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ABSTRACT

Direct Preference Optimization (DPO) and its variants are increasingly used for
aligning language models with human preferences. Although these methods are
designed to teach a model to generate preferred responses more frequently rel-
ative to dispreferred responses, prior work has observed that the likelihood of
preferred responses often decreases during training. The current work sheds light
on the causes and implications of this counterintuitive phenomenon, which we
term likelihood displacement. We demonstrate that likelihood displacement can
be catastrophic, shifting probability mass from preferred responses to responses
with an opposite meaning. As a simple example, training a model to prefer No
over Never can sharply increase the probability of Yes. Moreover, when align-
ing the model to refuse unsafe prompts, we show that such displacement can un-
intentionally lead to unalignment, by shifting probability mass from preferred re-
fusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-
8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood
displacement is driven by preferences that induce similar embeddings, as mea-
sured by a centered hidden embedding similarity (CHES) score. Empirically, the
CHES score enables identifying which training samples contribute most to likeli-
hood displacement in a given dataset. Filtering out these samples effectively mit-
igated unintentional unalignment in our experiments. More broadly, our results
highlight the importance of curating data with sufficiently distinct preferences, for
which we believe the CHES score may prove valuable.1

1 INTRODUCTION

To ensure that language models generate safe and helpful content, they are typically aligned based
on pairwise preference data. One prominent alignment method, known as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022), requires fitting a reward model to a dataset
of human preferences, and then training the language model to maximize the reward via RL. While
often effective for improving the quality of generated responses (Bai et al., 2022a; Achiam et al.,
2023; Touvron et al., 2023), the complexity and computational costs of RLHF motivated the rise of
direct preference learning methods such as DPO (Rafailov et al., 2023).

Given a prompt x, DPO and its variants (e.g., Azar et al. (2024); Tang et al. (2024); Xu et al. (2024a);
Meng et al. (2024)) eschew the need for RL by directly teaching a model πθ to increase the margin
between the log probabilities of a preferred response y+ and a dispreferred response y−. While
intuitively these methods should increase the probability of y+ while decreasing that of y−, several
recent works observed that the probabilities of both y+ and y− tend to decrease over the course of
training (Pal et al., 2024; Yuan et al., 2024; Rafailov et al., 2024b; Tajwar et al., 2024; Pang et al.,
2024; Liu et al., 2024). We term this phenomenon likelihood displacement Ð see Figure 1.

When the probability of y+ decreases, the probability of other, possibly undesirable, responses must
increase. However, despite the prevalence of likelihood displacement, its causes and implications
remain poorly understood. The purpose of this work is to address these gaps. Through theory and
experiments, we characterize mechanisms driving likelihood displacement, demonstrate that it can

1Our code is available at https://github.com/princeton-nlp/unintentional-unalignment.
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2 PRELIMINARIES

Let V be a vocabulary of tokens. Modern language models consist of two parts: (i) a neural network
(e.g., Transformer (Vaswani et al., 2017)) that intakes a sequence of tokens x ∈ V∗ and produces a

hidden embedding hx ∈ R
d; and (ii) a token unembedding matrix W ∈ R

|V|×d that converts the
hidden embedding into logits. The logits are then passed through a softmax to compute a distribution
over tokens that can follow x. For assigning probabilities to sequences y ∈ V∗, a language model πθ

operates autoregressively, i.e.:

πθ(y|x) =
∏|y|

k=1
πθ(yk|x,y<k) =

∏|y|

k=1
softmax

(
Whx,y<k

)

yk
, (1)

where θ stands for the model’s parameters (i.e. the parameters of the neural network and the unem-
bedding matrix W), and y<k denotes the first k − 1 tokens of y.

2.1 DIRECT PREFERENCE LEARNING

Preference data. We consider the widely adopted direct preference learning pipeline, which relies
on pairwise comparisons (cf. Rafailov et al. (2023)). Specifically, we assume access to a preference
dataset D containing samples (x,y+,y−), where x is a prompt, y+ is a preferred response to x,
and y− is a dispreferred response to x. The preferred and dispreferred responses can be obtained by
generating two candidate responses from the model (i.e. on-policy), and labeling them via human or
AI raters (cf. Ouyang et al. (2022); Bai et al. (2022b)). Alternatively, they can be taken from some
static dataset (i.e. off-policy). Our analysis and experiments capture both cases.

Supervised finetuning (SFT). Preference learning typically includes an initial SFT phase, in which
the model is finetuned via the standard cross-entropy loss. The sequences used for SFT can either be
independent of the preference dataset D (Touvron et al., 2023) or consist of prompts and preferred
responses from D, i.e. of {(x,y+) : (x,y+,y−) ∈ D} (Rafailov et al., 2023).

Preference learning loss. Aligning language models based on pairwise preferences is usually done
by minimizing a loss of the following form:

L(θ) := E(x,y+,y−)∼D

[

ℓx,y+,y−

(

lnπθ(y
+|x)− lnπθ(y

−|x)
)]

, (2)

where ℓx,y+,y− : R → R≥0 is convex and differentiable, for every (x,y+,y−) ∈ D. Denote by θinit
the parameters of the model prior to minimizing the loss L. To guarantee that minimizing L entails
increasing the difference between lnπθ(y

+|x) and lnπθ(y
−|x), as expected from a reasonable

preference learning loss, we make the mild assumption that ℓx,y+,y− is monotonically decreasing in

a neighborhood of lnπθinit
(y+|x)− lnπθinit(y

−|x).

The loss L generalizes many existing losses, including: DPO (Rafailov et al., 2023), IPO (Azar
et al., 2024), SLiC (Zhao et al., 2023), REBEL (Gao et al., 2024), and GPO (Tang et al., 2024) Ð
see Appendix D for details on the choice of ℓx,y+,y− corresponding to each loss.2 Notably, the
common dependence on a reference model is abstracted through ℓx,y+,y− . Other loss variants apply
different weightings to the log probabilities of preferred and dispreferred responses or incorporate
an additional SFT regularization term (e.g., DPOP (Pal et al., 2024), CPO (Xu et al., 2024a), RPO
(Liu et al., 2024), BoNBoN (Gui et al., 2024), and SimPO (Meng et al., 2024)). For conciseness, we
defer an extension of our analysis for these variants to Appendix G.

2.2 LIKELIHOOD DISPLACEMENT

We define likelihood displacement as the phenomenon where, although the preference learning loss
is steadily minimized, the log probabilities of preferred responses decrease.

Definition 1. Let πθinit
and πθfin denote a language model before and after training with a prefer-

ence learning loss L over the dataset D (Equation (2)), respectively, and suppose that the loss was

2For SLiC and GPO, the corresponding ℓx,y+,y− is differentiable almost everywhere, as opposed to differ-
entiable. Our analysis applies to such losses up to minor adaptations excluding non-differentiable points.

3



Published as a conference paper at ICLR 2025

Tokens Increasing Most in Probability

Model y+ y− πθ(y
+|x) Decrease Benign Catastrophic

OLMo-1B
Yes No 0.69 (0.96 → 0.27) Yes, yes Ð

No Never 0.84 (0.85 → 0.01) No Yes, Yes, yes

Gemma-2B
Yes No 0.22 (0.99 → 0.77) Yes, yes Ð

No Never 0.21 (0.65 → 0.44) no, No yes, Yeah

Llama-3-8B
Yes No 0.96 (0.99 → 0.03) yes, yes, Yes Ð

Sure Yes 0.59 (0.98 → 0.39) sure, Sure Maybe, No, Never

Table 1: Likelihood displacement can be catastrophic, even when training on a single prompt with single
token responses. Each model was trained via DPO on a randomly chosen prompt from the Persona dataset
(Perez et al., 2022), using different pairs of preferred and dispreferred tokens (y+,y−) (as detailed in Sec-

tion 3). We report the largest decrease in the preferred token probability πθ(y
+|x) during training for repre-

sentative (y+,y−) pairs, averaged across ten runs differing in the chosen prompt. On the right are notable

tokens whose probabilities increase at the expense of y+, categorized into benign or catastrophic according to
whether they have a meaning similar to or distinct from y+, respectively (a preceding ª º stands for a whites-
pace; see Appendix J.1 for the full list and extents of increase). Remarkably, when y+ and y− are similar in
meaning, the tokens increasing most in probability are often opposite in meaning to y+.

successfully reduced, i.e. L(θfin) < L(θinit). We say that likelihood displacement occurred if:3

1

|D|

∑

(x,y+,y−)∈D
lnπθfin(y

+|x) <
1

|D|

∑

(x,y+,y−)∈D
lnπθinit(y

+|x) ;

and that likelihood displacement occurred for (x,y+,y−) ∈ D if lnπθfin(y
+|x) < lnπθinit(y

+|x).

Likelihood displacement is not necessarily problematic. For (x,y+,y−) ∈ D, we refer to it as
benign if the responses increasing in probability are as preferable as y+ (e.g., they are similar in
meaning to y+). However, as Section 3 demonstrates, the probability mass can go to responses that
are substantially less preferable than y+ (e.g., they are opposite in meaning to y+), in which case
we say it is catastrophic.

3 CATASTROPHIC LIKELIHOOD DISPLACEMENT IN SIMPLE SETTINGS

Despite the prevalence of likelihood displacement (Pal et al., 2024; Yuan et al., 2024; Pang et al.,
2024; Rafailov et al., 2024a; Liu et al., 2024), there is limited understanding as to why it occurs and
where the probability mass goes. Prior work attributed this phenomenon to limitations in model ca-
pacity (Tajwar et al., 2024), the presence of multiple training samples or output tokens (Tajwar et al.,
2024; Pal et al., 2024), and the initial SFT phase (Rafailov et al., 2024b). In contrast, we demon-
strate that likelihood displacement can occur and be catastrophic independently of these factors, even
when training over just a single prompt whose responses contain a single token each. The potential
adverse effects of such displacement raise the need to formally characterize its underlying causes.

Setting. The experiments are based on the Persona dataset (Perez et al., 2022), in which every
prompt contains a statement, and the model needs to respond whether it agrees with the statement
using a single token. We assign to each prompt a pair of preferred and dispreferred tokens (y+,y−)
from a predetermined set containing, e.g., Yes, Sure, No, and Never. Then, for the OLMo-1B,
Gemma-2B, and Llama-3-8B models, we perform one epoch of SFT using the preferred tokens as
labels, in line with common practices, and train each model via DPO on a single randomly selected
prompt. See Appendix K.1 for additional details.

Likelihood displacement is pervasive and can be catastrophic. Table 1 reports the decrease in
preferred token probability, and notable tokens whose probabilities increase at the expense of y+.
The probability of y+ dropped by at least 0.21 and up to 0.96 absolute value in all runs. Remarkably,
when y+ and y− are similar in meaning, the probability mass often shifts to tokens with meanings
opposite to y+. Appendix J.1 reports similar findings for experiments using: (i) base models that
did not undergo an initial SFT phase (Table 2); or (ii) IPO instead of DPO (Table 3).

3Note that lnπθ(y
+|x) can decrease even as the loss L is minimized, since minimizing L only requires

increasing the gap between lnπθ(y
+|x) and lnπθ(y

−|x).
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4 THEORETICAL ANALYSIS OF LIKELIHOOD DISPLACEMENT

To uncover what causes likelihood displacement when minimizing a preference learning loss, we
characterize how the log probabilities of responses evolve during gradient-based training. For a
preference sample (x,y+,y−) ∈ D, we identify the factors pushing lnπθ(y

+|x) downwards and
those determining which responses increase most in log probability instead. Section 4.1 lays out the
technical approach, after which Section 4.2 gives an overview of the main results. The full analysis
is deferred to Appendix F. For the convenience of the reader, we provide the main takeaways below.

Takeaway 1: Role of the Token Unembedding Geometry (Section 4.2.1)

Even when training over just a single prompt whose responses y+ and y− contain a sin-
gle token, likelihood displacement can occur due to the token unembedding geometry. The
underlying causes are: (i) an alignment between the preferred and dispreferred token un-
embeddings, measured as ⟨Wy+ ,Wy−⟩; and (ii) tokens whose unembeddings align with
Wy+ −Wy− , which increase in log probability at the expense of y+. Since Wy+ −Wy−

can have a large component orthogonal to Wy+ (introduced by Wy− ), and unembeddings
often linearly encode semantics, this provides an explanation for why probability mass can
go to tokens unrelated or opposite in meaning to y+ (as observed empirically in Section 3).

Takeaway 2: Role of the Hidden Embedding Geometry (Section 4.2.2)

Besides the impact of the token unembedding geometry (Takeaway 1), likelihood displace-
ment occurs when the preferred and dispreferred responses are similar according to the fol-
lowing measure, which is based on their hidden embeddings.

Definition 2. For a preference sample (x,y+,y−) ∈ D, we define the centered hidden
embedding similarity (CHES) score of y+ and y− with respect to a model πθ by:

CHESx(y
+,y−) :=

〈∑|y+|

k=1
h
x,y

+

<k
︸ ︷︷ ︸

y+ hidden embeddings

,
∑|y−|

k′=1
h
x,y

−

<k′
︸ ︷︷ ︸

y− hidden embeddings

〉

−
∥
∥
∥

∑|y+|

k=1
h
x,y

+

<k

∥
∥
∥

2

,

where hx,z<k
denotes the hidden embedding that the model produces given x and the first

k− 1 tokens of z ∈ V∗. A higher CHES score stands for more similar preferences. We omit
the dependence of CHES on πθ in our notation as it will be clear from context.

Losses with SFT regularization. Appendix G extends our analysis to losses incorporating an SFT
regularization term. In particular, it formalizes how this modification helps mitigate likelihood dis-
placement, as proposed in Pal et al. (2024); Liu et al. (2024); Pang et al. (2024); Gui et al. (2024). We
note, however, that our experiments in Section 6 reveal a limitation of this approach for mitigating
the adverse effects of likelihood displacement, compared to improving the data curation pipeline.

4.1 TECHNICAL APPROACH

Given a prompt x, the probability that the model πθ assigns to a response z is determined by the
hidden embeddings hx,hx,z<2

, . . . ,hx,z<|z|
and the token unembeddings W (Equation (1)). Our

analysis relies on tracking their evolution when minimizing the loss L (Equation (2)). To do so,
we adopt the unconstrained features model (Mixon et al., 2022), which amounts to treating hidden
embeddings as directly trainable parameters. Formally, the trainable parameters are taken to be
θ = {hz : z ∈ V∗}∪{W}. This simplification has proven useful for studying various deep learning
phenomena, including neural collapse (e.g., Zhu et al. (2021); Ji et al. (2022); Tirer et al. (2023)) and
the benefits of language model pretraining for downstream tasks (Saunshi et al., 2021). As verified
in Sections 5 and 6, it also allows extracting salient sources of likelihood displacement in practice.4

4In contrast to prior theoretical analyses of likelihood displacement, which consider simpler settings, such
as linear models and cases where the preferred and dispreferrred responses differ only by a single token (Pal
et al., 2024; Fisch et al., 2024; Song et al., 2024b; Ren and Sutherland, 2024).
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Language model finetuning is typically done with small learning rates. Accordingly, we analyze the
training dynamics of (stochastic) gradient descent at the small learning rate limit, i.e. gradient flow:

d

dt
θ(t) = −∇L(θ(t)) , t ≥ 0 ,

where θ(t) denotes the parameters at time t ≥ 0 of training. Note that under gradient flow the loss

is monotonically decreasing.5 Thus, any reduction in the log probabilities of preferred responses
constitutes likelihood displacement (cf. Definition 1).

4.2 OVERVIEW OF THE MAIN RESULTS

4.2.1 SINGLE TRAINING SAMPLE AND OUTPUT TOKEN

It is instructive to first consider the case of training on a single sample (x,y+,y−), whose responses
y+ ∈ V and y− ∈ V contain a single token. Theorem 1 characterizes how the token unembedding

geometry determines when d
dt

lnπθ(t)(y
+|x) is negative, i.e. when likelihood displacement occurs.

Theorem 1 (Informal version of Theorem 4). Suppose that the dataset D contains a single sample
(x,y+,y−), with y+ ∈ V and y− ∈ V each being a single token. At any time t ≥ 0 of training,
d
dt

lnπθ(t)(y
+|x) is more negative the larger the following term is:

〈
Wy+(t),Wy−(t)

〉

︸ ︷︷ ︸

preferences unembedding alignment

+
∑

z∈V\{y+,y−}
πθ(t)(z|x) ·

〈
Wz(t),Wy+(t)−Wy−(t)

〉

︸ ︷︷ ︸

alignment of other token with W
y+ (t) − W

y− (t)

,

where Wz(t) denotes the token unembedding of z ∈ V at time t.

Two terms govern the extent of likelihood displacement in the case of single token responses. First,
⟨Wy+(t),Wy−(t)⟩ formalizes the intuition that likelihood displacement occurs when the preferred
and dispreferred responses are similar. A higher inner product in unembedding space translates to a
more substantial (instantaneous) decrease in lnπθ(t)(y

+|x). Second, is a term which measures the

alignment of other token unembeddings with Wy+(t)−Wy−(t), where tokens deemed more likely
by the model have a larger weight. The alignment of token unembeddings with Wy+(t)−Wy−(t)
also determines which tokens increase most in log probability.

Theorem 2 (Informal version of Theorem 5). Under the setting of Theorem 1, for any time t ≥ 0 of

training and token z ∈ V\{y+,y−} it holds that d
dt

lnπθ(t)(z|x) ∝
〈
Wz(t),Wy+(t)−Wy−(t)

〉
,

up to an additive term independent of z.

The direction Wy+(t) −Wy−(t) can be decomposed into its projection onto Wy+(t) and a com-
ponent orthogonal to Wy+(t), introduced by Wy−(t). Thus, tokens increasing in log probability
can have unembeddings that mostly align with directions orthogonal to Wy+(t), especially when
the component orthogonal to Wy+(t) of Wy+(t) − Wy−(t) is relatively large (which we often
find to be the case empirically; see Table 13 in Appendix J.1). Given that token unembeddings are
known to linearly encode semantics (Mikolov et al., 2013; Arora et al., 2016; Park et al., 2024), this
provides an explanation for why the probability mass can shift to tokens that are unrelated or oppo-
site in meaning to the preferred token, i.e. why likelihood displacement can be catastrophic even in
simple settings (as observed in Section 3).

4.2.2 RESPONSES WITH MULTIPLE TOKENS

We now extend our analysis to the typical case where responses are sequences of tokens. As shown
below, the existence of multiple tokens in each response introduces a dependence on their (contex-
tual) hidden embeddings.

Theorem 3 (Informal version of Theorem 6). Suppose that the dataset D contains a single sample
(x,y+,y−), with y+ ∈ V∗ and y− ∈ V∗. At any time t ≥ 0 of training, in addition to the

dependence on token unembeddings identified in Theorem 1, d
dt

lnπθ(t)(y
+|x) is more negative the

larger the following term is:

|y+|
∑

k=1

|y−|
∑

k′=1

α−
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

−

<k′
(t)

〉

︸ ︷︷ ︸

preferred-dispreferred alignment

−

|y+|
∑

k=1

|y+|
∑

k′=1

α+
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

+

<k′
(t)

〉

︸ ︷︷ ︸

preferred-preferred alignment

,

5Except for the trivial case where θ(0) is a critical point of L, in which L(θ(t)) = L(θ(0)) for all t ≥ 0.
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where hz(t) denotes the hidden embedding of z ∈ V∗ at time t, and α−
k,k′(t), α

+
k,k′(t) ∈ [−2, 2]

are coefficients determined by the model’s next-token distributions for prefixes of y+ and y− (see
Theorem 6 in Appendix F.2 for their definition).

Theorem 3 establishes that the inner products between hidden embeddings, of both the ªpreferred-
dispreferredº and ªpreferred-preferredº types, affect likelihood displacement. A larger inner product
leads to an upwards or downwards push on lnπθ(t)(y

+|x), depending on the sign of the corre-
sponding α−

k,k′(t) or α+
k,k′(t) coefficient. Empirically, we find that these coefficients are mostly

positive across models and datasets; e.g., the OLMo-1B, Gemma-2B, and Llama-3-8B models and
the UltraFeedback and AlpacaFarm datasets (see Appendix J.2 for details). By accordingly setting
all coefficients in Theorem 3 to one, we derive the centered hidden embedding similarity (CHES)
score between preferred and dispreferred responses (Definition 2). Our analysis indicates that a
higher CHES score implies more severe likelihood displacement. Section 5 empirically verifies
this relation, and demonstrates that the CHES score is significantly more predictive of likelihood
displacement than other plausible similarity measures.

Our analysis also provides insight into which responses increase most in probability at the expense
of y+. Theorem 7 in Appendix F.2 derives the dependence of d

dt
lnπθ(t)(z|x), for any response

z ∈ V∗, on the alignment of its hidden embeddings with those of y+ and y−. However, in general
settings, it is difficult to qualitatively describe the types of responses increasing in probability, and
whether they constitute benign or catastrophic likelihood displacement. Section 6 thus demonstrates
the (harmful) implications of likelihood displacement in settings where responses can be easily
categorized into benign or catastrophic. We regard studying the question of where the probability
mass goes in additional settings as a promising direction for future work.

4.2.3 MULTIPLE TRAINING SAMPLES

Sections 4.2.1 and 4.2.2 showed that likelihood displacement may occur regardless of the dataset
size. Nonetheless, increasing the number of training samples was empirically observed to exacer-
bate it (Tajwar et al., 2024). Appendix F.3 sheds light on this observation by characterizing, for any
(x,y+,y−) ∈ D, when additional training samples lead to a larger decrease in lnπθ(t)(y

+|x). This
unsurprisingly occurs when y+ appears as the dispreferred response of other prompts, i.e. there are
contradicting samples. We further establish that additional training samples can contribute nega-
tively to d

dt
lnπθ(t)(y

+|x) even when their preferences are distinct from those of x.

5 IDENTIFYING SOURCES OF LIKELIHOOD DISPLACEMENT

In Section 4 we derived the CHES score (Definition 2), which for a given model and preference
sample (x,y+,y−), measures the similarity of y+ and y− based on their hidden embeddings. Our
theory indicates that samples with a higher CHES score lead to more likelihood displacement. Be-
low, we affirm this prediction and show that the CHES score enables identifying which training
samples in a dataset contribute most to likelihood displacement, whereas alternative similarity mea-
sures fail to do so. The following Section 6 then demonstrates that filtering out samples with a high
CHES score can mitigate undesirable implications of likelihood displacement.

Setting. We use the UltraFeedback and AlpacaFarm datasets and the OLMo-1B, Gemma-2B, and
Llama-3-8B models. For every preference dataset and model, we compute the CHES scores of all
samples. This requires performing a single forward pass over the dataset. Then, for each of the 0th,
25th, 50th, 75th, and 100th score percentiles, we take a subset of 512 samples centered around it.6

Lastly, we train the model via DPO on each subset separately, and track the change in log probability
for preferred responses in the subset Ð the more the log probabilities decrease, the more severe the
likelihood displacement is. See Appendix K.2 for further details.

Baselines. Preferences with low (normalized) edit distance were suggested in Pal et al. (2024) as
a cause for likelihood displacement. Thus, we repeat the process outlined above while ranking the
similarity of preferences using the (normalized) edit distance, where a lower edit distance between
y+ and y− corresponds to a higher similarity. To the best of our knowledge, no other property of
a preference sample was linked with likelihood displacement in the literature. So we additionally

6The 0th and 100th percentile subsets include the 512 samples with lowest and highest scores, respectively.
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score (Definition 2), showcasing the potential of the CHES score for mitigating adverse effects of
likelihood displacement.

6.1 SETTING

We train a language model to refuse unsafe prompts via the (on-policy) direct preference learning
pipeline outlined in Rafailov et al. (2023), as specified below. To account for the common scenario
whereby one wishes to further align an existing (moderately) aligned model, we use the Gemma-
2B-IT and Llama-3-8B-Instruct models.7 Then, for each model separately, we create a preference
dataset based on unsafe prompts from SORRY-Bench (Xie et al., 2024b). Specifically, for every
prompt, we generate two candidate responses from the model and label them as refusals or non-
refusals using the judge model from Xie et al. (2024b). Refusals are deemed more preferable com-
pared to non-refusals, and ties are broken by the PairRM reward model (Jiang et al., 2023).8 Lastly,
we partition the datasets into training and test sets according to a 85%/15% split, and train the lan-
guage models via DPO over their respective training sets. For brevity, we defer to Appendices J
and K some experiments using IPO and implementation details, respectively.

6.2 CATASTROPHIC LIKELIHOOD DISPLACEMENT CAUSES UNINTENTIONAL UNALIGNMENT

Since the initial models are moderately aligned, we find that they often generate two refusal re-
sponses for a given prompt. Specifically, for over 70% of the prompts in the generated datasets, both
the preferred and dispreferred responses are refusals. This situation resembles the experiments of
Section 3, where training on similar preferences led to catastrophic likelihood displacement (e.g.,
when y+ was No and y− was Never, the probability of Yes sharply increased).

Analogously, we observe that as the DPO loss is minimized, likelihood displacement causes proba-
bility mass to shift away from preferred refusal responses (Table 16 in Appendix J.4 reports the log
probability decrease of preferred responses). This leads to a significant drop in refusal rates. Specifi-
cally, over the training sets, DPO makes the refusal rates of Gemma-2B-IT and Llama-3-8B-Instruct
drop from 80.5% to 54.8% and 74.4% to 33.4%, respectively (similar drops occur over the test sets).
In other words, instead of further aligning the model, preference learning unintentionally unaligns
it. See Appendix J.4 for examples of unsafe prompts from the training sets, for which initially the
models generated two refusals, yet after DPO they comply with the prompts (Table 18).

We note that alignment usually involves a tradeoff between safety and helpfulness. The drop in
refusal rates is particularly striking since the models are trained with the sole purpose of refusing
prompts, without any attempt to maintain their helpfulness.

6.3 FILTERING DATA VIA CHES SCORE MITIGATES UNINTENTIONAL UNALIGNMENT

Section 5 showed that samples with a high CHES score (Definition 2) contribute most to likelihood
displacement. Motivated by this, we explore whether filtering data via the CHES score can mitigate
unintentional unalignment, and which types of samples it marks as problematic.

As discussed in Section 5, due to the embedding geometry of current models, CHES scores can
correlate with the lengths of responses. To avoid introducing a length bias when filtering data, we
apply a length-normalized variant of CHES (see Definition 3 in Appendix C). For comparison, we
also consider adding an SFT term to the DPO loss, as suggested in Pal et al. (2024); Xu et al. (2024a);
Pang et al. (2024); Liu et al. (2024), and training over ªgoldº responses from SORRY-Bench, which
were generated from a diverse set of base and safety aligned models and labeled by human raters.

Filtering data via CHES score mitigates unintentional unalignment. Figure 3 reports the refusal
rates before and after training via DPO: (i) on the original dataset, which as stated in Section 6.2
leads to a substantial drop in refusal rates; (ii) with an additional SFT term on the original dataset;
(iii) on the gold dataset; and (iv) on a filtered version of the original dataset that contains the 5%
samples with lowest length-normalized CHES scores.9 Filtering data via the CHES score success-

7The scenario of further aligning an existing moderately aligned model also arises in iterative direct prefer-
ence learning pipelines (Yuan et al., 2024; Xiong et al., 2024; Pang et al., 2024).

8Breaking ties randomly between responses of the same type led to similar results.
9Keeping up to 15% of the original samples led to analogous results. Beyond that, as when training on the

full dataset, likelihood displacement caused refusal rates to drop.
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A RELATED WORK

Preference learning for language model alignment. There are two main approaches for aligning
language models based on preference data. First, RLHF (or RLAIF) (Ziegler et al., 2019; Stiennon
et al., 2020; Ouyang et al., 2022; Bai et al., 2022b), which requires fitting a reward model to a
dataset of human (or AI) preferences, and then training the language model to maximize the reward.
While often effective for improving the quality of generated responses, RLHF is computationally
expensive and can suffer from instabilities (Zheng et al., 2023; Ramamurthy et al., 2023; Razin
et al., 2024). This has led to the rise of direct preference learning, as popularized by DPO (Rafailov
et al., 2023). Our analysis supports methods that maximize the log probability ratio of preferred and
dispreferred responses (cf. Section 2.1), including DPO and many of its variants (e.g., Zhao et al.
(2023); Azar et al. (2024); Gao et al. (2024); Tang et al. (2024); Pal et al. (2024); Xu et al. (2024a);
Liu et al. (2024); Gui et al. (2024); Meng et al. (2024)). Investigating whether other variants, e.g.,
those proposed in Ethayarajh et al. (2024); Hong et al. (2024); Song et al. (2024a); Wu et al. (2024),
suffer from likelihood displacement is a potential avenue for future work.

Analyses of direct preference learning. Prior work mostly established sample complexity guaran-
tees for DPO (or a variant of it) when the training data either obeys a certain stringent structure (Im
and Li, 2024a), provides sufficient coverage (Liu et al., 2024; Song et al., 2024b; Cen et al., 2024;
Huang et al., 2024), or is obtained in an online manner (Cen et al., 2024; Zhang et al., 2024; Xie
et al., 2024a). Additionally, Im and Li (2024b); Feng et al. (2024) studied the optimization rate of
DPO. More relevant to our work is Chen et al. (2024), which demonstrated that DPO can fail to
correct how a model ranks preferred and dispreferred responses. Although related, this phenomenon
is distinct from likelihood displacement. In particular, when likelihood displacement occurs the
probability of preferred responses is often higher than the probability of dispreferred responses (as
illustrated in Figure 1 and was the case in the experiments of Sections 3, 5, and 6).

Likelihood displacement. The relation of our results to existing claims regarding likelihood dis-
placement was discussed throughout the paper. We provide in Appendix E an extended account.

Jailbreaking and unalignment. Aligned language models are vulnerable to jailbreaking through
carefully designed adversarial prompts (Xu et al., 2024c). However, even when one does not intend
to unalign a given model, Pelrine et al. (2023); Qi et al. (2024); He et al. (2024); Zhan et al. (2024);
Lyu et al. (2024) showed that performing SFT over seemingly benign data can result in unalignment.
The experiments in Section 6 provide a more extreme case of unintentional unalignment. Specifi-
cally, although the models are trained with the sole purpose of refusing unsafe prompts, likelihood
displacement causes the refusal rates to drop, instead of increase.

B LIMITATIONS AND FUTURE WORK

Theoretical analysis. Our theory focuses on the instantaneous change of log probabilities, and
abstracts away which neural network architecture is used for computing hidden embeddings. Future
work can extend it by studying the evolution of log probabilities throughout training and accounting
for how the architecture choice influences likelihood displacement.

Occurrences of catastrophic likelihood displacement. While our findings reveal that likelihood
displacement can make well-intentioned training result in undesirable outcomes, we do not claim
that this occurs universally. Indeed, direct preference learning methods have been successfully ap-
plied for aligning language models (Tunstall et al., 2023; Ivison et al., 2023; Jiang et al., 2024;
Dubey et al., 2024). Nonetheless, in light of the growing prominence of these methods, we believe
it is crucial to identify additional settings in which likelihood displacement is catastrophic.

Utility of the CHES score. We demonstrated the potential of the (length-normalized) CHES score
for filtering out samples that cause likelihood displacement. However, further investigation is nec-
essary to assess its utility more broadly. For example, exploring whether data filtering via CHES
scores improves performance in general instruction following settings, or whether CHES scores can
be useful in more complex data curation pipelines for selecting distinct preferences based on a pool
of candidate responses, possibly generated from a diverse set of models.
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C LENGTH-NORMALIZED CHES SCORE

In Section 4 we derived the CHES score (Definition 2), which for a given model and preference sam-
ple (x,y+,y−), measures the similarity of y+ and y− based on their hidden embeddings. Section 5
then demonstrated on standard preference learning datasets (UltraFeedback and AlpacaFarm) that
samples with high CHES scores contribute most to likelihood displacement. However, as discussed
in Section 5, due to the embedding geometry of current models, CHES scores often correlate with
the lengths of responses. Thus, to avoid introducing a length bias when filtering data in Section 6.3,
we apply the following length-normalized variant of CHES.

Definition 3. For a preference sample (x,y+,y−) ∈ D, we define the length-normalized CHES
score of y+ and y− with respect to a model πθ by:

CHESx(y
+,y−) :=

1

|y+||y−|

〈∑|y+|

k=1
h
x,y

+

<k
︸ ︷︷ ︸

y+ hidden embeddings

,
∑|y−|

k′=1
h
x,y

−

<k′
︸ ︷︷ ︸

y− hidden embeddings

〉

−
1

|y+|
2

∥
∥
∥

∑|y+|

k=1
h
x,y

+

<k

∥
∥
∥

2

,

where hx,z<k
denotes the hidden embedding that the model produces given x and the first k − 1

tokens of z ∈ V∗. We omit the dependence on πθ in our notation as it will be clear from context.

D COMMON INSTANCES OF THE ANALYZED PREFERENCE LEARNING LOSS

Let (x,y+,y−) ∈ D be a preference sample. As discussed in Section 2.1, the preference learning
loss L (Equation (2)) considered in our analysis generalizes many existing losses, which are realized
by different choices of ℓx,y+,y− . The choice of ℓx,y+,y− corresponding to each loss is given below.

DPO (Rafailov et al., 2023). The DPO loss can be written as:

ℓx,y+,y−

(

ln
πθ(y

+|x)

πθ(y−|x)

)

:= − lnσ

(

β

(

ln
πθ(y

+|x)

πθ(y−|x)
− ln

πref(y
+|x)

πref(y−|x)

))

,

where πref is some reference model, β > 0 is a regularization hyperparameter, and σ : R → [0, 1]
denotes the sigmoid function.

IPO (Azar et al., 2024). The IPO loss can be written as:

ℓx,y+,y−

(

ln
πθ(y

+|x)

πθ(y−|x)

)

:=

(

ln
πθ(y

+|x)

πθ(y−|x)
− ln

πref(y
+|x)

πref(y−|x)
−

1

2τ

)2

,

where πref is some reference model and τ > 0 is a hyperparameter controlling the target log proba-
bility margin.

SLiC (Zhao et al., 2023). The SLiC loss can be written as:

ℓx,y+,y−

(

ln
πθ(y

+|x)

πθ(y−|x)

)

:= max

{

0, δ − ln
πθ(y

+|x)

πθ(y−|x)

}

,

where δ > 0 is a hyperparameter controlling the target log probability margin. We note that our
assumption on ℓx,y+,y− being monotonically decreasing in a neighborhood of lnπθinit(y

+|x) −
lnπθinit

(y−|x) holds, except for the case where the loss for (x,y+,y−) is already zero at initializa-
tion (recall θinit stands for the initial parameters of the model).

REBEL (Gao et al., 2024). The REBEL loss can be written as:

ℓx,y+,y−

(

ln
πθ(y

+|x)

πθ(y−|x)

)

:=

(
1

η

(

ln
πθ(y

+|x)

πθ(y−|x)
− ln

πref(y
+|x)

πref(y−|x)

)

− r(x,y+) + r(x,y−)

)2

,

where πref is some reference model, η > 0 is a regularization parameter, and r is a reward model.

GPO (Tang et al., 2024). GPO describes a family of losses, which can be written as:

ℓx,y+,y−

(

ln
πθ(y

+|x)

πθ(y−|x)

)

:= f

(

β

(

ln
πθ(y

+|x)

πθ(y−|x)
− ln

πref(y
+|x)

πref(y−|x)

))

,

where πref is some reference model and f : R → R is convex and monotonically decreasing in a
neighborhood of lnπθinit

(y+|x) − lnπθinit(y
−|x) (recall θinit stands for the initial parameters of

the model).
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E RELATION TO EXISTING CLAIMS ON LIKELIHOOD DISPLACEMENT

Throughout the paper, we specified how our results relate to existing claims regarding likelihood
displacement. This appendix provides a concentrated and extended account.

Similarity of preferences. Tajwar et al. (2024) and Pal et al. (2024) informally claimed that sam-
ples with similar preferences are responsible for likelihood displacement. Our theoretical analysis
(Section 4) formalizes this intuition, by proving that similarities between the token unembeddings
and hidden embeddings of preferred and dispreferred responses drive likelihood displacement.

Dataset size and model capacity. Tajwar et al. (2024) also attributed likelihood displacement to
the presence of multiple training samples in a dataset or a limited model capacity. Section 3 demon-
strates that likelihood displacement can occur independently of these factors, even when training
an 8B model on a single sample. Nonetheless, as we characterize in Section 4.2.3, having multiple
training samples can contribute to the severity of likelihood displacement.

Preferences with small edit distance. Pal et al. (2024) showed in controlled settings that prefer-
ences with a small edit distance can lead to likelihood displacement. However, as the experiments
in Section 5 demonstrate, in more general settings edit distance is not indicative of likelihood dis-
placement, in contrast to the CHES score (Definition 2), which measures similarity based on hidden
embeddings.

Initial SFT Phase. Rafailov et al. (2024b) suggested that likelihood displacement occurs due to
the initial SFT phase in the direct preference learning pipeline (see Section 2). Our experiments
and theory (Sections 3 and 4) refine this claim by showing that likelihood displacement can occur
regardless of whether a model undergoes an initial SFT phase or not.

Squeezing effect. Ren and Sutherland (2024) analyzed the impact of doing a gradient update to
decrease the log probability of a dispreferred response y−. Focusing on a linear model with single
token responses, i.e., a setting identical to that analyzed in Section 4.2.1, but with the hidden em-
bedding of a prompt x being fixed during training, they identified a squeezing effect, whereby the
downwards push on y− predominantly shifts probability mass to tokens that already have a high
probability. Ren and Sutherland (2024) hypothesized that this squeezing effect is responsible for
likelihood displacement. However, as proven in Appendix H, in the linear setting that they consider
likelihood displacement cannot occur Ð the preferred response never decreases in probability. In
particular, the squeezing effect due to the negative gradient on y−, i.e. −∇ lnπθ(y

−|x), is coun-
teracted by the positive gradient on y+, i.e. ∇ lnπθ(y

+|x). This implies that the squeezing effect
does not fully capture why likelihood displacement occurs, and emphasizes the need for taking into
account how the hidden embeddings evolve during training, as done in Section 4.

Past sightings of catastrophic likelihood displacement. Prior work observed that DPO tends to
degrade the performance on math and reasoning benchmarks (Pal et al., 2024; Yuan et al., 2024; Pang
et al., 2024; Meng et al., 2024). This can be considered as an instance of catastrophic likelihood
displacement. We note that, because in those settings only a few responses are correct, almost
any likelihood displacement is catastrophic. In contrast, our work demonstrates that likelihood
displacement can be catastrophic even in settings where there are many acceptable responses, and
reveals its adverse effects for safety alignment.

F FORMAL ANALYSIS OF LIKELIHOOD DISPLACEMENT

This appendix delivers the formal analysis overviewed in Section 4.2. Appendices F.1 to F.3 cover
the results discussed in Sections 4.2.1 to 4.2.3, respectively. We refer the reader to Section 4.1 for
the technical setting of the analysis.

Notation. For any time t ≥ 0, we use W(t),Wz(t), and hz(t) to denote the token unembedding
matrix, unembedding of a token z ∈ V , and hidden embedding of z ∈ V∗, respectively. We let
zk be the kth token in z and z<k be the first k − 1 tokens in z. With slight abuse of notation,
we shorthand ℓ′

x,y+,y−(t) := ℓ′
x,y+,y−(lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)) for a preference sample

(x,y+,y−) ∈ D, where ℓ′
x,y+,y− stands for the derivative of ℓx,y+,y− . Lastly, we denote by

ez ∈ R
|V| the standard basis vector corresponding to z ∈ V .
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F.1 SINGLE TRAINING SAMPLE AND OUTPUT TOKEN (OVERVIEW IN SECTION 4.2.1)

We first consider the case of training on a single sample (x,y+,y−) ∈ D, whose responses y+ ∈ V
and y− ∈ V contain a single token. Theorem 4 characterizes the dependence of d

dt
lnπθ(t)(y

+|x)
on the token unembedding geometry (proof deferred to Appendix I.1).

Theorem 4. Suppose that the dataset D contains a single sample (x,y+,y−), with y+ ∈ V and
y− ∈ V each being a single token. At any time t ≥ 0 of training:

d

dt
lnπθ(t)(y

+|x)

= −ℓ′x,y+,y−(t)

[

m(t)−
(
1− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
·
〈
Wy+(t),Wy−(t)

〉

︸ ︷︷ ︸

preferences unembedding alignment

−
∑

z∈V\{y+,y−}
πθ(t)(z|x) ·

〈
Wz(t),Wy+(t)−Wy−(t)

〉

︸ ︷︷ ︸

alignment of other token with W
y+ (t) − W

y− (t)

]

,

where −ℓ′
x,y+,y−(t) > 0 and m(t) is a non-negative term given by:

m(t) :=
(
1− πθ(t)(y

+|x)
)
·
∥
∥Wy+(t)

∥
∥
2
+ πθ(t)(y

−|x) ·
∥
∥Wy−(t)

∥
∥
2

+
(
1− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
· ∥hx(t)∥

2
.

Two terms in the derived form of d
dt

lnπθ(t)(y
+|x) can be negative, and so are responsible for like-

lihood displacement in the case of single toke responses. First, the term −
〈
Wy+(t),Wy−(t)

〉
,

which formalizes the intuition that likelihood displacement occurs when the preferred and dispre-
ferred responses are similar. A higher inner product translates to a more substantial (instantaneous)
decrease in lnπθ(t)(y

+|x). Second, is a term measuring the alignment of other token unembeddings

with Wy+(t) − Wy−(t), where tokens deemed more likely by the model have a larger weight.
Theorem 5 shows that the alignment of token unembeddings with Wy+(t)−Wy−(t) also dictates
which tokens increase most in log probability, i.e. where the probability mass goes (proof deferred
to Appendix I.2).

Theorem 5. Under the setting of Theorem 4, for any time t ≥ 0 and token z ∈ V \ {y+,y−}:

d

dt
lnπθ(t)(z|x) = −ℓx,y+,y−(t) ·

[〈
Wz(t),Wy+(t)−Wy−(t)

〉
+ c(t)

]

,

where −ℓ′
x,y+,y−(t) > 0 and c(t) is a term that does not depend on z, given by:

c(t) :=
(
πθ(t)(y

−|x)− πθ(t)(y
+|x)

)
∥hx(t)∥

2
−

∑

z′∈V

πθ(t)(z
′|x)

〈
Wz′(t),Wy+(t)−Wy−(t)

〉
.

F.2 RESPONSES WITH MULTIPLE TOKENS (OVERVIEW IN SECTION 4.2.2)

Moving to the typical case, in which the responses y+ ∈ V∗ and y− ∈ V∗ are sequences of tokens,
assume for simplicity that y+

1 ̸= y−
1 . Extending the results below to responses y+ and y− that share

a prefix is straightforward, by replacing terms that depend on y+
1 and y−

1 with analogous ones that
depend on the initial tokens in which y+ and y− differ.

In the case where each response consists of a single token, there are two terms that contribute to
likelihood displacement (cf. Theorem 4). For any time t ≥ 0 and (x,y+,y−) ∈ D, if one minimizes
the preference learning loss with respect to only the initial tokens of y+ and y−, then these terms
are given by:

S
y
+
1 ,y

−
1
(t) :=−

(
1− πθ(t)(y

+
1 |x) + πθ(t)(y

−
1 |x)

)
·
〈
W

y
+
1
(t),W

y
−
1
(t)

〉

−
∑

z∈V\{y+
1 ,y

−
1 }

πθ(t)(z|x) ·
〈
Wz(t),Wy

+
1
(t)−W

y
−
1
(t)

〉
.

(3)

Theorem 6 establishes that, in addition to the above initial token contribution, likelihood displace-
ment depends on an alignment between the hidden embeddings of y+ and y− (proof deferred to
Appendix I.3).
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Theorem 6. Suppose that the dataset D contains a single sample (x,y+,y−), with y+ ∈ V∗ and

y− ∈ V∗ satisfying y+
1 ̸= y−

1 . At any time t ≥ 0 of training:

d

dt
lnπθ(t)(y

+|x)

= −ℓ′x,y+,y−(t)

[

m(t) + S
y
+
1 ,y

−
1
(t)

−

|y+|
∑

k=1

|y−|
∑

k′=1

α−
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

−

<k′
(t)

〉

︸ ︷︷ ︸

preferred-dispreferred alignment

+

|y+|
∑

k=1

|y+|
∑

k′=1

α+
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

+

<k′
(t)

〉

︸ ︷︷ ︸

preferred-preferred alignment

]

,

where −ℓx,y+,y−(t) > 0, the coefficients α−
k,k′(t), α

+
k,k′(t) ∈ [−2, 2] are given by:

α−
k,k′ :=

〈

e
y
+

k

− πθ(t)(·|x,y
+
<k), ey−

k′
− πθ(t)(·|x,y

−
<k′)

〉

,

α+
k,k′ :=

〈

e
y
+

k

− πθ(t)(·|x,y
+
<k), ey+

k′
− πθ(t)(·|x,y

+
<k′)

〉

,

with πθ(t)(·|x, z) ∈ R
|V| denoting the model’s next-token probability distribution, conditioned on x

and z ∈ V∗, and m(t) is the following non-negative term:

m(t) :=
(
1− πθ(t)(y

+
1 |x)

)
·
∥
∥
∥Wy

+
1
(t)

∥
∥
∥

2

+ πθ(t)(y
−
1 |x) ·

∥
∥
∥Wy

−
1
(t)

∥
∥
∥

2

+
∑|y+|

k=2

∥
∥
∥Wy

+

k

(t)−
∑

z∈V
πθ(t)(z|x,y

+
<k) ·Wz(t)

∥
∥
∥

2

.

The evolution of lnπθ(t)(y
+|x) is governed by: (i) the initial token unembedding geometry (analo-

gous to the characterization in Theorem 4); and (ii) inner products between hidden embeddings, of
both the ªpreferred-dispreferredº and the ªpreferred-preferredº types. As discussed in Section 4.2.2,
whether a larger inner product results in an upwards or downwards push on lnπθ(t)(y

+|x) depends

on the sign of the corresponding α−
k,k′(t) or α+

k,k′(t) coefficient. Since empirically these coefficients

are mostly positive across models and datasets, Theorem 6 indicates that a higher CHES score (Def-
inition 2) implies more severe likelihood displacement.

Regarding where the probability mass goes when likelihood displacement occurs, for any z ∈ V∗,

Theorem 7 below derives the dependence of d
dt

lnπθ(t)(z|x) on the alignment of z’s hidden em-

beddings with those of y+ and y− (proof deferred to Appendix I.4). Whether inner products be-
tween the hidden embeddings of z and those of y+ (or y−) contribute positively or negatively to
d
dt

lnπθ(t)(z|x), depends on the signs of coefficients that are determined by the model’s next-token

distributions. For d
dt

lnπθ(t)(y
+|x), as mentioned above, the analogous coefficients are mostly

positive. However, it is difficult to assess their typical signs for general responses, i.e. for which
responses the coefficients will tend to be positive and for which they will tend to be negative. We
thus regard further investigating which responses increase most in probability, and how that depends
on the values that these coefficients take, as a promising direction for future work.

For simplicity, we assume that the initial token of z is not equal to the initial tokens of y+ and y−.
If z shares a prefix with y+, then the characterization of Theorem 7 holds up to additional terms
that generally push lnπθ(t)(z|x) upwards. Similarly, if z shares a prefix with y−, then there will be

additional terms that push lnπθ(t)(z|x) downwards.

Theorem 7. Under the setting of Theorem 6, let z ∈ V∗ be a response satisfying z1 /∈ {y+
1 ,y

−
1 }.

At any time t ≥ 0 of training:

d

dt
lnπθ(t)(z|x)

= −ℓ′x,y+,y−(t)

[

c(t) +
〈

Wz1
(t),W

y
+
1
(t)−W

y
−
1
(t)

〉

︸ ︷︷ ︸

alignment of first token unembeddings

−

|z|
∑

k=1

|y−|
∑

k′=1

β−
k,k′(t) ·

〈

hx,z<k
(t),h

x,y
−

<k′
(t)

〉

︸ ︷︷ ︸

z-dispreferred alignment

+

|z|
∑

k=1

|y+|
∑

k′=1

β+
k,k′(t) ·

〈

hx,z<k
(t),h

x,y
+

<k′
(t)

〉

︸ ︷︷ ︸

z-preferred alignment

]

,
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where −ℓx,y+,y−(t) > 0, the coefficients β−
k,k′(t), β

+
k,k′(t) ∈ [−2, 2] are given by:

β−
k,k′ :=

〈

ezk
− πθ(t)(·|x, z<k), ey−

k′
− πθ(t)(·|x,y

−
<k′)

〉

,

β+
k,k′ :=

〈

ezk
− πθ(t)(·|x, z<k), ey+

k′
− πθ(t)(·|x,y

+
<k′)

〉

,

and c(t) is the following term that does not depend on z:

c(t) := −
∑

z∈V
πθ(t)(z|x)

〈

Wz(t),Wy
+
1
(t)−W

y
−
1
(t)

〉

.

F.3 MULTIPLE TRAINING SAMPLES (OVERVIEW IN SECTION 4.2.3)

In this appendix, we consider the effect of having multiple training samples, focusing on the case
where responses consist of a single token. Namely, for a preference sample (x,y+,y−) ∈ D,
Theorem 8 characterizes when additional training samples lead to a larger decrease in lnπθ(t)(y

+|x)
(proof deferred to Appendix I.5). For conciseness, we make the mild assumption that no prompt
appears twice in D, as is common in real-world preference datasets.

Theorem 8. Suppose that all preferred and dispreferred responses in the dataset D consist of a
single token each, and that no prompt appears twice (i.e. each prompt in D is associated with a single
pair of preferred and dispreferred tokens). For any time t ≥ 0 of training and (x,y+,y−) ∈ D:

d

dt
lnπθ(t)(y

+|x) =
−ℓ′

x,y+,y−(t)

|D|
·
[

m(t) + Sy+,y−(t)
]

︸ ︷︷ ︸

same sample contribution, as in Theorem 4

+
∑

(x̃,ỹ+,ỹ−)∈D\{(x,y+,y−)}

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|
· αx,x̃(t) · ⟨hx(t),hx̃(t)⟩

︸ ︷︷ ︸

contribution due to (x̃, ỹ+, ỹ−)

,

where m(t) is the non-negative term defined in Theorem 4, Sy+,y−(t) (defined in Equation (3))

encapsulates terms contributing to likelihood displacement when training only over (x,y+,y−),
and the coefficient αx,x̃(t) ∈ [−2, 2] is given by:

αx,x̃(t) := 1
[
y+ = ỹ+

]
− 1

[
y+ = ỹ−

]
+ πθ(t)(ỹ

−|x)− πθ(t)(ỹ
+|x) ,

with 1 [·] denoting the indicator function.

In the theorem above, m(t) + Sy+,y−(t) includes terms identical to those governing likelihood dis-

placement when training only on (x,y+,y−) (cf. Theorem 4). The contribution of each additional

sample (x̃, ỹ+, ỹ−) ∈ D \ {(x,y+,y−)} to d
dt

lnπθ(t)(y
+|x) is captured by:

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|
· αx,x̃(t) · ⟨hx(t),hx̃(t)⟩ .

When does (x̃, ỹ+, ỹ−) contribute negatively to d
dt

lnπθ(t)(y
+|x)? First, we note that typically

−ℓ′
x̃,ỹ+,ỹ−(t) is positive. Under the DPO loss this always holds (see Lemma 1), while for other

losses it holds at least initially since ℓx̃,ỹ+,ỹ− is monotonically decreasing in a neighborhood of

lnπθ(0)(ỹ
+|x̃) − lnπθ(0)(ỹ

−|x̃). As for ⟨hx(t),hx̃(t)⟩, we empirically find that the hidden em-
beddings of prompts in a given dataset almost always have positive inner products, across various
models. Specifically, for the OLMo-1B, Gemma-2B, and Llama-3-8B models, all such inner prod-
ucts over the ªends justify meansº subset of the Persona dataset are positive. This implies that
(x̃, ỹ+, ỹ−) usually pushes lnπθ(t)(y

+|x) downwards when αx,x̃(t) < 0.

Now, recall that:

αx,x̃(t) = 1
[
y+ = ỹ+

]
− 1

[
y+ = ỹ−

]
+ πθ(t)(ỹ

−|x)− πθ(t)(ỹ
+|x) .

There are two cases in which αx,x̃(t) < 0:

1. (contradicting samples) when y+ = ỹ−, i.e. the preferred token of x is the dispreferred token
of x̃; and
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2. (non-contradicting samples) when y+ /∈ {ỹ+, ỹ−} and πθ(t)(ỹ
−|x) < πθ(t)(ỹ

+|x).

While the first case is not surprising, the second shows that even when the preferences of x and x̃
are distinct, the inclusion of (x̃, ỹ+, ỹ−) in the dataset can exacerbate likelihood displacement for
(x,y+,y−). Furthermore, as one might expect, Theorem 9 establishes that (x̃, ỹ+, ỹ−) encourages
the probability mass conditioned on x to shift towards ỹ+, given that ⟨hx(t),hx̃(t)⟩ > 0 (proof
deferred to Appendix I.6).

Theorem 9. Under the setting of Theorem 8, for any time t ≥ 0 of training, (x,y+,y−) ∈ D, and
token z ∈ V:

d

dt
lnπθ(t)(z|x) = c(t) +

−ℓx,y+,y−(t)

|D|
·
〈
Wz(t),Wy+(t)−Wy−(t)

〉

︸ ︷︷ ︸

same sample contribution, as in Theorem 5

+
∑

(x̃,ỹ+,ỹ−)∈D

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|

(
1
[
z = ỹ+

]
− 1

[
z = ỹ−

])
⟨hx(t),hx̃(t)⟩

︸ ︷︷ ︸

contribution due to (x̃, ỹ+, ỹ−)

,

where 1 [·] denotes the indicator function and c(t) is a term that does not depend on z, given by:

c(t) :=
ℓx,y+,y−(t)

|D|

∑

z′∈V
πθ(t)(z

′|x)
〈
Wz′(t),Wy+(t)−Wy−(t)

〉

+
∑

(x̃,ỹ+,ỹ−)∈D

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|

(
πθ(t)(ỹ

−|x)− πθ(t)(ỹ
+|x)

)
⟨hx(t),hx̃(t)⟩ .

G LOSSES INCLUDING SFT REGULARIZATION OR DIFFERENT WEIGHTS

FOR THE PREFERRED AND DISPREFERRED RESPONSES

Some preference learning losses include an SFT regularization term, multiplied by a coefficient
λ > 0 (e.g., CPO (Xu et al., 2024a), RPO (Liu et al., 2024), and BoNBoN (Gui et al., 2024)).
Namely, for a preference dataset D, such losses have the following form:

LS(θ) := E(x,y+,y−)∼D

[

ℓx,y+,y−

(

lnπθ(y
+|x)− lnπθ(y

−|x)
)

− λ · lnπθ(y
+|x)

]

, (4)

where ℓx,y+,y− : R → R≥0 is convex and differentiable, for (x,y+,y−) ∈ D (cf. Equation (2)).
Other loss variants give different weights to the log probabilities of preferred and dispreferred re-
sponses within ℓx,y+,y− . For example, SimPO (Meng et al., 2024) weighs them by the reciprocal of
their lengths, and DPOP (Pal et al., 2024) adds an additional constant factor to the preferred response
log probability.10 This type of losses can be expressed as:

Lw(θ) := E(x,y+,y−)∼D

[

ℓx,y+,y−

(

λ+
x,y+,y− · lnπθ(y

+|x)− λ−
x,y+,y− · lnπθ(y

−|x)
)]

, (5)

where λ+
x,y+,y− , λ

−
x,y+,y− > 0 can depend on properties of (x,y+,y−) ∈ D. As mentioned in Sec-

tion 2.1, we assume that ℓx,y+,y− is monotonically decreasing around the initialization (otherwise
it does not encourage increasing the log probability ratio of preferred and dispreferred responses).
This mild assumption is upheld by all aforementioned losses.

The following Appendix G.1 extends our analysis from Sections 4.2.1 and 4.2.2 to the losses in
Equations (4) and (5). In particular, we formalize how adding an SFT regularization term, or assign-
ing the preferred response a weight larger than that of the dispreferred response, can help mitigate
likelihood displacement. Indeed, such modifications to the loss were proposed by Pal et al. (2024);
Liu et al. (2024); Pang et al. (2024); Gui et al. (2024) with that purpose in mind. We note, how-
ever, that our experiments in Section 6 reveal a limitation of this approach for mitigating likelihood
displacement and its adverse effects, compared to improving the data curation pipeline.

10The additional factor in the DPOP loss is only active when the preferred response log probability is below
its initial value.
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G.1 THEORETICAL ANALYSIS: EFFECT ON LIKELIHOOD DISPLACEMENT

We consider the technical setting laid out in Section 4.1, except that instead of examining gradient
flow over the original preference learning loss L (Equation (2)), we analyze the dynamics of gradient
flow over LS (Equation (4)) and Lw (Equation (5)):

d

dt
θS(t) = −∇LS(θS(t)) ,

d

dt
θw(t) = −∇Lw(θw(t)) , t ≥ 0 , (6)

where θS(t) and θw(t) denote the parameters at time t ≥ 0 when optimizing LS and Lw, respectively.
Suppose for simplicity that the dataset D contains a single preference sample (x,y+,y−). The
evolution of lnπθ(t)(y

+|x) when minimizing the original loss L via gradient flow is given by:

d

dt
lnπθ(t)(y

+|x) = −ℓ′x,y+,y−(θ(t))
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

,

where ℓ′
x,y+,y−(θ(t)) := ℓ′

x,y+,y−(lnπθ(t)(y
+|x)− lnπθ(t)(y

−|x)). We denote the term on the

right hand side above, evaluated at some point θ instead of θ(t), by:

E(θ) := −ℓ′x,y+,y−(θ)
〈
∇ lnπθ(y

+|x),∇ lnπθ(y
+|x)−∇ lnπθ(y

−|x)
〉

.

Proposition 1 establishes that, when minimizing LS via gradient flow, the preferred response log
probability evolves according to E(θS(t)), i.e. according to the evolution dictated by the original

loss L, and an additional non-negative term λ · ∥∇ lnπθS(t)(y
+|x)∥

2
. Proposition 2 similarly shows

that, when minimizing Lw via gradient flow, the evolution of the preferred response log probability

depends on E(θw(t)) (up to a multiplicative factor), and γ(t)·∥∇ lnπθw(t)(y
+|x)∥

2
, where γ(t) > 0

when λ+
x,y+,y− > λ−

x,y+,y− . This implies that, as expected, adding an SFT regularization term, or

assigning the preferred response a weight larger than that of the dispreferred response, encourages
the preferred response log probability to increase.

The proofs of Propositions 1 and 2 are given in Appendices I.7 and I.8, respectively.

Proposition 1. Suppose that the dataset D contains a single sample (x,y+,y−), with y+ ∈ V∗

and y− ∈ V∗ satisfying y+
1 ̸= y−

1 . When minimizing LS via gradient flow (Equation (6)), at any
time t ≥ 0 it holds that:

d

dt
lnπθS(t)(y

+|x) = E(θS(t)) + λ ·
∥
∥∇ lnπθS(t)

(
y+|x

)∥
∥
2

.

Proposition 2. Suppose that the dataset D contains a single sample (x,y+,y−), with y+ ∈ V∗

and y− ∈ V∗ satisfying y+
1 ̸= y−

1 . When minimizing Lw via gradient flow (Equation (6)), at any
time t ≥ 0 it holds that:

d

dt
lnπθw(t)(y

+|x) = ρ(t) · E(θw(t)) + γ(t) ·
∥
∥∇ lnπθw(t)

(
y+|x

)∥
∥
2

,

with ρ(t) := λ−
x,y+,y− · µ′(θw(t))

ℓ′
x,y+,y− (θw(t)) and γ(t) := (λ+

x,y+,y− − λ−
x,y+,y−) · [−µ′(θw(t))], where:

µ′(θw(t)) := ℓ′x,y+,y−

(

λ+
x,y+,y− · lnπθw(t)(y

+|x)− λ−
x,y+,y− · lnπθw(t)(y

−|x)
)

< 0 .

H LINEAR MODELS DO NOT SUFFER FROM LIKELIHOOD DISPLACEMENT

As discussed in Appendix E, this appendix establishes that linear models (trained on a prompt with
single token responses) do not suffer from likelihood displacement. Specifically, if one considers
the setting of Section 4.2.1, but fixes the hidden embedding of the prompt x during training, then
the probability of the preferred response y+ cannot decrease. This highlights the importance of
taking into account how the hidden embeddings evolve during training when analyzing likelihood
displacement, as done in Section 4.

The proof of Proposition 3 is deferred to Appendix I.9.

Proposition 3. Consider the setting of Theorem 1, where the dataset D contains a single sample
(x,y+,y−), with y+ ∈ V and y− ∈ V each being a single token. Suppose that hx, the hidden em-
bedding of x, is fixed during training, i.e. the trainable parameters are θ = W. Then, lnπθ(t)(y

+|x)
is monotonically non-decreasing with respect to the training time t.
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I DEFERRED PROOFS

I.1 PROOF OF THEOREM 4

By the chain rule:

d

dt
lnπθ(t)(y

+|x) =
〈
∇ lnπθ(t)(y

+|x), d
dt
θ(t)

〉

= −ℓ′x,y+,y−(t) ·
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

.

(7)

For any token z ∈ V , the gradient of lnπθ(t)(z|x) at θ(t) consists of two components:

∇W lnπθ(t)(z|x) =
(

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′

)

h⊤
x (t) ,

∇hx
lnπθ(t)(z|x) = Wz(t)−

∑

z′∈V
πθ(t)(z

′|x) ·Wz′(t) .

Thus:

∇W lnπθ(t)(y
+|x)−∇W lnπθ(t)(y

−|x) =
(
ey+ − ey−

)
h⊤
x (t) ,

∇hx
lnπθ(t)(y

+|x)−∇hx
lnπθ(t)(y

−|x) = Wy+(t)−Wy−(t) .

Going back to Equation (7), we arrive at:

d

dt
lnπθ(t)(y

+|x)

= −ℓ′x,y+,y−(t) ·

[〈

Wy+(t)−
∑

z∈V
πθ(t)(z|x) ·Wz(t),Wy+(t)−Wy−(t)

〉

+
〈(

ey+ −
∑

z∈V
πθ(t)(z|x) · ez

)

h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉]

.

Noticing that
〈(
ey+ −

∑

z∈V πθ(t)(z|x) · ez
)
h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉
amounts to:

(
1− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
· ∥hx(t)∥

2
,

the desired result readily follows by rearranging the equation above. Lastly, Lemma 2 implies that
−ℓx,y+,y−(t) > 0.

I.2 PROOF OF THEOREM 5

We perform a derivation analogous to that in the proof of Theorem 4 (Appendix I.1).

By the chain rule:

d

dt
lnπθ(t)(z|x) =

〈
∇ lnπθ(t)(z|x),

d
dt
θ(t)

〉

= −ℓ′x,y+,y−(t) ·
〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(y

+|x)−∇ lnπθ(t)(y
−|x)

〉
.

(8)

For any token y ∈ V , the gradient of lnπθ(t)(y|x) at θ(t) consists of two components:

∇W lnπθ(t)(y|x) =
(

ey −
∑

y′∈V
πθ(t)(y

′|x) · ey′

)

h⊤
x (t) ,

∇hx
lnπθ(t)(y|x) = Wy(t)−

∑

y′∈V
πθ(t)(y

′|x) ·Wy′(t) .

Thus:

∇W lnπθ(t)(y
+|x)−∇W lnπθ(t)(y

−|x) =
(
ey+ − ey−

)
h⊤
x (t) ,

∇hx
lnπθ(t)(y

+|x)−∇hx
lnπθ(t)(y

−|x) = Wy+(t)−Wy−(t) .
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Going back to Equation (8) thus leads to:

d

dt
lnπθ(t)(z|x)

= −ℓ′x,y+,y−(t) ·

[〈

Wz(t)−
∑

z′∈V
πθ(t)(z

′|x) ·Wz′(t),Wy+(t)−Wy−(t)
〉

+
〈(

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′

)

h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉]

.

Noticing that
〈(
ez −

∑

z′∈V πθ(t)(z
′|x) · ez′

)
h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉
amounts to:

(
πθ(t)(y

−|x)− πθ(t)(y
+|x)

)
· ∥hx(t)∥

2
,

the desired result readily follows by rearranging the equation above. Lastly, we note that Lemma 2
implies that −ℓx,y+,y−(t) > 0.

I.3 PROOF OF THEOREM 6

Notice that, for any z ∈ V∗, the gradient ∇ lnπθ(t)(z|x) consists of the following components:

∇W lnπθ(t)(z|x) =
∑|z|

k=1

(
ezk

− πθ(t)(·|x, z<k)
)
h⊤
z<k

(t) ,

∇hx,z<k
lnπθ(t)(z|x) = Wzk

(t)−
∑

z∈V
πθ(t)(z|x, z<k) ·Wz(t) , k ∈ {1, . . . , |z|} ,

(9)

where the gradient with respect to all other hidden embeddings is zero. By the chain rule:

d

dt
lnπθ(t)(y

+|x) =
〈
∇ lnπθ(t)(y

+|x), d
dt
θ(t)

〉

= −ℓ′x,y+,y−(t) ·
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

.

Thus:
d

dt
lnπθ(t)(y

+|x)

= −ℓ′x,y+,y−(t) ·
〈
∇W lnπθ(t)(y

+|x),∇W lnπθ(t)(y
+|x)−∇W lnπθ(t)(y

−|x)
〉

− ℓ′x,y+,y−(t) ·
〈
∇hx

lnπθ(t)(y
+|x),∇hx

lnπθ(t)(y
+|x)−∇hx

lnπθ(t)(y
−|x)

〉

− ℓ′x,y+,y−(t) ·
∑|y+|

k=2

∥
∥∇h

x,y
+
<k

lnπθ(t)(y
+|x)

∥
∥
2

.

Plugging in the expressions for each gradient from Equation (9) leads to:

d

dt
lnπθ(t)(y

+|x) = −ℓ′x,y+,y−(t)

[

〈
|y+|
∑

k=1

(

e
y
+

k

− πθ(t)(·|x,y
+
<k)

)

h⊤
x,y

+

<k

(t),

|y+|
∑

k′=1

(

e
y
+

k′
− πθ(t)(·|x,y

+
<k′)

)

h⊤
x,y

+

<k′
(t)

〉

︸ ︷︷ ︸

(I)

−

〈
|y+|
∑

k=1

(

e
y
+

k

− πθ(t)(·|x,y
+
<k)

)

h⊤
x,y

+

<k

(t),

|y−|
∑

k′=1

(

e
y
−

k′
− πθ(t)(·|x,y

−
<k′)

)

h⊤
x,y

−

<k′
(t)

〉

︸ ︷︷ ︸

(II)
〈

W
y
+
1
(t)−

∑

z∈V
πθ(t)(z|x) ·Wz(t),Wy

+
1
(t)−W

y
−
1
(t)

〉

︸ ︷︷ ︸

(III)

∑|y+|

k=2

∥
∥
∥Wy

+

k

(t)−
∑

z∈V
πθ(t)(z|x,y

+
<k) ·Wz(t)

∥
∥
∥

2

︸ ︷︷ ︸

(IV )
]

.
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Now, the sum of (III) and (IV ) is equal to m(t) + S
y
+
1 ,y

−
1
(t). As to (I), for all k ∈ {1, . . . , |y+|}

and k′ ∈ {1, . . . , |y+|} we have that:
〈(

e
y
+

k

− πθ(t)(·|x,y
+
<k)

)

h⊤
x,y

+

<k

(t),
(

e
y
+

k′
− πθ(t)(·|x,y

+
<k′)

)

h⊤
x,y

+

<k′
(t)

〉

= α+
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

+

<k′
(t)

〉

.

This implies that:

(I) =

|y+|
∑

k=1

|y+|
∑

k′=1

α+
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

+

<k′
(t)

〉

.

An analogous derivation leads to:

(II) =

|y+|
∑

k=1

|y−|
∑

k′=1

α−
k,k′(t) ·

〈

h
x,y

+

<k

(t),h
x,y

−

<k′
(t)

〉

.

Combining (I), (II), (III), and (IV ) yields the desired expression for d
dt

lnπθ(t)(y
+|x). Lastly,

note that by Lemma 2 we have that −ℓx,y+,y−(t) > 0.

I.4 PROOF OF THEOREM 7

We perform a derivation analogous to that in the proof of Theorem 6 (Appendix I.3).

For any v ∈ V∗, the gradient ∇ lnπθ(t)(v|x) consists of the following components:

∇W lnπθ(t)(v|x) =
∑|v|

k=1

(
evk

− πθ(t)(·|x,v<k)
)
h⊤
v<k

(t) ,

∇hx,v<k
lnπθ(t)(v|x) = Wvk

(t)−
∑

z∈V
πθ(t)(z|x,v<k) ·Wz(t) , k ∈ {1, . . . , |v|} ,

(10)

where the gradient with respect to all other hidden embeddings is zero. By the chain rule:

d

dt
lnπθ(t)(z|x) =

〈
∇ lnπθ(t)(z|x),

d
dt
θ(t)

〉

= −ℓ′x,y+,y−(t) ·
〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(y

+|x)−∇ lnπθ(t)(y
−|x)

〉
.

Thus:
d

dt
lnπθ(t)(z|x)

= −ℓ′x,y+,y−(t) ·
〈
∇W lnπθ(t)(z|x),∇W lnπθ(t)(y

+|x)−∇W lnπθ(t)(y
−|x)

〉

− ℓ′x,y+,y−(t) ·
〈
∇hx

lnπθ(t)(y
+|x),∇hx

lnπθ(t)(y
+|x)−∇hx

lnπθ(t)(y
−|x)

〉
.

Plugging in the expressions for each gradient from Equation (10) leads to:

d

dt
lnπθ(t)(y

+|x) = −ℓ′x,y+,y−(t)

[

〈
|z|
∑

k=1

(

ezk
− πθ(t)(·|x, z<k)

)

h⊤
x,z<k

(t),

|y+|
∑

k′=1

(

e
y
+

k′
− πθ(t)(·|x,y

+
<k′)

)

h⊤
x,y

+

<k′
(t)

〉

︸ ︷︷ ︸

(I)

−

〈
|z|
∑

k=1

(

ezk
− πθ(t)(·|x, z<k)

)

h⊤
x,z<k

(t),

|y−|
∑

k′=1

(

e
y
−

k′
− πθ(t)(·|x,y

−
<k′)

)

h⊤
x,y

−

<k′
(t)

〉

︸ ︷︷ ︸

(II)
〈

Wz1
(t)−

∑

z∈V
πθ(t)(z|x) ·Wz(t),Wy

+
1
(t)−W

y
−
1
(t)

〉

︸ ︷︷ ︸

(III)
]

.
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First, notice that (III) = c(t) +
〈
Wz1

(t),W
y
+
1
(t)−W

y
−
1
(t)

〉
. As to (I), for all k ∈ {1, . . . , |z|}

and k′ ∈ {1, . . . , |y+|} we have that:
〈(

ezk
− πθ(t)(·|x, z<k)

)

h⊤
x,z<k

(t),
(

e
y
+

k′
− πθ(t)(·|x,y

+
<k′)

)

h⊤
x,y

+

<k′
(t)

〉

= β+
k,k′(t) ·

〈

hx,z<k
(t),h

x,y
+

<k′
(t)

〉

.

This implies that:

(I) =

|z|
∑

k=1

|y+|
∑

k′=1

β+
k,k′(t) ·

〈

hx,z<k
(t),h

x,y
+

<k′
(t)

〉

.

By a similar derivation we get that:

(II) =

|z|
∑

k=1

|y−|
∑

k′=1

β−
k,k′(t) ·

〈

hx,z<k
(t),h

x,y
−

<k′
(t)

〉

.

Combining (I), (II), and (III) yields the desired expression for d
dt

lnπθ(t)(z|x). Lastly, note that

by Lemma 2 it holds that −ℓx,y+,y−(t) > 0.

I.5 PROOF OF THEOREM 8

Let Dadd := D \ {(x,y+,y−)} be the dataset obtained by excluding (x,y+,y−) from D. By the
chain rule:

d

dt
lnπθ(t)(y

+|x)

=
〈
∇ lnπθ(t)(y

+|x), d
dt
θ(t)

〉

=
−ℓ′

x,y+,y−(t)

|D|
·
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

︸ ︷︷ ︸

(I)

+
∑

(x̃,ỹ+,ỹ−)∈Dadd

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|
·
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(ỹ
+|x̃)−∇ lnπθ(t)(ỹ

−|x̃)
〉

︸ ︷︷ ︸

(II)

.

(11)

For any token z ∈ V and prompt x̃ ∈ V∗, the gradient of lnπθ(t)(z|x̃) at θ(t) is given by:

∇W lnπθ(t)(z|x̃) =
(

ez −
∑

z′∈V
πθ(t)(z

′|x̃) · ez′

)

h⊤
x̃ (t) ,

∇hx̃
lnπθ(t)(z|x̃) = Wz(t)−

∑

z′∈V
πθ(t)(z

′|x̃) ·Wz′(t) .

Furthermore, for any response x′ ̸= x̃, it holds that ∇h
x′ lnπθ(t)(z|x̃) = 0 since lnπθ(t)(z|x̃) does

not depend on hx′ (recall that the hidden embeddings are treated as trainable parameters under the
unconstrained features model). Thus, focusing on term (I) from Equation (11):

〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

=
〈

Wy+(t)−
∑

z∈V
πθ(t)(z|x) ·Wz(t),Wy+(t)−Wy−(t)

〉

+
〈(

ey+ −
∑

z∈V
πθ(t)(z|x) · ez

)

h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉

.

Since
〈(
ey+ −

∑

z∈V πθ(t)(z|x) · ez
)
h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉
amounts to:

(
1− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
· ∥hx(t)∥

2
,

it readily follows that (I) = m(t) + Sy+,y−(t) by rearranging terms.
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Moving on to term (II) from Equation (11), for any (x̃, ỹ+, ỹ−) ∈ Dadd we have that:
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(ỹ
+|x̃)−∇ lnπθ(t)(ỹ

−|x̃)
〉

=
〈(

ey+ −
∑

z∈V
πθ(t)(z|x) · ez

)

h⊤
x (t),

(
eỹ+ − eỹ−

)
h⊤
x̃ (t)

〉

=
〈

ey+ −
∑

z∈V
πθ(t)(z|x) · ez, eỹ+ − eỹ−

〉

· ⟨hx(t),hx̃(t)⟩

= αx,x̃(t) · ⟨hx(t),hx̃(t)⟩ .

Plugging (I) and (II) back into Equation (11) concludes the proof.

I.6 PROOF OF THEOREM 9

We perform a derivation analogous to that in the proof of Theorem 8 (Appendix I.5).

Applying the chain rule:

d

dt
lnπθ(t)(z|x)

=
〈
∇ lnπθ(t)(z|x),

d
dt
θ(t)

〉

=
∑

(x̃,ỹ+,ỹ−)∈D

−ℓ′
x̃,ỹ+,ỹ−(t)

|D|
·
〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(ỹ

+|x̃)−∇ lnπθ(t)(ỹ
−|x̃)

〉
.

(12)

For any token y ∈ V and prompt x̃ ∈ V∗, the gradient of lnπθ(t)(y|x̃) at θ(t) is given by:

∇W lnπθ(t)(y|x̃) =
(

ey −
∑

y′∈V
πθ(t)(y

′|x̃) · ey′

)

h⊤
x̃ (t) ,

∇hx̃
lnπθ(t)(y|x̃) = Wy(t)−

∑

y′∈V
πθ(t)(y

′|x̃) ·Wy′(t) .

Furthermore, for any response x′ ̸= x̃ it holds that ∇h
x′ lnπθ(t)(y|x̃) = 0 since lnπθ(t)(y|x̃) does

not depend on hx′ (recall that the hidden embeddings are treated as trainable parameters under the
unconstrained features model). Focusing on the summand from Equation (12) corresponding to
(x,y+,y−), we thus get:

〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(y

+|x)−∇ lnπθ(t)(y
−|x)

〉

=
〈

Wz(t)−
∑

z′∈V
πθ(t)(z

′|x) ·Wz′(t),Wy+(t)−Wy−(t)
〉

+
〈(

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′

)

h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉

.

Since
〈(
ez −

∑

z′∈V πθ(t)(z
′|x) · ez′

)
h⊤
x (t),

(
ey+ − ey−

)
h⊤
x (t)

〉
amounts to:

(
1
[
z = y+

]
− 1

[
z = y−

]
− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
· ⟨hx(t),hx(t)⟩ ,

it follows that:
〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(y

+|x)−∇ lnπθ(t)(y
−|x)

〉

=
〈
Wz(t),Wy+(t)−Wy−(t)

〉
−
∑

z′∈V
πθ(t)(z

′|x) ·
〈
Wz′(t),Wy+(t)−Wy−(t)

〉

+
(
1
[
z = y+

]
− 1

[
z = y−

]
− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
· ⟨hx(t),hx(t)⟩ .

(13)

Now, for (x̃, ỹ+, ỹ−) ∈ D\{(x,y+,y−)}, the corresponding summand from Equation (12) can be
written as:

〈
∇ lnπθ(t)(z|x),∇ lnπθ(t)(ỹ

+|x̃)−∇ lnπθ(t)(ỹ
−|x̃)

〉

=
〈(

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′

)

h⊤
x (t),

(
eỹ+ − eỹ−

)
h⊤
x̃ (t)

〉

=
〈

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′ , eỹ+ − eỹ−

〉

· ⟨hx(t),hx̃(t)⟩

=
(
1
[
z = ỹ+

]
− 1

[
z = ỹ−

]
− πθ(t)(ỹ

+|x) + πθ(t)(ỹ
−|x)

)
· ⟨hx(t),hx̃(t)⟩ .

(14)

Plugging Equations (13) and (14) back into Equation (12) concludes the proof.
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I.7 PROOF OF PROPOSITION 1

The proof readily follows by a straightforward application of the chain rule:

d

dt
lnπθS(t)(y

+|x)

=
〈
∇ lnπθS(t)(y

+|x), d
dt
θS(t)

〉

=
〈

∇ lnπθS(t)(y
+|x),−ℓ′x,y+,y−(θS(t))

(
∇ lnπθS(t)(y

+|x)−∇ lnπθS(t)(y
−|x)

)〉

+ λ ·
∥
∥∇ lnπθS(t)(y

+|x)
∥
∥
2

= E(θS(t)) + λ ·
∥
∥∇ lnπθS(t)(y

+|x)
∥
∥
2

,

where ℓ′
x,y+,y−(θS(t)) := ℓ′

x,y+,y−

(
lnπθS(t)(y

+|x)− lnπθS(t)(y
−|x)

)
.

I.8 PROOF OF PROPOSITION 2

By the chain rule and a straightforward rearrangement of terms:

d

dt
lnπθw(t)(y

+|x)

=
〈
∇ lnπθw(t)(y

+|x), d
dt
θw(t)

〉

= −µ′(θw(t)) ·
〈

∇ lnπθw(t)(y
+|x), λ+

x,y+,y−∇ lnπθw(t)(y
+|x)− λ−

x,y+,y−∇ lnπθw(t)(y
−|x)

〉

= −λ−
x,y+,y−µ

′(θw(t)) ·
〈
∇ lnπθw(t)(y

+|x),∇ lnπθw(t)(y
+|x)−∇ lnπθw(t)(y

−|x)
〉

+
(
λ+
x,y+,y− − λ−

x,y+,y−

)
[−µ′(θw(t))] ·

∥
∥∇ lnπθw(t)(y

+|x)
∥
∥
2

= ρ(t) · E(θw(t)) + γ(t) ·
∥
∥∇ lnπθw(t)

(
y+|x

)∥
∥
2

.

Lastly, steps analogous to those used for proving Lemma 2 establish that µ′(θw(t)) < 0, and so
−µ′(θw(t)) > 0.

I.9 PROOF OF PROPOSITION 3

The claim follows by showing that d
dt

lnπθ(t)(y
+|x) ≥ 0 for all t ≥ 0. To see it is so, notice that

when hx is not trainable, for any token z ∈ V the gradient of lnπθ(t)(z|x) at θ(t) is given by:

∇ lnπθ(t)(z|x) =
(

ez −
∑

z′∈V
πθ(t)(z

′|x) · ez′

)

h⊤
x .

Thus, applying the chain rule:

d

dt
lnπθ(t)(y

+|x) =
〈
∇ lnπθ(t)(y

+|x), d
dt
θ(t)

〉

= −ℓ′x,y+,y−(t) ·
〈
∇ lnπθ(t)(y

+|x),∇ lnπθ(t)(y
+|x)−∇ lnπθ(t)(y

−|x)
〉

= −ℓ′x,y+,y−(t) ·
〈(

ey+ −
∑

z∈V
πθ(t)(z|x) · ez

)

h⊤
x ,

(
ey+ − ey−

)
h⊤
x

〉

= −ℓ′x,y+,y−(t) ·
〈

ey+ −
∑

z∈V
πθ(t)(z|x) · ez, ey+ − ey−

〉

∥hx∥
2

= −ℓ′x,y+,y−(t) ·
(
1− πθ(t)(y

+|x) + πθ(t)(y
−|x)

)
∥hx∥

2
.

It then readily follows that d
dt

lnπθ(t)(y
+|x) ≥ 0 by the fact that 1−πθ(t)(y

+|x)+πθ(t)(y
−|x) ≥ 0,

along with Lemma 2, which implies that −ℓ′
x,y+,y−(t) ≥ 0.

I.10 AUXILIARY LEMMAS

Lemma 1. For (x,y+,y−) ∈ D, suppose that ℓx,y+,y− corresponds to the DPO loss, i.e.:

ℓx,y+,y−

(
lnπθ(y

+|x)− lnπθ(y
−|x)

)
:= − lnσ

(

β

(

ln
πθ(y

+|x)

πθ(y−|x)
− ln

πref(y
+|x)

πref(y−|x)

))

,
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where πref is some reference model, β > 0 is a regularization hyperparameter, and σ : R → [0, 1]
denotes the sigmoid function. Then, at any time t ≥ 0 of training:

ℓ′x,y+,y−

(
lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)

)
< 0 .

Proof. A straightforward differentiation of ℓx,y+,y−(u) at any u ∈ R shows that:

ℓ′x,y+,y−(u) = −β · σ

(

β

(

ln
πref(y

+|x)

πref(y−|x)
− u

))

< 0 .

Lemma 2. Suppose that the dataset D contains a single sample (x,y+,y−), with y+ ∈ V∗ and
y− ∈ V∗. Then, at any time t ≥ 0 of training:

ℓ′x,y+,y−

(
lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)

)
< 0 .

Proof. At time t = 0, our assumption that ℓx,y+,y− is convex and monotonically decreasing in a

neighborhood of lnπθ(0)(y
+|x)− lnπθ(0)(y

−|x) (see Section 2.1) implies that:

ℓ′x,y+,y−

(
lnπθ(0)(y

+|x)− lnπθ(0)(y
−|x)

)
< 0 .

Suppose for the sake of contradiction that there exists a time t ≥ 0 at which:

ℓ′x,y+,y−

(
lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)

)
≥ 0 .

By the continuity of ℓ′
x,y+,y−

(
lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)

)
with respect to t and the interme-

diate value theorem (note that ℓ′
x,y+,y− is continuous since ℓx,y+,y− is convex), this implies that at

some t0 ∈ [0, t]:
ℓ′x,y+,y−

(
lnπθ(t0)(y

+|x)− lnπθ(t0)(y
−|x)

)
= 0 .

However, given that D contains only the sample (x,y+,y−), we have that:

∇θL(θ(t0)) = ℓ′x,y+,y−

(
lnπθ(t0)(y

+|x)− lnπθ(t0)(y
−|x)

)
· ∇θ ln

πθ(t0)(y
+|x)

πθ(t0)(y
−|x)

= 0 .

Meaning, at time t0 gradient flow is at a critical point of L. This stands in contradiction to
ℓ′
x,y+,y−

(
lnπθ(0)(y

+|x)− lnπθ(0)(y
−|x)

)
being negative since gradient flow can only reach a

critical point if it is initialized there (due to the uniqueness of the gradient flow solution and the
existence of a solution that remains in the critical point through time). As a result, it must be that
ℓ′
x,y+,y−

(
lnπθ(t)(y

+|x)− lnπθ(t)(y
−|x)

)
< 0 for all t ≥ 0.

J FURTHER EXPERIMENTS

J.1 CATASTROPHIC LIKELIHOOD DISPLACEMENT IN SIMPLE SETTINGS (SECTION 3)

Listed below are additional experiments and results, omitted from Section 3.

• Table 2 reports the results of an experiment analogous to that of Table 1, using base models that
did not undergo an initial SFT phase.

• Table 3 reports the results of an experiment analogous to that of Table 1, using IPO instead of
DPO.

• Tables 4 to 6 include details regarding the tokens increasing most in probability for the experi-
ments of Table 1.

• Tables 7 to 9 include details regarding the tokens increasing most in probability for the experi-
ments of Table 2.

• Tables 10 to 12 include details regarding the tokens increasing most in probability for the exper-
iments of Table 3.

• Table 13 reports, for each model and pair of preferred and dispreferred tokens (y+,y−) from
Table 1, the norm of the projection of Wy+ − Wy− onto Wy+ , as well as the norm of the
component of Wy+ −Wy− orthogonal to Wy+ . As the table shows, the norm of the orthogonal
component is larger across the different models and preference pairs, in accordance with our
theoretical explanation of why likelihood displacement can be catastrophic in the case of single
token responses (Section 4).
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J.2 EMPIRICAL EVALUATION OF THE COEFFICIENTS FROM THEOREM 3

In Section 4.2.2, we defined the CHES score (Definition 2) based on Theorem 3. Our definition
was motivated by the empirical observation that the α−

k,k′(t) and α+
k,k′(t) coefficients, appearing

in Theorem 3, are mostly positive across models and datasets. Specifically, across the OLMo-1B,
Gemma-2B, and Llama-3-8B models and the UltraFeedback and AlpacaFarm datasets, we find that
on average over 69% of the coefficients are positive. Although the number of negative coefficients is
not negligible, the experiments in Sections 5 and 6 corroborate the simplification made for deriving
the CHES score Ð namely, setting all coefficients to a constant positive value Ð by demonstrating
that that the CHES score accurately predicts the extent to which samples contribute to likelihood
displacement.

J.3 IDENTIFYING SOURCES OF LIKELIHOOD DISPLACEMENT (SECTION 5)

Listed below are additional experiments and results, omitted from Section 5.

• Figure 5 includes experiments analogous to those of Figure 2, over the AlpacaFarm dataset
instead of UltraFeedback.

• Figure 6 includes experiments analogous to those of Figure 5, using IPO instead of DPO.

• Figure 7 includes experiments analogous to those of Figure 2, using an OLMo-1B model trained
via DPO and IPO over the AlpacaFarm dataset.

• Tables 14 and 15 include representative samples with high and low CHES scores from the Ultra-
Feedback dataset, for the OLMo-1B, Gemma-2B, and Llama-3-8B models.

J.4 UNINTENTIONAL UNALIGNMENT IN DIRECT PREFERENCE LEARNING (SECTION 6)

Listed below are additional experiments and results, omitted from Section 6.

• Table 16 reports the mean change in preferred response log probability for the experiments of
Figure 3.

• Figure 8 reports the results of an experiment analogous to that of Figure 3, using IPO instead of
DPO. Furthermore, Table 17 reports the mean change in preferred response log probability for
the experiments of Figure 8.

• Table 18 provides examples of unsafe prompts from the training sets used in Section 6, for
which initially the models generated two refusal responses, yet after DPO they complied with
the prompts.

K FURTHER IMPLEMENTATION DETAILS

In this appendix, we provide implementation details omitted from Sections 3, 5, and 6 and Ap-
pendix J. Code for reproducing our results, based on the PyTorch (Paszke et al., 2017) and Hugging
Face (Wolf et al., 2019) frameworks, can be found at https://github.com/princeton-nlp/
unintentional-unalignment.

K.1 CATASTROPHIC LIKELIHOOD DISPLACEMENT IN SIMPLE SETTINGS (SECTION 3)

Data. In our experiments, we used the Persona dataset (Perez et al., 2022) subset corresponding to the ªends
justify meansº behavioral trait, which contains 1000 prompts. Each prompt was formatted using the template
ªIs the following statement something you would say? [STATEMENT]\nº, for statements that either accord or
do not accord with the trait. To mimic a scenario where one aims to align a model with safe behaviors, during
the initial SFT phase, we randomly assigned each prompt that accords with the (undesirable) trait a label from
N = {No,Never,Maybe,Perhaps}, and to each prompt that does not accord with the trait a label from
Y = {Yes,Yeah,Sure,Certainly,Absolutely}. In line with the SFT phase, when training via DPO

(or IPO) using a preference pair (y+,y−), if y+ ∈ N then we selected randomly prompts that accord with the

trait, whereas if y+ ∈ Y then we selected randomly prompts that do not accord with the trait.

Training. In the initial SFT phase, we minimized the cross entropy loss over all 1000 prompts for one epoch,
using the RMSProp optimizer (Hinton et al., 2012) with a learning rate of 1e-7 and batch size of 32. For
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DPO, we performed 100 training steps using the RMSProp optimizer over a single prompt in each run, with a
learning rate of 1e-7, and set the KL coefficient to 0.1, in line with Rafailov et al. (2023); Tajwar et al. (2024);
Xu et al. (2024b); Dubey et al. (2024). Setting the learning rate to 5e-7 or 5e-8 led to analogous results. For
IPO, we decreased the learning rate to 1e-8, since higher learning rates led to unstable training, and set the
KL coefficient to 0.01 (lower KL coefficients led to analogous results and higher coefficients caused the log
probabilities to not change much during training).

Further details. For each model and pair of preferred and dispreferred tokens (y+,y−), we carried out ten
DPO (or IPO) runs differing in random seed for choosing the prompt. We report the results only for runs in
which the training loss decreased throughout all steps to ensure that likelihood displacement did not occur due to
instability of optimization. For all configurations, the loss was completely stable in at least five runs. In Tables 1,
2, and 3, the reported decrease in preferred token probability stands for the largest decrease between any two
(not necessarily consecutive) training steps. That is, we report the minimal value of πθ(t′)(y

+|x)−πθ(t)(y
+|x)

among any training steps t < t′.

Hardware. Experiments for OLMo-1B and Gemma-2B ran on a single Nvidia H100 GPU with 80GB memory,
while for Llama-3-8B we used three such GPUs per run.

K.2 IDENTIFYING SOURCES OF LIKELIHOOD DISPLACEMENT (SECTION 5)

Data. We used the binarized version of UltraFeedback (Tunstall et al., 2023), and for computational efficiency,
based our experiments on a randomly selected subset of 5000 samples from the training set. For AlpacaFarm,
we took the human preferences subset that contains 9691 samples. We filtered out samples in which either: (i)
the prompt was longer than 512 tokens; (ii) the prompt was empty; or (iii) one of the responses were empty.

For each prompt x and response y, the input to the language models was formatted according to:

ª[PROMPT TOKEN]x[ASSISTANT TOKEN]y[EOS TOKEN]º ,

where [PROMPT TOKEN], [ASSISTANT TOKEN], and [EOS TOKEN] are defined as special tokens, and
truncated to a maximum length of 512 tokens.

Training. For each model and preference similarity percentile subset, we ran one epoch of DPO (or IPO), using
the RMSProp optimizer with a learning rate of 1e-7 and batch size of 32 (emulated via 8 gradient accumulation
steps with a batch size of 4). We found that using a higher learning rate of 5e-7 or lower learning rate of 5e-8
leads to analogous results. As for the KL coefficient, for DPO we set it to 0.1, in line with Rafailov et al.
(2023); Tajwar et al. (2024); Xu et al. (2024b); Dubey et al. (2024), and for IPO we set it to 0.01, similarly to
the experiments of Section 3.

Hardware. Experiments for OLMo-1B ran on a single Nvidia H100 GPU with 80GB memory, while for
Gemma-2B and Llama-3-8B we used two and four such GPUs per run, respectively.

K.3 UNINTENTIONAL UNALIGNMENT IN DIRECT PREFERENCE LEARNING (SECTION 6)

Data. We used the ªbaseº portion of SORRY-Bench, which contains 450 prompts considered unsafe. We
filtered out 15 samples that did not have a ªgoldº human labeled refusal or non-refusal response, and split the
remaining samples into a training and test sets using a 85%/15% split. When generating candidate responses,
we used a temperature of 1 and set the maximum generated tokens to 512 (we did not use nucleus or top-k
sampling). For creating the ªgoldº preference dataset, we took the human labeled responses from SORRY-
Bench, which were generated by a diverse set of models. Specifically, for each prompt, we set the preferred
response to be a (randomly selected) human labeled refusal response and the dispreferred response to be a
(randomly selected) human labeled non-refusal response. Lastly, we formatted inputs using the default chat
templates of the models.

Training. We ran one epoch of DPO (or IPO) using the RMSProp optimizer with batch size of 32 (emulated
via 8 gradient accumulation steps with a batch size of 4). We set the KL coefficient for DPO to 0.1, in line with
Rafailov et al. (2023); Tajwar et al. (2024); Xu et al. (2024b); Dubey et al. (2024), and for IPO to 0.01, as in
the experiments of Sections 3 and 5.

For tuning the learning rate of DPO, separately for each model and the original and gold datasets, we ran three
seeds using each of the values 1e-7, 5e-7, 1e-6, 5e-6, 1e-5. We chose the largest learning rate that led to stable
training, i.e. for which the training loss after one epoch is lower than the initial training loss. For both Gemma-
2B-IT and Llama-3-8B-Instruct, on the original datasets the learning rate was chosen accordingly to be 5e-6,
and on the gold datasets to be 1e-6. We used the same learning rates for IPO. When running experiments over
the filtered datasets, the learning rate was set to 5e-6, i.e. to be the same as in the experiments over the original
(unfiltered) datasets.

For experiments with an SFT regularization term, we set the learning rate to 5e-6 and tuned the SFT term
coefficient. For DPO and each of the models, we ran three seeds using the values 0.01, 0.1, and 1, and chose
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the value that led to the highest mean refusal rate over the training set. For IPO, we performed a similar process,
but with higher values of 10, 100, and 1000, since lower values did not have a noticeable effect due to the larger
scale of the IPO loss. The coefficients chosen for Llama-3-8B-Instruct were 0.1 when using DPO and 1000
when using IPO, and for Gemma-2B-IT were 1 when using DPO and 1000 when using IPO.

Refusal rate evaluation. For evaluating refusal rates, we used judge model and default generation hyperpa-
rameters from Xie et al. (2024b). Specifically, the temperature was set to 0.7 and the maximal number of new
tokens was 512 (nucleus or top-k sampling were not used).

Hardware. Experiments for Gemma-2B-IT ran on three Nvidia H100 GPUs with 80GB memory, while for
Llama-3-8B-Instruct we used four such GPUs per run.
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Tokens Increasing Most in Probability

Model y+ y− πθ(y
+|x) Decrease Benign Catastrophic

OLMo-1B
Yes No 0.15 (0.89 → 0.74) Yes, yes Ð

No Never 0.13 (0.98 → 0.85) No Ð

Gemma-2B
Yes No 0.58 (0.86 → 0.28) Yes, yes Something, something

No Never 0.10 (0.46 → 0.36) no Yes, yes

Llama-3-8B
Yes No 0.84 (0.94 → 0.10) Yes, yes, yes Ð

Sure Yes 0.99 (0.99 → 0.00) sure, certain Ð

Table 2: Likelihood displacement can be catastrophic, even when training on a single prompt with single
token responses. Reported are the results of an experiment analogous to that of Table 1, in which models did
not undergo an initial SFT phase before training via DPO. For further details, see caption of Table 1.

Tokens Increasing Most in Probability

Model y+ y− πθ(y
+|x) Decrease Benign Catastrophic

OLMo-1B
Yes No 0.15 (0.89 → 0.74) Yes, yes, Certainly Ð

No Never 0.87 (0.88 → 0.01) no Yes, Sure

Gemma-2B
Yes No 0.01 (0.07 → 0.06) Yeah Perhaps

No Never 0.03 (0.62 → 0.59) no Yeah, Sure

Llama-3-8B
Yes No 0.04 (0.99 → 0.95) Yes, yes Ð

Sure Yes 0.25 (0.91 → 0.66) Yeah, sure Maybe, Perhaps

Table 3: Likelihood displacement can be catastrophic, even when training on a single prompt with single
token responses. Reported are the results of an experiment analogous to that of Table 1, using IPO instead of
DPO. For further details, see caption of Table 1.

OLMo-1B (DPO)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 8.7× 10−1 8/8 Yes 4.0× 10−1 8/8

yes 3.2× 10−3 8/8 Yes 1.8× 10−1 5/8

Yes 3.7× 10−2 8/8 No 2.7× 10−1 4/8

Ð Ð Ð yes 3.0× 10−1 4/8

Ð Ð Ð No 3.7× 10−2 3/8

25

Yes 4.2× 10−1 8/8 no 9.0× 10−1 8/8

yes 7.9× 10−2 8/8 No 8.9× 10−2 8/8

Yes 4.1× 10−1 8/8 no 2.1× 10−4 7/8

Ð Ð Ð coronal −1.7× 10−15 1/8

100

Yes 1.8× 10−1 8/8 no 4.0× 10−1 8/8

yes 1.3× 10−1 8/8 No 4.4× 10−1 8/8

Yes 6.0× 10−1 8/8 no 3.2× 10−3 7/8

Ð Ð Ð No 1.7× 10−2 1/8

Table 4: For the experiments of Table 1 with the OLMo-1B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.
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Gemma-2B (DPO)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 8.8× 10−1 10/10 No 8.2× 10−1 10/10

YES 2.8× 10−3 10/10 no 2.1× 10−3 9/10

yes 5.3× 10−4 5/10 No 2.1× 10−4 3/10

Yes 7.5× 10−5 3/10 yes 4.3× 10−3 2/10

Yeah 2.6× 10−2 1/10 Yeah 1.3× 10−1 1/10

Yep 4.4× 10−4 1/10 Polite 1.2× 10−9 1/10

Ð Ð Ð kshake 4.3× 10−13 1/10

Ð Ð Ð potrebbero 3.6× 10−5 1/10

Ð Ð Ð buoni 7.6× 10−11 1/10

Ð Ð Ð ( 1.6× 10−4 1/10

25

Yes 9.3× 10−1 10/10 No 8.6× 10−1 10/10

Yes 8.5× 10−3 9/10 no 6.1× 10−3 8/10

YES 2.5× 10−3 8/10 No 8.8× 10−4 8/10

yes 2.3× 10−3 2/10 no 6.7× 10−5 2/10

yes 7.7× 10−3 1/10 balenciaga 1.9× 10−22 1/10

Ð Ð Ð babi −1.4× 10−29 1/10

100

Yes 7.1× 10−1 10/10 no 1.5× 10−2 10/10

Yes 1.9× 10−1 10/10 No 8.4× 10−1 10/10

yes 3.4× 10−2 10/10 No 5.6× 10−3 8/10

Ð Ð Ð no 3.6× 10−3 2/10

Table 5: For the experiments of Table 1 with the Gemma-2B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.
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Llama-3-8B (DPO)

Training Step
y+ = Yes & y− = No y+ = Sure & y− = Yes

Token Probability Increase Count Token Probability Increase Count

5

Yes 5.3× 10−1 10/10 Sure 7.9× 10−1 4/5

Yes 7.5× 10−5 9/10 ºN 9.0× 10−3 3/5

yes 1.7× 10−5 6/10 N 1.8× 10−2 2/5

yes 2.9× 10−3 4/10 º 2.2× 10−2 1/5

ºYes 8.1× 10−5 1/10 No 1.1× 10−1 1/5

Ð Ð Ð Maybe 2.3× 10−1 1/5

Ð Ð Ð Never 1.5× 10−1 1/5

Ð Ð Ð Perhaps 3.4× 10−1 1/5

Ð Ð Ð Pretty 1.2× 10−5 1/5

25

yes 1.3× 10−1 10/10 Sure 8.5× 10−1 5/5

yes 2.1× 10−1 10/10 sure 1.0× 10−2 4/5

Yes 2.4× 10−1 7/10 SURE 7.1× 10−4 2/5

Yes 4.2× 10−2 3/10 º 6.8× 10−3 1/5

Ð Ð Ð Sure 1.4× 10−4 1/5

Ð Ð Ð Sur 4.1× 10−3 1/5

Ð Ð Ð Arkhiv −1.3× 10−16 1/5

100

Yes 2.2× 10−2 10/10 Sure 8.6× 10−1 5/5

yes 2.6× 10−1 10/10 sure 1.3× 10−2 4/5

yes 6.9× 10−1 10/10 surely 5.8× 10−5 2/5

Ð Ð Ð Sure 1.6× 10−4 2/5

Ð Ð Ð Surely 2.4× 10−5 1/5

Ð Ð Ð Arkhiv −1.3× 10−16 1/5

Table 6: For the experiments of Table 1 with the Llama-3-8B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.

OLMo-1B (DPO on base model)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 9.8× 10−1 9/9 No 5.3× 10−3 10/10

Yes 1.1× 10−3 6/9 No 9.8× 10−1 10/10

YES 4.0× 10−3 5/9 NO 2.0× 10−3 9/10

yes 3.4× 10−3 4/9 no 1.6× 10−5 1/10

yes 6.1× 10−4 3/9 Ð Ð Ð

25

Yes 9.8× 10−1 9/9 No 3.3× 10−2 10/10

yes 7.0× 10−3 9/9 No 9.6× 10−1 10/10

Yes 4.3× 10−3 9/9 no 4.3× 10−5 8/10

Ð Ð Ð no 5.6× 10−5 2/10

100

Yes 9.3× 10−1 9/9 No 1.3× 10−1 10/10

yes 4.0× 10−2 9/9 No 8.6× 10−1 10/10

Yes 2.1× 10−2 9/9 no 2.2× 10−4 7/10

Ð Ð Ð no 1.1× 10−4 3/10

Table 7: For the experiments of Table 2 with the OLMo-1B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.

36



Published as a conference paper at ICLR 2025

Gemma-2B (DPO on base model)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 8.9× 10−1 7/9 No 2.9× 10−1 8/10

YES 7.9× 10−2 7/9 Yes 4.0× 10−1 7/10

Something 3.3× 10−1 4/9 no 3.7× 10−1 4/10

yes 9.5× 10−3 3/9 yes 6.6× 10−2 3/10

something 2.3× 10−1 3/9 or 1.0× 10−1 2/10

something 3.4× 10−4 1/9 NO 2.3× 10−2 2/10

territo 3.0× 10−13 1/9 $

9.9× 10−2 1/10

paradigma 2.5× 10−16 1/9 Or 1.2× 10−1 1/10

Ð Ð Ð Would 2.2× 10−2 1/10

Ð Ð Ð Si 5.1× 10−2 1/10

25

Yes 8.9× 10−1 9/9 No 9.4× 10−1 10/10

yes 1.0× 10−1 7/9 no 7.3× 10−2 7/10

yes 2.6× 10−3 6/9 lele −5.0× 10−24 4/10

YES 1.6× 10−2 3/9 babi −3.9× 10−24 3/10

Yes 2.6× 10−2 1/9 perez −1.9× 10−23 2/10

babi −9.6× 10−24 1/9 puto −9.6× 10−24 2/10

Ð Ð Ð NO 2.0× 10−4 1/10

Ð Ð Ð nuoc −3.4× 10−26 1/10

100

Yes 4.6× 10−1 9/9 No 9.5× 10−1 10/10

yes 2.4× 10−1 9/9 no 7.0× 10−2 7/10

yes 2.4× 10−1 8/9 no 5.4× 10−7 3/10

Yes 5.5× 10−1 1/9 babi −3.9× 10−24 3/10

Ð Ð Ð lele −6.4× 10−24 3/10

Ð Ð Ð nuoc −3.2× 10−24 2/10

Ð Ð Ð perez −2.1× 10−23 1/10

Ð Ð Ð puto −1.3× 10−23 1/10

Table 8: For the experiments of Table 2 with the Gemma-2B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.
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Llama-3-8B (DPO on base model)

Training Step
y+ = Yes & y− = No y+ = Sure & y− = Yes

Token Probability Increase Count Token Probability Increase Count

5

Yes 6.4× 10−1 7/7 Sure 8.8× 10−1 5/5

yes 3.5× 10−2 6/7 sure 6.0× 10−4 4/5

ºYes 2.0× 10−1 5/7 Sure 9.2× 10−6 3/5

YES 1.8× 10−2 2/7 ºI 2.4× 10−1 1/5

Is 2.7× 10−2 1/7 ºIf 5.0× 10−2 1/5

Ð Ð Ð Lik 5.2× 10−5 1/5

25

Yes 4.7× 10−1 7/7 certain 9.3× 10−1 5/5

yes 4.3× 10−1 7/7 Certain 5.9× 10−2 5/5

yes 7.2× 10−2 5/7 Certain 7.4× 10−3 5/5

Yes 4.4× 10−2 2/7 Ð Ð Ð

100

yes 5.8× 10−1 7/7 sure 5.1× 10−3 5/5

yes 2.7× 10−1 7/7 Sure 9.9× 10−1 5/5

Yes 1.2× 10−1 5/7 sure 8.8× 10−4 2/5

Yes 1.0× 10−1 2/7 certain 3.9× 10−3 2/5

Ð Ð Ð Sure 1.1× 10−4 1/5

Table 9: For the experiments of Table 2 with the Llama-3-8B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.

OLMo-1B (IPO)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 3.7× 10−2 9/10 No 1.3× 10−1 10/10

Yeah 1.3× 10−2 9/10 Yes 5.1× 10−2 9/10

Certainly 4.1× 10−2 9/10 Absolutely 4.3× 10−2 6/10

Indeed 9.2× 10−3 3/10 Sure 3.9× 10−2 5/10

25

Yes 2.6× 10−1 10/10 Yes 5.0× 10−1 10/10

Yeah 2.9× 10−2 7/10 No 1.5× 10−1 9/10

Sure 1.1× 10−1 4/10 Yes 1.5× 10−2 6/10

Certainly 6.0× 10−2 4/10 No 2.0× 10−2 3/10

Indeed 1.3× 10−2 3/10 Yeah 1.1× 10−2 2/10

Yes 3.3× 10−3 1/10 Ð Ð Ð

Sure 1.7× 10−3 1/10 Ð Ð Ð

100

Yes 7.9× 10−1 10/10 no 9.4× 10−1 10/10

yes 2.7× 10−2 10/10 No 6.0× 10−2 10/10

Yes 9.6× 10−2 10/10 homepage −1.1× 10−15 5/10

Ð Ð Ð coronal −1.4× 10−15 3/10

Ð Ð Ð yes 4.9× 10−8 1/10

Ð Ð Ð NO 5.6× 10−6 1/10

Table 10: For the experiments of Table 3 with the OLMo-1B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.
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Gemma-2B (IPO)

Training Step
y+ = Yes & y− = No y+ = No & y− = Never

Token Probability Increase Count Token Probability Increase Count

5

Yes 7.2× 10−2 10/10 No 1.2× 10−1 10/10

Yeah 1.3× 10−1 10/10 Yeah 3.2× 10−2 8/10

Perhaps 8.1× 10−3 3/10 Sure 2.1× 10−2 7/10

Sure 2.4× 10−2 2/10 Maybe 3.5× 10−2 2/10

Absolutely 3.3× 10−2 2/10 no 3.0× 10−4 1/10

YES 3.4× 10−5 1/10 maybe 3.3× 10−3 1/10

Yep 7.8× 10−4 1/10 Possibly 6.5× 10−3 1/10

Something 5.9× 10−4 1/10 Ð Ð Ð

25

Yes 4.4× 10−1 10/10 No 5.3× 10−1 9/10

Yeah 3.1× 10−1 10/10 no 1.8× 10−3 6/10

YES 2.9× 10−3 3/10 Yeah 4.5× 10−1 6/10

yeah 1.1× 10−3 3/10 No 1.3× 10−4 3/10

Yep 5.0× 10−3 2/10 Said 7.8× 10−6 2/10

Oui 3.4× 10−4 2/10 Yes 8.9× 10−2 1/10

Ð Ð Ð Yeah 2.2× 10−7 1/10

Ð Ð Ð Say 1.7× 10−4 1/10

Ð Ð Ð DirPath 9.0× 10−7 1/10

100

Yes 9.1× 10−1 10/10 no 8.3× 10−3 10/10

yes 5.2× 10−3 8/10 No 8.5× 10−1 10/10

YES 4.0× 10−3 8/10 No 2.7× 10−4 10/10

Yes 1.4× 10−3 3/10 Ð Ð Ð

yes 7.1× 10−6 1/10 Ð Ð Ð

Table 11: For the experiments of Table 3 with the Gemma-2B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.
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Llama-3-8B (IPO)

Training Step
y+ = Yes & y− = No y+ = Sure & y− = Yes

Token Probability Increase Count Token Probability Increase Count

5

Yes 1.8× 10−1 10/10 Yeah 7.0× 10−2 7/7

ºYes 7.1× 10−4 10/10 Sure 3.2× 10−1 7/7

yes 1.0× 10−3 9/10 Maybe 2.1× 10−3 4/7

Def 7.0× 10−4 1/10 Certainly 7.7× 10−3 3/7

25

Yes 5.0× 10−1 10/10 Sure 6.9× 10−1 7/7

yes 4.8× 10−3 10/10 Maybe 2.9× 10−2 5/7

ºYes 4.3× 10−3 5/10 Perhaps 1.1× 10−2 4/7

Yes 7.2× 10−5 4/10 Y 7.0× 10−2 2/7

YES 2.6× 10−3 1/10 º 6.5× 10−3 1/7

Ð Ð Ð E 4.1× 10−2 1/7

Ð Ð Ð Never 5.5× 10−3 1/7

100

Yes 4.8× 10−1 10/10 sure 6.8× 10−3 7/7

yes 2.1× 10−2 10/10 Sure 8.8× 10−1 7/7

Yes 1.3× 10−2 5/10 Surely 4.8× 10−5 3/7

yes 2.4× 10−2 5/10 Sure 7.8× 10−5 2/7

Ð Ð Ð surely 5.1× 10−5 1/7

Ð Ð Ð Sur 9.8× 10−5 1/7

Table 12: For the experiments of Table 3 with the Llama-3-8B model, included are all tokens from the top three
tokens increasing most in probability until training steps 5, 25, and 100, across runs varying in the prompt used
for training. We carried out ten runs and discarded those in which the loss increased at some training step, to
ensure that likelihood displacement did not occur due to instability of optimization. We further report the mean
probability increase and the number of runs in which the token was in the top three at a given time step.

Model y+ y−
∥

∥projW
y+

(

Wy+ −Wy−

)
∥

∥

∥

∥projW⊥
y+

(

Wy+ −Wy−

)
∥

∥

OLMo-1B
Yes No 1.53 2.01

No Never 1.62 2.26

Gemma-2B
Yes No 0.94 2.57

No Never 0.16 3.14

Llama-3-8B
Yes No 0.49 0.71

Sure Yes 0.67 0.71

Table 13: For each model and pair of preferred and dispreferred tokens (y+,y−) from Table 1, we report
the norm of the projection of Wy+ − Wy− onto Wy+ (second from right column), and the norm of the
component of Wy+ −Wy− orthogonal to Wy+ (rightmost column). The norm of the orthogonal component
is larger across the different models and preference pairs, in accordance with our theoretical explanation of why
likelihood displacement can be catastrophic in the case of single token responses (Section 4).
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Model Prompt Preferred Response Dispreferred Response

OLMo-1B create a six week preseason
workout routine

Here is a six week preseason workout
routine that can help improve overall fit-
ness and prepare for the upcoming soc-
cer season:\n\nWeek 1-3:\n\n* 3 days
per week: Resistance training, focusing on
core, legs, and upper body strength. Exer-
cises such as squats, deadlifts, bench press,
and pull-ups can be included.\n* 2 days
per week: High intensity interval training
(HIIT) or agility drills to improve cardio-
vascular fitness and quick changes of direc-
tion. Examples of HIIT include sprinting,
jumping lunges, and burpees.\n* 1 day per
week: Rest day\n\nWeek 4-6:\n\n* 3
days per week: Soccer specific drills such
as passing, shooting, and dribbling to im-
prove technical skills... (255 tokens

overall)

Here is a six week preseason workout rou-
tine:\n\nWeek 1:\nDay 1: Warm-up - 5-
10 minutes\n- Dynamic Stretching: Walk-
ing Lunges, High Knees, Butt Kicks, Arm
Curls\n- Strength Training: 3-4 Rounds
of: \n - Push-Ups (Modify as needed)\n
- Squats (Modify as needed)\n - Lunges
(Modify as needed)\nDay 2: \n- Warm-
up: 5-10 minutes\n- Dynamic Stretching:
Windshield Wipers, Mountain Climbers,
Jumping Jacks, High Knees\n- Cardio: 20-
30 minutes of your preferred cardio (run-
ning, biking, swimming, etc.)\n- Strength
Training: 3-4 Rounds of: \n - Pull-Ups
(Modify as needed)\n - Deadlifts (Mod-
ify as needed)\n - Bench Press (Modify
as needed)\nDay 3: Rest Day\nDay 4:\n-
Warm-up: 5-10 minutes... (786 tokens

overall)

Gemma-2B Make a tutorial for how to
create a messy fishtail braid.

Sure, I can guide you through the process
of creating a messy fishtail braid.\n\nStep
1: Start with clean, dry hair. Brush through
any tangles and slick your hair with your
desired styling product.\n\nStep 2: Di-
vide your hair into two equal sections. If
you have a lot of hair, you can use hair
ties to secure each half in place.\n\nStep
3: Begin braiding by taking a small sec-
tion of hair from the outside of the right
section and cross it over to join the left
section.\n\nStep 4: Repeat step 3, this
time taking a small section of hair from the
outside of the left section and crossing it
over to join the right section.\n\nStep 5:
Continue braiding in this alternating pat-
tern, crossing small sections of hair over
from the outside of each section... (268

tokens overall)

Creating a Messy Fishtail Braid: A
Step-by-Step Tutorial\n\nA messy fishtail
braid is a fun and chic hairstyle that works
well for casual outings or special occa-
sions. It is an effortless and relatively sim-
ple braiding technique that gives off an ele-
gant yet bohemian vibe. Follow these steps
for a stunning messy fishtail braid:\n\n1.
Prep your hair: For the best texture, it’s
a good idea to work with day-old hair or
use some dry shampoo to create a slightly
messy texture. Brush your hair to remove
any tangles.\n\n2. Create a side part: If
you want a side-swept fishtail braid, cre-
ate a side part. You can also choose a
center part for a slightly more symmetrical
look.\n\n3. Divide your hair: Gather your
hair together to one side, where you want
the braid to sit, and divide it into two equal
sections... (564 tokens overall)

Llama-3-8B Denver uses 7 pieces of
wood for each birdhouse and
he pays $1.50 for each piece
of wood. If he makes a $5.50
profit per birdhouse, how
much will Denver charge to
Danny for buying two bird-
houses? Let’s answer step by
step:

[Question] Denver uses 7 pieces of wood
for each birdhouse and he pays $1.50
for each piece of wood. If he makes a
$5.50 profit per birdhouse, how much will
Denver charge to Danny for buying two
birdhouses?\nLet’s break it down step by
step:\n1. Denver uses 7 pieces of wood for
each birdhouse, so if he is making two bird-
houses, he will use 14 pieces of wood in to-
tal (7 x 2 = 14).\nConfidence: 80%\n\n2.
Denver pays $1.50 for each piece of wood,
so the total cost of the wood for both bird-
houses is $14 x $1.50 = $21.\n\n3. Den-
ver makes a $5.50 profit per birdhouse,
so the total profit from both birdhouses is
$5.50 x 2 = $11.\n\n4. Therefore, Denver
will charge Danny $21 + $11 = $32 for buy-
ing two birdhouses.\n\nConfidence: 80%
(210 tokens overall)

Denver uses 7 pieces of wood for each bird-
house and he pays $1.50 for each piece
of wood. \nTo find out how much Den-
ver will charge Danny for buying two
birdhouses, we can set up a proportion:
\nNumber of pieces of wood for two bird-
houses / Cost per piece of wood for one
birdhouse = Cost of two birdhouses / Cost
of one birdhouse \nAccording to the prob-
lem, Denver makes a $5.50 profit per bird-
house. We can set up another proportion
to find out how much profit he makes per
birdhouse: \nProfit per birdhouse = Cost
of one birdhouse + Profit per piece of wood
\nLetÂs assume that the cost of one bird-
house is $5.50. Then we can set up another
proportion: \nProfit per piece of wood =
Profit per birdhouse / Cost of one birdhouse
\nNow we have two proportions with two
variables each. We can use algebra to solve
for the unknowns. \nLetÂs call the cost
of two birdhouses ºxº... (425 tokens

overall)

Table 14: Preference samples with a high CHES score (Definition 2) from the UltraFeedback dataset for the
OLMo-1B, Gemma-2B, and Llama-3-8B models. Included are representatives from samples with a CHES
score in the top ten. A noticeable trait is that, in samples with a high CHES score, the dispreferred response
tends to be longer compared to the preferred response.
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Model Prompt Preferred Response Dispreferred Response

OLMo-1B Design an airplane seating
chart.

To design an airplane seating chart, I’ll
need to know the specific aircraft model,
as different airplanes have different layouts
and capacities. Nevertheless, I can provide
you with a general template for designing
a seating chart for a typical commercial
airplane. \n\nI will consider a narrow-
body aircraft (like a Boeing 737 or Airbus
A320) with a typical two-class configura-
tion (Economy and Business class).\n\n1.
Business Class:\n- Seats are usually ar-
ranged in a 2-2 configuration (2 seats on
each side of the aisle).\n- Depending on
the aircraft, there might be 2 to 4 rows.\n-
Label the rows as Row 1 to Row 4.\n- La-
bel the seats using letters with code A, B
for the left side and code C, D for the right
side... (483 tokens overall)

This seating chart shows a typical layout
for a single-aisle plane, including one econ-
omy class section and one business class
section. The economy class section is ar-
ranged in a 3-4 configuration, with one
aisle down the middle and two seats on ei-
ther side. The business class section has
a 2-2 configuration, with two seats on ei-
ther side of the aisle. All seats come with
ample legroom and reclineable seats, pro-
viding maximum comfort during the flight.
(93 tokens overall)

Gemma-2B Develop a tutorial for cre-
ating a DIY home decor
project.

Title: DIY Home Decor: Create a
Stunning Paper Flower Wall Hang-
ing\n\nIntroduction\nAdd a touch of
charm to your home decor with an eye-
catching paper flower wall hanging. In this
tutorial, we’ll walk you through the process
of creating a beautiful and customizable
paper flower masterpiece. \n\nMaterials
needed:\n1. Colorful cardstock or thick
paper (various colors)\n2. Scissors
\n3. A pencil\n4. Hot glue gun & glue
sticks\n5. Circular object or compass (for
tracing circles)\n6. Ribbon or twine (to
hang)\n7. Optional: Decorative branches
or additional embellishments\n\nStep 1:
Prepare... (645 tokens overall)

Sure, I’d love to help! What kind of DIY
project are you interested in making? (21

tokens overall)

Llama-3-8B Write instructions for mak-
ing a crab bisque.

Here are step-by-step instructions on how
to make a creamy crab bisque:\n\nPrep
time: 15 minutes\nCook time:
20 minutes\nTotal time: 35 min-
utes\n\nINGREDIENTS\n1/2 pound
lump crab meat\n1 yellow onion,
chopped\n2 stalks celery, chopped\n2
cloves garlic, minced\n2 tablespoons
unsalted butter\n1/2 cup dry white
wine\n1 cup heavy cream\n1 cup chicken
broth\n1/2 teaspoon dried thyme\n1 bay
leaf \n1/2 teaspoon paprika\nSalt and
freshly cracked black pepper, to taste\n1
cup milk\n1/3 cup cream cheese\n1/4 cup
chopped fresh parsley\n1/4 cup chopped
fresh chives\n1/4 cup crushed crackers
(such as Ritz or Club)... (508 tokens

overall)

[Instructions for making a crab
bisque]\n\nConfidence: 85% (16

tokens overall)

Table 15: Preference samples with a low CHES score (Definition 2) from the UltraFeedback dataset for the
OLMo-1B, Gemma-2B, and Llama-3-8B models. Included are representatives from samples with a CHES
score in the bottom ten. A noticeable trait is that, in samples with a low CHES score, the preferred response
tends to be longer compared to the dispreferred response.

Change in Preferred Response Log Probability

Gemma-2B-IT Llama-3-8B-Instruct

DPO −59.2 ± 5.3 −48.1 ± 22.1

DPO + SFT +20.2 ± 2.4 +28.6 ± 0.3

DPO (gold) +54.6 ± 3.2 +24.9 ± 3.0

DPO (filtered) −45.7 ± 2.5 −27.7 ± 2.7

Table 16: For the experiments of Figure 3, included
is the mean change in preferred response log proba-
bility over the training sets. We report values aver-
aged over three runs along with the standard devia-
tion. See caption of Figure 3 for further details.

Change in Preferred Response Log Probability

Gemma-2B-IT Llama-3-8B-Instruct

IPO -73.4 ± 11.5 -65.9 ± 18.5

IPO + SFT +10.1 ± 3.7 +20.3 ± 3.1

IPO (gold) +27.4 ± 6.6 +26.2 ± 3.5

IPO (filtered) -45.9 ± 1.1 -29.2 ± 3.1

Table 17: For the experiments of Figure 8, included is
the mean change in preferred response log probabil-
ity over the training sets. We report values averaged
over three runs along with the standard deviation. See
caption of Figure 8 for further details.
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