e.g., other participants in a remote

meeting app). They also fuse spatial information about the

real environment using the collected sensor data. We call this

shared model of reality the shared state.

The shared state commonly contains a ªmapº of 3D points

(an example is shown on the right side of Fig. 1). The points

in this map are features extracted from images (e.g., [29,

48]). Each feature contains an estimate of its 3D position

and a descriptor of its visual neighborhood for use in finding

and correlating the same feature in other images. To give

augmentations the appearance of blending in with the real

world, they are described by their 3D coordinates. Thus,

the AR shared state consists of the map of visual features

combined with the augmentations placed on the map. Fig. 1

shows the processing pipeline of an AR device accessing the

shared state in the cloud, including communicating with the

shared state to receive augmentations and render them onto

the display.

Communication with the shared state. For a user to view

or place shared holograms/augmentations, communication

2762 33rd USENIX Security Symposium USENIX Association

Non-curated Curated

Local

Scenario A: Cloud

Anchor

Commercial scenario

not found.

Keys: camera, IMU Keys: camera, IMU

Attacks: read, write Attacks: read

Global

Scenario C: Mapillary
Scenario B: Geospatial

Anchor

Keys: camera, IMU, GPS Keys: camera, IMU, GPS

Attacks: write Attacks: read

Table 1: Taxonomy of AR shared states.

with the shared state is needed. Abstractly, we can think of

viewing or placing the shared holograms as read and write

operations against the shared state, respectively, using key-

value pairs. The key is some piece of information relating to

the user’s physical location, which a user provides (details

later), and the value is the associated hologram’s coordinates

(and optionally its visual appearance). The cloud processes

these key-value pairs and updates (or retrieves information

from) the shared state accordingly. There are two operations

for users to communicate with the shared state: read and

write, as follows.

• Read: A user may read the shared state to determine

where she is on the map and render the appropriate holo-

grams. For instance, a user may go to a park where

virtual art is displayed and upload an image key of the

park to the cloud, captured by the phone’s camera, and

receive back the value of the hologram’s coordinates,

and then render the virtual art on her display.

• Write: Users may write holograms at specific locations

in the map in the shared state. For instance, a user may

place their own virtual art for other users to view by

uploading a key consisting of a short image sequence

near the art and the associated GPS coordinates alongside

a value of the virtual art’s coordinates.

Keys consist of information used to identify locations

within the shared state. Keys are usually derived from three

main types of sensors commonly used in AR applications:

GPS, camera, and IMU. GPS data provides information

about the user’s geographical location and typically consists

of latitude, longitude, altitude, and time. Camera data in

AR applications can take the form of video or a sequence of

timestamped images. IMU data refers to the measurements

collected by sensors such as accelerometers, gyroscopes, and

magnetometers. This data provides information about the

device’s orientation, acceleration, and rotation. The IMU may

not be strictly necessary for these applications to work but is

often included to assist in speed and accuracy [24].

2.2 AR Shared State Taxonomy

We studied the current landscape of multi-user AR and found

three major examples of shared state: Cloud Anchor [12],

Geospatial Anchor [15], and Mapillary [32], which we pri-

marily focus on in this work. Cloud Anchor and Geospatial

Anchor are part of Google ARCore, which is Google’s AR

Software Development Kit (SDK) for Android devices. Map-

illary is a crowd-sourced mapping service acquired by Meta

in 2020. These frameworks abstract away low-level details

so that developers can more easily build AR applications

on top, so vulnerabilities in the underlying frameworks will

affect many AR applications. The design of these frame-

works can be dissected along two dimensions: global/local

and curated/non-curated, as summarized in Table 1. Next, we

describe each of these dimensions.

Global vs. local shared state. AR applications can run in

local or global geographic areas; for example, a treasure hunt

may take place locally within a building, while Pokémon Go

takes place globally. Consequently, they can have larger or

smaller maps in their shared state, which we categorize as a

global or local shared state. AR frameworks with the global

shared state tend to utilize GPS coordinates plus camera im-

ages as the key to writing into the shared state. Specifically,

each writer uploads local images tagged with GPS coordinates

to the shared state, where the cloud merges all data to create

a global shared state. Users seeking to read from the shared

state may use a combination of GPS, camera, and, optionally,

IMU data as a key into the database. Global shared states

tend to be persistent without a clear expiry time, typically

persisting for years.

AR frameworks with local shared states are typically

smaller in geographic scope and lack global positioning

(GPS). The key typically consists of just camera images

and optional IMU data, without GPS. Local shared states

tend to be ephemeral in that they have a configurable lifetime,

typically of less than one year [12].

Curated vs. non-curated shared state. The maps con-

tained in the shared state can be either curated or non-curated.

Curated maps are constructed by ªhigh trustº users or ªcura-

torsº. These curators have elevated write permissions to the

shared state and usually have the incentive to avoid malicious

behavior. Most commonly, these curators are paid employees,

contract workers, or trusted research groups. An example is

the Street View Car [17], where company employees drive a

car around and capture camera images to upload to the cloud,

which processes them and inserts them into the shared state’s

map. Non-curators can still read the curated shared state but

cannot otherwise manipulate it.

AR frameworks with non-curated (i.e., crowd-sourced)

shared states allow all users to read and write to the map

in the shared state. These users are low trust but come with

USENIX Association 33rd USENIX Security Symposium 2763

(a) Read attack.

(b) Write attack.

Figure 2: Attacks on AR shared state. Read attack: A private

hologram is read outside the area it was written to (beach

instead of office). Write attack: A hologram is written to an

area where the attacker is not present (pipes instead of field).

the advantage of increased numbers, allowing rapid construc-

tion and updating of the shared state compared to curators. An

example is Mapillary’s crowd-sourced street mapping model,

where public users can upload camera images to the cloud,

which processes them and inserts them into the map.

The write permissions for the shared state maps and the

shared state holograms may be separate. For our purposes,

a curator has permission to write both shared state map and

hologram data to the shared state, while a non-curator can only

read map data from the shared state but may be able to both

read and write holograms. In the future, applications with

more granular permissions may become more common [8].

2.3 Threat Model

We assume an attacker engages in AR experiences with shared

states using an unmodified AR application. The attacker only

possesses the same read/write permissions as normal users.

The primary objective of the attacker is to compromise the

integrity or confidentiality of the multi-AR shared state. We

identify two classes of attacks in this context (see Fig. 2): (a)

read attack and (b) write attack.

Read attack. Such an attack focuses on extracting sensi-

tive information stored within the shared state created by

other users. For example, suppose a victim user has created

a hologram of a whiteboard and written sensitive company

secrets onto it. The whiteboard is uploaded to the shared state

and is only supposed to be viewable from the private office.

Thus, in Fig. 2a, the shared state contains the {key=office

image, value=confidential whiteboard document} entry. The

objective of the attacker is to retrieve and access this private

document, thereby breaching confidentiality, by providing a

forged {key=office image} to retrieve the associated value

(the private hologram). The attacker benefits from retriev-

ing confidential information, which is a serious concern in

multi-user AR [49]. It is assumed that the attacker can gain

temporary physical access to the office in order to obtain im-

ages to use later during the attack, or is able to find publicly

available images of the office.

Write attack. The attacker seeks to manipulate the shared

state in order to deceive subsequent victim AR users. Specifi-

cally, the attacker creates and uploads manipulated images or

falsified sensor readings as keys in the shared state, and uses

them to add to the shared state at that location without being

there. It is assumed that the attacker possesses images and

GPS coordinates of the target location needed for manipula-

tion. Thus, in Fig. 2b, the shared state contains the {key=pipe

image, value=ªdig safeº sign} entry created by the attacker.

Subsequently, when victims attempt to read from the shared

state, they may encounter misleading or false information,

leading to inaccurate perceptions or actions within the AR

environment. For example, in Fig. 2b, the victim uses a le-

gitimate {key=pipe image} and retrieves a hologram telling

her it is safe to dig there. The attacker benefits by causing

disruption of legitimate AR use cases. Moreover, with compa-

nies now making efforts to combine their maps (e.g., Overture

Maps Foundation [42] includes Amazon, Meta, and Microsoft

as contributors), poisoned writes to one shared state could

potentially propagate to other shared states.

Key issues. The fundamental issue with the shared state

that enables these attacks is that the ingest pipelines of these

AR frameworks accept most keys as inputs. They do not have

a way of verifying that users are uploading legitimate infor-

mation consistent with the key they provide. Furthermore,

even if the attacker fails to generate perfect keys identical to

legitimate inputs, the shared state still accepts them because it

attributes their imperfections to noise. We speculate that these

weaknesses are due to the nascent nature of multi-user AR

frameworks; because AR frameworks want to encourage user

participation, they favor functionality and lowering barriers to

participation over security. The collaborative nature of these

applications necessitates opening a shared state for read and

possibly write access among large groups of users that are not

necessarily mutually trusting.

Attacker’s goal in each scenario. As various multi-AR

platforms rely on different combinations of sensor inputs to

2764 33rd USENIX Security Symposium USENIX Association

generate these keys, our investigation focuses on three attack

scenarios outlined in Table 1.

In Scenario A, the attacker’s goal is to perform both read

and write attacks on the shared state. It aims to read or write

holograms to locations where they are not physically present.

By doing so, it deceives other users by providing false or

manipulated information. Since AR applications in such

a scenario run in local areas only, the attacker only needs

camera and IMU data as keys to read or write from the shared

state, and not any global information (GPS), making this

attack easier to realize. We assume that the attacker can

participate as a regular user in the AR session, which can be

protected by API credentials and a room code. API credentials

are commonly hard coded into the app, so the attacker does

not need to learn it, and the room code is an integer that by

default starts at 1 and increments every session, making it

feasible for the attacker to find through brute force [12].

In Scenario B, the attacker’s goal is to perform a read

attack only. It attempts to read a hologram from a location

where the hologram does not exist, effectively lying about her

location and reaping the benefits. In addition to the camera

and IMU data needed as keys in Scenario A, the global nature

of this scenario requires the attacker to understand the global

position of the hologram she wishes to read, necessitating

GPS data in the key. We do not investigate write attacks in

Scenario B due to the curated nature of the shared state. In

other words, since the threat model assumes the attacker is an

ordinary user, only read attacks can be performed on a curated

shared state with the appropriate key. These keys are used

by all users freely with no need for special permissions. We

assume that the attacker has the API credentials hardcoded in

the app, as in Scenario A, but it does not require a local room

code because the shared state is global.

Finally, the Scenario C attacker writes holograms to false

locations. This would allow an attacker to manipulate holo-

grams that other users view, potentially leading to sabotage

and safety issues. The attacker’s writes are uniquely enabled

by the non-curated nature of the shared state in this scenario.

Again, special attention must be paid to the global positions

of the holograms and map data for successful attacks due

to this scenario’s global scale. We do not investigate read

attacks in Scenario C because this API does not yet exist in

the commercial framework we studied. The attacker does

not require any special credentials or room codes because the

shared state is global and crowd-sourced.

We did not find any current examples of an AR framework

that provides a local and curated shared state (upper right box

in Table 1). We speculate that such a shared state could be

created by a local administrator who curates the map and holo-

grams in small areas, such as a university campus. Related

frameworks also exist in the research domain [5].

3 Scenario A: Local, Non-Curated Shared

State

In this section, we focus on attacks on AR frameworks with

local and non-curated shared states. In particular, we focus

on the Cloud Anchor API [12], which allows multiple users

to share experiences within a single app. It is the underlying

mechanism enabling multi-user AR apps on Android devices.

Using an app that integrates this API, a user (User A) can write

a hologram to a specific location within their environment,

such as the surface of a desk. Another user (User B), who

has access credentials to the app (see §2.3), can then read

the hologram from the shared state and view and interact

with it in the same physical space. We identified an attack

vector related to this multi-user functionality, described in

the following subsection. The experiments were performed

with our own test devices in a private local session only, so

no external users were affected by our experiments.

3.1 Methodology

The normal process of writing a hologram to the shared state

involves User A pointing her AR device at the desired location

of the hologram (e.g., a desk) and moving around it to capture

the required keys (camera images and IMU readings), which

are uploaded to the shared state along with the hologram. If

User B wants to read the hologram uploaded by the previous

user, she points her device at the same location, captures a

key, and sends it to the shared state. If the key matches an

entry in the shared state, the corresponding value (hologram

uploaded by User A) is retrieved from the cloud, and User B

can view it. If there is no matching key, the API rejects User

B’s read request.

Normally, successful reads and writes require the user to

be physically present in the environment where the hologram

was placed in order to generate the correct corresponding key.

However, our attack disrupts this workflow and demonstrates

that attackers can remotely launch read and write attacks.

Specifically, we show that the attacker can perform these ac-

tions using only an image of the environment (e.g., printed on

a photograph or displayed on a computer monitor). By point-

ing the camera at the image, the attacker deceives the API

into believing that it is physically located in the environment,

even though it is not actually present. Next, we describe three

sub-types of this general attack: read, write, and triggered

write. We focused on read and write because they are funda-

mental primitives, and triggered write is an advanced version

with more targeted attack timing. Further technical details

on the methodology of this attack and others are provided in

Appendix B.

Remote read attack. In this attack, an attacker can re-

motely read a hologram, different from where a victim origi-

nally placed the hologram. The attacker benefits because it

USENIX Association 33rd USENIX Security Symposium 2765

Figure 3: Remote read attack in Scenario A. Left: A victim

places a hologram in front of a yellow sign. Right: An attacker

is able to view the hologram from a photograph without being

physically near the yellow sign.

can read private notes, passwords, or even sound files that

belong to the victim. We assume the attacker has the pre-

knowledge of the victim’s physical location. For instance, the

attacker may have a chance to view an image of the victim’s

office. The attacker’s methodology is simple yet effective:

it prints physical photographs or displays virtual images of

the location where a hologram is placed and moves the AR

device around to view the photograph/display from slightly

different angles. This generates the necessary key (camera

images and IMU readings) to retrieve the hologram from

the shared state. Both the camera images and IMU readings

(orientation of the device) must reasonably match the key pre-

viously stored in the shared state by the victim. The attacker’s

read request may fail if the camera image differs significantly

(e.g., zoomed out) from where the victim originally wrote the

holograms or if the IMU readings differ (e.g., the victim wrote

the hologram while the device was in landscape mode but

the attacker tried to read the holograms from portrait mode).

Fig. 3 shows an example of such an attack (ªResolve success!º

means attack succeeds). The hologram (a colorful 3D axis) is

initially placed in front of the yellow sign by a victim. Later,

an attacker with a photograph of the yellow sign can view the

hologram, despite being at a different location and nowhere

near the yellow sign.

Remote write attack. In this type of attack, an attacker

can write AR holograms in places where it is not authorized

to access or contribute, such as holy sites, museums, private

spaces, kindergartens, and more. This situation becomes even

more concerning if the written AR holograms contain inap-

propriate material, such as racist, extremist, pornographic,

Figure 4: Remote write attack in scenario A. Left: An attacker

is able to write a hologram at a real-world location (a desk)

without being physically present. Right: A victim views the

unexpected hologram on the desk.

or disturbing content, causing psychological harm to vic-

tims. The attacker’s methodology is similar to the remote

read attack, with the additional step that after viewing the

photograph/display, the attacker also indicates (by interacting

with the AR device) where within the photograph/display the

hologram should be placed. However, a significant challenge

was that the key the attacker needs to generate a write request

is more detailed than that needed for a read request; more

camera images of the scene need to be captured from different

angles to generate a successful write request (while looking

at a single image on the display). We successfully tackled this

challenge by carefully maneuvering the camera and prioritiz-

ing the capture of the image displayed on the monitor while

minimizing the inclusion of the surrounding environment.

In Fig. 4, we show an example of this attack. The attacker

displays an image of a desk on a computer monitor and places

(writes) the hologram onto the desk in the shared state. When

the victim later visits the location and views the desk through

her AR device, it retrieves the hologram maliciously written

by the attacker. Note that the key of the attacker’s write

request did not have to exactly match the key of the victim’s

read request, as illustrated by the differences in the camera

images of the attacker and victim (compare the left and right

sides of Fig. 4); for example, the attacker had extra features

such as the keyboard and the monitor’s border in view. The

attack was still successful because the shared state matches

keys that are not perfectly identical to allow for legitimate

scenarios, such as two users viewing the same scene from

slightly different angles.

2766 33rd USENIX Security Symposium USENIX Association

Figure 5: Triggered remote write attack in scenario A. Left:

An attacker employs triggered features to remotely write a

hologram at a real-world location without being physically

present. Right: A victim encounters an unexpected hologram

on their desk, triggered by features injected by the attacker.

Triggered remote write attack. This attack can be treated

as an advanced type of write attack, but it is more stealthy.

We assume that an attacker not only has the ability to execute

a successful remote write attack and poison the shared state,

but it also has the ability to manipulate the victim’s environ-

ment with pre-determined triggered features. This allows the

attacker to exert control over the timing and extent of the at-

tack, targeting specific individuals or groups. For instance,

consider a scenario where a TV is present in the environment.

Suppose the attacker could strategically turn on the TV and

display the trigger on the screen when a specific person enters.

This greatly increases the probability of the victim’s success-

ful reading and display of the attacker’s hologram, leading to

potentially severe consequences as desired by the attacker.

Figure 5 illustrates this, where the attacker initially writes

a hologram remotely with the triggered features (left side of

Fig. 5). Subsequently, if the attacker places the same triggered

features at the victim’s physical location (right side of Fig. 5),

the victim will read the hologram placed by the attacker from

the shared state. Ideally, if the triggered features are not added

by the adversary, the attack remains benign in most cases, and

the victim will be unaware that their private location has been

manipulated by the attacker.

3.2 Evaluation

Next, we evaluate the attacker’s success rate in both the re-

mote write, remote read, and triggered remote write attacks

in different environments, including investigating the impact

of clutter, lighting, and indoor vs. outdoor environments.

Environment
Attack success rate

Static scene Add clutter

Office desk 13/16 10/16

Bedroom desk 12/16 7/16

Bedroom bed 14/16 7/16

Outdoor garden 5/16 2/16

Outdoor BBQ 16/16 15/16

Outdoor pool 16/16 15/16

Table 2: Success rates of remote read attacks in Static scene

and Add clutter conditions. Attacks succeed often and per-

form better in a Static scene compared to Add clutter.

3.2.1 Remote Read Evaluation

Experiment setup. We execute the remote read attack in

six different environments, as shown in Table 2. These en-

vironments include a range of backgrounds, including an

office, personal home, and pool, with about half being indoor

environments and the other half outdoor (see Fig. 14 in the

Appendix). All of the experiments were been done with a

Samsung Galaxy S20 Android phone, and an Apple Mac-

Book Pro served as the monitor to display the environment

images. The success rate was used as the evaluation metric.

It was defined as the number of trials in which we were able

to successfully read the written hologram remotely. We also

evaluated a benign baseline where the user reads the hologram

from the real environment.

Furthermore, we evaluated the success rate under two con-

ditions: Static scene and Add clutter. The motivation for

studying these two conditions is to simulate the case where the

attacker does not have perfect information about the victim’s

environment or the environment has changed in the interim.

In the Static scene condition, the victim’s true environment

closely resembles the attacker’s image of the environment.

The Add clutter condition involves environments that have

new objects or alterations in the attacker’s image compared

to the victim’s original environment. It is a more challeng-

ing condition because there are additional features during the

attacker’s read process which were not been present during

the victim’s write, i.e., the read key may not exactly match

the write key, so the attacker’s read may fail. The results of

these evaluations provide insights into the effectiveness of the

remote read attack under different conditions.

Results. As Table 2 shows, the success rate of the attack is

generally good, with the attack succeeding about half the time,

on average, across all of the environments we experimented in.

This makes sense because, according to our observations, the

critical phase of shared state communications is usually the

writing process. The better the quality of the key uploaded

by the victim during her write request, the easier it is for

subsequent users (including the attacker) to read successfully.

In other words, because the writing was performed in the real

USENIX Association 33rd USENIX Security Symposium 2767

Figure 6: Remote read attacks in Scenario A.

environment (not from a photograph) by the victim, there

are many 3D features extracted from the victim’s camera

images and inserted into the map in the shared state. This

creates a larger attack surface because there are many possible

matching keys (e.g., different angles of the scene) that an

attacker could use to successfully launch a remote read.

We conducted additional experiments at different distances

between the AR device’s camera and the attacker’s image of

the environment. The results in Fig. 6 show that the attack

success decreases as the attacker moves further away and the

image becomes smaller in the camera’s field of view. On the

other hand, if the distance is less than 0.5 meters, it becomes

challenging for the camera to focus on the visual features of

the image, and the attack tends to be less successful. The

benign baseline can read the hologram the vast majority of

the time, while the attacker is only moderately less successful.

3.2.2 Remote Write Evaluation

Experiment setup. The setup is similar to the remote read

attack (§3.2.1). A minor difference is that the Add clutter

condition refers to environments where there are additional

objects or changes in the victim’s real environment (during

the read) compared to the attacker’s image (used to do the

poisoned write). We also informally experimented with dif-

ferent environment lighting, conducting experiments in both

brightly lit and dimmer versions of the same environment

(e.g., by turning on/off a lamp or daytime/sunset).

Results. Table 3 shows the success rates of the remote write

attack in different environments. As can be seen, the attack

reaches a high degree of success in both indoor and outdoor

environments. The success rate is generally lower than the re-

mote read attack because, as discussed earlier in Section 3.1,

a write request generally requires more camera images in

its key, and for an attacker to capture these multiple camera

images from different angles of a single photograph is chal-

lenging. The ªOutdoor gardenº scene has a particularly low

success rate. This can be attributed to the limited number of

planes present in the scene compared to other environments,

Environment
Attack success rate

Static scene Add clutter

Office desk 8/16 7/16

Bedroom desk 6/16 4/16

Bedroom bed 10/16 8/16

Outdoor garden 1/16 0/16

Outdoor BBQ 16/16 15/16

Outdoor pool 15/16 14/16

Table 3: Success rates of remote write attacks in Static scene

and Add clutter conditions. The overall success rate of remote

write attacks is slightly lower than that of remote read attacks.

The success rates decrease in the Add clutter condition.

as the API typically relies on an adequate number of planes

to create a map in the shared state and enable writing. How-

ever, it is important to emphasize that the low success in this

environment affects both the remote write attack and a legit-

imate write process equally. We also evaluated the impact

of distance on the attack, and the results follow those of the

indoor scenario (presented in Fig. 15 in Appendix B.1).

Our attack demonstrates strong robustness against envi-

ronmental factors like lighting changes, clutter, and distance,

which barely affect its success rate. Based on our experi-

ments, we have observed that when the actual environment

that the victim is in is significantly darker than what is shown

in the attacker’s image, such as during nighttime or when

the lights are almost turned off, the success rate of the attack

degrades by approximately 15-25%. The robustness of our

attack, which doesn’t require precise knowledge of the vic-

tim’s environment, makes it particularly dangerous. Notably,

clutter impacts the success rate of remote read attacks more

than remote write attacks. This occurs because remote reads

face two layers of noise (photographic noise and clutter) si-

multaneously, reducing success rates. However, for remote

write attacks, the layers of noise are separated (the photograph

adds noise during the attacker’s write, and the added clutter

adds noise during the victim’s read), and thus the impact on

the success rate is less.

3.2.3 Triggered Remote Write Evaluation

Experiment setup. The setup is similar to the remote write

experiment in the previous attack (Section 3.2.2), except that

the attacker adds additional trigger features during remote

write as depicted in Fig. 5. For our experiments specifically,

we have used a simple piece of paper with some marks on

it and a spinner on the paper placed near the image on the

monitor. During the attacker’s remote write, we do our best to

move the attacker’s camera to capture features both from the

image on the monitor and the additional trigger features. In

addition to having the victim read from the same environment

as the attacker’s write, we also examined the false positive

rate in two cases: (case 1A) whether the victim can view the

2768 33rd USENIX Security Symposium USENIX Association

Environment
Attack success rate

Static scene Add clutter

Office desk 15/16 15/16

Bedroom desk 13/16 12/16

Bedroom bed 15/16 13/16

Outdoor garden 3/16 1/16

Outdoor BBQ 16/16 16/16

Outdoor pool 16/16 16/16

Table 4: Success rates of triggered remote write attacks in

Static scene and Add clutter conditions with triggered fea-

tures. The success rates are nearly identical in the Static

scene and Add clutter conditions.

hologram in a different environment containing the trigger

and (case 1B), whether the victim can view the hologram in

the correct environment without the trigger present. Ideally,

the false positive rate should be low in both cases.

Results. Table 4 shows the results derived from the exper-

iments. As the results suggest, there is a large boost in the

success rate compared to the vanilla remote read attack results

in Table 3. We examined two critical aspects of the triggered

remote write attack: the false positive rate in cases 1A and

1B. Fortunately, in case 1A, false positives never happen

in our experiments; we believe this is probably because the

trigger features that we used are very simple and constitute a

relatively small fraction of features from the entire environ-

ment. In other words, they act as auxiliary features and are

not sufficient alone for the victim to use them as a key to read

the hologram. In case 1B, the victim can sometimes (around

50% of the time) still read the hologram even if the trigger

used by the attacker during the remote write is absent from

the scene. This aligns with our hypothesis that the trigger

features serve as auxiliary features in the scene. These results

are comparable to the those achieved by Ji et al. [23] without

adversarial patch triggers, in a non-AR domain. However,

we find that if an adversary adds the triggered features to

the victim’s environment, the victim will read the attacker’s

hologram from the shared state with a much higher success

rate of over 90%, so the triggers are effective.

4 Scenario B: Global, Curated Shared State

Built on Google’s extensive database of public street images,

the Geospatial API [15] allows users to attach AR holograms

to any location within Google Street View, creating an AR

experience on a global scale. This is an example of a global,

curated, shared state. In this section, we demonstrate a prac-

tical attack in which the attacker can remotely read to steal

a private hologram written by the victim. For example, in a

city-wide scavenger hunt, an attacker could cheat to collect

the virtual treasure simply by trying images of the possible

Figure 7: Remote read attack in Scenario B. Left: A legitimate

user places a hologram in front of a building. Right: The

attacker can view the hologram on an image of the building.

treasure locations. The attacker benefits by eliminating the

physical labor needed to visit all the locations, gaining a com-

petitive advantage over other users. The attack technique is

similar to those on the local, curated shared state discussed in

Section 3, but the main difference is the addition of GPS as a

key (along with camera images), which requires changes to

the attack methodology. Also, the Geospatial API, being built

on Google Street View, limits the read and write of holograms

to outdoor environments. However, we have discovered that

by manipulating GPS, camera, and IMU readings, we are

able to deploy remote read attacks indoors as well. All experi-

ments were performed on local applications and devices only

accessible by us, without malicious writes to the shared state,

so they did not harm external users.

4.1 Methodology

The Geospatial API gives users the capability to place holo-

grams in their physical surroundings by leveraging spatial

data obtained from Google’s Visual Positioning System

(VPS) [16], based on Street View images. Using computer

vision algorithms on the camera images, the API facilitates

the accurate determination of the device’s location and orien-

tation to locate and display the correct holograms, surpassing

the localization capabilities of GPS alone. However, this tech-

nology also introduces potential security vulnerabilities that

can be exploited by malicious actors.

Remote read attack. By employing GPS spoofing applica-

tions, an attacker can remotely read holograms by altering the

GPS location of her device. Along with utilizing a GPS emu-

lator, the attacker points her device’s camera toward printed

USENIX Association 33rd USENIX Security Symposium 2769

photographs or virtual images displayed on a monitor in or-

der to generate a poisoned read request to the shared state

and view the hologram at the target location. We assume the

attacker has sourced these photographs/images from public

online platforms, such as Google Street View, Mapillary [39],

or even real estate websites. Fig. 7 demonstrates the process,

illustrating how the attacker successfully manipulates the de-

vice’s GPS location using a GPS emulator combined with

image spoofing to achieve the remote reading of holograms

onto her AR display.

4.2 Evaluation

Experiment setup. To begin with, we place 23 holograms

at various campus locations using the Geospatial API. We

selected these locations to encompass a range of environmen-

tal differences and varying light conditions, shown in Fig. 16

in the Appendix. Subsequently, we capture photographs of

the areas where the holograms were placed. We employ a

GPS emulator application [47] to generate fake GPS locations

on the Android phones utilized for testing. By manipulating

the GPS coordinates and displaying an image of the target

location, we aim to deceive the shared state into returning the

associated holograms at those locations.

We conducted the remote read attack with the attacker’s

device located from [0.25, 0.5, 0.75, 1, 1.5, 2] meters away

from the monitor. To assess the effectiveness of these attacks,

we utilize the attack success rate as the primary metric. We de-

fine a successful attack when each read operation can succeed

in less than three trials. Our testing involved two Android

phones, namely the Samsung Galaxy S8 and the Samsung

Galaxy S21. The former was used by the victim to place the

holograms, while the latter was used by the attacker to capture

the images (size 3024 x 4032 pixels) and conduct the attacks.

Results. Fig. 8 shows our findings in terms of the attack

success rate as a function of the attacker’s distance. When

the distance between the attacker’s device and the monitor is

too close, such as at 0.25 meters, the camera on the device

may struggle to focus properly. This can result in blurred

images, making conducting successful remote read attacks

challenging. Notably, we achieved a 100% success rate for re-

mote read attacks conducted at a distance of 0.5 meters. This

distance proves to be optimal for the camera on the device

to focus properly, resulting in clear and discernible images.

However, as the distance between the attacker’s device and

the monitor increases, the success rate of the remote read

attacks declines significantly. We speculate that several fac-

tors may influence this decline in success rate. Firstly, as

the distance increases, the images displayed on the monitor

become smaller, making the attacker’s read key significantly

different from the victim’s initial write key. Similarly, when

the device is positioned at a greater distance from the monitor,

there is an increased likelihood of capturing unrelated objects

Figure 8: Remote read attacks in scenario B.

in the field of view. This can significantly impact the success

rate of the attack. In contrast, the benign baseline, without

any attack in the real environment, succeeds 100% of the time

as expected, but our attack still succeeds most of the time.

5 Scenario C: Global, Crowd-Sourced Shared

State

While the imagery needed for global AR exists in Geospatial

Anchor, as discussed in the previous section, such services’

shared states are curated, meaning that only trusted individ-

uals (paid contractors) are able to gather and upload data to

write to the map. However, more recent services like Map-

illary [32] allow users to both read from the map and write

new data to expand and update it. Mapillary is a non-curated

service, which means that all users have the ability to read

and write in the shared state. This includes the raw map data

as well as holograms that are virtual representations of real

objects (e.g., traffic signs, fire hydrants, and light poles).

Non-curated applications that rely on GPS and camera im-

ages as keys, such as Mapillary, introduce new attack vectors,

as attackers with minimal permissions gain more capabilities.

Although allowing users to read or write to the shared state

is the desired behavior of a crowd-sourced platform, care-

fully poisoning the read or write updates can cause adverse

downstream effects that are unique to AR. Towards this, in

this section, we investigate attacks on global, crowd-sourced

AR shared states, using Mapillary as an example. We investi-

gate two types of attacks: a poisoned write to the map in the

shared state (Section 5.1), and a poisoned write that creates

false holograms in the shared state (Section 5.2). For the

former, we will demonstrate the construction site example

from §1, where the attacker causes a victim worker to see the

wrong construction signs and dig in unsafe real-world areas.

All experiments conducted in this section were carried

out with permission from Mapillary. The experiments were

conducted within a designated geo-fenced area, which was

specifically created for the purpose of these experiments. This,

in addition to Mapillary-provided test accounts, ensured that

data uploaded for the experiments only appeared on the test

accounts and devices, and had no impact on external users.

2770 33rd USENIX Security Symposium USENIX Association

Figure 9: Two image sequences with their GPS coordinates

swapped are shown in a screenshot of the Mapillary shared

state map.

5.1 Poisoned Write to the Shared State’s Map

5.1.1 Methodology

The high-level idea is for the attacker to poison the GPS part

of the key associated with the write request while keeping

the hologram part of the key legitimate. Specifically, the at-

tacker obtains image sequence A and image sequence B from

two locations, A and B. Normally, these locations should be

associated with holograms A and B, respectively. It swaps

their GPS coordinates and makes two write requests: one

with {key=image sequence A + GPS B, value=hologram

B}, and another with {key=image sequence B + GPS A,

value=hologram A}. Thus the hologram at location B be-

comes associated with image sequence A, and vice versa.

Because of this, a victim who later reads with {key=image

sequence A} will receive a response from the shared state

with {value=hologram B}, and view the wrong hologram at

location A.

Note that while the mechanics of this attack are similar to

the global, non-curated attack (Section 4) in that the GPS part

of the key is modified, here we focus on write attacks rather

than read attacks, which means that we need to carefully craft

the spoofed GPS (by swapping) during the write request, in

order to cause adverse effects to downstream victims who

read the poisoned shared state. Next, we describe the detailed

attack mechanics in terms of writes and reads.

Attacker’s write mechanics. To upload images to the

shared state, a sequence of images, each with associated meta-

data (latitude, longitude, altitude, and time), is needed. The

sequence can range from a minimum of three images to sev-

eral hundred. All of the image metadata is in Exchangeable

Image File (EXIF) format, whose data is freely manipula-

ble using scripts. An attacker can modify the metadata so

that the image seems to have been captured at any arbitrary

location and time (within reason; for example, timestamps

from the future will be rejected by the shared state). An il-

lustration of image sequences with modified metadata being

successfully ingested by the shared state is shown in Fig. 9.

In this particular example, two sequences of five images each,

Figure 10: Details of poisoned write to the shared state’s map

mechanics. We used Mapillary’s open-source OpenSFM [34]

library to demonstrate the attack with swapped GPS keys.

captured using an iPhone 12, were uploaded with swapped

latitude, longitude, altitude, and time. The images were suc-

cessfully uploaded using Mapillary’s desktop uploader util-

ity [35]. Mapillary allows these sequences to be uploaded,

processed, and displayed at the swapped locations for viewing

by other users.

Victim’s read mechanics. After the attacker’s poisoned

write on Mapillary, we next turn our attention to visualizing

the results on the victim’s side. One challenge that we faced is

that Mapillary is a closed source and does not currently have

a public AR interface to experiment with, which is needed in

our study to read the shared state and demonstrate the impact

on AR victims. To overcome this, we utilize Mapillary’s

underlying computer vision library, OpenSFM [34], plus our

own additional Python scripts to construct a simple AR viewer

that replicates, to the best of our ability, how a legitimate

user’s read request would be visualized. Fig. 10 shows the

data flow of the AR application from an image sequence to

the hologram. First, the initial maps in the shared state are

generated using OpenSFM [34] from the data in the attacker’s

write request. Next, the spoofed GPS from the write request

is used to facilitate the processing of the maps that are then

stored in the shared state alongside the augmentations. Finally,

a victim captures new images and uploads them to the shared

state in a read request, which is processed by the OpenSFM to

return nearby holograms for rendering on the victim’s display.

This step is similar to how a commercial AR service would

handle read requests [44, 51]. We do not use GPS as a key

during the read because OpenSFM does not support it, and

frameworks that support image and GPS keys are research

prototypes only [3].

5.1.2 Evaluation

We repeated the write attack a total of 8 times on Mapillary’s

shared state for 15 total image sequences with false GPS data

(one sequence was a duplicate, not a swap). These swaps

occurred using imagery captured outdoors within 1 km2 of

USENIX Association 33rd USENIX Security Symposium 2771

Location A Location B

N
o

A
tta

ck

W
ith

A
tta

ck

Figure 11: Effect of poisoned write to the shared state’s map.

Holograms are read at the wrong locations; in this example, a

ªsafe to digº sign is placed next to an underground pipe.

the geo-fenced area. The images were taken at different times

of day, ranging from early morning to early evening, facing

different directions, and at different locations (e.g., streets,

and grass fields without roads). These images were captured

on iPhone 12 at 1080p and uploaded in PNG format. We veri-

fied through the Mapillary web interface that all the attacker’s

write requests with spoofed GPS data were successfully in-

gested by the Mapillary pipeline, uploading, processing, and

displaying the spoofed imagery. This shows that the funda-

mental write attack mechanic works. The main reason this

works is that while Mapillary does check for basic undesir-

able content, it does not check whether crowd-sourced images

indeed correspond to the claimed GPS locations.

With the write attack mechanics validated on Mapillary,

we next sought to show the impact on a victim AR user. To

showcase this, we had the attacker write two image sequences

(a grass scene and a pipe scene), containing five images each,

to the shared state. We reserved one additional image per

sequence for use by the victim. The holograms (a ªdig safeº

sign and a ªdanger: underground gas lineº sign) included

in the write request were associated with locations 5 meters

in front of the first image in each sequence. After running

through the pipeline in Fig. 10, the final display to the victim

is shown in Fig. 11. The first row shows the AR display seen

by a victim without our attack. The ªdig safeº hologram is

displayed in the grass field, and the ªdangerº hologram is

displayed near the pipes, as intended. The bottom row shows

that with our attack, the wrong hologram (ªdig safeº) is shown

near an underground gas line, leading to serious safety issues.

5.2 Poisoned Write of Shared Holograms

In this subsection, we discuss another vulnerability through

modifications to the image sequence part of the key. Some

AR shared states (e.g., Mapillary) perform object detection on

the images uploaded by users to their service [33]. When an

image sequence is uploaded, these detected objects are added

to the shared state map at the positions they were detected.

This presents attackers with the opportunity to tamper with

(a) Real-world ground truth. (b) Tampered image.

Figure 12: Poisoned write to the shared state’s holograms. A

fake stop sign has been inserted into a sequence of images in

order to fool the shared state’s object detector, resulting in a

fake stop sign hologram being added to the shared state.

the images and introduce fake holograms into the shared

state. For example, the attacker could create a fake stop sign

hologram overlaid onto an otherwise empty street, causing an

AR navigation app to provide wrong directions to the user.

Methodology. We used Photoshop to edit a sequence of

images to add a stop sign and write them to the shared state.

For the attack to be successful, the stop sign’s size had to

be proportional to the user’s distance from it, and the octag-

onal shape preserved using transparency layers. Mapillary

required photo-realistic stop signs in order for the fakes to be

successfully ingested and recognized. The fake object also

had to be present in at least 3 images in order for Mapillary

to place it accurately, which requires multiple photographs of

the stop sign with appropriate scaling. Without these changes,

the Mapillary pipeline rejected the write request.

Evaluation. Fig. 12 shows an example of a successful at-

tack. Fig. 12a shows the real-world ground truth. Fig. 12b

shows the tampered image, with a photograph of a stop sign

taken from public sources cropped and overlaid on top of it.

The small subfigure in the bottom left of Fig. 12b shows a

screenshot of Mapillary’s web interface where the stop sign

hologram is accepted into Mapillary’s shared state. We expect

that attackers could also write other false holograms into the

shared state; any of Mapillary’s pre-defined object detection

classes (e.g., traffic signs, lamp posts) could work.

6 Shared State Attack Mitigations

The fundamental question at issue for these attacks is how to

accurately establish the true location of an AR device. All of

these attacks involve deceiving the shared state about the at-

tacker’s location to read or write data maliciously. We discuss

multiple potential mitigation strategies related to this and our

defense prototype utilizing additional sensor modalities.

Additional sensor modalities. The risk of shared state at-

tacks on AR devices can be reduced by leveraging multiple

2772 33rd USENIX Security Symposium USENIX Association

(a) Hololens 2 RGB camera. (b) Hololens 2 depth camera.

Figure 13: Mitigation via depth sensors on Microsoft

Hololens 2. Depth sensors show the screen as flat and lacking

details of an image captured of the real location.

sensor modalities to verify the consistency between the shared

state and other accessible sensor data. For instance, the Mi-

crosoft Hololens 2 incorporates Red-Green-Blue (RGB) and

depth cameras. As shown in Fig. 13, the depth camera can

help identify a computer monitor or photograph, which was

key to launching the attacks in Scenarios A and B. Thus, an

automated comparison between the outputs of the depth and

RGB cameras can be conducted to detect whether the user is

physically present in the actual scene.

To demonstrate this, we designed the following experi-

ment. We trained a convolutional neural network (CNN) to

take color and depth images as input and classify whether

the scene is being viewed at the actual physical location or

not. We collected data using the Hololens 2 Sensor Streaming

(HL2SS) system [10], which consists of color images saved

as 640x480 24-bit RGB images and depth images stored as

640x480 16-bit monochrome images. Since the two cameras

have different fields of view, we pre-processed the images

using the camera’s intrinsic parameters to ensure a 1:1 cor-

respondence between pixels in the color and depth images.

The data was collected from 15 real scenes, with 300 pairs

of color and depth images gathered from each scene. To sim-

ulate an attack, we then collected images taken in front of

computer monitors displaying photographs of the same 15

scenes. These monitors varied in size, with diagonals of 11,

32, and 55 inches.

Subsequently, the dataset was partitioned into 12 scenes for

training and 3 new unknown scenes for testing (80/20 train-

ing/test split). The CNN was a customized ResNet-18 net-

work [62] modified to incorporate four input channels (three

RGB channels plus depth), followed by a fully connected

layer for scene classification of whether the user is physically

present in the scene or not. The results for the multi-model de-

fense are promising, achieving 79.35%, 79.99%, and 84.22%

for the F1 score, recall, and precision, respectively. How-

ever, note that not all AR devices, such as iPhones or Android

phones, come equipped with depth sensors. This absence of

hardware features could potentially restrict the applicability

and effectiveness of this defense methodology and further

investigation is needed.

Clean slate design. Alternatively, the core design of these

applications could use traditional security measures to pre-

vent tampering. Non-curated shared states (Scenario A and

C) could be changed to curated with a permissions system

where only trusted users may perform write [8]. Still, for

those applications where crowd-sourcing (non-curation) is

desirable, a compromise involving a user reputation system

based on past good behavior may prove sufficient, although

this requires oversight by AR providers. Additional checks in

non-curated applications could be added, such as only accept-

ing appropriately watermarked images with embedded GPS

as keys [30], to prevent false hologram attacks in Scenario C.

Real space security. QR codes printed and placed into the

real location can offer a form of locality assurance, particu-

larly if those codes are changed regularly [25]. This method

ensures that attackers who lack regular physical access to the

locations will be unable to read holograms remotely. Addi-

tionally, as we found in §4.2, read attacks are less successful

at greater distances. Thus, we can request that users collect

more images at different distances and angles, although this

places an additional burden on users.

Local moderators. AR frameworks with crowd-sourced

shared state (Scenario C) may be considered as a form of con-

tent hosting (where the content is image keys and hologram

values being uploaded). Hence, human moderators may be

used to great effect, as in other successful applications like

Facebook [43]. However, moderator teams are expensive and

must be located close to locations of the uploaded image keys

to verify them.

7 Related Work

AR/VR security and privacy overviews. Recent

overviews [9, 45] broadly cover existing issues. Literature

covering human factors of multi-user AR also exists [25],

which our work aligns with. Work on securing AR output in

multi-user AR [49] is orthogonal in that it focuses on content

sharing for holograms given their locations, whereas we

study how these locations are determined. The global shared

state scenarios also intersect with geospatial information

services security covered in [2].

AR leakage vectors. Prior research [7, 31, 46] has high-

lighted the issue of unauthorized acquisition of sensitive in-

formation from AR/VR devices. Several studies [37, 56]

demonstrate the feasibility of inferring the user’s location by

analyzing network traffic information. Other works [53, 55]

establish the ability to deduce keystrokes based on the user’s

head motions or other user interactions based on performance

counters [63]. Several studies [18, 38] shows that attackers

can exploit sensor-based side-channel leakages to exfiltrate

USENIX Association 33rd USENIX Security Symposium 2773

sensitive information. However, none of these investigate

attacks on the shared state in multi-user AR as we do.

Computer vision attacks. AR uses computer vision tech-

niques as part of its foundation, and thus such attacks could

apply. Such work includes software [6,19,20,26,58] and hard-

ware [61, 64, 66] based attacks on machine learning models.

While our work uses photographs, screens, manipulated im-

ages, and GPS to trick computer vision systems, attacks using

additional hardware like lasers have also been explored [60].

SLAM attacks also exist [21, 41, 52] and could impact AR

systems. Our work takes inspiration from these to show com-

puter vision attacks can cascade into interesting behaviors

in the AR domain rather than general object detectors or au-

tonomous vehicles.

Sensor spoofing and confusion. Our work uses GPS spoof-

ing by simply altering the metadata stored in plain text. While

not necessary for our attacks, more sophisticated GPS spoof-

ing has reached widespread use [54]. Tricking IMU sen-

sors was not done in this work but is possible with acoustic

waves [23, 50] and is an interesting future direction.

AR/VR threat mitigation. Defenses against user-

manipulated input data, such as image manipula-

tion [1, 27, 28, 65], have become sophisticated in recent

years. GPS spoofing mitigation [22] focuses on real-time

mitigation, but frameworks like Mapillary provide the ability

to upload batched imagery at later times for user convenience,

and thus such mitigations may not be directly applicable.

The most effective mitigation is likely to come in the form

of permissions systems like in [8], but these will require

non-curated shared states to become curated.

8 Conclusions

As AR become ubiquitous, there is growing need for research

into security and privacy risks unique to AR, especially multi-

user AR. This paper introduced and explored attacks on multi-

ple shared state AR applications and frameworks. Specifically,

we show that the basic use of GPS and camera images is in-

sufficient to accurately establish the location of an AR device

and hence what holograms should be writeable/readable by a

user. We proposed a threat model that applies to several dif-

ferent scenarios and demonstrated them on off-the-shelf AR

systems in a variety of environments. Simple defenses such

as image manipulation detection or the use of multi-modal

sensors can help, but further investigation of other defenses,

such as defining map update policies by trusted users or fraud

detection, is needed.

Acknowledgments

We greatly thank the anonymous shepherd and reviewers for

their helpful suggestions on the paper. This work was partially

supported by the NSF grants CNS-1942700, CNS-2053383,

CCF-2212426, and a Meta faculty research award.

References

[1] Sevinc Bayram, Ismail Avcibas, Bülent Sankur, and Nasir D.

Memon. Image manipulation detection. Journal of Electronic

Imaging, 15(4):041102, 2006.

[2] Elisa Bertino, Bhavani Thuraisingham, Michael Gertz, and

Maria Luisa Damiani. Security and privacy for geospatial data:

concepts and research directions. In ACM SIGSPATIAL GIS

International Workshop on Security and Privacy in GIS and

LBS, 2008.

[3] Simon Boche, Xingxing Zuo, Simon Schaefer, and Stefan

Leutenegger. Visual-inertial slam with tightly-coupled dropout-

tolerant gps fusion. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2022.

[4] T.P. Caudell and D.W. Mizell. Augmented reality: an applica-

tion of heads-up display technology to manual manufacturing

processes. In Hawaii International Conference on System

Sciences, 1992.

[5] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and

Randy H Katz. Marvel: Enabling mobile augmented reality

with low energy and low latency. In ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2018.

[6] Yiming Chen, Simin Chen, Zexin Li, Wei Yang, Cong Liu,

Robby T Tan, and Haizhou Li. Dynamic transformers provide

a false sense of efficiency. arXiv preprint arXiv:2305.12228,

2023.

[7] Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jae-

wook Lee, Aroosh Kumar, Jeffery F Tian, Tadayoshi Kohno,

and Franziska Roesner. When the User Is Inside the User

Interface: An Empirical Study of UI Security Properties in

Augmented Reality. USENIX Security Symposium, 2024.

[8] Luis Claramunt, Carlos Rubio-Medrano, Jaejong Baek, and

Gail-Joon Ahn. Spacemediator: Leveraging authorization poli-

cies to prevent spatial and privacy attacks in mobile augmented

reality. In ACM Symposium on Access Control Models and

Technologies (SACMAT), 2023.

[9] Jaybie A. De Guzman, Kanchana Thilakarathna, and Aruna

Seneviratne. Security and privacy approaches in mixed reality:

A literature survey. ACM Comput. Surv., 52(6), oct 2019.

[10] Juan C Dibene and Enrique Dunn. Hololens 2 sensor streaming.

arXiv preprint arXiv:2211.02648, 2022.

[11] Google. ARCore SDK for Android. https://github.com/

google-ar/arcore-android-sdk/tree/master.

[12] Google. Cloud Anchors allow different users to share AR expe-

riences. https://developers.google.com/ar/develop/

cloud-anchors.

2774 33rd USENIX Security Symposium USENIX Association

[13] Google. Cloud Anchors quickstart for Android.

https://developers.google.com/ar/develop/java/

cloud-anchors/quickstart.

[14] Google. Geospatial quickstart for Android .

https://developers.google.com/ar/develop/java/

geospatial/quickstart.

[15] Google. Google ARCore Geospatial API. https://

developers.google.com/ar/develop/geospatial.

[16] Google. Google’s Visual Positioning System (VPS).

https://ai.googleblog.com/2019/02/using-global-

localization-to-improve.html.

[17] Google. How street view works and where we will collect

images next. https://www.google.com/streetview/how-

it-works/.

[18] Sindhu Reddy Kalathur Gopal, Diksha Shukla, James David

Wheelock, and Nitesh Saxena. Hidden reality: Caution, your

hand gesture inputs in the immersive virtual world are visible

to all! In USENIX Security Symposium, 2023.

[19] Zhongliang Guo, Yifei Qian, Ognjen ArandjeloviÂc, and Lei

Fang. A white-box false positive adversarial attack method on

contrastive loss-based offline handwritten signature verification

models. arXiv preprint arXiv:2308.08925, 2023.

[20] Zhongliang Guo, Kaixuan Wang, Weiye Li, Yifei Qian, Ognjen

ArandjeloviÂc, and Lei Fang. Artwork protection against neural

style transfer using locally adaptive adversarial color attack.

arXiv preprint arXiv:2401.09673, 2024.

[21] Muhammad Haris Ikram, Saran Khaliq, Muhammad Latif An-

jum, and Wajahat Hussain. Perceptual aliasing++: Adversarial

attack for visual slam front-end and back-end. IEEE Robotics

and Automation Letters, 7(2):4670±4677, 2022.

[22] Ali Jafarnia-Jahromi, Ali Broumandan, John Nielsen, and

Gérard Lachapelle. Gps vulnerability to spoofing threats and

a review of antispoofing techniques. International Journal of

Navigation and Observation, 2012, 2012.

[23] Xiaoyu Ji, Yushi Cheng, Yuepeng Zhang, Kai Wang, Chen Yan,

Wenyuan Xu, and Kevin Fu. Poltergeist: Acoustic adversarial

machine learning against cameras and computer vision. In

IEEE Symposium on Security and Privacy (SP), 2021.

[24] Li Jinyu, Yang Bangbang, Chen Danpeng, Wang Nan, Zhang

Guofeng, and Bao Hujun. Survey and evaluation of monocular

visual-inertial slam algorithms for augmented reality. Virtual

Reality & Intelligent Hardware, 1(4):386±410, 2019.

[25] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and

Franziska Roesner. Towards security and privacy for multi-

user augmented reality: Foundations with end users. In 2018

IEEE Symposium on Security and Privacy (SP), pages 392±

408, 2018.

[26] Zexin Li, Bangjie Yin, Taiping Yao, Junfeng Guo, Shouhong

Ding, Simin Chen, and Cong Liu. Sibling-attack: Rethink-

ing transferable adversarial attacks against face recognition.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023.

[27] Jiang Liu, Chun Pong Lau, Hossein Souri, Soheil Feizi, and

Rama Chellappa. Mutual adversarial training: Learning to-

gether is better than going alone. IEEE Transactions on Infor-

mation Forensics and Security, 17:2364±2377, 2022.

[28] Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chellappa,

and Soheil Feizi. Segment and complete: Defending object

detectors against adversarial patch attacks with robust patch

detection. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2022.

[29] David G Lowe. Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60:91±

110, 2004.

[30] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital

camera identification from sensor pattern noise. IEEE Trans-

actions on Information Forensics and Security, 1(2):205±214,

2006.

[31] Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Holologger:

Keystroke inference on mixed reality head mounted displays.

In IEEE Conference on Virtual Reality and 3D User Interfaces

(VR), 2022.

[32] Mapillary. Mapillary: make better maps. https://

www.mapillary.com/.

[33] Mapillary. Mapillary object detection. https:

//help.mapillary.com/hc/en-us/articles/

115000967191-Object-detections.

[34] Mapillary. Opensfm: open source structure-from-motion.

https://github.com/mapillary/OpenSfM.

[35] Mapillary. Mapillary Desktop Uploader. https://

www.mapillary.com/desktop-uploader, 2024.

[36] Meta. Mapillary Tools. https://github.com/mapillary/

mapillary_tools/tree/main, 2023.

[37] Gabriel Meyer-Lee, Jiacheng Shang, and Jie Wu. Location-

leaking through network traffic in mobile augmented reality

applications. In IEEE International Performance Computing

and Communications Conference (IPCCC), 2018.

[38] Vivek Nair, Wenbo Guo, Justus Mattern, Rui Wang, James F

O’Brien, Louis Rosenberg, and Dawn Song. Unique identifica-

tion of 50,000+ virtual reality users from head & hand motion

data. USENIX Security Symposium, 2023.

[39] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and

Peter Kontschieder. The mapillary vistas dataset for semantic

understanding of street scenes. In IEEE International Confer-

ence on Computer Vision (ICCV), 2017.

[40] Niantic. Buddy adventure coming soon. https://

pokemongolive.com/post/buddyadventurelaunch/?hl=

en, 2019.

[41] Shahab Nikkhoo, Zexin Li, Aritra Samanta, Yufei Li, and

Cong Liu. Pimbot: Policy and incentive manipulation for

multi-robot reinforcement learning in social dilemmas. arXiv

preprint arXiv:2307.15944, 2023.

[42] Overture. Overture map foundation. https://

overturemaps.org/.

[43] Irena Pletikosa Cvijikj and Florian Michahelles. A case study

of the effects of moderator posts within a facebook brand page.

In International Conference on Social Informatics, 2011.

[44] Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apichart-

trisorn, Maria Gorlatova, and Jiasi Chen. Multi-user aug-

mented reality with communication efficient and spatially

USENIX Association 33rd USENIX Security Symposium 2775

consistent virtual objects. In ACM International Confer-

ence on Emerging Networking EXperiments and Technologies

(CoNEXT), 2020.

[45] Franziska Roesner and Tadayoshi Kohno. Security and privacy

for augmented reality: Our 10-year retrospective. In Inter-

national Workshop on Security for XR and XR for Security

(VR4Sec), 2021.

[46] Diana Romero, Ruchi Jagdish Patel, Athina Markopolou, and

Salma Elmalaki. Gaitguard: Towards private gait in mixed

reality. arXiv preprint arXiv:2312.04470, 2023.

[47] RosTeam. GPS Emulator. https://play.google.com/

store/apps/details?id=com.rosteam.gpsemulator&hl=

en_US&pli=1.

[48] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Brad-

ski. Orb: An efficient alternative to sift or surf. In International

conference on computer vision (ICCV), 2011.

[49] Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. Se-

cure multi-user content sharing for augmented reality applica-

tions. In USENIX Security Symposium, 2019.

[50] A. Sayles, A. Hooda, M. Gupta, R. Chatterjee, and E. Fernan-

des. Invisible perturbations: Physical adversarial examples

exploiting the rolling shutter effect. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2021.

[51] Dieter Schmalstieg and Tobias Hollerer. Augmented reality:

principles and practice. Addison-Wesley Professional, 2016.

[52] Ashutosh Singandhupe and Hung Manh La. A review of

slam techniques and security in autonomous driving. In IEEE

International Conference on Robotic Computing (IRC), 2019.

[53] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, and Jiasi

Chen. Going through the motions: AR/VR typing inference

using head motion tracking. In USENIX Security Symposium,

2023.

[54] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Ras-

mussen, and Srdjan Capkun. On the requirements for success-

ful gps spoofing attacks. In ACM Conference on Computer

and Communications Security (CCS), 2011.

[55] Pier Paolo Tricomi, Federica Nenna, Luca Pajola, Mauro Conti,

and Luciano Gamberi. You can’t hide behind your headset:

User profiling in augmented and virtual reality. IEEE Access,

11:9859±9875, 2023.

[56] Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho,

Anastasia Shuba, and Athina Markopoulou. OVRSEEN: Au-

diting Network Traffic and Privacy Policies in Oculus VR.

USENIX Security Symposium, 2022.

[57] Daniel Wagner, Thomas Pintaric, Florian Ledermann, and

Dieter Schmalstieg. Towards massively multi-user augmented

reality on handheld devices. In International Conference on

Pervasive Computing. Springer, 2005.

[58] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Moham-

mad Abdullah Al Faruque. Leaky dnn: Stealing deep-learning

model secret with gpu context-switching side-channel. In

IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), 2020.

[59] Nick Wingfield and Mike Isaac. Pokémon go

brings augmented reality to a mass audience.

https://www.nytimes.com/2016/07/12/technology/

pokemon-go-brings-augmented-reality-to-a-mass-

audience.html, 2016.

[60] Chen Yan, Zhijian Xu, Zhanyuan Yin, Xiaoyu Ji, and Wenyuan

Xu. Rolling colors: Adversarial laser exploits against traffic

light recognition. In USENIX Security Symposium, 2022.

[61] Yicheng Zhang. Stealing Deep Learning Model Secret through

Remote FPGA Side-channel Analysis (thesis). University of

California, Irvine, 2021.

[62] Yicheng Zhang, Dhroov Pandey, Di Wu, Turja Kundu, Ruopu

Li, and Tong Shu. Accuracy-Constrained Efficiency Opti-

mization and GPU Profiling of CNN Inference for Detecting

Drainage Crossing Locations. In Workshops of The Interna-

tional Conference on High Performance Computing, Network,

Storage, and Analysis, 2023.

[63] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-

Ghazaleh. It’s all in your head(set): Side-channel attacks on

ar/vr systems. In USENIX Security Symposium, 2023.

[64] Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Mo-

hammad Abdullah Al Faruque. Stealing neural network struc-

ture through remote fpga side-channel analysis. IEEE Trans-

actions on Information Forensics and Security, 16:4377±4388,

2021.

[65] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis.

Learning rich features for image manipulation detection. In

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[66] Wenjun Zhu, Yuan Sun, Jiani Liu, Yushi Cheng, Xiaoyu Ji, and

Wenyuan Xu. Campro: Camera-based anti-facial recognition.

arXiv preprint arXiv:2401.00151, 2023.

Appendix

A Additional Scenario A results

Fig. 14 shows examples of the environments where we con-

ducted our experiments in Scenario A. Fig. 15 shows the

remote write attack as a function of the distance between the

AR device’s camera and the attacker’s image. It also includes

a benign baseline where the attacker writes the hologram

while actually being present in the real environment. Similar

to the results in indoor environments (Fig. 6), the attack suc-

cess rate is lower than the benign baseline, as expected, but is

still above 60% in the worst case.

B Details on experimental procedure

In this section, we provide additional technical details on the

experimental procedure for each scenario. We mention the

specific APIs called by the applications, although our attack

methodologies apply broadly to AR devices that read and

write from shared state.

2776 33rd USENIX Security Symposium USENIX Association

(a) Office desk. (b) Bedroom desk. (c) Bedroom bed. (d) Outdoor garden. (e) Outdoor BBQ. (f) Outdoor pool.

Figure 14: Examples of scenes where we conducted our attacks in scenario A.

Figure 15: Results of remote write attacks at varying distances

for scenario A.

B.1 Scenario A

The hardware and software dependencies for this attack are:

an ARCore supported device (e.g., Android phone) and access

to the ARCore CloudAnchor API. The attack application was

developed using Android Studio version 2022.2.1.

Attacker reads hologram from the remote location. First,

a regular user writes a hologram at a physical location us-

ing the ARCore CloudAnchor API, for example using the

Persistent CloudAnchor demo app [13]. This involves open-

ing the app, setting a room code, moving the camera around

until the app has scanned the scene sufficiently (following

the onscreen prompts), and then tapping on the screen to

place the hologram. Under the hood [11], the app sends a

hostCloudAnchor request containing an Anchor object to

the Firebase server. The details of the function call are closed

source (it calls some underlying NDK C/C++ code), but the

documentation indicates that the anchor contains the location

and orientation of the hologram and a summary of visual

features in the scene near the hologram. If the call is success-

ful, the server returns the ID of the hologram (i.e., the room

code) [12].

After this, an attacker opens the same app and enters the

same room code. The attacker points the device’s camera

at a picture of the previous environment on a screen (e.g., a

laptop monitor or a TV) and waits for the hologram to ap-

pear. Under the hood, the app sends a resolveCloudAnchor

request containing the hologram ID to the Firebase server.

Again, the details of the function call are closed source, but

if the call is successful, the server returns the Anchor object

corresponding to the ID number and uses this to render the

hologram. To make the attempt successful, the attacker should

have a high-quality picture of the environment and also try

various distances and slightly different angles when pointing

the camera at the picture.

Attacker writes hologram to the remote location. The

attacker opens the app (e.g., the CloudAnchor demo app), sets

a room code, and points the camera at a picture of the target

environment. In our experiments, we used an Apple monitor

to display the picture. The attacker moves the camera around

until the app has scanned the environment sufficiently and taps

to place the hologram. This involves the hostCloudAnchor

API call as described previously. A high-quality picture of

the environment is necessary to enhance the success rate of

the attack. Following the attacker’s successful remote write

of the hologram, we verified it by having a regular user view

the hologram in the physical environment from the picture.

This involves opening the same demo app, entering the room

code to call resolveCloudAnchor, and moving the camera

around until the hologram appears.

B.2 Scenario B

The hardware and software dependencies for this attack are:

an ARCore-supported device (e.g., Android phone), access to

the ARCore Geospatial API, and a GPS emulator [47].

(1) Regular user writes hologram to the physical loca-

tion. Before the attacker can launch the remote read attack,

a regular user should first write a hologram at a physical lo-

cation as follows. The user first aims the device’s camera

towards the intended outdoor environment. Fig. 16 shows

three outdoor environments we evaluated in this work. Once

the Geospatial API identifies sufficient features within the

scene (this step may take tens of seconds) to localize the de-

vice, the user can establish a Geospatial anchor at the precise

location by tapping on the screen by following the on-screen

prompts [14]. Under the hood [11], this involves a call to the

createAnchorWithGeospatialPose API function, which

saves the latitude, longitude, altitude, and orientation of the

USENIX Association 33rd USENIX Security Symposium 2777

(a) (b) (c)

Figure 16: Examples of three outdoor scenes where we con-

ducted our attacks in scenario B.

hologram (all automatically determined by the location of

the user’s tap) into an Anchor object. Subsequently, the GPS

coordinates in the Anchor can be recorded and preserved in

the shared state.

(2) Attacker reads hologram from the remote location.

The attacker first employs a GPS emulator [47] to fabricate

GPS locations on the mobile device corresponding to the loca-

tions in step (1) above. At the same time, the attacker utilizes

a monitor to display an image of the desired location from

step (1) and directs the mobile device’s camera towards it.

To ensure optimal focus, the attacker may need to adjust the

device’s position, moving forward or backward as necessary.

(In our attack, we find that when the distance between the

monitor and the phone is 50 centimeters, our attack succeeds

100% of the time.) Together, the GPS and the camera frames

help mislead the shared state into believing the attacker is

physically present at the target location. This is done by

the Geospatial API’s Earth object, which makes calls to the

shared state to determine and track the device’s location on

Earth. After the device localization is successful (i.e., the

Earth’s tracking state is not null), the hologram correspond-

ing to the target location will be rendered on the monitor in

the device’s display, effectively deceiving the shared state into

supplying holograms to be read remotely.

B.3 Scenario C

(1) Image capture. The attacker uses a smartphone (iPhone

12 at 2532 × 1170 pixels in our experiments) to capture photos

of a location that is desired to appear somewhere else. These

photos are automatically geo-tagged with latitude, longitude,

time and elevation by the mobile device’s operating system.

The user then transfers the photos from the mobile device

onto a computer with the ability to run Mapillary’s desktop

client [35] as well as simple scripts written by the attacker.

(2) GPS spoofing. There are two convenient ways to de-

termine the desired GPS data to spoof. The simplest for the

attacker is to physically go to the target location that she

wishes to write the fake data to, and take real images in a

manner similar to the image capture step above. Then, the

attacker can swap the EXIF metadata between the two image

sets (from the image capture step and from the GPS spoofing

step) to perform the spoof. This can done using a Python

script or through manual edits to the image metadata. For the

second set of images, It is important to take the same number

of images while moving or walking in the same direction

as the first set. This helps the GPS coordinates match up

between the two sets of images.

The second method to determine the desired GPS data is

to overwrite the EXIF image metadata manually, using a

program like Windows Photo Viewer or a custom script. This

is tedious as it requires the attacker to guess the change in

GPS coordinates for each image in the set.

(3) Upload. Finally, the attacker uploads the altered image

set to the shared state servers using a desktop client (e.g., [35]).

Under the hood [36], This follows a standard upload proce-

dure including the image file, metadata, and account informa-

tion. In our experiments, we did this using special accounts

that uploaded data to a private sandbox, thus avoiding any im-

pact on regular public users. Care must be taken that no other

EXIF data was removed during any of the previous image

capture or GPS spoofing steps, as otherwise the upload may

fail. For example, we found that during the image transfer

process between mobile devices and desktops, the timestamps

did not transfer and had to be re-added manually. Each step

in this process also keeps the images as PNG to avoid lossy

compression.

2778 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Shared State in Augmented Reality
	AR Shared State Taxonomy
	Threat Model

	Scenario A: Local, Non-Curated Shared State
	Methodology
	Evaluation
	Remote Read Evaluation
	Remote Write Evaluation
	Triggered Remote Write Evaluation

	Scenario B: Global, Curated Shared State
	Methodology
	Evaluation

	Scenario C: Global, Crowd-Sourced Shared State
	Poisoned Write to the Shared State's Map
	Methodology
	Evaluation

	Poisoned Write of Shared Holograms

	Shared State Attack Mitigations
	Related Work
	Conclusions
	Additional Scenario A results
	Details on experimental procedure
	Scenario A
	Scenario B
	Scenario C

