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Abstract. The goal of this paper is to learn the differential geometry of pose
image manifolds for 3D objects. Indexed by the rotation group SO(3), a pose
manifold constitutes images of a 3D object from all viewing angles. Learning
geometry implies computing geodesics, intrinsic statistics (means, etc), and cur-
vatures on estimated manifolds. As these goals are unattainable in the huge image
space, we perform dimension reduction that is geometry preserving and invert-
ible. This paper introduces two distinct concepts: (1) A Geometry-Preserving
StyleGAN (GP-StyleGAN2) that maps training images to a low-dimensional
latent space with two novel geometry-preserving terms. These terms penalize
changes in pairwise distances between points and pairwise angles between tan-
gent spaces under the map. (2) Densifying the estimated manifold in latent
space using Euler’s Elasticae-based nonlinear interpolations between sparse data
points. In contrast to the past findings, the latent pose manifolds are found to be
distinctly nonlinear and similar in shape across objects. Incorporating these fea-
tures results in superior performance in image interpolation, denoising, and com-
puting image summaries when compared to state-of-the-art GANs and VAEs.

Keywords: Manifold Learning · Pose Image Manifold · Elasticae · Latent
Space Geometry · Geodesics · Geometric GAN

1 Introduction

Image manifolds are subsets of image spaces corresponding to images of 3D objects
of interest. In this paper, we focus on specific image manifolds called rotation or pose
manifolds. A pose manifold is the set of images of an object under all 3D rotations
(while fixing other imaging conditions). Even though images are high-dimensional, the
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pose manifolds are typically low-dimensional and are nonlinearly embedded in the huge
ambient Euclidean space. Learning the differential geometries of image manifolds has
been a long-standing and challenging goal in the field, especially when using limited
training data. Learning, characterizing, and exploiting this geometry can help accom-
plish several goals in image analysis and computer vision: interpolating between images
using geodesics, denoising an image using manifold projection, making statistical anal-
ysis more interpretable by adhering to the manifold structure, and creating simple yet
powerful generative and discriminative models by defining probability distributions on
the manifold. The goal of this paper is to learn the differential geometry of image man-
ifolds for individual 3D objects, enabling computation of geodesics, tangents, curva-
tures, and intrinsic statistics (means, etc.) on the estimated manifolds.

We will follow the notation in [13] to develop a mathematical formulation. Let α
be a 3D object, such as a chair, airplane, or car, and let Oα denote its 3D geometry
and reflectance model. Let s ∈ SO(3) represent the 3D pose of Oα relative to the
camera and P be the orthographic projection of sOα into the focal plane of the camera,
resulting in an n × n image P(sOα). As mentioned earlier, all other imaging variables,
e.g. illumination, are fixed for this discussion.

Definition 1 Under these conditions, the set Iα = {P(sOα) ∈ R
n×n|s ∈ SO(3)}, a

subset of Rn×n, is called the rotation or pose manifold of α.

Using additional assumptions on the smoothness of P and non-symmetry of Oα with
respect to the rotation group, the set Iα shares the closed, boundary-free manifold topol-
ogy of SO(3). (This statement deserves additional consideration to be precise but we
leave the details for a future paper.) It is thus three-dimensional and its nonlinear embed-
ding is small (almost singular) in the ambient space Rn×n.

Problem Specification: Given a training set of rotation-image pairs Rtrain =
{(si, Ii = P(siO

α)) ∈ SO(3) × Iα}m
i=1, our goal is to estimate the manifold Iα.

We want not only to learn the topological set Iα, but also to characterize its local and
global geometry. This characterization will enable us to compute quantities on the man-
ifold such as geodesics, geodesic distances, and intrinsic statistical summaries. The
task of learning Iα from Rtrain is challenging because (i) Learning nonlinear mani-
folds typically requires large sample sizes that are even greater in high-dimensional (n2)
spaces, and (ii) The underlying geometry of Iα is often complex and does not follow
known simplifications such as spheres, ellipsoids, or hyperbolic spaces.

The difficulties associated with high dimensions can be mitigated by mapping to
a smaller Euclidean space R

d, d � n2. If we have a map Φ : Rn2 → R
d which is

approximately isometric and invertible on the manifold, we can analyze the geometry
on the simpler latent manifold Mα = Φ(Iα) ⊂ R

d using {(si, Φ(Ii))}m
i=1 and map

the results back to the image manifold using Φ−1. The next question is: What is a good
choice of Φ? Existing methods for manifold learning (such as LLE, Isomap, t-SNE,
etc.), dimension reduction and latent space representation either distort the geometry of
Iα or are not invertible (see section 2). We require a new technique.

Our Approach: There are two main elements to our approach. Firstly, we seek a map-
pingΦ that preserves the geometry of the pose manifold. Secondly, rather than assuming
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a flat geometry in the latent space as is often the case in the current literature, we use
nonlinear interpolations between mapped points in R

d to discover the unknown mani-
fold. We introduce these items here and elaborate on the details in section 3.

(1) Geometry-Preserving and Invertible Dimension Reduction: How can one design a Φ
that maximally preserves the geometry? Preserving the geometry implies that distances,
angles, and curvatures remain similar from the domain to the range of Φ. We create Φ
by training with a neural network that combines elements of GANs and autoencoders,
specifically a modified version of AE-StyleGAN2. The decoder trained as part of this
model provides an inverse map as well. We build on this architecture by introducing
two geometry-preserving loss terms, and call our model Geometry-Preserving Style-
GAN2 or GP-StyleGAN2. The new terms help preserve (i) pairwise Euclidean distances
between point locations, and (ii) pairwise dissimilarity (a measure of local curvature)
between tangent space orientations. Here we use all training points to compute pairwise
distances, and not just the neighbors, and treat Euclidean distances as extrinsic distances
to help learn the global geometry. Estimation of tangent planes {Ti} at points {Ii} used
to compute orientation dissimilarity is described later.

(2) Discovering the Manifold using Nonlinear Elasticae: We use the trained Φ to map

points from another sparse set Rtest ⊂ R
n2

(disjoint from Rtrain) to the latent space,
resulting in {Φ(Ii) ∈ R

d}. These points lie on the latent manifold Mα and we can
use them to uncover it in more detail. We do this by interpolating between neighboring
mapped points using free elasticae [25,29]. Elasticae use curved interpolations between
pairs (Φ(Ii), Φ(Ij)), with curvatures dictated by their distance and the misalignment of
tangent planes (dΦ(Ti), dΦ(Tj)). Repeatedly applying this tool between neighboring
points, we ‘fill in’ the manifold with arbitrarily dense point sets and produce an esti-
mated latent manifold ̂Mα and the corresponding image manifold ̂Iα = Φ−1( ̂Mα).

Knowing the geometry of Mα allows us to improve performance in some cru-
cial vision tasks including: (1) Image Interpolation Using Geodesics: Given any two
images Ii ≡ P(siO

α) and Ij ≡ P(sjO
α) in the test data, the task is to estimate

the image path t �→ P(x(t)Oα), where x : [0, 1] → SO(3) is a geodesic between
si, sj in SO(3). The image path should resemble the video of a rotating object. (2)
Intrinsic Image Statistics and Modeling: Given a set of images {Ii}, one would like
to compute their summary statistics (mean, covariance) and develop statistical models
as elements of Iα rather than R

n2
. (3) Image Denoising Using Manifold Projection:

Given a noisy or corrupted image J ∈ R
n2

known to be associated with an I ∈ Iα, we
seek a tool to denoise it.

2 Related Works

In recent years, deep neural networks (DNNs) have provided powerful tools for encod-
ing of images by mapping them to low-dimensional latent spaces. In the following we
summarize some past ideas that are most relevant to our method.

Manifold Learning Techniques: From the pre-deep network era, there is a long list
of learning methods that sought nonlinear dimension-reduction while preserving some



Image Manifold Geometry 59

geometric properties for image data, including LLE [33], Isomap [40], LTSA [44],
Laplacian eigenmaps [3], Hessian eigenmaps [10], diffusion maps [7], vector diffu-
sion maps [37], Riemannian relaxation [27], and t-SNE [26]. These were successful
in mapping image data into smaller Euclidean spaces while preserving pairwise dis-
tances or other local properties. However, these mostly only go as far as embedding
the observed training points in a low-dimensional space. They fall far short of our goal
of creating an invertible map that can read out-of-sample points in both the input and
latent spaces. Several recent papers such as FM-VAE [6], IRVAE [42], GRAE [11],
structure-preserving AE [38], GGAE [24], and DIMAL [31] seek geometry-aware man-
ifold learning using different DNN architectures. Our work constitutes further explo-
ration of this area.

Differential Geometry of Latent Spaces: Bengio et al. [4] stressed the importance of
understanding the geometry of latent space representations. Several papers [23,35,36]
have investigated this geometry, mainly utilizing existing architectures geared towards
image synthesis, and reported them to be (surprisingly) flat. Other papers [2,9,16]
demonstrated that Jacobian-based Riemannian metrics on the latent space produce bet-
ter inference results than using Euclidean distance. Sáez et al. [30] fitted local, constant-
curvature patches to data using Gromov-Hausdorff distance and Bayesian optimization.
Zhang and Jiang [43] presented a method for geometric space selection in representa-
tion learning, allowing data points to select optimal geometric spaces.

GANs and VAEs: Goodfellow et al. [12] introduced the basic framework and training
procedure for generative adversarial networks (GANs). Radford et al. [32] improved
their stability and efficiency, while Karras et al. [18] proposed Progressive Growing
GAN and Style-Based GAN that incorporated regularizations. Han et al. [14] designed
AE-StyleGAN2 for more disentangled latent space and improved efficiency. Kingma
and Welling [22] introduced variational autoencoder (VAE) to map input data to a
low-dimensional latent space (encoder) and back (decoder). VAEs have been extended
in various directions. Davidson et al. [8] proposed the Hyperspherical VAE (SVAE)
that samples latent vectors on a unit sphere. Chadebec and Allassonière [5] proposed
the geometry-based Riemannian Hamiltonian VAE (RHVAE), which models the latent
space as a Riemannian manifold, combining Riemannian metric learning and geodesic
shooting. Huh et al. [17] proposed Quotient VAEs.

3 Proposed Framework

In this section, we present the design of Geometry Preserving StyleGAN2
(GP-StyleGAN2), which facilitates learning by preserving the geometry of the image
manifold. We start with a brief introduction to StyleGANs and AE-StyleGAN2. Con-
sider a set of images {Ii ∈ I}b

i=1 and random latent vectors {vk ∈ V ≡ R
d}K

k=1

sampled from a probability distribution Pv . StyleGANs [20] use a Multilayer percep-
tron (MLP) F : V → W that maps vk to an intermediate latent space point wk which
is then fed to a generator G : W → I that synthesizes an image G(F (vk)). One
trains the generator by pitting it against a discriminator network Q that distinguishes



60 S. Liang et al.

between real and generated images. The disentangled latent space W used in Style-
GANs gives improved image generation compared to the basic GAN architecture. AE-
StyleGAN2 [14] borrows ideas from a VAE, attaching an encoder E to the model which
maps from the image to latent space (as our application requires) and giving additional
training to G as a decoder. E and G are trained using autoencoder reconstruction loss
minE,G

∥

∥I −G(E(I))
∥

∥+
∥

∥η(I)− η(G(E(I)))
∥

∥ where η is a pre-trained VGG16 net-
work, and adversarial lossminE,F,G maxQ EI [logQ(I)]+Ev[log(1−Q(G(F (v))))]+
EI [log(1 − Q(G(E(I))))] which adds an autoencoder term to previous StyleGAN
objectives. While AE-StyleGAN2 accomplishes its aims, it does not consider the geom-
etry of the image manifold. For preserving geometry, we propose GP-StyleGAN2.

3.1 Learning Latent Map Using GP-StyleGAN2

Fig. 1. Training and inference procedure. We preserve the geometry of image space by constrain-
ing the encoder (E) with loss functions Le and Lg defined in Algorithms 1, 2.

GP-StyleGAN2 Architecture: We seek a significant dimension reduction (from n2 =
214 to d = 5) which is (1) invertible and (2) geometry preserving (d = 5 is the
smallest embedding dimension of SO(3)). The computational demands of learning a
nonlinear map for such a drastic reduction suggest a two-step approach. We first move
the problem to points {zi} in an intermediate dimension c2 = 210 using PCA. This
linear projection Φ suffices for a modest reduction while being approximately invertible
and norm-preserving (Parseval’s theorem), though it will fail if we use it for the full
reduction 214 → 5. From here, we train the nonlinear encoder E : Rc2 → R

d generator
G : Rd → R

c2 between {zi} in the PCA space and points {wi} in the latent space. After
this training we build the finalized maps Φ : Rn2 → R

d and Φ−1 : Rd → R
n2

defined
by the compositions Φ = E ◦ Φ and Φ−1 = Φ−1 ◦ G. We note that Φ−1 and Φ−1 are
approximate inverses and that the PCA reconstruction Φ−1 is fine-tuned by a denoising
neural network. The architecture for training E and G begins with the AE-StyleGAN2
autoencoder and adversarial objectives, but augments the training of E with geometry-
preserving loss terms based on pairwise point and tangent space distances. Fig. 1 shows
a schematic of the training and inference procedure.
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Algorithm 1. Optimizing encoder E with geometry-preserving term Le (points)

1: Given (1): E; (2): A batch of images IB ∈ R
b×n2

.
2: Map images to PCA space: ZB = Φ(IB) ∈ R

b×c2 .
3: Map ZB to latent space: W B = E(ZB) ∈ R

b×d.
4: Compute pair-wise distance matrices: De,z

ij = ‖zi − zj‖ and De,w
ij = ‖wi − wj‖, where

zi, zj ∈ ZB , wi, wj ∈ W B , and ‖ · ‖ denotes the Euclidean norm.
5: Compute the loss: Le = L(De,z, De,w), where L is defined in Eqn. 1.
6: Update the weights: θE ← ADAM(∇θELe, θE), where θE denotes the internal parameters

of E, and ADAM refers to adaptive moment optimization [21].

Geometry-preserving Terms: The central feature of our method is a loss function
designed to make the Euclidean distances between the latent space encodings of images
correspond to their Euclidean distances in the image space. The loss is computed as a
dissimilarity between pairs of distance matrices. We use three types of metrics to com-
pute these matrices. The first is the standard Euclidean distance ‖ · ‖. The second is a
metric defined on SO(3): Using the rotation matrix representations si, sj ∈ SO(3)
of two poses of an object, the Riemannian distance between them is ds(si, sj) =

cos−1

(

trace(sis
T
j )−1

2

)

. The third is a metric on sets of linear subspaces with common

dimensions: Let Ti, Tj ∈ R
d×r, r ≤ d, denote arbitrary orthogonal bases of any two

r-dimensional subspaces in R
d. Then, define dg(Ti, Tj) = ‖TiT

T
i − TjT

T
j ‖F . We use

this extrinsic distance on the Grassmannian manifold to simplify computations.
In practice, we approximate tangent spaces in the PCA space and the latent space

using the training data as follows. First, we findN > 3, SO(3)-neighbors for each train-
ing image (si) using the lowest values of ds(si, s

′). For PCA points, we then approx-
imate N tangent vectors at zi using finite differences as {Vij = zj−zi

ds(si,sj)
∈ R

c2}N
j=1

and set T z
i ∈ R

c2×3 to be the three dominant singular vectors of the set {Vi·}. Similarly,
we can approximate tangent spaces Tw

i ∈ R
d×3 in the latent space (see Algorithm 2).

A very similar method for tangent plane estimation is used in [37], where a proof is
given for convergence to the true tangent plane.

Given a batch of b images, we compute distance matrices D ∈ R
b×b between

mapped points and tangent planes in the PCA and latent spaces. Then a measure of
discrepancy between computed matrices D1 (PCA space) and D2 (latent space) is cal-
culated using:

L(D1,D2) =
b

∑

j=1

[

1 − (D1
·j − μ1

j1)
T (D2

·j − μ2
j1)

‖D1
·j − μ1

j1‖ ‖D2
·j − μ2

j1‖

]

, (1)

where μ1
j and μ2

j are the mean values for columnsD1
·j andD2

·j , and 1 is a vector of ones.
We center and scale columns (or rows) of D matrices into unit vectors and compute the
cosines of angles between them. In an implicit manner, each entry of D1 is compared
with the corresponding entry of D2. Since we are forming a loss function, we subtract
this quantity from one, and sum over all points in the batch. We use the resulting loss L
to define novel geometric terms for modifying AE-StyleGAN2 as follows:
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1. Term 1: Distance Preserving: Here D1
ij = ‖zi − zj‖, the Euclidean distances

between PCA scores of training images, and D2
ij = ‖wi − wj‖, the Euclidean dis-

tances between corresponding latent vectors. We use Euclidean distances between
all pairs, not just the neighbors. These distances play the role of extrinsic or embed-
ding distances between points on the (unknown) manifold and help learn its global
geometry. Later on in the paper, once the manifold is estimated, we use geodesics
and geodesic (intrinsic) distances to perform statistical analysis. In other words, we
use the extrinsic Euclidean distance for learning and intrinsic geodesic distance for
analysis. We will call the loss L = Le in this case. Algorithm 1 lists the steps for
computing Le.

2. Term 2: Curvature Preserving: Here D1
ij = dg(T z

i , T z
j ), the tangent space dis-

tance, and D2
ij = dg(Tw

i , Tw
j ) the tangent distances in the latent space. We will call

the loss L = Lg in this case. Algorithm 2 lists the steps for computing Lg .

Algorithm 2. Optimizing encoder E with geometry-preserving term Lg (tangent dis-
tances)

1: Given (1): A set of images IB ∈ R
b×n2

. (2): The corresponding rotation set SB ∈ R
b×3×3.

(3): Corresponding neighborhoods N I
i = [I�1(i), · · · , I�N (i)] ∈ R

n2×N , of the N closest
points to Ii ∈ IB according to ds. (4): The the index functions {�k}N

k=1, which take an
argument i and return the index of the kth nearest neighbor of Ii.

2: Map images and their corresponding neighbors to PCA space:
ZB = Φ(IB) ∈ R

b×c2 , N z
i = Φ(N I

i ) = [z�1(i), · · · , z�N (i)], where zi ∈ ZB .
3: Map ZB and {N z

i }b
i=1 to latent space:

W B = E(ZB) ∈ R
b×d, N w

i = E(N z
i ) = [w�1(i), · · · , w�N (i)], where wi ∈ W B .

4: Compute neighborhood SO(3) distances:
Δs

i =
[
ds(si, s�1(i)) · · · ds(si, s�N (i))

] ∈ R
N , where si, sj ∈ SB .

5: Compute over-dimensional tangent planes in Principal Component Analysis (PCA) space
and latent space:
T̃ z

i =
(N z

i −zi1
T
)·diag(Δs

i

)−1 ∈ R
c2×N , T̃ w

i =
(N w

i −wi1
T
)·diag(Δs

i

)−1 ∈ R
d×N .

6: Compute tangent planes T z
i , T w

i by taking the three dominant singular vectors of the corre-
sponding T̃ z

i , T̃ w
i .

7: Compute pair-wise distance matrices: Dg,z
ij = dg(T z

i , T z
j ) and Dg,w

ij = dg(T w
i , T w

j ).
8: Compute the loss: Lg = L(Dg,z, Dg,w).
9: Update the weights: θE ← ADAM(∇θELg, θE).

3.2 Elasticae Interpolation

We can use the trained map Φ to project test data into the latent space. However, this
data may be sparse, and we wish to discover the projected manifold Mα at a higher
resolution than the test data permits. One way to find intermediate points is through
interpolation. Straight line interpolations would be reasonable if we had just the points
{wi ∈ R

d}. However, our access to tangent planes {(wi, T
w
i ) ∈ R

d × R
d×3} at each
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point allows us to account for the nonlinearity of the underlying manifold by utilizing
nonlinear interpolations based on elasticae.

Elasticae are smooth curves that can be used to interpolate between directed points,
i.e. Euclidean points with attached tangent vectors. Consider the set B of smooth curves
in R

d parameterized on [0, 1]. For a curve β ∈ B, let β̇ and κβ denote its velocity
and scalar curvature functions, Len[β] its length, and define its elastic energy En[β] =
1
2

∫ 1

0
κ2

β(s) ds. Then the free elastica from a given directed point (w1, u1) to another

(w2, u2) is the minimizing curve β̂ = arg min
β∈B

(En[β]+λLen[β]) such that β(0) = w1,

β(1) = w2, β̇(0) = u1, and β̇(1) = u2. The tuning parameter λ > 0 balances the focus
on length versus curvature. Mumford [29] advocated the use of free elasticae as the
most likely solutions to fill in the missing or obscured curves in images, e.g., in the
famous Kanizsa triangles.

Our implementation follows Mio et al. ([28], Algorithm 4.2). We interpolate
between point pairswi, wj in the latent spaceRd. To find the corresponding tangent vec-
tors, we take the difference vector ũij = wj −wi, project it separately into each point’s
tangent space, and scale to form the unit vectors ui ∈ span(Tw

i ) and uj ∈ span(Tw
j ).

These maximally-aligned vectors are used to direct a free elastica β that interpolates
from (wi, ui) to (wj , uj). This interpolation is mapped to a path in image space as
Φ−1(β(t)). The top portion of Fig. 3 in Section 4.1 illustrates the image space elasticae
as sequences of images.

4 Experiments

Before detailing the design and results of our experiments, we begin by laying the
groundwork of key features which are used throughout.

Experimental Data: Creating an image set to represent an object Iα for training Φ
and Φ−1 requires a structured sampling over rotations in SO(3). We express rotations
using a Hopf coordinate system similar to Yershova et al. [41]. Seeking a partition of
SO(3) with regular equivolumetric cells, we first generate (θ, φ) values on S2 using the
Fibonacci grids of Swinbank and Purser [39] (also studied in Hardin et al. [15]). We
attach a circle of ψ values to each pair, and the circle is uniformly segmented following
a ratio shown in [41] to produce SO(3) cells analogous to cubes. The experimental
results presented here are restricted to a patch of SO(3) to simplify computations. This
patch is P � {(θ, φ, ψ) ∈ [25π, 3

5π] × [45π, 6
5π]2}. To create an image set, we begin

with a three-dimensional object Oα set at a default position. We use CAD objects α ∈
{chair, sports car, zebra} from clara.io [1] processed using meshio [34]. We apply 4000
rotations from P to the default orientation and use P to generate images P(siO

α). We
will call this training set Rtrain � {(si, Ii) ∈ (SO(3) × Iα)}4000i=1 . Fig. 2 shows a
representation of these points. We also create a separate data set Rtest of 3696 indexed
images for testing and evaluation. The points in Rtest also lie in P but are defined by a
uniform rectangular grid in (θ, φ, ψ) coordinates.

Evaluation Metrics: Our goals include performing several tasks that can be evaluated
quantitatively. In our quantifiable experiments, we compare model outcomes against
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ground truth values using the Euclidean norm and tabulate errors. In our most-used
scenario, we compare a ground truth path in image space {I(t) ∈ R

n2}T
t=0 with an

estimated {Î(t) = Φ−1(ŵ(t)) ∈ R
n2}T

t=0 decoded from a computation in latent space.
Our evaluations use the Squared Errors (SE) ‖Î(t) − I(t)‖2 indexed by t. For elasticae
evaluations, we also compare the velocities along the path to the ground truth using
‖(Î(t + 1) − Î(t)) − (I(t + 1) − I(t))‖2.
Model Comparisons: We compare our method with three recent deep-learning gener-
ative models described in Section 2: RHVAE [5], SVAE [8], and AE-StyleGAN2 [14].

Implementation details: Experiments are conducted on a Linux workstation with
Nvidia RTX A6000 (48GB) GPU and Intel Core i9-13900K CPU @ 5.8GHz with
128GB RAM. The hyperparameters of generator G and MLP F are chosen to be iden-
tical to those in [19]. The hyperparameters of encoder E are the same as in [14]. The
size of image space is n2 = 1282. The size of PCA space is c2 = 322. The dimension
of latent space is d = 5. The batch size for training is b = 64. The tangent spaces are
built using N = 16 neighbors. The balance parameter for elasticae is λ = 1.

Fig. 2. Right: A visual representation of the 4000 SO(3) training rotations. Each rotation is rep-
resented by its heading (θ, φ) on S

2 and its roll about that heading drawn as a curve ψ around it.
Left: Top image is the chair at default orientation. Others are P(sIchair) for some s ∈ SO(3)
with the same heading and varying roll.

4.1 Results: Elasticae Interpolations and Manifold Estimation

Having used Rtrain to train the maps Φ and Φ−1, we map elements of Rtest to points
in latent space, use elasticae to interpolate between them, and then map these elasticae
paths to image space. We then compare results from our framework to using various
SOTA DNN models. Fig. 3 (top) shows results for α = chair. These interpolations are
computed in the latent space but visualized in the image space. Each row shows an
interpolation between two fixed points in Rtest at the left and right. Different rows
correspond to different techniques. The bottom row shows the ground truth geodesic
t �→ P(x(t)Oα), where x(t) is a geodesic in SO(3). We observe that the path obtained
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by our model is consistently closest to the ground truth. This outcome is representative
of the results we obtained for several experiments.

To quantify performance, we perform extensive experiments on three 3D objects:
α ∈ {chair, sports car, zebra}. We compute 100 different interpolation paths using ran-
domly selected pose pairs in Rtest (3696 points). For each time index t, we calculate
the mean values of the errors (point values and tangent values) and plot them in Fig. 3.
The errors are naturally close to zero at the start and the end, and are highest at the
center. As these plots exhibit, the interpolation errors are the smallest using our method
when compared to RHVAE, SVAE, and AE-StyleGAN2.

Ablation Studies: To evaluate the key components of GP-StyleGAN2, we perform
ablation studies that add them sequentially to an AE-StyleGAN2 baseline model. We
study six models which differ in: (1) the type of interpolation: linear or elastica, (2) the
loss function for trainingE: inclusion of geometry-preserving termsLe and Lg (defined
in Section 3.1) or not, and (3) PCA for image pre-processing: PCA or no PCA. For each
of the six models, the experimental setup is an analysis of interpolation path accuracy as
above. The results of these experiments performed on the chair object are summarized
in Table 1. The table lists the means over 100 experiments of the average interpolation
error summed over all time indices t in the path. Comparing Models 1, 2 versus the
others shows dramatic gains due to the introduction of the geometry-preserving terms.
Comparisons of Models 3, 4, and 5 versus Model 6 show individual benefits of the use
of both Le and Lg over Le alone, elasticae over linear interpolation, and PCA reduction.

Fig. 3. Top: Interpolated paths between the original (left) and rotated poses (right) using various
methods. Bottom: Average squared errors over 100 interpolated paths for each object, and zoom
from top. First row: Average SEs for interpolated points. Second row: Average SEs for velocities.
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The complete Model 6 (GP-StyleGAN2) including all of the components substantially
outperforms the others.

Computational Cost: The computational cost of training for the four methods are as
follows: AE-StyleGAN2 - 20.64 min/500 epochs, RHVAE - 12.78 min/500 epochs,
SVAE - 8.78min/500 epochs, and GP-StyleGAN2 - 38.41min/500 epochs. The com-
putational cost for interpolating a path between two test points is: AE-StyleGAN2 -
0.02 sec, RHVAE - 62.36 sec, SVAE - 0.01 sec, and GP-StyleGAN2 - 0.13 sec.

Manifold Estimation: To estimate the latent pose manifold ̂Mα, we randomly select
800 sparse points from Rtest and map them using the trained Φ. For each point in
this latent space, we identify its five nearest-neighbors using SO(3) distance ds and
interpolate between these neighbors using elasticae with eight intermediate points. This
results in an ̂Mα with 32,800 total points.

Table 1. (Ablation studies): Average total squared errors over 100 interpolated paths (for chair)
under different models. AE-loss denotes the standard loss function of AE-StyleGAN2.

Model Features Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

AE-StyleGAN2 yes yes yes yes yes yes

Interpolation linear elasticae elasticae linear elasticae elasticae

Loss function AE-loss AE-loss AE-loss + Le AE-loss + Le + Lg AE-loss + Le + Lg AE-loss + Le + Lg

PCA no no yes yes no yes

Summary Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 (Ours)

Mean error 1638.97 1654.32 698.14 687.02 561.70 436.11

4.2 Results: Analyzing Latent Map Φ Using Test Data

We investigate the geometry-preserving properties of the mapping Φ by applying it to
the complete test set Rtest. As described above, Rtest is a set of 3696 points in the
same patch P as Rtrain but disjoint from it. We exploit the grid structure of Rtest to
interpret the range space of Φ visually, create paths that bridge distant points, and verify
the goal of distance preservation on a large scale.

Visualizing Φ(Rtest): First we visualize the mapping of Rtest into Rd using the learnt
Φ. Here we investigate the geometry of the underlying manifold Mα using this set’s
grid structure rather than densifying interpolations. The latent space plots shown here
use the first three PCA axes of the mapped points in R

5. We note that the subset of
SO(3) used in these experiments is topologically a box and that the first three singular
values accounted for most of the variation in these examples. Figure 4 displays two
viewing angles of the GP-StyleGAN2 latent space embeddings of the chair, car, and
zebra objects. The three clouds look remarkably similar, all resembling shell-like seg-
ments of a thickened sphere, despite the vastly different shapes of the original objects.

Traversing Distant Points in Φ(Rtest): In this experiment, we first endow the set
Φ(Rtest) with a graph structure determined by SO(3) neighbors. Each point in SO(3)
has 26 neighbors; see the supplement for details. We then arbitrarily select two dis-
tant points in this set and create three paths between them: (1) the ground truth path
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derived from the geodesic in SO(3), (2) the shortest-length path through the graph
found using Dijkstra’s algorithm, and (3) a simple straight-line interpolation in latent
space. Finally, we map the paths to image space. Figure 5 compares the results obtained
using AE-StyleGAN2 and GP-StyleGAN2. We can derive multiple conclusions from
these results. Firstly, the linear interpolations perform poorly under both models, high-
lighting the nonlinearity of the pose manifold. Notice how the linear interpolation loses
its chair structure as it passes through the hollow space in the point cloud on the right.
Secondly, GP-StyleGAN2 performs significantly better than AE-StyleGAN2 both visu-
ally and by error quantification: the Dijkstra path for GP-StyleGAN is nearly as good as
the ground truth, while for AE-StyleGAN it is hardly any better than the straight line.

Fig. 4. Latent pose manifolds of chair, car, and zebra objects. Two views of each. We emphasize
that these are not just points but are graphs with geometries.

4.3 Results: Exploiting Manifold Geometry

Once we have the estimated manifold ̂Mα, we study its geometry in two different ways:
Computing intrinsic image means and performing image denoising. (Fig. 6).

Mean Computations on ̂Mα: We assess the utility of finding mean images in the
latent space by comparing the decoded means to the ground truth, defined by images
associated with SO(3)Karcher means of sample rotations. Selecting 10 random images
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{Ij ∈ Rtest}, we first compute a naive mean in R
n2
, denoted as μI . Then we compute

the Euclidean mean of {Φ(Ij)} in R
d , project it to the nearest point in ̂Mα, and map

it back to image space to define μw. For comparison, we show the result μ̃w obtained
by performing these steps but skipping projection. The corresponding quantities under
AE-StyleGAN2 are labeled as μA

w and μ̃A
w respectively. Fig. 6 (top part) compares these

results with the ground truth means μgt. The means estimated using GP-StyleGAN2
(green boxes) display realistic structure of the chair and better resemble the ground
truth (orange boxes) than AE-StyleGAN2.

Image Denoising using ̂Mα: The manifold geometry can also be used for denoising or
cleaning corrupted images. A noisy image J can be mapped into latent space a Φ(J),
projected to the nearest point w ∈ ̂Mα, and mapped back as a cleaned image Φ−1(w).
Fig. 6 (bottom) shows images of the chair corrupted by adding noise and clutter, and
compares results of cleaning using GP-StyleGAN2 and AE-StyleGAN2. The visual
results and a histogram of reconstruction errors both show better outcomes using GP-
StyleGAN2.

Fig. 5. Traversing distant points. Top and middle rows: Paths in latent and image space - geodesic
GT (orange), Dijkstra on graph (brown), and straight line (black). Bottom: Euclidean squared
errors along paths. Dijkstra paths under GP-StyleGAN2 perform best.



Image Manifold Geometry 69

Fig. 6. Top Part: Manifold averaging on M̂α. Ground truth μgt is compared with image space

mean μI and different latent space means: μw, μ̃w computed with/without projection on M̂α

using GP-StyleGAN2, and likewise μA
w, μ̃A

w using AE-StyleGAN2. Bottom Part: Left: Top row
displays noisy images J , middle and bottom rows show corresponding denoised images using
GP-StyleGAN2 and AE-StyleGAN2, respectively. Right: Histogram of squared errors for 500
noisy images using AE-StyleGAN2 (blue) and GP-StyleGAN2 (orange).

5 Conclusions

We introduced a new approach, GP-StyleGAN2, for characterizing pose manifolds of
3D objects. This approach preserves geometry when mapping to a low-dimensional
latent space and creates dense manifold representations that account for nonlinearity
using Euler’s free elasticae. Comparisons of interpolations using GP-StyleGAN2 and
various other methods (Fig. 3) showed superior results for our model visually and quan-
titatively. Ablation studies (Table 1) gave more detailed quantitative results that demon-
strated improvements from including our two novel geometry-preserving terms and
using elasticae rather than linear interpolation. Graph-based geodesic approximations
pointed to regular but nonlinear geometry of pose manifolds (Fig. 5), in stark contrast to
past conclusions of linear geometry for latent space image data. We also found that the
use of manifold geometry improved mean computations and image denoising (Fig. 6).
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While there is still much progress to be made, the overall success of GP-StyleGAN2
shows a step in the direction of truly learning the geometry of pose manifolds.
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