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Abstract

Time series foundation models are pre-trained
on large datasets and are able to achieve state-of-
the-art performance in diverse tasks. However,
to date, there has been limited work demonstrat-
ing how well these models perform in medical
applications, where labeled data can be scarce.
Further, we observe that currently, the major-
ity of time series foundation models either are
univariate in nature, or assume channel indepen-
dence, meaning that they handle multivariate
time series but do not model how the different
variables relate. In this paper, we propose a
prompt-tuning-inspired fine-tuning technique,
Generalized Prompt Tuning (Gen-P-Tuning),
that enables us to adapt an existing univari-
ate time series foundation model (treated as
frozen) to handle multivariate time series pre-
diction. Our approach provides a way to com-
bine information across channels (variables) of
multivariate time series. We demonstrate the
effectiveness of our fine-tuning approach against
various baselines on two MIMIC classification
tasks, and on influenza-like illness forecasting.

Keywords: time series, foundation models,
parameter-efficient fine-tuning

Data and Code Availability We use the MIMIC-
III dataset (Johnson et al., 2016) and an influenza-like
illness dataset (Wu et al., 2021; Centers for Disease
Control and Prevention, 2024), both of which are
publicly available. Our code is available at: https://
github.com/Ilovecodingforever/Gen-P-Tuning

Institutional Review Board (IRB) This re-
search does not require IRB approval as we perform
secondary analyses of publicly available datasets.

1. Introduction

With the rapid development and growing commercial
success of large language models (LLMs) recently,

there has been a surge of interest in developing similar
sorts of foundation models for time series analysis (e.g.,
Das et al. 2023; Gruver et al. 2024; Goswami et al.
2024). Much like how LLMs are commonly trained on
large chunks of the internet spanning many application
domains, a number of existing time series foundation
models are also trained on a variety of time series
data, with the idea that time series across disciplines
likely share similar patterns. However, to what extent
do such foundation models work for healthcare data
such as electronic health records, or public health data
such as influenza trends?

For example, electronic health records consist of
patient time series, where each time series could be
irregularly sampled, have lots of missing entries, and
can be of a large number of variables (Xiao et al.,
2018). We suspect that this sort of setting is not well-
suited for the current time series foundation models
that have been developed. In fact, a major limitation
of most time series foundation models that have been
developed is that they are univariate (Ye et al., 2024).

In this paper, our main contribution is to show
how to adapt existing unviariate time series founda-
tion models to handle multivariate time series predic-
tion, specifically for both classification and forecasting.
We treat the univariate time series foundation model
as frozen, and how we adapt it to handle multivari-
ate time series prediction is as a form of parameter-
efficient fine-tuning (PEFT). PEFT methods have
become popular recently for adapting LLMs to han-
dling various datasets (e.g., Hu et al. 2022). Our
proposed PEFT method is a generalization of an ex-
isting PEFT method called prompt tuning, of which
we specifically generalize the variant called P-tuning
v2 by Liu et al. (2022). As such, we call our proposed
PEFT method Generalized Prompt Tuning (Gen-P-
Tuning). To be clear, the “prompt” here is not a text
prompt that a user types. Rather, the prompt for
time series forecasting roughly refers to some prefix
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that we attach to time series (as if we are including
some fictitious extra time steps).

We show that Gen-P-Tuning is competitive in prac-
tice against various fine-tuning baselines in experi-
ments on MIMIC in-hospital mortality prediction and
phenotyping, and on influenza-like illness forecasting.
To the best of our knowledge, our paper is also the first
to benchmark various fine-tuning strategies of differ-
ent time series foundation models on medical datasets.
Specifically for our MIMIC classification experiments,
we also benchmark against an existing approach called
STraTS by Tipirneni and Reddy (2022), which is not
a fine-tuning method (all our other baselines are fine-
tuning methods).

2. Background

We first set up some basic notation in Section 2.1.
We then provide an overview of univariate time series
foundation models in Section 2.2. We present this
overview at a level of detail that is sufficient for un-
derstanding our proposed fine-tuning approach, and
that is general enough to encompass a number of ex-
isting univariate time series foundation models. We
then describe ways in which researchers have adapted
univariate time series foundation models for multi-
variate time series prediction in Section 2.3. Lastly,
we discuss existing work on developing time series
foundation models for medical data in Section 2.4.

2.1. Basic Notation

Throughout our paper, it suffices for us to describe
how different time series (foundation) models process
a single input time series at a time. In practice, for
training and for prediction, the models we describe
could trivially process a mini-batch of input time series
at once rather than a single time series at a time (for
training, standard mini-batch gradient descent could
be used for learning trainable parameters).
To this end, we denote a single multivariate input

time series as X ∈ R
C×T , where C is the number of

channels/variables, and T is the number of time steps.
The multivariate case corresponds to C ≥ 2, whereas
in the univariate case (C = 1), we represent the time
series as a 1D array of length T rather than a 2D
array of shape C-by-T . Importantly, for any dataset
of interest, we assume that the number of channels C
is fixed. Across different datasets, it is possible for C
to vary. Meanwhile, the number of time steps T can
vary across time series even within the same dataset.

We denote the ground truth prediction target as Y.
In this paper, we specifically consider two prediction
tasks. First, if the prediction task is classification with
M ≥ 2 classes, then Y ∈ [0, 1]M (the i-th entry of Y
indicates the probability of the i-th class). Second, if
the prediction task is forecasting, then Y ∈ R

C×H ,
where H is the time horizon (i.e., the number of
future time steps of the input time series that we aim
to predict); in the univariate case, we could of course
just represent Y as a 1D array of length H.

2.2. Univariate Time Series Foundation
Models

We now state the general form of the univariate foun-
dation models that our proposed fine-tuning strat-
egy can adapt into multivariate time series predic-
tors. Special cases include, for instance, MOMENT
(Goswami et al., 2024), GPT4TS (Zhou et al., 2023),
and TimesFM (Das et al., 2023).

For an input univariate time series Xuni ∈ R
T

where T is the number of time steps (since this pre-
trained foundation model is univariate, there is only a
single channel), we assume that the foundation model
first applies a preprocessing function femb to Xuni to
produce a preprocessed array

Euni = femb(X
uni) ∈ R

P×D, (1)

where P is the number of patches (commonly, time
series foundation models convert the input time series
into patches, so that a raw input time series with T

time steps gets treated instead as a sequence of P
patches (Nie et al., 2023)) and D is the embedding di-
mension. We leave precisely what preprocessing steps
are included in the function femb unspecified; in prac-
tice, this would just depend on whichever univariate
foundation model is used.1

After preprocessing the raw univariate time series
data Xuni ∈ R

T using femb to produce Euni ∈ R
P×D,

the backbone of the univariate foundation model then
applies a sequence of transformer layers one after
another. The output from one layer becomes the

1. For example, prior to chunking the time series into patches,
an additional preprocessing step that could be done is
reversible instance normalization (Kim et al., 2021), which
standardizes a time series by its mean and variance. An
alternative altogether is to preprocess the time series to
appear as text data, so that subsequent steps amount to
using a large language model (Gruver et al., 2024).
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Figure 1: Univariate time series foundation model. The predicted target’s dimensions depend on the prediction
task (Ŷ ∈ [0, 1]M for M -way classification, and Ŷ ∈ R

H for forecasting the next H time steps).
Note that the preprocessing function femb (in blue) and the first transformer layer f1 (in pink) are
color-coded for ease of exposition as they reappear later on in Figure 2.

input to the next layer, for layers 1 to L:

Uuni
1 ≜ f1(E

uni) ∈ R
P×D,

Uuni
2 ≜ f2(U

uni
1 ) ∈ R

P×D,

...

Uuni
L ≜ fL(U

uni
L−1) ∈ R

P×D,

where fℓ corresponds to the ℓ-th transformer layer,
for ℓ = 1, . . . , L.

Finally, a prediction layer fpred (sometimes also
called a prediction “head”) is applied to the last trans-
former layer’s output Uuni

L to produce the final pre-
diction:

Ŷ = fpred(U
uni
L ),

where the dimensions of Ŷ depend on whether we
are considering classification or forecasting as the
prediction task, as described in Section 2.1.

In summary, the full univariate foundation model
could be represented as the function

f ≜ fpred ◦ (fL ◦ fL−1 ◦ · · · ◦ f1 ◦ femb)︸ ︷︷ ︸
≜ffrozen

, (2)

so that Ŷ = f(Xuni) = fpred
(
ffrozen(X

uni)
)
. This

entire process of how raw input time series Xuni
∈ R

T

is turned into the final predicted output Ŷ by the
univariate foundation model f is depicted in Figure 1.

Our notation in equation (2) emphasizes that we
crucially view all the layers prior to the prediction
head as frozen—we will not update parameters of
ffrozen. The reason we exclude the prediction head
fpred from ffrozen is that when fine-tuning to other
datasets, we typically discard the original prediction
head fpred of the foundation model and instead use a
new prediction head with trainable parameters.

Generalizing beyond transformers Our assump-
tion of the univariate foundation model using repeated
transformer layers is mainly because the univariate
foundation models we use later in our experiments are
transformer-based. However, as it will be apparent
when we describe our proposed fine-tuning strategy,
the repeated transformer layers could be replaced
by some other architecture altogether (i.e., the use
of transformers is not actually necessary). This is
similar in spirit to how the now-standard Low-Rank
Adaptation (LoRA) fine-tuning method (Hu et al.,
2022) is also commonly applied to transformer-based
architectures although the key idea of LoRA does not
require the use of transformers.

2.3. Handling Multivariate Time Series With

Channel Independence

A trivial way of adapting a univariate foundation
model for multivariate time series prediction is to
assume independence across channels (e.g., Nie et al.
2023). Given an input multivariate time series X ∈

R
C×T , we separate it out into its different channels’

time series X(1),X(2), . . . ,X(C) ∈ R
T . Then we can

obtain the final transformer layer’s output across the
different channels:

U
(c)
L ≜ ffrozen(X(c)) for c = 1, . . . , C. (3)

Finally, assuming that we have training data for the
multivariate time series prediction task, we train
a prediction head of our choosing that takes in

U
(1)
L , . . . ,U

(C)
L as the inputs (or the average of these

across channels as a single input) and outputs the
predicted target. As an example, to forecast the next
H time steps, we could set the prediction head to be

a multilayer perceptron that takes in 1
C

∑C

c=1 U
(c)
L as
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Figure 2: Overview of how the prompt is added to the backbone. Note that there is no subscript in the
prompt. The weights are shared across different transformer layers.

input, and outputs a total of C ·H numbers (reshaped
to be C-by-H); training can proceed via standard
minibatch gradient descent with MSE loss.

2.4. Time Series Foundation Models for

Medical Data

There has not been extensive work on applications
of time series foundation models on medical data,
especially longitudinal patient data. Time series foun-
dation models are relatively new (compared to LLMs),
and the majority of deep learning methods for patient
data have been focusing on non-pretrained models
such as LSTMs and GRUs (Pham et al., 2016; Baytas
et al., 2017; Che et al., 2017; Baytas et al., 2017).
There is a line of work that aims to build

transformer-based foundation models that are pre-
trained on EHR data and are able to perform tasks
using EHR data. Commonly, the data is encoded as
a sequence of tokens, and are used as inputs to a lan-
guage model. The tokens typically contain a tuple in
the form of (timestamp, features) (Yang et al., 2023;
Antikainen et al., 2023; McDermott et al., 2023). For
example, CEHR-BERT (Pang et al., 2021) encodes
the event at each timestamp as (time, age, clinical
concept name), passes them through embedding lay-
ers, and feeds it to a BERT (pre-trained language)
model. Some models are pre-trained on a large cohort
of patient data (Yang et al., 2023; Kraljevic et al.,
2024). However, in order to protect patient privacy,
they typically do not release the pre-trained models
or data, as opposed to time series foundation models
which are typically open-source.

3. Method

We now explain how our Gen-P-Tuning method works
for adapting a pre-trained univariate time series foun-
dation model for multivariate time series prediction.
We treat the univariate foundation model as frozen,
and our fine-tuning approach introduces trainable el-
ements. We provide an overview first in Section 3.1.
In this overview, a key component is called a Prompt
Module, which contains all the trainable elements aside
from what is in the final prediction head. We explain
the Prompt Module in more detail in Section 3.2.

3.1. Overview

We give an overview of Gen-P-Tuning first, with an
accompanying diagram explaining the high-level steps
in Figure 2. For ease of exposition, it suffices to
explain what happens when the univariate foundation
model only uses a single transformer layer (f1 that is
shaded in pink in Figure 1). Gen-P-Tuning processes
a single multivariate input time series X ∈ R

C×T as
follows:

1. We separate input X ∈ R
C×T into its different

channels’ time series X(1),X(2), . . . ,X(C) ∈ R
T .

This step is shown in the leftmost part of Figure 2.

2. For each channel c = 1, . . . , C, we preprocess
X(c) ∈ R

T using the univariate foundation
model’s preprocessing function femb to obtain
the 2D arrays E(1), . . . ,E(C) ∈ R

P×D. This step
is shown using the blue boxes of Figure 2 (note
that each blue box is the same as the blue box
from Figure 1).
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3. The 2D arrays E(1), . . . ,E(C) ∈ R
P×D are

stacked together treating channels as the sec-
ond axis to produce a 3D array E ∈ R

P×C×D,
as shown in the top box labeled “Stack different
channels along second axis” in Figure 2.

4. We now introduce a trainable neural network
fprompt that takes the 3D array E ∈ R

P×C×D

as input, and outputs a summary 2D array P ∈

R
(C·K)×D that we refer to as the “prompt”; here

K is a user-specified hyperparameter that con-
trols the prompt size. Importantly, the prompt
P should encode summary information across
channels.

We refer to the function fprompt as the Prompt
Module. We provide the architecture we use for
the Prompt Module in Section 3.2.

5. Next, the prompt P ∈ R
(C·K)×D is “attached”

to each channel c’s preprocessed array E(c) by
vertically stacking P and E(c) to produce

Ẽ(c) ≜

[
P

E(c)

]
∈ R

(C·K+P )×D.

Roughly this could be thought of as adding a
prefix of C ·K fictitious patches prior to the actual
P patches of E(c). This step corresponds to the
boxes labeled “Stack vertically” in Figure 2.

6. For each channel c = 1, . . . , C, we feed each array
Ẽ(c) ∈ R

(C·K+P )×D as input to the univariate
foundation model’s first transformer layer f1 to
produce the output Ũ(c) ∈ R

(C·K+P )×D. This
step corresponds to the pink boxes in Figure 2.

7. Note that the first C · K rows of Ũ(c) ∈

R
(C·K+P )×D correspond to the fictitious patches

added in step 5. We now remove these rows as
to obtain the output U(c) ∈ R

P×D, as depicted
in the boxes labeled “Drop first C ·K rows” in
Figure 2.

Note that U(1), . . . ,U(C) ∈ R
P×D could be

viewed as the multivariate output produced using
the univariate transformer layer f1 with the help
of our Gen-P-Tuning strategy.

If the univariate foundation model has more than one
transformer layer, then steps 3–7 could be repeated
for the subsequent transformer layers. Supposing for
the moment that there is only 1 transformer layer,
then after obtaining U(1), . . . ,U(C) ∈ R

P×D from
step 7, we would simply train a prediction head in the
same manner as stated in Section 2.3, when we cov-
ered handling multivariate time series prediction with

channel independence. Conceptually, each input to
the transformer layer f1 is now provided with informa-
tion across channels since the prompt P summarizes
information across channels.

We point out two special cases of our approach:

• (Standard prompt tuning) If the Prompt Module
fprompt is defined to not actually depend on E

and instead just output an array of (C ·K)-by-D
numbers that are all treated as trainable param-
eters, then we recover a popular prompt tuning
strategy called P-tuning v2 (Liu et al., 2022).
This is the main reason we refer to our strategy
as Generalized Prompt Tuning.

• (Channel independence) In the degenerate case
where the prompt size hyperparameter K = 0,
so that effectively we do not attach any pre-
fix/prompt P to each channel’s preprocessed ar-
ray E(c), then we just recover the same idea as
the channel independent strategy of Section 2.3.

3.2. The Prompt Module fprompt

As our overview above indicates, the Prompt Mod-
ule fprompt’s main goal is to summarize the different
preprocessed time series across channels (a total of
P×C×D numbers) into a single array P ∈ R

(C·K)×D

that notably does not depend on the number of
patches P . In particular, fprompt needs to accom-
modate the possibility that different input time series
even within the same dataset could have different
numbers of patches P (and across different datasets,
the number of channels C could vary).

There are many ways to define fprompt. We specifi-
cally define it to do the following steps:

1. We apply a transformer module to E ∈ R
P×C×D

by treating the P different patches as if they are
different data points (so that each “data point” is
in R

C×D, where C is treated as the “time steps”
by the transformer module). The output per
patch is in R

C×D, and we stack these outputs
into a single array P′

∈ R
P×C×D.

2. We use a transformer to map P′ from R
P×C×D

to R
P×C×(K·D), followed by a max pooling oper-

ation to map it from R
P×C×(K·D) to R

C×(K·D),
and finally a reshape operation to map it from
R

C×(K·D) to R(K·C)×D. Note that there are other
ways of aggregating across the P dimension (to
make the output of the Prompt Module not de-
pend on the number of patches). We explain how
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to instead use an RNN or an MLP in Appendix B
(which includes experimental results with these
alternative architectures).

4. Experiments

Our experiments aim to show how different fine-tuning
strategies for adapting univariate time series founda-
tion models to multivariate time series classification
and forecasting work in practice on clinical data and
also on a public health dataset. To this end, we specif-
ically consider univariate time series foundation mod-
els, MOMENT (Goswami et al., 2024) and GPT4TS
(Zhou et al., 2023) that support both classification
and forecasting, and both are special cases of the for-
mulation we presented in Section 2.2.2 Moreover, we
run an experiment to study the effect of increasing the
prompt size hyperparameter K, and also point out
differences in runtime and the number of parameters
used by the different fine-tuning methods.

Datasets Classification experiments are performed
on MIMIC-III (Johnson et al., 2016), which is a
publicly available electronic health records dataset
collected from patients in the intensive care units
of the Beth Israel Deaconess Medical Center from
2001 to 2012. We follow the benchmark proposed
by Harutyunyan et al. (2019). Specifically, we fo-
cus on two tasks. The first is a binary classifica-
tion task of predicting in-hospital mortality based
on the first 48 hours of an ICU stay (referred to as
“MIMIC Mortality” in our tables later). The second
is a multi-class, multi-label classification task, where
we classify which of 25 acute care conditions occurred
in an ICU stay (“MIMIC Phenotyping”).

For these two MIMIC classification tasks, to simu-
late a resource-constrained environment, we use only
1000 randomly sampled patients, 60% of the data for
training, 10% for validation, and 30% for testing. In
the original benchmark, 17 clinical variables are in-
cluded. We also include as an additional variable the
number of hours since the time of admission to the
ICU. Instead of one-hot encoding as in the benchmark,
we encode categorical variables as ordinal values. The
time series are irregularly sampled, and missing val-
ues are imputed using forward filling when possible or

2. At a high-level, the major difference between these two
foundation models is that MOMENT is based on T5 (Raffel
et al., 2020) whereas GPT4TS is based on GPT2 (Radford
et al., 2019).

using the normal values suggested by the benchmark
otherwise.
Forecasting experiments are performed on an

influenza-like illness dataset (Wu et al., 2021; Centers
for Disease Control and Prevention, 2024). This is
a weekly sampled dataset with 7 channels/variables.
The dataset is split into 60% training, 10% validation,
and 30% testing. The forecasting horizon is 60 weeks.
We forecast all 7 variables in the dataset.3

Baselines We compare Gen-P-Tuning to the follow-
ing fine-tuning baselines:

1. Full fine-tuning: all parameters are updated.

2. LoRA (Hu et al., 2022): this baseline keeps the
pre-trained weight matrices for the transformer
blocks frozen but allows for each block to be
“updated” by a low-rank matrix in the following
manner. Let W denote the weight matrix for a
specific transformer block. Then we simply re-
place W with Wnew = W +AB, where matrices
A and B are low rank. LoRA fine-tuning corre-
sponds to leaving the original W fixed and only
learning the values in A and B.

3. Linear probing: this baseline is precisely the
channel-independent strategy mentioned in Sec-
tion 2.3. For MOMENT, the only learnable part
is now the prediction head. For GPT4TS, this
includes the input embedding layer (since it is
not pre-trained) and the prediction head.

4. P-tuning v2 (referred to simply as “Prompt Tun-
ing” in our tables later), where P is an array of
trainable parameters.

As we already stated at the end of Section 3.1, the
channel-independent strategy (linear probing) and
standard prompt tuning (P-tuning v2) could be viewed
as special cases of our Generalized Prompt Tuning
approach. However, in our experiments to follow,
for simplicity, the results we show for Gen-P-Tuning
are specific to when we define the Prompt Module
(Section 3.2) in a nontrivial manner so that it does
not simply reduce to either linear probing or P-tuning
v2. In practice, one could of course tune our Gen-
P-Tuning strategy (e.g., based on a validation set
evaluation metric) to choose between a nontrivial
Prompt Module, a trivial Prompt Module that just

3. We point out that Goswami et al. (2024) also presented fore-
casting results on this dataset but they report experimental
results only on forecasting one of the 7 variables (“OT”), so
the numbers they get are not directly comparable to ours.
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Table 1: MIMIC Mortality test set scores (mean ± std. dev. over 5 random seeds). For each univariate
foundation model, per column we bold whichever score is highest and underline the second-best
score. Note that STraTS is not a univariate foundation model that we fine-tune, so it is provided as
a non-foundation-model baseline.

Model Fine-Tuning Method Raw Accuracy AUROC F1 AUPRC

MOMENT

Full 0.891 ± 0.012 0.687 ± 0.020 0.508 ± 0.044 0.255 ± 0.038
LoRA 0.875 ± 0.021 0.720 ± 0.019 0.573 ± 0.050 0.272 ± 0.025
Linear Probing 0.878 ± 0.013 0.730 ± 0.035 0.544 ± 0.043 0.260 ± 0.018
Prompt Tuning 0.883 ± 0.012 0.724 ± 0.035 0.576 ± 0.058 0.274 ± 0.020
Gen-P-Tuning 0.881 ± 0.005 0.754 ± 0.021 0.591 ± 0.031 0.292 ± 0.026

GPT4TS

Full 0.886 ± 0.019 0.743 ± 0.018 0.524 ± 0.052 0.309 ± 0.023
LoRA 0.871 ± 0.017 0.708 ± 0.056 0.588 ± 0.028 0.254 ± 0.024
Linear Probing 0.859 ± 0.015 0.737 ± 0.033 0.584 ± 0.037 0.265 ± 0.037
Prompt Tuning 0.891 ± 0.013 0.689 ± 0.062 0.471 ± 0.004 0.236 ± 0.022
Gen-P-Tuning 0.887 ± 0.016 0.708 ± 0.025 0.499 ± 0.033 0.255 ± 0.038

STraTS 0.900 ± 0.000 0.601 ± 0.039 0.474 ± 0.000 0.159 ± 0.039

outputs a trainable array of numbers (resulting in P-
tuning v2), or no Prompt Module (resulting in linear
probing).

For MIMIC experiments, we also include a baseline
that is not a fine-tuning approach. Specifically, we use
STraTS (Tipirneni and Reddy, 2022), a transformer-
based model developed on MIMIC-III that applies
self-supervised pretraining (forecasting the values in
the next two hours). It encodes EHR data as a se-
quence of triplets (timestamp, variable name, variable
value). We pretrain the model using 1000 random
samples from the benchmark, and then perform the
classification tasks using the same samples.

Evaluation metrics We use accuracy, area under
the receiver operating characteristic curve (AUC), F1,
and area under the precision-recall curve (AUPRC)
for classification tasks. The macro variant of each
metric is used for MIMIC Phenotyping.4 We use
mean squared error (MSE) and mean absolute error
(MAE) for the forecasting task.

Main benchmark findings We present MIMIC
mortality classification performance in Table 1,
MIMIC phenotype classification performance in Ta-
ble 2, and influenza-like illness forecasting perfor-
mance in Table 3.

4. In the classification tasks, we point out that raw accuracy
alone is not a representative metric since there is a class im-
balance in MIMIC-III tasks (negative to positive ratio is 7:1
for mortality prediction, and 5:1 on average for phenotype
classification).

There is no method that always performs the best.
Gen-P-Tuning is often among the best-performing
ones. Linear probing sometimes performs very well,
which suggests that a channel-independent strategy is
sometimes sufficient. Indeed, some existing work has
demonstrated that channel-independence sometimes
performs well. For example, PatchTST (Nie et al.,
2023), which is a channel-independent method, has
been shown to outperform “channel-mixing” where
channels are concatenated before being fed into the
model.
Full fine-tuning sometimes does not perform well,

especially for forecasting experiments. This might
be a sign of catastrophic forgetting (Goodfellow
et al., 2014), which is commonly observed in low-
data regimes with deep networks. There has not been
previous work on catastrophic forgetting of time series
foundation models, but it has been observed in models
such as LSTMs (Schak and Gepperth, 2019).

As a reminder, linear probing and standard prompt
tuning can be thought of as special cases of General-
ized Prompt Tuning, where we set hyperparameters
differently. We can choose between these special cases
by whichever one achieves the best validation loss.
As an illustration of this, for MIMIC mortality pre-
diction, using the MOMENT foundation model, we
report the validation losses of linear probing, standard
prompt tuning, and Gen-P-Tuning (with a nontrivial
Prompt Module) in Table 4. In this case, Gen-P-
Tuning achieves the lowest validation loss, and on the
true test set, it does indeed outperform the simpler
special cases.
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Table 2: MIMIC Phenotyping test set scores (mean ± std. dev. over 5 random seeds). This table uses the
same formatting as Table 1 (in terms of what bolding and underlining mean).

Model Fine-Tuning Method Raw Accuracy AUROC F1 AUPRC

MOMENT

Full 0.832 ± 0.007 0.643 ± 0.019 0.070 ± 0.024 0.276 ± 0.021
LoRA 0.832 ± 0.007 0.640 ± 0.025 0.085 ± 0.023 0.273 ± 0.027
Linear Probing 0.830 ± 0.006 0.631 ± 0.026 0.071 ± 0.031 0.264 ± 0.022
Prompt Tuning 0.832 ± 0.008 0.634 ± 0.012 0.069 ± 0.036 0.268 ± 0.015
Gen-P-Tuning 0.835 ± 0.004 0.666 ± 0.015 0.135 ± 0.017 0.294 ± 0.012

GPT4TS

Full 0.823 ± 0.009 0.593 ± 0.014 0.060 ± 0.028 0.234 ± 0.014
LoRA 0.801 ± 0.015 0.596 ± 0.023 0.107 ± 0.024 0.241 ± 0.015
Linear Probing 0.789 ± 0.009 0.555 ± 0.016 0.129 ± 0.029 0.213 ± 0.015
Prompt Tuning 0.831 ± 0.010 0.581 ± 0.012 0.024 ± 0.017 0.227 ± 0.014
Gen-P-Tuning 0.832 ± 0.003 0.599 ± 0.010 0.020 ± 0.009 0.231 ± 0.010

STraTS 0.835 ± 0.008 0.573 ± 0.020 0.000 ± 0.000 0.217 ± 0.016

Table 3: Influenza-like illness forecasting test set scores (mean ± std. dev. over 5 random seeds). For
each univariate foundation model, per column we bold whichever score is best and underline the
second-best score.

Model Fine-Tuning Method MSE MAE

MOMENT

Full 3.199 ± 0.102 1.262 ± 0.022
LoRA 3.109 ± 0.021 1.176 ± 0.006
Linear Probing 2.622 ± 0.036 1.159 ± 0.011
Prompt Tuning 2.918 ± 0.047 1.200 ± 0.009
Gen-P-Tuning 3.083 ± 0.080 1.200 ± 0.016

GPT4TS

Full 3.219 ± 0.093 1.240 ± 0.012
LoRA 3.247 ± 0.337 1.230 ± 0.089
Linear Probing 3.202 ± 0.303 1.232 ± 0.072
Prompt Tuning 3.105 ± 0.429 1.253 ± 0.098
Gen-P-Tuning 2.939 ± 0.378 1.209 ± 0.092

Table 4: Validation loss of linear probing, prompt tuning, and Gen-P-Tuning on MOMENT mortality
prediction task (mean ± std. dev. over 5 random seeds).

Fine-Tuning Method Validation Loss

Linear Probing 0.396 ± 0.094
Prompt Tuning 0.397 ± 0.100
Gen-P-Tuning 0.347 ± 0.064

Prompt size We demonstrate the effect of increas-
ing the prompt size on the MIMIC-III mortality pre-
diction task (Table 5). For this task, performance
generally becomes better as the prompt size increases.

Computational efficiency To give a sense of the
number of trainable parameters for the different fine-
tuning methods, we report these numbers specifically
for the MIMIC-III mortality prediction in Table 6.

Runtime We present the runtime in seconds in Ta-
ble 7. The main reason why both prompt tuning
and Gen-P-Tuning can take more time than full fine-
tuning, LoRA, and linear probing is that the Prompt
Module needs to be trained and it depends on all
channels. Furthermore, the backbones of MOMENT
and GPT4TS are implemented in Huggingface as is
the LoRA fine-tuning method. It is possible that Hug-
gingface’s implementation of these are optimized for
faster training, whereas we did not prioritize compu-
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Table 5: MOMENT Mortality test set scores (mean ± std. dev. over 5 random seeds) with varying prompt
size. As a reminder, larger prompt size hyperparameter K corresponds to a larger prompt size.

Prompt size hyperparameter K Raw Accuracy AUROC F1 AUPRC

1 0.879 ± 0.011 0.759 ± 0.019 0.574 ± 0.015 0.293 ± 0.037
2 0.871 ± 0.007 0.748 ± 0.033 0.593 ± 0.036 0.297 ± 0.056
4 0.881 ± 0.005 0.754 ± 0.021 0.591 ± 0.031 0.292 ± 0.026

Table 6: Number of trainable parameters in mortality prediction experiments.

Model Full fine-tune LoRA Linear Probing Prompt Tuning Gen-P-Tuning

MOMENT 341,651,993 (100%) 666,649 (0.2%) 411,673 (0.1%) 685,465 (0.2%) 619,777 (0.2%)
GPT4TS 60,985,345 (100%) 1,132,033 (1.9%) 139,777 (0.2%) 1,270,881 (2.1%) 1,646,593 (2.7%)

Table 7: Runtime in seconds of all fine-tuning strategies (one experimental repeat).

Model Experiment
Full

LoRA
Linear Prompt

Gen-P-Tuning
fine-tune Probing Tuning

MOMENT
MIMIC Mortality 1218 1025 418 706 3317

MIMIC Phenotyping 1287 1084 421 697 3507
Forecasting 46 42 32 38 70

GPT4TS
MIMIC Mortality 130 119 107 430 913

MIMIC Phenotyping 137 124 112 432 943
Forecasting 7 7 6 29 43

tational efficiency in our implementations of Prompt
Tuning and Gen-P-Tuning.

5. Discussion

In this paper, we demonstrate the applicability of fine-
tuning methods to time series foundation models on
disease surveillance and electronic health records data.
Moreover, we propose a prompt-tuning method that
fine-tunes univariate time series foundation models for
multivariate time series classification and forecasting
by adding a Prompt Module that combines informa-
tion across channels.

We highlight some limitations of our work that in
turn point toward directions of future research. First,
we only evaluated the performance of models on two
datasets, with only a fairly limited collection of fea-
ture types. The influenza-like illness dataset already
resembles many other time series forecasting tasks so
that we would expect time series foundation models to
work well for it. As for MIMIC, we reused the setup
by Harutyunyan et al. (2019), which only considers
a relatively small set of features. There are other
modalities common in healthcare, such as waveforms,
which are recorded more frequently and thus have a

longer context available. Importantly, healthcare time
series also routinely consist of categorical variables
that change over time. We suspect that time-varying
categorical variables do not closely resemble the sort
of time series that time series foundation models are
typically trained on. However, we have not investi-
gated how fine-tuning time series foundation models
copes with these categorical variables.

A separate direction that we have not explored is
interpreting how the learned Prompt Module combines
information across channels. While attention weights
of the Prompt Module could be visualized, there is
debate on whether attention weights are interpretable
(e.g., Serrano and Smith 2019). A direction that could
be promising is to synthetically combine univariate
time series to form multivariate time series (so we
know how channels are combined). We can then check
whether the Prompt Module can recover the ground
truth channel mixing strategy.
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Appendix A. Implementation Details

Experiments were run with NVIDIA RTX A6000,
Python 3.11.5, Pytorch 2.4.0, Huggingface-hub 0.24.0,
and MOMENT-1-large.

All experiments were run with the following hyper-
parameters:

1. Number of epochs: 10

2. Scheduler: OneCycleLR

3. Optimizer: AdamW

4. Learning rate: 5× 10−5

5. Max learning rate: 0.01

6. Weight decay: 0.05

7. Loss function: MSE for forecasting, binary cross-
entropy for classification

8. Prompt size K: 16 for forecasting dataset, 4 for
classification

9. LoRA hyperparameters:

• Attention dimension: 1 (attention dimension
was chosen to make the number of trainable
parameters of LoRA close to that of Gen-P-
Tuning.)

• Alpha: 16

• Dropout: 0.1

Other parameters are taken from the source code
or the paper of MOMENT. We did not perform any
hyperparameter tuning.

Appendix B. Aggregating Across

Patches in the Prompt

Module

The input to the Prompt Module has a size that scales
with the number of patches whereas the output of the
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Table 8: MIMIC Mortality test set scores (mean ± std. dev. over 5 random seeds). For each univariate
foundation model, per column we bold whichever score is highest.

Model Aggregation Method Raw Accuracy AUROC F1 AUPRC

MOMENT
MLP 0.882 ± 0.010 0.750 ± 0.025 0.553 ± 0.044 0.280 ± 0.017
RNN 0.881 ± 0.010 0.755 ± 0.027 0.584 ± 0.029 0.304 ± 0.029
Transformer 0.881 ± 0.005 0.754 ± 0.021 0.591 ± 0.031 0.292 ± 0.026

GPT4TS
MLP 0.892 ± 0.014 0.685 ± 0.066 0.479 ± 0.017 0.226 ± 0.051
RNN 0.890 ± 0.011 0.716 ± 0.030 0.489 ± 0.032 0.253 ± 0.026
Transformer 0.887 ± 0.016 0.708 ± 0.025 0.499 ± 0.033 0.255 ± 0.038

Table 9: MIMIC Phenotyping test set scores (mean ± std. dev. over 5 random seeds). For each univariate
foundation model, per column we bold whichever score is highest.

Model Aggregation Method Raw Accuracy AUROC F1 AUPRC

MOMENT
MLP 0.830 ± 0.006 0.640 ± 0.018 0.079 ± 0.030 0.270 ± 0.015
RNN 0.837 ± 0.004 0.669 ± 0.013 0.129 ± 0.024 0.297 ± 0.013
Transformer 0.835 ± 0.004 0.666 ± 0.015 0.135 ± 0.017 0.294 ± 0.012

GPT4TS
MLP 0.832 ± 0.005 0.581 ± 0.018 0.026 ± 0.024 0.230 ± 0.016
RNN 0.831 ± 0.006 0.592 ± 0.008 0.037 ± 0.013 0.229 ± 0.007
Transformer 0.832 ± 0.003 0.599 ± 0.010 0.020 ± 0.009 0.231 ± 0.010

Table 10: Influenza-like illness forecasting test set scores (mean ± std. dev. over 5 random seeds). For each
univariate foundation model, per column we bold whichever score is best.

Model Aggregation Method MSE MAE

MOMENT
MLP 2.718 ± 0.049 1.154 ± 0.014
RNN 3.044 ± 0.081 1.210 ± 0.017
Transformer 3.083 ± 0.080 1.200 ± 0.016

GPT4TS
MLP 3.196 ± 0.556 1.253 ± 0.104
RNN 2.721 ± 0.678 1.140 ± 0.145
Transformer 2.939 ± 0.378 1.209 ± 0.092

Prompt Module does not depend on the number of
patches. As a reminder (Section 3.2’s step 1), the
Prompt Module first embeds E (using an transformer)
to obtain the array P′

∈ R
P×C×D. At this point,

we want to summarize P′ into an array that does
not depend on P . There are many ways of doing
this summarization that is fundamentally about ag-
gregating information from P′ across patches. Some
examples include transformers, recurrent neural net-
works (RNN), and multi-layer perceptions (MLP).
Transformers and RNNs are able to process sequences
that vary in length. MLPs could also be applicable
since many time series foundation models pad or trun-
cate input sequences so that they are all the same
length.

In more detail, we could aggregate across patches
using the following three different approaches:

1. Transformer: A transformer strategy has already
been presented in Section 3.2’s step 2.

2. RNN: We use an RNN to map P′ from R
P×C×D

to R
P×C×(K·D). We use the output at the last

timestamp, and then a reshape operation to map
it from R

C×(K·D) to R
(K·C)×D.

3. MLP: We use a MLP to map P′ from R
P×C×D

to R
K×C×D, then followed by a flatten operation

to map it from R
K×C×D to R

(K·C)×D.

We present the test performance of MIMIC Mor-
tality (Table 8), MIMIC Phenotyping (Table 9), and
forecasting (Table 10) using transformer, RNN, and
MLP aggregation strategies.
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