
An Adaptive Plug-and-Play (PnP) Interactive
Platform for An E-Voting Based Cybersecurity

Curricula

Muwei Zheng1[0000−0001−5613−8736], Nathan Swearingen2[0000−0001−5106−4088],
William Silva3[0009−0001−6221−6128], Matt Bishop1[0000−0002−7301−7060], and

Xukai Zou2[0000−0001−5762−8876]

1 University of California - Davis, CA, 95616, USA
2 Indiana University Purdue University Indianapolis, IN, 46202, USA

3 University of Connecticut, CT, 06269,USA

Abstract. An electronic voting (e-voting) based interactive cybersecu-
rity education curriculum has been proposed recently. It is well-known
that assignments and projects are coherent parts of and important for
any curriculum. This paper proposes a set of course projects, assign-
ment design, and a coherent online plug-and-play (PnP) platform imple-
mentation. The PnP platform and the proposed exemplary assignments
and projects, are systematic (derived from the same system), adaptive
(smoothly increasing difficulty), flexible (bound to protocols instead of
implementations), and interactive (teacher-student and student-student
interactions). They allow students to implement parts of the compo-
nents of this e-voting system, which they can then plug into the PnP
system, to run, test and modify their implementations, and to enhance
their knowledge and skills on cryptography, cybersecurity, and software
engineering.

Keywords: Cybersecurity Education · Electronic Voting (E-Voting) ·
Interactive Teaching and Learning.

1 Introduction

Electronic voting (e-voting) technology has been an effective tool for cyber-
security education [6, 3, 11, 10, 4, 2] and recently, an e-voting based interactive
cybersecurity education curriculum has been proposed [5, 13].

Interactive teaching and learning is advantageous, and interactions among
students, instructors and inter-relations among course contents, projects, and
assignments are an important part of enhancing students’ learning outcomes [7,
8].

In this paper, we propose an interactive course project design, assignment de-
sign, and implementation methodology of a plug-and-play online voting platform.
Such a PnP platform, plus the proposed exemplary assignments and projects, is
systematic, adaptive, flexible, and allow students to implement parts of the com-
ponents of this e-voting system, which they can then plug into the PnP system,

2 M. Zheng et al.

to run, test and modify their implementations, and to enhance their knowledge
of cryptography, cybersecurity, networking, and the architectures of client/server
distributed or peer-to-peer systems, as well as skills of protocol designs, internet
programming, system implementation and integration.

Contribution and Related Work - To our knowledge, this is the first published
set of coding projects dedicating on E-voting education. However, the field of E-
voting may be too specific. But we also couldn’t find many publications of coding
projects dedicating on cybersecurity. There are many educational guidelines,
like CSEC 2017 [1], but they don’t provide matching coding projects. We hope
our work fill this gap, and encourage teachers and professionals to share more
cybersecurity coding projects with the community.

The paper is organized as follows. Section 1.1 introduces the mathematical
background of the online voting protocol used by the PnP project; section 2
presents the e-voting system, and section 3 discusses the PnP platform. Section
4 describes the assignments, section 5 relates this to the CSEC 2017 cybersecurity
guidelines, and the last section concludes the paper.

1.1 Overview of the e-voting protocol for interactive teaching and
learning

As introduced in the last section, the authors in papers [15, 14] proposed a novel
e-voting protocol involving multiple equivalent tallying servers and voting clients.
To facilitate readers reading and understanding our work, and to make the con-
tents of this paper self-contained and complete, we summarize the protocol here.
For its technical details, please see papers [15, 14].
Assumptions: There are n >= 3 voters V1, . . . , Vn and m >= 2 candidates
c1, . . . , cm running for office. Let L = nm. Two or more “tallying authorities”
check the validity of each vote and ballot and count the votes. For simplicity,
we assume two tallying authorities here, denoted as C1 and C2. These tallying
authorities have conflicting interests, such as representing different candidates
or political parties. So they will not share information with each other but will
cooperate to perform some tasks when dictated by the protocol. This matches
how observers in current election processes work. The tallying authorities are
called “collectors” too.
Cryptographic primitives and cryptosystems The first building block is a
simplified (n, n) secret sharing scheme [12] (denoted as S (n, n) SS). A secret s
is split into n shares si (1 ≤ i ≤ n) with s =

∑n
i=1 si, over the group ZM , where

M ≥ 2L+1. Each member receives one share. All n members need to pool their
shares together to recover s. The scheme is additively homomorphic [12]; the
sum of two shares si + s′i (corresponding to s and s′, respectively) is a share of
the secret s+s′. The other is an efficient secure two party multiplication (STPM)
protocol [9]. Initially, each authority Ci (i = 1, 2) holds a private input xi. At
the end, each Ci gets a (random) private output ri, such that x1 ×x2 = r1 + r2.

Other cryptographic principles and systems include the Discrete Logarithm
Problem (DLP), RSA, and the Paillier public key cryptosystems.

Interactive Platform for E-Voting Based Cybersecurity Curricula 3

The (mutual-restraining e-voting protocol (MR-EV) [15, 14] consists of the
following three technical designs.

TD1: Universal viewable and verifiable voting vector. For n voters and
m candidates, a voting vector vi for Vi is a binary vector of L = n×m bits. The
vector can be visualized as a table with n rows and m columns. Each candidate
corresponds to a column. Via a robust location anonymization scheme at the end
of registration, each voter secretly picks a unique row which no one else including
tallying authorities knows. A voter Vi will put a 1 in the entry at his/her row
and the column corresponding to a candidate he/she votes for (let the position
be Li

c), and put 0 in all other entries. During tallying, all voting vectors will be
aggregated and the final tallied voting vector is public and viewable to anyone.
From the tallied voting vector (denoted as VA), the votes for candidates are all
viewable one by one and can be incrementally tallied by anyone. Any voter can
check his vote and also visually verify that his vote is indeed counted in the final
tally. Furthermore, anyone can verify the vote totals for each candidate.

TD2: Forward and backward mutual lock voting. From their voting vector
(with a single entry of 1 and the rest of 0es), voter Vi can derive a forward value

vi (=2L−Li
c) and a backward value v′i (=2L

i
c−1). These two values are his/her

vote. Importantly, vi×v′i = 2L−1, regardless which candidate Vi votes for. During
the vote-casting, Vi uses the simplified (n, n)-SS scheme twice to cast their vote
using both vi and v′i respectively. vi and v′i jointly ensure the correctness of the
vote-casting process, and will be used by collectors to enforce Vi to cast one and
only one vote; any deviation, such as multiple voting, will be detected. Denote
his/her own share of his/her vote vi as sii and similarly, s′ii for v

′
i. His/her ballot

will be (pi, p
′
i) where pi is the sum of sii and the sum of n − 1 shares of n − 1

votes of the other n − 1 voters, one per voter. Similarly, for p′i. Rather than
casting their vote (vi,v

′
i), Vi casts their ballot (pi,p

′
i).

To avoid the interactions or communications among voters (which of course
is not practical at all), any voter only contacts collectors. Collectors generate
and send n − 1 random shares to the voter and the voter computes their share
by subtracting the sum of the n− 1 shares from their vote vi (similarly for v′i).

To prevent a collector from having all n− 1 shares for a voter, each collector
creates half of the n− 1 shares.

This e-voting model deliberately distinguishes between a private vote and a
secret ballot. Voter’s votes are known only to themselves. But its corresponding
ballot, even though it is called a secret ballot, is revealed to the public in the
vote-casting.

TD3: In-process check and enforcement. During the voting processes, col-
lectors will jointly perform two cryptographic checks on the voting values of each
voter (See Sub-Protocol 1 and Sub-Protocol 2 in [14]). The first check uses STPM
to prevent a voter from incorrectly generating their share (sii,s

′
ii) of their vote

(vi,v
′
i). The second check prevents a voter from publishing an incorrect ballot

(pi,p
′
i). The ballot is the modular addition of a voter’s own share and the share

summations that the voter received from other voters (in fact, from collectors).

4 M. Zheng et al.

Voter “Secret” Ballot Aggregation

V2 52 52
V1 -5 47
V4 -7 40
V3 62 102

1. Dynamic and incremental aggregation of “secret” ballots by anyone when
 they are being cast in real time. “secret” ballots are in fact public.
2. Any of partial sums 52, 47 and 40 has no information about (any) votes.
3. The last aggregation 102 (=40+62=32+4+2+64) exposes all votes and it is
 the final tallied voting vector VA . Voters can verify their votes visually.

 Real-Time Public Bulletin Board (only append-able and all including ballots are public and viewable)

 Incremental aggregation Incremental tallying

 VA Vote R count B count

0

1

1

2

1

1

2

2

R

B

R

B

0
1
1
0
0
1
1
0

Voter
Vi

Secret
location

Li

Secret
vote

vi

Secret random shares of C1 and C2
For V1: 5: received from C1; 15: from C2;

x1,i x2,i

“Secret” ballot – published, so they are in fact public
For V1: 5: received from C1; 15: from C2; 52:

computed as 32+5+15 by voter herself

V1 2 B (32) 5, 15 52 (=32+5+15)

V2 3 R (4) 1, -10 -5 (=4+1+(-10))

V3 4 B (2) -20, 11 -7 (=2+(-20)+11))

V4 1 R (64) 14, -16 62 (=64+14+(-16))

 A voting example involving 4 voters and 2 candidates: R & B (numbers in red are kept secret)
 Numbers with red or black underline are computed by voters, with blue double line generated by collector C1, and with green wavy line by collector C2

Fig. 1. Bulletin Board (top section) and its corresponding example (bottom)
(Modified and combined from Fig. 2 and Table 3 in [14])

2 E-voting system

To save space, the exact network packet design for each step during communi-
cation is attached in the Appendix (Section 8).

The protocol involves three-way communications among the administrator,
collectors, and voters. The whole process is divided into 4 parts: Initialization,
Registration, Voting, and Publishing Result.

Initialization – To create an election, an administrator first appoints two col-
lectors. The administrator contacts each desired collector, and each collector
responds to the administrator with their decision. The administrator can then
check whether the desired collectors have accepted or rejected the request.

Once the administrator has chosen two collectors, the administrator sends
election metadata (including information about the collectors) to each collector.
This includes information enabling a collector to connect to the other collector.

Registration – The voter must prove their right to vote to the administrator
before registering. How this is done is out of scope of this protocol. Once the
voter is authorized to vote, they are given an ID and they give the administrator
a public key. Both are just for this election.

The voter now connects to the administrator and registers, asking for each
collector’s host, port, and public key, and a list of the candidates.

Once all voters have registered (e.g. the registration period ends), the ad-
ministrator sends the list of registered voters to each collector.

Interactive Platform for E-Voting Based Cybersecurity Curricula 5

Voting – Each voter must obtain shares from each collector, then creates their
ballots and commitments. They send these to both collectors. There are two
sub-protocols used by collectors to communicate with each to perform secure
two-party multiplication (STPM) to increment the votes, which is described in
detail in the Appendix.

Publishing Result – As the collectors receive and verify ballots from the voters,
they send them to the administrator. As the administrator receives ballots from
the collectors, they sum them and publish them on the web-based bulletin board.
No information about the vote totals is visible until all ballots are received.

3 The Adaptive Interactive Plug-and-Play Platform

Our project comes with an advanced online e-voting platform for students, which
serves as a testbed and example. The platform is equipped with a ready-to-use
e-voting system students can use to gain an understanding of how the platform
works. The system consists of one administrator, two collectors, and a minimum
of three voters.

Students who wish to use the platform create fictitious candidate names and
begin the election. The election process will automatically run, and all the phases
of the election will be printed out. This provides a comprehensive overview of how
the system operates and what is expected from student implementations. Ad-
ditionally, the platform can be used to test the students’ own implementations.
They can replace either the collector or the voter with their own implementations
and connect them to the platform to verify that they are working correctly.

The unique flexibility of the platform is the key feature of this set of projects.
Students can freely connect their collector or voter or both to the platform, and
collectors and voters can come from different students. This feature makes our
platform a plug-and-play e-voting system, where students can easily experiment
with their own implementations and see if they work seamlessly with the plat-
form.

Figure 2 shows an exemplary plug-and-play testing platform interface. With
this interface, a student can set their test candidates, number of collectors (at
least 2), number of voters (at least 3) and fill in their implementations of the
collectors and voters. Whatever the remaining collectors (if any) or voters (if
any) need will be automatically provided by the platform using the default im-
plementation. If students do not provide anything, they can still run the system
using the default implementations of collectors and voters.

6 M. Zheng et al.

Fig. 2. An exemplary plug-and-play testing platform interface

The online platform and java source code needed for assignments are available
on the web.4

4 The Assignments

In conjunction with the online platform that we have introduced, we have de-
signed four engaging assignments for students to complete. While our system is
written in Java and we will be using Java to demonstrate ideas in the assign-
ment descriptions, students are not restricted to any particular programming
language. The only requirement is that the protocol is implemented correctly to
ensure a successful outcome.

The project entails implementing an administrator-collector-voter trilateral
online voting system that serves as the backbone of the platform. Through the
completion of these assignments, students will gain hands-on experience in cryp-
tography, cybersecurity, and software engineering. This immersive approach al-
lows students to apply theoretical knowledge to real-world scenarios and encour-
ages active learning.

4.1 Assignment 1: Preliminary

In the first assignment, students will be introduced to the fundamental concepts
of cryptography and the communication protocol between servers and clients.

4 http://cs.iupui.edu/˜xzou/NSF-EVoting-Project

Interactive Platform for E-Voting Based Cybersecurity Curricula 7

Given that the e-voting process relies heavily on encryption techniques, students
will need to gain practical experience implementing various cryptographic algo-
rithms. These include hash computation, symmetric encryption, and asymmetric
encryption.

The implementation process will involve utilizing specific algorithms for each
technique, and students will be provided with the necessary references and guid-
ance, but not the existing library. Thus, they are asked to implement the al-
gorithms step by step. For hash computation, students will use the BLAKE2
algorithm. For symmetric encryption, the Salsa20 algorithm will be employed.
As for asymmetric encryption, students will implement both the RSA and Pail-
lier algorithms.

In addition to implementing cryptographic tools, students are required to
practice setting up a TCP server and client communication. It is important to
note that while TCP ensures the secure delivery of messages, it does not guar-
antee confidentiality or integrity. Therefore, students will also be required to
encrypt and decrypt messages using the cryptographic tools they have imple-
mented, and using private keys to sign their messages.

It is worth emphasizing that these two components of the assignment, imple-
menting cryptographic tools and setting up TCP server and client communica-
tion, form the foundational basis for all subsequent assignments. The techniques
that students will learn from this assignment will provide them with a solid
foundation in the field of secure network communication.

4.2 Assignment 2: Voter

In this assignment, students will implement a voter client that will enable autho-
rized voters to participate in an online election. It is important to note that the
scope of the project does not cover whether the user is authorized to vote; it is
assumed that any user attempting to vote is authorized. However, it is possible
for these valid users to make mistakes, which will be addressed in assignment 4.

In the e-voting protocol, a voter is essentially a client in the communication
process. It is also the easiest part of the communication system that includes
the administrator, collector, and voter to implement. The primary focus of this
project is to practice closely following a defined protocol (in this case, the e-
voting protocol), and to implement a systematic way of sending and receiving
encrypted messages according to the protocol, while also handling exceptions.

During an online e-voting session, there are five parts in a voter’s communi-
cation process: registering, obtaining a location, creating ballots, creating com-
mitments, and submitting votes. To register, voters will need RSA private and
public keys. They will then obtain shares from collectors, which are used to
protect the secrecy of their votes. Using the shares, they will compute ballots
and commitments, and send them to both collectors. The votes of the voters are
not revealed until all ballots are aggregated, at which point each vote becomes
anonymous.

To assist in the implementation process, a framework for a voter class and
other support classes will be provided. Students will be required to communicate

8 M. Zheng et al.

with the administrator and collector. At this point, the instructor will provide
both the administrator and collector, which will enable students to test their
implementations. Sample voters will also be provided, and while their source
codes are hidden, students will be able to observe their network behaviors.

By the end of this assignment, students will have accomplished two objec-
tives. The first objective is to gain a clear understanding of the step-by-step
processes involved in how voters operate in an E-voting protocol. This will help
them to grasp the intricacies of the system and the mechanisms that drive it.
The second objective is to equip students with the skills and experience to confi-
dently implement any networking communication protocol when necessary tools
are provided (such as cryptographic tools in this assignment).

4.3 Assignment 3: Collector

In this assignment, students will create and implement a collector, which differs
from the voter. Collectors are responsible for managing communications with
the administrator, the other collector, and voters. This requires collectors to
act both as servers and clients, making the implementation process considerably
more complex than the voter client from the previous assignment.

During an online election, collectors play an essential role in the communi-
cation process, which consists of six stages. These include accepting collection
requests, implementing location anonymization schemes, generating shares, com-
municating with voters, executing secure two-party multiplication, and forward-
ing verified ballots.

This assignment will allow students to expand and enhance their knowledge
and skills in implementing a network communication protocol and the usage of
cryptographic tools. Additionally, they will learn and practice secure multiparty
computation techniques, a valuable skill set in many cybersecurity fields.

As usual, a framework for the collector class and supporting classes will
be provided to the students. These classes will allow students to practice the
important concept of encapsulation by reusing previously implemented classes.
Additionally, the assignment includes an administrator and the other collector
for students to test their implementations.

By utilizing pre-existing classes, students will be able to gain a deeper un-
derstanding of how various software components can work together to create
complex systems. This will also provide an opportunity for students to hone
their skills in software design and implementation, as well as improve their abil-
ity to work with existing codebases.

4.4 Assignment 4: Administrator

In this upcoming project, students will be tasked with implementing the admin-
istrator class, which is the final component of the e-voting system consisting of
administrator-collector-voter. The administrator class has multiple jobs, includ-
ing creating an election, registering collectors and voters, distributing election

Interactive Platform for E-Voting Based Cybersecurity Curricula 9

and collector information, and publishing voting results. As both server and
client, the administrator class is responsible for communicating with collectors
and voters. It is to use the same cryptographic tools developed in previous as-
signments. Thus, students who have successfully completed previous assignments
should find the implementation of the administrator class relatively straightfor-
ward.

However, in this assignment, the focus will shift from simply testing the ac-
curacy of the implementation to assessing the reliability of the system. Unlike in
previous projects, where students only had to test their implementations with
legitimate votes to ensure the protocol was correctly followed, this project will
also examine how well the system handles malicious inputs, such as double vot-
ing. To address this, students will need to incorporate necessary input sanitation
and security measures in both the administrator and collector classes to mitigate
the effects of malicious inputs.

After completing these assignments, students should have a working 2-collector
online voting system of their own. While the e-voting platform does offer default
collectors and voters, students’ systems must be able to operate autonomously.
Furthermore, as all students will be implementing the same protocol, the voting
systems created by different students should be compatible with one another.
This means that administrators, collectors, and voters from various students’
projects should be able to seamlessly connect and conduct elections. The abil-
ity to interoperate is a crucial aspect of online voting systems (as well as many
other client/server models) and is a key requirement for the success of the final
project.

The four assignments have been designed to increase progressively in diffi-
culty, with each subsequent assignment building upon the skills learned in the
previous one while introducing new concepts.

From a software engineering standpoint, the first assignment serves as a gen-
tle introduction to coding, with each component working mostly independently.
In contrast, the second assignment requires a deeper understanding of class in-
teractions and emphasizes the importance of following a defined protocol closely.

The third assignment represents a significant step up in complexity, demand-
ing mastery of the three core skills from the previous two assignments: cryptog-
raphy, networking, and software engineering. Students will need to demonstrate
their ability to apply these skills in a more sophisticated manner, working with
more intricate systems.

Finally, the fourth and last assignment delves into the realm of secure cod-
ing and introduces the basics of attacks and defenses in e-voting systems. This
assignment will challenge students to apply their knowledge in a practical way,
creating secure and robust systems that can withstand a variety of potential
threats.

Each project results in a 2-collector online voting system. As an open invi-
tation, enthusiastic students are encouraged to further enhance this system and
create a more sophisticated N -collector online voting system.

10 M. Zheng et al.

This online voting system can be an invaluable resource for future research
into security, particularly in areas such as man-in-the-middle attacks, database
security for storing a large volume of ballots, and secure transmission and con-
nection.

5 Relevant Topics from Cybersecurity Guidelines

To assist instructors in gaining a better understanding of the project and making
informed decisions about its usefulness in their teaching, we analyzed the relevant
topics outlined in the CSEC 2017 guidelines (shown in Table 1) and the e-voting
curriculum learning objectives (shown in Table 2). The e-voting curriculum was
introduced in [5, 13]. Here, a brief overview of CSEC 2017 guidelines will be
given.

CSEC 2017 is a set of cybersecurity curricular guidelines developed by a
joint task force of the ACM, IEEE Computer Society, the AIS Special Interest
Group on Security, and the International Federation of Information Processing
Societies’ Working Group 11.8, dealing with computer security education. It
defines eight Knowledge Areas, each composed of different Knowledge Units
broken into topics. We found that the concepts covered by these topics and
learning objectives are either already addressed by the project or necessary to
understand and successfully execute the project.

This mapping enables instructors to determine the project’s alignment with
their classes’ requirements. This information will help instructors assess the suit-
ability of the project for their students and make informed decisions about in-
tegrating it into their teaching curriculum.

6 Conclusion

Our team has developed an innovative 2-collector online voting system that
utilizes advanced cryptographic tools and secure multi-party computation tech-
niques to ensure the security and integrity of online elections. The system is
designed with modular components that can be easily disassembled and reassem-
bled, making it an excellent tool for students to test and implement their own
online voting systems in a step-by-step manner. By providing students with
ample opportunities to practice their skills in cybersecurity and software en-
gineering, we believe they will be able to integrate their knowledge from the
classroom with real-world development.

We plan to incorporate this system into our future classes and have made it
publicly available in the hope that other educators and developers will also find
it useful. By sharing this resource, we hope to contribute to the ongoing efforts
to promote secure and transparent online elections globally.

Interactive Platform for E-Voting Based Cybersecurity Curricula 11

Knowledge Area Knowledge Units Topics

Data Security Cryptography Basic concepts, advanced concepts, math-
ematical background, symmetric ciphers,
asymmetric ciphers

Data Integrity and Au-
thentication

Authentication strength, data integrity

Data Privacy Overview

Software Security Fundamental Principals Least privilege, Fail-safe defaults, Separa-
tion, Economy of mechanism, Least aston-
ishment, Open design, Layering, Abstrac-
tion, Modularity, Design for iteration

Design Derivation of security requirements, speci-
fication of security requirements

Implementation Validating input and checking its represen-
tation, using APIs correctly, using secu-
rity features, handling exceptions and er-
rors properly, programming robustly, en-
capsulating structures and modules, taking
environment into account

Analysis and Testing Static and dynamic analysis, unit testing,
integration testing, software testing

Documentation User guides and manuals

Connection Secu-
rity

Distributed Systems Ar-
chitecture

The Internet, protocols and layering

Network Architecture General concepts, common architectures
Network Services Concept of a service, service models, ser-

vice protocol concepts, service virtualiza-
tion, vulnerabilities and example exploits

System Security System Thinking Security of special-purposes systems
Table 1. Relevant CSEC2017 Topics

7 Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under Grant Nos. DGE-2011117 and DGE-2011175. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foun-
dation.

References

1. ACM/IEEE-CS/AIS SIGSEC/IFIP WG 11.8 Joint Task Force. Cybersecurity
curricula 2017: Curriculum guidelines for undergraduate degree programs in cy-
bersecurity. Technical Report Version 1.0, ACM, New York, NY, USA, December
2017.

2. Matt Bishop and Deborah A. Frincke. Achieving learning objectives through e-
voting case studies. IEEE Security & Privacy, 5(1):53 – 56, 2007.

12 M. Zheng et al.

Module Learning Objectives

Introduction to E-Voting 0.2 Understand different parties involved in an E-Voting pro-
cess.
0.3 Understand law and policy requirements for E-Voting
systems.

Authentication 1.2 Describe how voters authenticate themselves.
1.4 Understand software security principles and practices of
robust, secure coding.

Confidentiality 2.1 Understand basic cryptography concepts.
2.2 Describe public key cryptography and algorithms.
2.3 Describe how public key cryptography is used in end-to-
end encryption protocols.

Data integrity and mes-
sage(sender) authentica-
tion

3.1 Understand different ways to generate and use hash func-
tions.

3.2 Describe techniques used to store protected data and to
verify or compute them without revealing sensitive informa-
tion.

Cryptographic Key Man-
agement

4.1 Describe common key exchange protocols.

4.3 Explain how secret keys are used in proofs of identity,
integrity protection mechanisms, and challenges in doing so.

Privacy and anonymity 5.2 Describe the procedures taken in elections to protect
voter privacy.
5.4 Explain techniques used to help voters verify their votes
being recorded correctly without being able to reveal those
votes.

Secure Group/Multi-
Party Interaction and
Secret Sharing

7.1 Describe schemes for multi-party secret sharing.

7.2 Describe how these schemes handle insider threats.
7.3 Explain how these schemes protect transmissions of
shares.

Secure Multi-Party Com-
putation and Homomor-
phic Encryption

8.1 Describe different schemes for secure multi-party compu-
tation.

8.3 Explain how voters can verify the correctness of the re-
sults of the election.

Attacks and defenses 9.4 Simulate different attacks targeting E-Voting systems.
Table 2. Relevant E-Voting Curriculum Learning Objectives

3. Q. I. Cutts and G. E. Kennedy. Connecting learning environments using electronic
voting systems. Australiasian Computing Education Conf., pages 181–186, 2005.

4. Alex J. Halderman. secure digital democracy.
https:www.coursera.orginstructorjhalderm, 2014.

5. Ryan Hosler, Xukai Zou, and Matt Bishop. E-voting technology inspired interac-
tive teaching and learning pedagogy and curriculum development for cybersecurity

Interactive Platform for E-Voting Based Cybersecurity Curricula 13

education. In IFIP World Conf. on Info. Sec. Edu. (WISE’14), pages 27–43, 2021.
6. G. E. Kennedy and Q. I. Cutts. The association between students’ use of an elec-

tronic voting system and their learning outcomes. Journal of Computer Assisted
Learning, 21(4):260 – 268, 2005.

7. D. A. Kolb. Experiential learning: Experience as the source of learning and devel-
opment. Englewood Cliffs, NJ, Prentice Hall, 1984.

8. D. Laurillard. Rethinking university teaching: a conversational framework for the
effective use of learning technology, 2nd edition. London, RoutledgeFarmer, 2002.

9. S. Samet and A. Miri. Privacy preserving ID3 using Gini index over horizontally
partitioned data. In Proc. of IEEE/ACS, AICCSA’08, pages 645–651, 2008.

10. Michael I. Shamos. Electronic voting. http:http:euro.ecom.cmu.eduprogramcoursestcr17-
803 , 2014.

11. Jeffrey R. Stowell and Jason M. Nelson. Benefits of electronic audience response
systems on student participation, learning, and emotion. Teaching of Psychology,
34(4):253–258, 2007.

12. X. Zhao, L. Li, G. Xue, and G. Silva. Efficient anonymous message submission. In
IEEE INFOCOM’12, volume 2012, pages 2228–2236, May 2012.

13. Muwei Zheng, Nathan Swearingen, Steven Mills, Croix Gyurek, Matt Bishop, and
Xukai Zou. Case study: Mapping an e-voting based curriculum to csec2017. In
Proc. of ACM SIGCSE TS 2023 (accepted, Best Paper Award), 2023.

14. X. Zou, H. Li, F. Li, W. Peng, and Y. Sui. Transparent, auditable, and stepwise
verifiable online e-voting enabling an open and fair election. Cryptography, MDPI,
1(2):1–29, 2017.

15. X. Zou, H. Li, Y. Sui, W. Peng, and F. Li. Assurable, transparent, and mutual
restraining e-voting involving multiple conflicting parties. In Proceedings of the
2014 IEEE Conference on Computer Communications, IEEE INFOCOM 2014,
pages 136–144, Piscataway, NJ, USA, April 2014. IEEE.

8 Appendix

Initialization - Table 3 - 5

Signed

message type TYPE COLLECT REQUEST

election ID 16 bytes

collector index 1 byte

pk length 2 bytes

pk variable length

collector key hash 16 bytes

Table 3. Administrator
sends to collector

Signed

message type TYPE COLLECT STATUS

key hash 16 bytes

election ID 16 bytes

acceptance 0x00 or 0x01

Table 4. Collector re-
sponds

Signed

message type TYPE METADATA COLL

key hash 16 bytes

election ID 16 bytes

other C host length 2 bytes

other C host var. length

other C port 2 bytes

other C pk length 2 bytes

other C pk var. length

M: 1 byte

Table 5. Administrator
distributes election meta-
data to each collector

Table 6. packets during initialization state

Registration - Table 7 - 9

Voting - Table 11 - 13

Following Network Packet Design Due to the limitation on size of paper, we
couldn’t present all the packets. However, they can be found on our website.
We hope the packets presented above are able to provide readers an overall
impression about the project.

14 M. Zheng et al.

Signed

message type TYPE REGISTER

key hash 16 bytes

election ID 16 bytes

voter ID 4 bytes

Table 7. Voter sends to
administrator for registra-
tion

Signed

message type TYPE METADATA VOTER

election ID 16 bytes

C1 host length 2 bytes

C1 host var. length

C1 port 2 bytes

C1 pk length 2 bytes

C1 pk var. length

C2 host length 2 bytes

C2 host var. length

C2 port 2 bytes

C2 pk length 2 bytes

C2 pk var. length

M 1 byte

name1 length 1 byte

name1 var. length

... ...

Table 8. Administrator
responds

Signed

message type TYPE VOTERS

election ID 16 bytes

N 4 bytes

voter1 ID 4 bytes

voter1 pk length 2 bytes

voter1 pk var. length

... ...

Table 9. Administrator
sends the list of registered
voters to each collector

Table 10. packets during registration state

Signed

message type TYPE SHARES REQUEST

key hash 16 bytes

election ID 16 bytes

voter ID 4 bytes

Table 11. Voter connects
to collector

Signed and Encrypted

message type TYPE SHARES

key hash 16 bytes

election ID 16 bytes

N 4 bytes

Si, Cj k bytes

S’i,Cj k bytes

~Si, Cj k bytes

~S’i,Cj k bytes

Table 12. Collector re-
sponds

Signed

message type TYPE BALLOT

key hash 16 bytes

election ID 16 bytes

voter ID 4 bytes

p i k bytes

p’ i k bytes

g^s ii k bytes

g^s’ ii k bytes

g^(s ii s’ ii) k bytes

Table 13. Voter sends
ballots and commitments

Table 14. packets between voters and collectors in voting state

