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RECTIFIABILITY AND TANGENTS IN A ROUGH RIEMANNIAN
SETTING

MAX GOERING, TATIANA TORO, AND BOBBY WILSON

ABSTRACT. Characterizing rectifiability of Radon measures in Euclidean space has led to fun-
damental contributions to geometric measure theory. Conditions involving existence of prin-
cipal values of certain singular integrals [MP95] and the existence of densities with respect to
Euclidean balls [Pre87] have given rise to major breakthroughs. We explore similar questions
in a rough elliptic setting where Euclidean balls B(a,r) are replaced by ellipses Ba (a,r) whose
eccentricity and principal axes depend on a.

Precisely, given A : R" — GL(n,R), we first consider the family of ellipses Ba(a,r) =
a+ A(a)B(0,7) and show that almost everywhere existence of the principal values

. Aa) "y~ a)
L0 Jrn\ By (a,¢) |A(a)=(y — a)|m+?

implies rectifiability of the measure p under a positive lower density condition. Second we
characterize rectifiability in terms of the almost everywhere existence of

Ox(a) (1, @) = lim #(Baa,r)) € (0,00).

10 rm

du(y) € (0, 00)

1. INTRODUCTION

In this paper, we study two classical questions from geometric measure theory: Does rectifia-
bility of a measure follow from its density properties? Does rectifiability of a measure follow
from the existence of principal values of singular integrals?

The origins of Geometric Measure Theory can be traced back to the 1920s and 1930s when
Besicovitch began studying the density question for 1-dimensional sets in the plane, [Bes28|,
Bes38]. A modern formulation of Besicovitch’s results is that if we let m = 1, n = 2, and
uw=Hm"L E be a Radon measure for some Borel £ C R" then whenever
(1.1) 0 < u(R™) < 00 and 0< limw < oo p—ae. x,

0 Wy, T™
it follows F is m-rectifiable. In [MR44], it was shown that when m = 1, n = 2, and p is
any Radon measure, (ILJ)) implies rectifiability of u. The extension n > 2 was provided in
[Moo50]. Federer proved [Fed47] a general converse to Besicovitch’s question, i.e., that is m-
rectifiable measures have positive and finite density almost everywhere. In [Mar61] the first
step to considering m-dimensional sets for m > 2 was made, proving that 2-dimensional sets in
R™ with density one at almost every point are rectifiable. In [Mar64], Marstrand showed that
if the s density of a measure exists on a set of positive measure then s is an integer. Finally the
density question for sets in R™ was resolved in [Mat75], where Mattila proved that if y = H™LE
has density 1-almost everywhere, then E is rectifiable. Preiss ultimately resolved the density
question for measures in Euclidean space in [Pre87], see Theorem The introduction of
[Pre87] is also a great source for a detailed history of this problem and brief description of the
difficulties that needed to be overcome for each subsequent generalization.

Another fundamental problem in geometric measure theory is understanding the relationship
between the regularity of a set or measure and the behavior of singular integral operators on

that set or measure. In the quantitative setting, David and Semmes [DS91, [DS93] showed that
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the L2-boundedness of all singular integral operators of Calderon-Zygmund type is equivalent to
uniform rectifiability of Ahlfors regular measures. They conjectured that the L?-boundedness
of the Riesz transform should be sufficient to imply rectifiability of Ahlfors regular measures. In
[Mat95, IMP95] a qualitative version of this conjecture was shown to be true: existence of princi-
pal values of m-dimensional Riesz transform implies rectifiability of measures under reasonable
density assumptions. The conjecture of David and Semmes was resolved in the codimension
one case in [NVT14]. Since then, there has been success in extending this codimension 1 quan-
titative characterization to the setting of other singular integrals which arise as the gradient
of fundamental solutions to divergent form elliptic PDEs with the ”frozen coefficeint method”
[KS11), [CAMT19, PPT21, MMPT23]. We discuss some of the most relevant new results to the
current article in Section [Tl

To study these problems we introduce a generalization of tangent measures called A-tangents.
This is in line with the generalization of Preiss’ tangent measures to metric groups, see [Mat05].
However, without a metric preserving group action, our methods fall outside those previously
used.

1.1. Principal values and rectifiability. To motivate the first main theorem of this article,
Theorem [LT], consider the setting of a symmetric uniformly elliptic, matrix A € R"*" and the
associated operator Ly := —div(AV:). For dimensions n > 2, the fundamental solution has
gradient given by
-1 —1)2
(12) V16($,y; A) = Cp 4 (y x) /2 = Cp (A )7(1y w) n’
det(A)/2(A-Y(y —2),y —z)" det(A)[A~(y — z)|

where A is the unique positive definite matrix satisfying A2 = A. See, for instance, [Mit13].
Given a Radon measure u, the principal value of the gradient of the single layer potential
associated to L4 at = is given by

(1.3) Tap(z) =i V,0(z,y; A)du(y) = i Ay — o)
. 4p(x) = lim +9(x,y; y) = lim _
! 0 J|A-1(y—a)|e 8 el0 Jia-1(z—y)ze ATy — @)

du(y).

For the remainder of this paper, A : R" — GL(n,R), is a matrix valued mapping denoted
as a — A(a) and A : R® — R™ "™ is a uniformly elliptic matrix valued function. Given
m € {1,...,n — 1}, define

) Ny —=x
M=) )

1.4 Ty p(x) := lim
(1.4) Kp(w) =i @)1 (y—a)ze [A(@) (Y — @)

Since multiplication by A(x)~! is a linear transformation, when A(z)? = A(x) = A(0),

Ale) T} () = Tap(a)

recovers the gradient of single layer potential in the constant coefficient codimension 1 setting.
Therefore, in this setting, the existence of T *u(z) and Tau(r) are equivalent. We use T3 u(z)
as it is more convenient in the geometric setting. Theorem [Tl states that given lower density
bounds on p, the a.e. existence of T{"u(z) implies that a.e. tangents to p are flat. Assuming
upper density bounds on p, this implies rectifiability. More precisely:

Theorem 1.1. Suppose A : R" — GL(n,R) is a measurable function and p is a finite Borel
measure. If 07" (u,x) > 0 and T\'u(x) exists for p almost every x, then:

(1) For p a.e. x, Tan(pu,x) C M, the space of flat measures in R™.
(2) If also 07" (u, x) < 0o almost everywhere, then u is m-rectifiable.

See the definition of Tan(p,x) and M, in Sections[21] and [Z2
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We reiterate that the coefficients A need not satisfy any continuity assumptions nor have any
uniformly controlled eccentricity.

In the case where A = I,,, this theorem was proven in [MP95]. There, the fact that Tan(u,x) C
M,, almost everywhere is ultimately the consequence of a (doubly) rotationally-symmetric
condition for the tangent measures. In the setting of Theorem 1.1 it is not clear that tangent
measures satisfy this type of symmetry. The novelty of our approach is that, taking guidance
from what would occur on a Riemannian manifold, we introduce a notion of anisotropic tangent
measures called A-tangents. They absorb the anisotropy at the level of u to recover the same
symmetry condition for A-tangents that was used in [MP95]. After showing this implies a.e.
A-tangents to u are flat, we recover a.e. flatness of tangents to u.

When m = n — 1, we can additional assume that A : R® — R™*" is in DMO, see Section 4.2,
and frame Theorem [Tl in terms related to the elliptic equation

Lau = —div(AVu) = 0.

Denote the fundamental solution to the equation by I'a, that is, Lal'a(,y) = 6,. When
A has sufficiently nice varying coefficients, the expectation is that ViI'g(z,y) is close to
V10(z,y; A(x)), but not equal. Still, there is no a priori reason that the existence of prin-
cipal values of the singular integrals defined with respect to ViI'4(z,y) and V10(x,y; A(x))
are equivalent. Here V1 is used to denote taking the gradient in the first component only. This
is a necessary distinction because © (x, Y; A(m)) has multiple entries that depend on =«.

However, roughly speaking, estimates from [MMPT23, Lemma 3.12 and 3.13] show that if

A € DMO then the principal values in (I3)) and (I5) converge in an L'(u) sense, see Lemma
@7 for the formal statement. This yields the following corollary of Theorem [I11
Corollary 1.2. Let u be a finite Borel measure on R™ and A : R™ — R™ ™ q uniformly elliptic
matriz-valued function. Suppose 0 < 07~ (u,x) < 0" 1*(u,z) < oo and A € DMO. If
(1.5) lim Vila(z,y)du(y) < oo

0 J|A(e) L (y—a)|2e
for p a.e. x, then p is (n — 1)-rectifiable.

Remark 1.3. Given a positive definite matrix A € R™"*" we consider the Finsler p-Laplacian
corresponding to the norm x — (Az,z)"/2. When p =1+ "7_1, that is,

(1.6) L) = —div <<AV-, V)5 AV )

We note that the function ©™(-,y; A) = (A~ (z — y),z — y>1_Tm solves L7O™ (- y; A) = ¢,
for some constant ¢y depending on m,n, A. Therefore, O (-,-; A) = cal@m(-, -3 A) is the fun-
damental solution for L'}. A computation shows that for some ¢; = ¢1(m,n, A),

ANy —a) a1 AT —y)
(14—1(y—gzc),y—ulc>TJrl ANz —y) |t
where A2 = A. When A has variable entries, let I'"}(-,y) denote the function so that L'fT"} (-, y) =
dy. In analogy to the way Corollary is proven, we suspect anytime A has sufficient regu-
larity to ensure that a Finsler p-analog, with p = 1 + "7_1, of Lemma 4.7 holds for some

A : R"™ — GL(n,R), then under appropriate density assumptions, the existence of principal
values of the Finsler p-type single-layer potential should imply rectifiability of u.

Clvmgm(xa Y; A) =

Corollary is in the reverse direction of the following theorem from [Pul22, Theorem 3.2].
Unfortunately, Corollary and Theorem [[4] do not provide characterization of rectifiable
measures because of the different truncations used to define the principal values.
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Theorem 1.4. Let pi be an (n—1)-rectifiable measure on R™ with compact support. Let A € C*
be uniformly elliptic. Then for every f € L?(u) the principal value

lim Vi€(z,y) f(y)du(y) < oo

el0 |lx—y|>e

exists for p-almost every x.

At first, one may expect that the quantitative nature of “the L2-boundedness of a singular
integral operator” might be stronger than assuming that principal values exist. However, for
measures that are not absolutely continuous with respect to the Lebesgue measure this is a
difficult question. Intuitively this is because the existence of a principal value is equivalent to
some sort of local symmetry of the measure (or a sufficiently small density). This intuition
was recently formalized for measures satisfying an upper-density assumptions [JM20a]. There,
it is shown that for a measure with an L?-bounded Calderon-Zygmund type singular integral
operator, existence of principal values is equivalent to either the density of the measure being
zero or the measure being symmetric in terms of a transport distance to a family of symmetric
measures. Previous proofs that L?-boundedness of the Riesz transform implies existence of
principal values relies on the fact that L?-boundedness implies rectifiability and then proceed
with a careful extension of Calderon-Zygmund estimates to Lipschitz graphs [Mat99, Chapter
20].

It was first shown in [Tol08] that one can drop the lower-density assumption in [MP95]. Ad-
ditionally, a square function for the center of mass has been used to characterize rectifiable
measures [MV09] Vil22] and extend some results to an Q-symmetric setting [Vil21]. Further
results on rectifiability and principal values in various settings can be found in [Ver92, [MM94,
Huo97, [TM20Db), [JM22a].

1.2. Densities and rectifiability. In the seminal work [Pre87], Preiss characterized m-rectifiable
measures in terms of the existence of positive and finite densities, see Sections and [3 for
definitions.

Theorem 1.5 (|[Pre87]). Let 1 be a Radon measure on R™ and 0 < 07*(u,a) for p a.e. a in
R™. There ezists a dimensional constant 6, > 0 so that the following are equivalent.

(1) w is countably m-rectifiable.
(2) For i a.e. a, any of the following hold:
i) 0<80™(pu,a) < oo.
ii) Tan(u,a) C My, m, the set of m-dimensional flat Radon measures on R™.
iii) 07 (p,a) < oo and Tan(p,a) C M, the space of flat measures on R™.
i)
0™ (1,0)
01, a)

The following statement summarizes the main results of Section 5 where we show that in the
Riemannian setting even with very rough metric, an analogue of Preiss’ theorem holds.

— 1< by

Theorem 1.6. Let p be a Radon measure on R™ and A : R" — GL(n,R). If 07" (u,a) > 0 for
uoa.e. a €R™ and 6, is as in Theorem [L3, the following are equivalent:

(1) w is countably m-rectifiable.
(2) For p almost every a, any of the following hold:
i) 0 < O3(q)(1,a) < oo.
ii) Tanp (p, a) C My m, the set of m-dimensional flat Radon measures on R™.
iii) 07 (1, a) < oo and Tanp(u,a) C M, the space of flat measures on R™.
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iv) There exists an invertible matriz A(a), so that
HKL(,:) (M’ a)

—1< 6y
H]T(L(a%*(/“j” a’)

Remark 1.7. Depending upon eigenvalues of A(a), there exist positive finite constants ¢4, C,
so that Ba(0,¢,) C B(0,1) C B(0,C,). Hence, in Theorem [[.6] the hypothesis 67" (u,a) > 0 is
equivalent to assuming 0}", (11, a) > 0.

Remark 1.8. Since Theorem [[.6] holds for arbitrary A : R" — GL(n,R) condition (i) says that
the rectifiability of p is equivalent to the existence at p almost every a of some choice of A(a)
so that the density 63" (u, a) exists.

There has been recent work in the literature extending the results of [Mat75] to other settings.
It is extended to some homogeneous groups in [JM22b] and to finite-dimensional strictly convex
Banach spaces by the third author in [Wil23]. In the codimension 1 Heisenberg and parabolic
settings [Mer22l, MMP22] show that the existence of appropriate densities for measures implies
rectifiability of the measure. The study of density questions in the Heisenberg group was started
by [CT15] which demonstrates that Marstrand’s density theorem holds for the Heisenberg group
and the study of uniform measures in the Heisenberg group was initiated in [CMT20]. It is also
known that locally 2-uniform measures in R? with respect to the density || - ||, are rectifiable,
[Lor03].

In early drafts of this work, we used A-tangents to prove the equivalences of (1) and (i)-(iii) in
Theorem While writing this paper, Bernd Kirchheim suggested an alternate proof of the
equivalence of (1) and (i). His suggestion could be modified to prove the equivalence of (1) and
(iv), cf. Theorem [£:3 We chose to include the original proof of the equivalence of (1) and (i)
for completeness, cf. Theorem
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2. BACKGROUND AND PRELIMINARIES

2.1. Tangent measures and d-cones. Whenever we say p is a Radon measure we assume it
is a Radon outer measure. We write B(x,r) = {|ly — x| < r} and U(z,r) = {|ly —z| < r}. If
x = 0 we may simply write B, and U,. Whenever E C R" and r > 0, we let rE = {rz : x € E}.
For each a € R™ and r > 0, define the translation and scaling map

—Qa
Ta,r(y) = y—r i Y € R".

Given a Radon measure p on R™ and a Borel 7' : R™ — R"™, denote by T'[u] the image measure
of u by T, namely T[u](E) = p(T~Y(E)). In particular, T, .[u] is defined by

Tor[u)(E) = (T, (E)) = pla +1E)
for all £ C R".
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Definition 2.1 (Tangent measures). Let u be a Radon measure on R™. We write v € Tan(u, a)
and say that v is a tangent measure to p at a if v is a non-zero Radon measure and there exists
¢; > 0 and r; | 0 so that

*

ciTavri l:lu'] - V7

where = denotes convergence in the weak-* sense. Further we write Tan[u] for the weak-x
closure of Ugegpt nTan(u, a).

For a compact set K C R"™, and two Radon measures p, v we define

Pl =sup{ [ gau=0) | Lin(5) <1 1 € €l |

If K = B, we simply write F.(-,-). We recall, see [Mat99, Lemma 14.13] that for a sequence of
Radon measures {u;} and a Radon measure p,

(2.1) pe — p <= lim Fp(ug,p) =0 Yr>0.
k—o0

It is well-known, see [Pre87, Proposition 1.12], that

(2.2) F(p,v) = ZQ_Z min{1, Fy(p,v)}
(=1

defines a metric on the space of Radon measures. Moreover F' generates the topology of weak-x
convergence. We denote F(u) = F(u,0).

Proposition 2.2. Let u be a Radon measure on R™ and T,T; : R™ — R™ be proper homeomor-
phisms, i.e., homeomorphisms so that T~V (K) is compact whenever K is compact. If u; Ny
and TZ-,T[1 converge uniformly on compact subsets to T, T~ respectively, then Tj[u;] = T[u)].

Proof. Fix f € C.(R") and let K = spt f. Since f has compact support, f is uniformly
continuous. Let w denote its modulus of continuity. Since T;l — T~ locally uniformly, if
F; = T"Y(K)U T, }(K), then F; C F for some fixed compact set F. Since T; — T locally

i—00

uniformly, d; := [|T; — T|| oo (ry —— 0. Therefore,

lim ' [ racri - T[u])‘ ~ lim ‘/ f o Tdps — f o Tdu'

1—00 1—00

<timsup [ 1£oT; = foThaus-+| [ 7o Tdt - )
< limsup w(d;) i (F3).

(2

Since j; — p, and F; C F we know limsup; p;(F;) < limsup, u;(F) < oo. The proposition
follows since lim sup; w(d;) = 0. O

The next theorem originates in [Pre87, Theorem 2.12], but our presentation follows [Mat99
Theorem 14.16].

Theorem 2.3. Let i be a Radon measure on R™. Then at p almost all a € R™ every v €
Tan(u, a) has the following two properties:

(1) Ty r[v] € Tan(pu,a) for all z € spt v,r > 0.
(2) Tan(v,z) C Tan(p,a) for all x € spt v.

A useful tool for quantifying properties of tangent measures is their distance to d-cones.
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Definition 2.4 (Cones, d-cones, and basis). A collection of non-zero Radon measures M is
called a cone if y € M = cu € M for all ¢ > 0. A cone of Radon measures is called a
d-cone if p € M = Toy,[u] € M for all » > 0. The basis of a d-cone is the collection of
€ M so that Fi(u) = 1. We let Mp denote the basis of M. A d-cone M is said to have a
closed (respectively compact) basis if the basis is closed (respectively compact) with respect to
the weak-* topology.

Proposition 2.5. [Pre87, Proposition 2.2] If a d-cone M of Radon measures has closed basis,
then M has a compact basis if and only if for every A > 1 there is a 7 = 7(\) > 1 so that

(2.3) Frr(p) < AE-(pn) YueM Vr>D0.

In this case, 0 € spt u for all u € M.

Let M be a d-cone and v a Radon measure in R”. If s > 0 and 0 < F,(r) < oo we define the
distance between v and M at scale s by

(2.4) ds(v, M) :inf{FS <%,u> | n€ M and Fy(u) :1}.

If Fs(v) € {0,00} we define ds(v, M) = 1.
Proposition 2.6. [KPT09, Remark 2.1 and 2.2] If u,v are Radon measures,

(2.5) Fy(p,v) = rFy(To [p], To . [V])-

If M is a d-cone and v a Radon measure,

i) ds(v, M) <1 for all s > 0.
i) ds(v, M) = dy (Tos[v], M) for all s > 0.
i) If vy = v and F,(v) > 0, then dg(v, M) = lim;_, . dg(v;, M).

The ideas behind this next theorem originate in [Pre87, Theorem 2.6], but our presentation is
a combination of those in [Pre87, Theorem 2.6] and [KPT09, Theorem 2.1].

Theorem 2.7. Suppose F is a closed d-cone with compact basis, p is a Radon measure, and
rg > 0.

(1) If there exists v € Tan(p,a) NF, 0 < e <1, and v € Tan(p,a) so that 0 < € < dp, (v, F),
then there exists ve € Tan(u,a) satisfying

{dm(ue,]:) =€

dr(Ve, F) <€ 1>y

(2) Suppose M is a d-cone with closed basis and the property

(P) {Eleo > 0 such that ¥ € € (0,¢y) there exists no v € M

satisfying dr (v, F) < e ¥r > 19 >0 and dy,(v, F) = €.
Whenever a € R™ is so that
Tan(u,a) C M and Tan(u,a) N F # 0,

then Tan(u,a) C F.
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2.2. Remarkable d-cones. Several specific examples of d-cones will play an important role in
this article. We introduce here, the space of m-dimensional flat measures in R",

My ={cH™LV :V € G(n,m) and 0 < ¢ < oo},
where G(n,m) is the space of m-dimensional planes in R”. We denote the space of flat measures
in R™,

Mn = LnJ Mn,m-
m=0

We also consider the space of uniform measures on R”,

UR") ={v:0e€sptv and v(B(z,r)) =v(B(y,r)) Vz,y €sptv, Vr>O0},
and the space of m-~uniform measures

UT(R™) ={v e U(R™) : e > 0 so that v(B(z,r)) = cr™ YV € spt v, Vr > 0}.
The next lemma is a remark in [Pre87, Section 3.7(2)].

Lemma 2.8. The following d-cones have compact basis: My, My, m, U™ (R™), and U(R™).

2.2.1. Symmetric measures. In this section we define the d-cone of symmetric measures and
review some of their properties. The information from this section is contained within [MP95],
but included here in a condensed fashion for the readers convenience.

Definition 2.9. [MP95, Definition 3.4] Let v be a non-zero locally finite measure over R". A
point x € R™ is said to be a point of symmetry of v if

/ (z —z,y)dv(z) =0
B(z,r)

for every y € R™ and every r > 0. The measure v is said to be symmetric if every point in spt v
is a point of symmetry. We denote the d-cone of all symmetric measures on R whose support
contains {0} by S,.

Lemma 2.10. [MP95, Lemma 3.5] Let v be a non-zero locally finite measure over R™, s > 0,

and x € R™. Then the following three conditions are equivalent.

(1) x is a point of symmetry of v.
(2) There exists an m € {1,...,n} so that

xr—z
T2 gu(z) =0
/r§|x—z§R |z — z[m+l

forall0 <r < R < o0.
(8) For all continuous g : R — R with compact support in R\ {0},

[ @~ 2)gllo = 2Dy av(z) =o.

The next lemma states S, has two properties which are the hypothesis (iv) and conclusion (b)
of [MP95], Lemma 3.2]. The fact that S, satisfies the hypotheses of that lemma is verified across
[MP95, Lemma 3.6, 3.9, 3.11].

Lemma 2.11. S, has the following properties
(1) There is ey > 0 such that whenever v € S,, satisfies
limsup d, (V,Mn,m) < €

r—00
for some m =0,1,...,n, then the linear span of spt v has dimension at most m.
(2) Suppose d = dimV, V = spanspt v, and v € S,,. Then either there exists some ¢ > 0

so that v = cHY LV or else Tan[v] N U?;ll./\/lm #0.
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2.2.2. Uniform measures. In this section we recall some information about uniform measures.
While all the ideas originate in [Pre87]ﬂ our presentation is heavily influenced by [DLO8|, Section
6].

Lemma 2.12. [Pre87, Lemma 3.9] If v is a uniform measure on R™, then M,, N Tan(v,z) # ()
for v almost every x € R™.

Proposition 2.13. [DLO8, Proposition 6.16] If v is m-uniform then there exists some m-
uniform X so that, for any sequence {r;} with r; — oo,

Zlgélo r; "o V] = A

Definition 2.14. For v € U™(R") we define Tan.(r) = {A\} where X is the measure from

Proposition 213l We call A the tangent at infinity. Moreover, we say that v is flat at infinity
it A€ My .

Proposition 2.15. [DLO8|, Propositions 6.18, 6.19] There exists a constant €9 = e(m,n) so
that if v € U™(R"™), {\} = Tany(v), and

d1(>\a Mn,m) < ¢,

then A € My, ;. Moreover, in this case v = .

We now show that when F = M,, ,, and M = U™ (R") property (P]) holds.

Lemma 2.16. There exists ¢ = €(m,n) > 0 so that for all € € (0,€] there exists no u €
U™(R™) satisfying

< >
(26) {dr(:uaMn,m) S € Vr >1

dl(M’Mn,m) = €.

Proof. Let ¢y be as in Proposition 2151 Suppose p € U™ (R™) satisfies (2.6]). Let A = Tanqo ().

By Propositions and 2.13]

dl(AaMn,m) = hm dl (2ijmTO,2J' [M]aMn,m) = hm d2j (:U'aMn,m) Se
Jj—o00 j—oo

So, Proposition ZT5 implies A, p € M,, ,. This contradicts (2.6)). O

3. A-TANGENTS

Consider a mapping A : R — GL(n,R) and the ellipse
Ba(a,r) =a+ A(a)B(0,7),

whose eccentricity depends on the point a. For a Radon measure u we define the m-dimensional
upper and lower A-densities of u by

B
(3.1) 03" (1, @) = limsup M(Air(:ﬂ"))
rl0 r

. 1 (Bala,r)
and 0}, (1, a) = 1117Inl¢10nf %
In the case these two quantities agree, their common value is the m-dimensional A-density,
denoted 6'(p,a). When A = Id, we suppress the dependence on A and recover the usual
densities with respect to Euclidean balls 0™ (u,a), 6™*(u, a), and 67" (u, a).

From a PDE perspective, one would assume the mapping A should be uniformly elliptic. At
the level of rectifiability, geometry is more flexible and allows us to only require that for each
a the matrix A(a) is invertible. Invertibility is necessary since the geometry of a measure near
a can be lost if A(a) collapses R™ into a lower dimensional space.

1See, for instance [Pre87 Proposition 2.11]
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We next define the rescaling

and denote image measures under this rescaling by Té}r []. That is,

T2 [1)(E) = p(a + rA(a) E).
In particular

T [1)(B1)) = Tor[1)(Ba(0,1)) = (Ba(a,r)) -

Definition 3.1 (A-tangents). If 4 is a Radon measure, we define
(3.2) Tanp (p,a) = {1/ Radon s.t. v = lim ;T2 [u] i ¢; > 0,1 L0, v # 0} .
7 st

Remark 3.2. Given v € Tanp(u,a) with ciTé}m [1] = v it is easy to check that ¢Tp,[v] =

ime: co, TA
lim; ce; Ty,

[p] for any ¢,r > 0. In particular Tana (u,a) is a d-cone.

We will prove that A-tangents have a property that implies tangents to A-tangents are A-
tangents.

Theorem 3.3. Let u be a Radon measure on R™ and A : R" — GL(n,R). Then at p almost
all a € R™ every v € Tanp has the following two properties:

(1) Ty [v] € Tanp(p,a) for all x € spt v,r > 0.
(2) Tan(v,z) C Tanp(pu,a) for all x € spt v.

One can directly prove Theorem B3] by making several modifications to the original proof of
Theorem 23] Some of these modifications are showcased in the proof of Theorem 5.1l Instead,
we will make use of the following lemma, where A(a)sv will be used to denote the image measure

T[v] when T'(z) = A(a)x.

Lemma 3.4. Let yu be a Radon measure on R™ and A : R™ — GL(n,R). For a Radon measure
v the following are equivalent:

(1) v € Tanp(p, a)
(2) Aa)yv € Tan(p, a)
(3) v € Tan((A(a)~gu, Aa)a)

Lemma [B.4] provides geometric intuition about A-tangents. The equivalence of (1) and (2) says
that any A tangent could equivalently be generated by applying a fixed linear transformation to
a Euclidean tangent measure. The equivalence of (1) and (3) says A-tangents are a Euclidean
tangent of a linear transformation of the original measure. Each perspective serves its own
purpose:

The equivalence of (1) and (2) says that A(-); is an isomorphism between Tana(u,-) and
Tan(u, ). Therefore, any statement about Tan(y, -) that holds almost everywhere has an equiv-
alent statement for Tany(p,-) that holds almost everywhere, after unwinding what effect the
isomorphism A(-); has. This will be used to prove Theorem 3.3l

The equivalence of (1) and (3) states that the d-cone Tan((A(a)™1)p, A(a)~'a) and the d-cone
Tany (i, a) are the same. Hence, properties about tangent measures derived from the fact that
Tan(u, -) forms a d-cone are also valid for A-tangents. In this case, no unwinding the effects of
an isomorphism is required. This will be used to prove Theorem

Proof of Lemma[37] To prove the equivalence of (1) and (2) observe
AT, (y) = Tar(y).
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Therefore, by Proposition 2.2] v = lim, ciTé}ri [1] € Tanp (u, a) if and only if
A(a)sv = lim ¢; T4, [p1] = lim ¢; T4, [11] € Tan(p, a).
(2 (2
To prove the equivalence of (1) and (3) observe
(33) T(ﬁr(y) = TA(a)*la,r <A(a)_1y) .
So Proposition 2.2 guarantees v = lim; CiTa[?r,. [¢] if and only if
V= h{n ciTA(a)*la,ri[(A(a)_l)ﬁu] € Tan((A(a)_l)ﬁ:u'aA(a)_la’)'
g
Proof of Theorem[3.3. Let A C R™ be the set of full measure satisfying the conclusion of The-
orem 23l Fix some a € A and v € Tany(p,a) and € spt v. By Lemma B4, vy := Aa)yv €
Tan(p, a). On the other hand, z € spt v = A(a)x € spt vy. Since a € A, it follows vy :=
Th(a)z,r [V0] € Tan(p, a) and a final application of Lemma B4l implies (A(a)™!)s1 € Tany (i, a).

To confirm Ty, ,[v] € Tana(p,a) we check (A(a)™')y1 = Tpr[v]. Indeed, from the identity
Tx,r(y) = A(a)_l © TA(a):v,r © A(a’) (y), it follows

(Ma) ™) = (A@) ™ 0 Tygayer 0 A(a))ti v ="T,,[V]

We now state and prove the analog of Theorem [2Z7(1) for A-tangents.
Theorem 3.5. Fiz A : R" — GL(n,R) and ro > 0. Suppose F is a closed d-cone with compact
basis and p is a Radon measure.

If there exists v € Tanp(pu,a) NF, 0 < € < 1, and v € Tanp(pu,a) so that 0 < € < dp, (v, F),
then there exists v, € Tanp(p,a) satisfying

(54) {dro(ye, F)=¢

dr(Ve, F) <€ 1>y

Proof. Let v,v € Tana(p,a). It follows v, € Tan((A(a)™')su, Al(a)"'a) due to Lemma 3.4
(1) and (3). Therefore, Theorem 27(1) implies there exists v. € Tan((A(a)™!)gu, Ala)a)
satisfying (3.4). By Lemma[3.4(1) and (3), ve € Tanp(p,a) proving Theorem [3.51 O

The next corollary is a slight extension of Theorem [2.7(2) in the setting of A-tangents. It is a
succinct summary of how [MP95|] proves that symmetric tangents implies flat tangents.

Corollary 3.6. Suppose F = U2, F;, each F; is a d-cone with compact basis and there exists
€; > 0 and M a d-cone with closed basis so that for each i: F; C M and
(P)) de; > 0, R; > 0 such that Ve € (0,¢;) there exists no v € M\ U;;ll]:j

‘ satisfying dr(v, F;) < eVr > R; >0 and dr,(v,F;) = €.
If a € R™ is so that Tanp(u,a) C M and Tanp(u,a) N F # (O then Tanp(p,a) C F.
Proof. Suppose Tany (1, a) C M and Tanp (i, a) N F # (). Let ¢ be the smallest integer so that
Tany (p, a) N F; # 0. Then in particular, Tana (1, a) NUj<; F; = 0.
We will show that Tanp (i, a) C F;. Indeed, suppose not. Then by Theorem B.5(1) applied to
Fi and Tanp (p,a), for 0 < € < min{1,¢;}, there exists v, so that

{dmm,ﬁ) =

dr(ve, Fi) <€ 1 >r.
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but this contradicts Property (P;) O

The next lemma provides information about the measure of balls centered at the origin for A-
tangents. This is the crucial starting point for Theorem [B.Tlas well as for showing the equivalence
of studyin the density question with arbitrary weights ¢; or in the special case ¢; = cr; ™.
Lemma 3.7. Suppose v € Tanp(p,a) and 0 < ¢ = 0%, (p,a) < 077" (p,a) = Cy < oo. If
v € Tany(p,a) and ciTé\,n (1] = v, then

(3.5) 0 < liminf ¢;r}" < limsup ¢;rj" < oo.
11— 00 i—00
In fact,

(3.6) lim sup; ¢;r}" < 0% (u,a)

= liminf; ¢;r™ — 07 (1, a)

Moreover, for all R > 0,

B
(3.7 lim sup ¢;r;" 0%, (1, @) < Vl(qu)

< liminf ¢;r"0"" (1, a).

The following is a quick corollary of Lemma [B.7]

Corollary 3.8. If v € Tanp(p,a) and 0 < 07, (1, a) < 03" (1, a) < oo, then for all C > 1
V(BO,CR) _ 07" (n.0)

VBOR) = 05 Gna)C

If 07 (p, a) exists, v € Tanp(p,a) and v = lim,; ciTé}m [u], then
0% (1, a) im ¢;r™ = v(By).
7

v(B1)
T (a7 -

Proof of Lemma [3.7 Note that for any R > 0,
T [1)(Br) To.,[1)(Br)
0o > 0V (u,a) = limsup —2————~ > limsup ——
A (s a) 18U msup
Since v is a Radon measure, for almost every R > 0, v(0B(0, R)) = 0. Choosing such R,

T, [1](Br) 1
limsup 22 — limsup ———¢; T [u] (B
imsoo (riR)™ ioo Ci(TiR)™ T ] (Br)

In particular, v = lim,; @Té\,n (1] where ¢; =

=v (Bp)limsup ————.
(Br) i—)oop ci(riR)™

Since 0 € spt v this implies

(3.8) 0 < R™™v(Bg) < 603" (i, a) liminf ¢;r{".
1— 00
Similarly, for any such R, it follows
T [1)(Br) e [l (Br)
m — Vi a,r < liminf a,r;
0 <0y .(1a) ll%énf GRS hirgg)l TR
_ v(Br)
lim sup; ¢;(r; R)™"
Since v is Radon, this implies
B
(3.9) O (11, a) limsup ¢;r" < v(Br) < 0.

i - Rm
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Combining (3.8)) and ([39) confirms (B.5) and B.6). In fact, (B.8)) and (B.9) also verifies (3.7])
for all R so that v (9B(0,R)) = 0. To prove (B1) for general R, note

(3220 <20 (2" 20

Choosing any sequence of s; < R < S; so that v(0Bg,) = 0 = v(0Bs,;) and s; 1T R,S; | R
confirms (B.7) for general R. O

Lemma 3.9. Let p be a Radon measure and A C R™. If u(A) >0, for u a.e. a € A
ANB
(3.10) i AN B(a,r)
{0 IU'(B(aa T))
Moreover, for any such a, if v € Tanp(u,a) and v = lim; CZ'T(Q” (1], then for any x € spt v,
there exists a; € A with

(3.11) lim A(a)™! <‘” — “) -

12— 00 T3

Proof of Lemma[3.9. By [Fed14, Theorem 2.9.11], for any measure p and A C R",
.. (AN B(z,r)) >
A\{z :liminf ——————= =1} ) =0
(A0 s FEEE <y
Thus (B10) holds for p a.e. a € R™. Now suppose a € A satisfies (3.10) but (B.I1)) fails. Then
there exist v € Tanp (i, a), = € spt v, a subsequence {ix}, and 6 > 0 so that
(3.12) dist(B(a + i, Ala)x, 1, 0),A) > 0.

Without loss of generality we suppose ([B.12)) holds for the original sequence. Since p is Radon,
for any sets F, F' with dist(E, F') > 0, it follows u(E U F) = u(E) + p(F'). Therefore, (3.10)

and ([B.12) imply
B(a, 2r;|A NnA B i\ , 0T
(3.13) 1= lim #(Bla 2rilA(@)a) 0 4) 1  lim inf 2B+ 1iMa)z, 07:))
1—>00 IU,(B(G,, 27”2’/\(0,).%")) 1—00 IU,(B(G,, QTZ‘A(G)x‘))
We will show (B.13)) is a contradiction by producing a non-zero lower bound on the final term.
Indeed, following the convention that B(x,r) and U(x,r) are respectively the closed and open

balls around z of radius 7,

: : 1 ar U d
hm lnfM(B(a + TZA(G’)'%.? 5TZ)) 2 hm lnf 1 ( ‘T ))
i—00 M(B(G,QTZ’A( ) ’)) i—00 CzTarl[ ](B(O 2|A( ) |))
o aT p] (AMe) T U (A(a)z, 6))
= lim inf
i T, 1] (Aa) 1 B(0,2[A(a)x]))
v (A(a)~'U(A(a)z,0))
~ v (A(a)'B(0,2|A(a)z|))
The reason the final term is positive is that A(a)"'U(A(a)z,d) is an open neighborhood of
x € spt v. Now (BI3]) and ([BI4) yield a contradiction, confirming (BII]). O

(3.14)

4. RECTIFIABILITY FROM EXISTENCE OF PRINCIPAL VALUES

In Section 1] we prove Theorem [[LIl Due to Lemma [£2] the remaining work is in proving
Proposition 1] which verifies that the lower density assumption and existence of the principal
values T\"1(a) implies A-tangents are symmetric.

In Section we prove Corollary by verifying the equivalence of the existence of T'ap(a)
implies symmetry of A-tangents in the same way that existence of 7% 'u(a) does, under the

assumption that A € 51\\/[/0 is uniformly elliptic.
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4.1. Symmetry and flatness from T\"p.

Proposition 4.1 (Symmetry of A-tangents). Suppose that u is a finite Borel measure over R™
such that 67 (p,a) > 0 and TY'u(a) exists for almost every a, then for almost every a, every
v € Tany(u,a) satisfies

Yy—x
4.1 / ———dv(y) =0 Vx € spt p
( ) <|lz—y|<R |y - 'I|m+1 ( )
for all0 < r < R < 0. In particular, Tan'u(a) C S, for u a.e. a € R™.

Proof. Consider A to be the set of points a € R” satisfying
Al) 07 (p,a) >0
A2) T u(a) exists and is finite
A3) For all v € Tany(p,a), and all x € spt v, Ty 1[v] € Tanp(p, a).

By hypothesis, (A1) and (A2) hold almost everywhere. By Theorem [3.3] (A3) also holds almost
everywhere, so A is a set of full measure. Suppose a € A and v = lim; CZT 1] € Tanp (i, a).
Then for 0 < r < R, using lim a;b; < (limsup a;)(lim sup b;)

Yy
Crdvly)| =
r<lyl<r Y]

lim ¢ / Y_qr ()

100 <|ly|<R |y|erl

= | lim ¢;r; Aa)"!(y —a)
- ZLOO ' /7’<Té\,ri(y)|<R |A(a)~(y — )’m—f—ldu(y)
o) ly—a) o
/rr,<A(a “1(y—a)| [A(a) " (y _a)‘m+1dl‘(?/)
1

(

) Aa) "My~ a)
/RT‘A(G) e a‘ |A(a)~(y — )|m+1dﬂ( Y)

< hmsupq !TA p(a) — T p(a )| )

= lim ¢r}"
1—00

where (A2) implies this final line is well-defined and zero so long as limsup; ¢;r]* < co. Since
x — A(a)x is a linear isomorphism from R™ — R"™, 6*(p,a) > 0 if and only if HA L(,a) > 0.
So, (Al) and (B3] imply limsup; ¢;r]* < oo verifying (f1]) when = = 0 for all v € Tana(u,a).
Finally, (A3) says T 1[v] € Tana(p, ) for all = € spt v. Since,

y y—x
Tl = [ I ),
/r§|y<R ly[mHt e r<|y—z|<r [y — 2™

(&1) follows. By Lemma [2.10] this verifies the symmetry of v. Since a € A and v € Tan{' (i, a)
are arbitrary and A is a set of full measure this completes proof. O

The next Lemma provides the final step to Prove theorem [Tl As it is interesting in its own
right, we state it separately.

Lemma 4.2. Fiz A : R" — GL(n,R). Suppose p is a Radon measure so that at almost every a,
0 < 67" (u,a) and Tanp(u,a) C S,. Then for almost every a, Tany (u,a) C M,,. In particular,
if 0 (1, a) < oo almost everywhere, p is m-rectifiable.

Proof. Lemmal[2ZTT[1) implies that F; = M,, ; and M = S,, satisfy (P;]). Since Tany (u,a) C Sy,
Lemma [ZTT(2) and Theorem B3] imply Tana (u,a) N M, # 0 for p a.e. a. So, Corollary
verifies Tanp (p,a) C M, for almost every a. If additionally 67*(u,a) < oo, Theorem [L5(iii)
implies rectifiability. O
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Proof of Theorem [l By Proposition 41l Tanp(p,a) C S, for almost every a. Theorem [
now follows from Lemma O

4.2. Symmetry and flatness from Tsu. To prove Corollary we show that for suitable
matrix-valued functions A, and suitable Radon measures p, (LH) implies that p a.e., if v €
Tanp (u,a) then (LI holds. This implies Tanp(u,a) C Sy, which implies flat tangents and
rectifiability by Lemma We achieve this first step by adapting the estimates in [MMPT23],
Lemma 3.12, 3.13] to prove integrals of ViI'4(z,y) and V10(x,y; A(z)) are sufficiently close
at small scales, see Lemma [4.71

We first introduce some terminology and notation from [MMPT23] which we will adhere to.
We warn the reader that in [MMPT23] is working in R"*!, while here we adapt to the setting
of R™. A Lebesgue measurable function 6 : [0, 00] — [0, 0] is called k- doubling if 9( ) < KkO(s)
for all s € [t/2,t]. A k-doubling function 6 is in DS(k) (resp. DL4(k)) if fo 00 (resp.
floo 0(t) tﬁl < 00). These spaces are the Dini spaces for k-doubling functlons at small (resp.
large) scales. Note that if d; < dy then DLy, (k) C DLy, (r). Given a matrix-valued function
A:R" — R™™ for any x € R" and r > 0 define 4,, = fB(x’r) A(z)dz and

wa(r) = sup][ |A(z) — Zm7r|dz.
B(z,r)

z€eR™

dt dt
»2,9 =T / 6 W and J.g / 0

The matrix-valued function A is said to be in DMOg (resp. DMO@) if wa € DS(k) (resp.
wg € DL, _2(k)) some Kk < oo. It is said A € DDMOy if A € DMOg and

/ / dt dr
walt

The spaces DMOg (resp. DMOy) stand for Dini mean oscillation at small scales (resp. at large

scales) and DDMOs stands for double Dini mean oscillation at small scales. We write A € DMO
it A€ DDMOsNDMO;y.

Further, denote

Remark 4.3. Tt is known that A € DMO if and only if the precise representative of A is unlformly
continuous with modulus of continuity J,,,, [HK20, Appendix A]. If we consider A, Ace DMO
so that A = A Lebesgue a.c., then for all y € R?, VI 4(-,y) = VI z(-,y) on R™\ {y} and
wa = wy on [0,00]. In particular, there is no loss in generality in assuming that A € DMO is

uniformly continuous, even when studying measures p which are mutually singular with respect
to the Lebesgue measure.

Finally, we define
TA(r) = Ty (r) + SN ) = / wa(®) 2Lt / wat) 2
0 r

and

PaR) = Tuu(R) + £52(B) = [ a0 + B [ waOpy
0 R

Remark 4.4. In [MMPT23|, p. 7] it is observed that A € DMO implies both J;,(1) < oo and
TA(R) < oo for all R > 0 and whenever A € C?, 74(r) < r®. In particular, this means that
when A € DMO, lim, ,o74(r) = 0. In fact, if A € DMO then lim,_,o7,,(r) + 7w, (r) = 0.
Indeed, [MMPT23, Remark 2.2] says that if wa € DS(k) N DLy, _3(k), then £ ?(R) — 0 as
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R — 0. The fact that wq € DS(k) N DL, _2(k) is precisely the statement A € DMO, N DMOs.
Thus we also know lim,_,074(r) = 0 when A € DMO.

Throughout this section, we will always let A denote a uniformly elliptic matrix valued function
from R" — R™" with uniform ellipticity constant Ag. That is, |£|?Ag" < (A(z)¢,€) and
(A(z)€,m) < Aol]|n| for all z,&,n € R™. We also fix k < oo so that wy is k-doubling.

Both the formulation and presentation of the next two lemmas come from [MMPT23]. Some
of the ideas behind this ”frozen coefficient method” are already present in [KS11l, [CAMTTY].

Lemma 4.5 (Lemma 3.12 from [MMPT23|). Suppose A € DMOsNDMO; and n > 3. For
Ry > 0, there exists Co = C(n, Ay, Ro) > 0 such that for x,y € R™ and 0 < |z — y| < R < Ry,
ly—=| ~
TA(F5) Ta(R)
<C C
=y =zl + Rn—1

2

Vila(z,y) — V1© (w,y;zx,zy>

Lemma 4.6 (Lemma 3.13 from [MMPT23]). Let A € DMOg, n > 3, 0 < §d < r < 1, and
x € R". Assume €, 5 C R™ is a Borel set such that for some Cy > 1,

B(z,6) C Q5 C B(x,C10).
Moreover, for all x #y € R,

— — 1 " dt
vle(x -y, 0; AJ:J’/Z) - Vl@(l’ - y7O;Ax,6/2) Sn,Ao,Cl WA wA(t)T

The next Lemma is a consequence of integrating the previous two and using the k-doubling
property of wa.

Lemma 4.7. Let A : R" — R™" be a uniformly elliptic matriz-valued function, n > 3,
satisfying A € DMOgNDMOy. Let p be a finite Borel measure and 0 < co < Cy. For each
R > 0, define a Borel set Er such that

Er C B(O, CQR) \ B(O, CQR).
Then for every x € R™ and R < 1,

LyGER

Proof. We write,

Vila(z,y) = V1O (x,y;zxng) du(y) <

‘VlFA(x,y) —-V:0 (m,y;zm%R)

< |Vila(z,y) — V10 (%%Zmy—y)'

n — I+ 11

V10 <x7y;zm7x—y> - V10 <x,y;zx,gR)

2

If x —y € ER then

C2 [z —yl _ O

4.2 R —— < —=
(42) 2 - 2 = 2
We claim that because 74(-) is monotone increasing and w4(t) is k-doubling, it follows from
Lemma [£35] that for all z — y € Eg

R.

CoR ~ Ca
TA\ 72 TA\ 75 TA(R) ?A(R)
(4'3) I rSCO ) + < n >1 g
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Indeed, if Cy > 2

YR C2R/2 dt R C d f d
Jwa (—; > :/0 wa(t)— =/0 wa <725> ©< HUOgQ(CQ)J/O wa(5)= = T, (R).

s s
On the other hand,

OsR CoR\® [ dt (O [ dt Oy
()= (F) fooi=(3) # [ 07 () stm
T2

verifying (43]) when C3/2 > 1. The case C3/2 < 1 is verified by interchanging the arguments
used to estimate J,, and £2 . Since 74,74 are sums of J,,,, £1,1, and £ 2 this verifies [{3).
Recalling Fr C B(0,C2R) it follows

B(z,CsoR ~
/E ) Tdpy) Se, % (TA(R) + 7a(R)) .

Analogous reasoning allows one to estimate the integral of I/. Indeed, when x —y € EpR it
follows from Lemma [£.6] and (4.2]) that

1 3R dt 1 reBREE g Juon(R)
< —— HE| <o —— HE <, o ZeallV
ST, OF| S 0T e T
In particular,
p(B(z, C2R)) p(B(z,C2R)) ~
/ Hdp(y) Sezeamn =gt Jwal) S — a1 (Ta(R) + 7a(R))
r—yEER
as desired. O

We are now ready to prove Corollary

Proof. Without loss of generality suppose A is continuous, see Remark B3l Let G be the
collection of # € R™ such that 71 (y, z) > 0, 6"~ 1*(u, x) < oo, (LX) holds, and the conclusion
of Theorem B3 holds. Then by assumption, and Theorem B3] u(R™\ G) = 0. Fix a € G and
v € Tanp(p,a). Then there exists there exists ¢; > 0 and a sequence of r; converging to zero so
that v = lim; ciTé}m [v]. Fix 0 < r < R < co. Adopting the notation that A(a)~2 = (A(a)™!)?,
it follows as in the proof of Proposition [4.1] that

Ala)"*(y — a)

Aal/ iduy':limcirf_l / duy‘
(@) r<yl<r lYI" )| = i, Ba(a.Rr)\Bx (a;rry)) [A(@) 7 (y — a)|" i
= lim ¢;rf ! / V1®(a,y;A(a))du(y)'
Bj(a,Rri)\Ba(a,rr;)

CA(a) 1—00

where cj(q) is a positive and finite constant depending on n and det(A(a)), c.f., (L2). By the
definition of G’ and Lemma 3.7 lim sup; ¢;r?* " < 0o. We claim that (L) implies that for any
0<r<R<o
(4.4) lim V10(a,y; A(a))du(y) = 0.

=0 J B (a,r; R)\Ba (a,ri7)
Indeed,

V10(a,y; A(a))d,u(y)‘ < Vil a(a, y)du(y)

‘ /BA(a,Rm)\BA(a,rri) x/BA(a,Rri)\BA (a,rri)

+/ [V1O(a,y; A, 3,.,) — Vila(z,y)|du(y)
Ba(a,Rri)\Ba(a,rr;) 2

+ [ 191000, y: A(a) — V10(a,y: 4, 3,)|du(y).
Ba(a,Rri)\Ba(a,rr;) 2
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We label the terms on the right hand side respectively as I,11 and I11. By (L3 and a € G,
the term I tends to zero as i — oo. Define E; = Ba(0, Rr;) \ Ba(0,77;). Note, since A is A
uniformly elliptic, there exists 0 < ¢co < Cy < 0o independent of 7 so that

EZ‘ C B(O, CQTi) \ B(O, CQTZ‘).
Thus, by Lemma [£.7]

n—1
i

A B (Z,C T =N
/B (a,Rri)\ Ba( ) ‘V1FA(a7y) - V1@(a,y; Aa’%n)’dlu,(y) < M (TA(TZ‘) + TA(T@'))
Ala, Ty Ala,rr;

Since a € G implies 0"~ 1*(u, a) < oo, it now follows from Remark L4l that the term 1 vanishes
as i — 0o. We now focus on the term I71. For notational simplicity, let A; = A, s, . Applying
72 1

(C2) we further decompose the integrand of I11:

|[V16(a, y;Zm%n) — V109(a,y; A(a))|

_ A7y —a) B A(a)" (y — a)
"l det(A) V(AT (Y — a),y — a)v/? det(A(a))/2(A(a) " (y — a),y — a)"/?
ANy —a) B Al@) 'y —a)
" ldet(A)YV2(A (Y — a),y — a)™/2 det(A:)Y2(A;(y — a),y — a)n/?
A(a)*l(y—a) Al (y—a)

+cp

det(A)V2(A7 (y — a),y —a)™/? det(A(a))/2(A(a) " (y — a),y — a)"/?
(A= A() )y —a)

det(A)V2(A; (y — a),y — a)n/?

(Ly —a),y — a)"* = (Liy — a),y — a)""”

(L(y — a),y — a)"* (Liy — a),y — a))""*

where L; = det(A4;)"/"A; ! and L = det(A(a))/"A(a)~". Call these terms ITI; and ITI,. We

recall that A is assumed to be Aq elliptic. Consequently A~!, A;, and A;l are all A3 elliptic.
So,

:Cn

+cn|Ala) "Ny — a)

1

< AT —A@T Jy—a <, 1A — A(a)”!
T det(A)V2 (A Rly —ar Ty — ot

115

)

Note that y —a € E; implies |y —al'™" > ¢, . r1=™. On the other hand, since 4; = A, s, and A
=, IR

2
is uniformly continuous, lim; ,~, A; = A(a). Because matrix inversion is a continuous function
on the space of invertible matrices, it follows lim; .o Ai_1 = A(a)~!. Thus, for any € > 0 and
all ¢ large enough,

Iﬂlgrn—il Vy —a € E;.

i
We now turn our attention to ITIy. By uniform ellipticity, det(A;)/™, det(A)Y™ > Agt. So
L, L; are A3 uniformly elliptic. Therefore,

111 Sy 28 w—w% ‘\ y—a)"* = (Lily—a)y —a)"”
1 n/2—
Shon = a1 ‘<(L —Li)(y—a)y— a>‘ (L+Li)(y —a).y —a)"*!
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since a,b > 0 implies [a2 — b2 | <, |a —b|(a +b) 2! Furthermore, since L, L; are A uniformly
elliptic, || L + L;|| is bounded by a dimensional multiple of Aj. Hence we conclude

IL — Li|
ly —al*=1

A2, _ 4 In—2
115, <, W—ally—al

~o10,M

y—aprt IR
Given that lim; ,», A; = A(a) and both the determinant and matrix inverse are continuous
functions on the space of invertible matrices, it follows analogously to before that ||L — L;|| is
arbitrarily small for large enough i. Thus for all ¢ large enough and all y — a € E;,

€

n—1"

T

11, <

Combining the estimates on I1I1y and IIl5 we have shown for ¢ large enough it holds,
p(B(a, Cory)

n—1
i

IIIS/ ITL + I11du(y) < 2e
y—ack; r

Since € > 0 is arbitrary, this confirms (£4]). It now follows as in the proof of Proposition [4.]]
that (£4)) implies v € S,,. Since a € G and v € Tanp(p,a) are arbitary, Lemma in turn
implies p is (n — 1)-rectifiable since 8" (u, a) < oo almost everywhere. O

5. RECTIFIABILITY FROM EXISTENCE OF DENSITIES

In this section we prove Theorem[I.6l In Theorem [l we show that almost everywhere existence
of A-densities implies A-tangents are uniform almost everywhere and theorem shows that
existence of A-densities implies rectifiability. In Theorem (3] we switch gears and instead of
using A-tangents, decompose the measure p into countably many pieces to show that a small
A-density gap also implies the measure is rectifiable. We then put together all the pieces to
prove the equivalences in Theorem

Theorem 5.1. Suppose A : R" — GL(n,R) and for p almost every a that 03 (u,a) exists.
Then for p almost every a, and every v € Tany (i, a),

v(B(z,r)) =v(B(0,1)r" Va € spt v.
Before beginning the proof, we note that one can identify GL(n,R) with a subset of R™*" and
we recall that the eigenvalues of a matrix depend continuously upon the coefficients. Therefore,

by considering only elements of GL(n,R) with rational coefficients, given any ¢ > 0 we can
cover GL(n,R) with countably many sets {Uf }ien so that for all ¢ € N,

(5.1) Ba(0,(1 — €)r) € B;(0,7) € Bar(0, (1 +€)r) VM, M € Uf VieN,

Proof. By Corollary B.8lif 6 (¢, a) exists, then,
(5.2) v(B(0,7)) = v(B(0,1))r™ Vv € Tany (i, a).

In fact, by Theorem B.3land another application of Corollary B.8] we know that for almost every
a, and all v € Tanp (i, a)

(5.3) v(B(z,1)) = Ty [v](B(0,7)) = Tp 1 [V](B(0,1))r™  Vz € spt v.

So the theorem follows from showing that for almost every a,

(5.4) Ty 1[V](B(0,1)) = v(B(0,1)) Vv € Tanp(p,a) Vo € spt v.

Indeed, briefly assuming (5.4]), Theorem [5.1] follows from (5.2]) and (5.3]) that
v(B(z,7)) = v(B(0,1))r™ = v(B(0,r)) Vv € Tanp(u,a) Vz € spt v.
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Define £ C R"™ as the set of points a so that,
v, € Tanp(u,a) and Iz, € spt v, so that v, (B(xe,1)) # v4(B(0,1)).
Assume that u(E) > 0. Consequently, for some k large enough,

E(k) = {a € B(0,k) : v, € Tanp(u,a) Iz, € spt vg,

Vo(B(xg,1)) L _
(5.5) so that mg((wk D114k 1)}

has positive measure. Fix such a ky. We will reach a contradiction by showing that in fact

Va(B(%4, 1))

(5.6) V(B0 1))

<1+kyt.

The proof that
Va(B(%a,1))
VG(B(Oa 1))
follows by applying (5.6) to v, = Ty, 1[v] with the point —z, € spt 7.
Let A be the set of all a € R"™ such that 83(u,a) € (0,00) and on A define the function
Bp(a,r
Fi(a) = sup M-
r<z-i OF' (1, a)r
Note that for u almost every a, 1 < Fj11(a) < Fj(a) and lim;_,o Fj(a) = 1. In particular, since
w(E(k)) > 0, for ey > 0 there exists i large enough so that
Eiy = {a € Blko) : 0 < Fiyla) = 1 < e}
has p(E;,) > 0. It follows that

(B (a,r)) ‘
5.7 — <1 Vr <27 VaeE;
(5.7) 57 (1, ) <1l+e r < a € E;,
For e; > 0, let {U;'}jen be a countable cover of GL(n,R) as in (51)). Define 4; = {a € Ej, :
A(a) € U}, Since U;A; covers Ej, there exists some jo so that p(Aj,) > 0. For ea > 0, define
for k € Z

> (1+kyH)™

Ajy = {a € Ajy : 0 (p,a) € [(1+ )k, (1 + 62)k+1)} _

If a1,a9 € A;?O for some k, it follows

— Hm(/% al)
5.8 L4e)t< A 2
( ) ( ) HXL(M, (12)
Since (0,00) = Upez[(1 + €2)¥, (1 4 €2)*+1), there exists some k with M(Afo) > 0 and we denote
this set by A.
By Lemma B.9 almost every a € A satisfies the density condition (B.I0). Fix such an a. Let
v € Tan(u,a) and z, € spt v, be as in (B.5). By Corollary B8 suppose without loss of
generality that

< (14 e).

Va(B1) 1.

5.9 Vg = zo——limr; T, [p].
( ) 6/\ (M7 a) g ’ Z[ ]
By (BII) of Lemma B.9] there exists {a;} C A so that
(5.10) lim A(a)™! <u> = 4.

12— 00 T

Since v, is a uniform Radon measure, v,(90B(0,1)) = v,(0B(z4,1)) = 0. Applying Proposition
2.2 twice, once with the choices p = vg, p; = TN, [u], T = Tyots, and T; = TA(a)—1<ﬂ> . and

a,r;
&7
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again with the choices p = v,, pu; = Té\’m (1], and T = Ty, 1 = T; then using (5.9), (5.I0), and
Corollary [B.8] it follows

a,r;

T a;—a TC{XT’ B 07 1
(5.11) lim Tpon o To, [0](B(0,1)) D@ (mo)a o T2, [1](B(0, 1))
1—00 r;n ; .

Let A, denote the constant matrix-valued function from R" — GL(n,R) given by y — A(a).
A computation shows

Aq _ A
Tai,n‘ (y) - TA(a)—l (Lf‘l),l o Ta,ri (y)

Therefore (5.11]) implies
Va(B(4,1)) 1 . w(Ba,(ai, 1))

- 1
Va(B1) 00 (a) oo 1l

Now (B.1) and a € Aj, ensures
va(B(24,1)) lim sup (B0 (4 €1)ri)
v(BO,D) = 0pGna) ST 1 ey
When i is large enough that (1 + €1)r; < 27%, (57) and (5.8) imply
Va(B(7a,1))  (1+e)" .
— 1+ eg) limsup O3 (i, a;
n(BOT) < apGeay O IR ORUe)
< (14 e)™(1+ o)(1+€2).

For eg, €1, €2 small enough, this is less than 14k 1. verifying (5.6) and reaching a contradiction.
]

Theorem 5.2. If pu is a Radon measure on R™ and A : R" — GL(n,R) are such that 0 <
0% (1, a) < oo for p almost every a, then Tan(u,a) C My, p, for almost every a. In particular,
w is countably m-rectifiable.

(T+e)™ .

<

Proof. By TheoremsB.3landE.1lfor almost every a, and all v € Tany (i, a), Tan[v] C Tanp (u,a) C
U™(R"). Lemma implies Tan[v] N M,, # 0.

Moreover, since v € U™(R™) it follows in fact that whenever v, € Tan[v]NM,, then v, € M, 1.
By Lemma 2.8 and 2.16] we can apply Lemma 3.5l to F = M,, ,, and M = U™ (R") to conclude
that for almost every a, Tany (1, @) C My, . By [Pre87, Theorem 5.6] this implies p is countably
m-rectifiable. O

Theorem 5.3. Let §,, be the dimensional constant in Theorem [L3. Suppose u is a Radon
measure on R™, with the following properties at p almost every a: 07 (u,a) > 0 and there exists

a A(a) € GL(n,R) so that

03" (1, a)

e RO

-1 <9y,

Then 1 is countably m-rectifiable.

The idea of the proof relies on the equivalence of (1) and (3) in Lemma B4l We use the
Lebesgue-Besicovitch differentiation theorem to decompose the measure p into countably many
pieces pi;, so that each y; has the following two properties: (a) p; almost everywhere 673 (i, a)
exists, and (b) A has small oscillation on p;. Together these two properties will imply that
ooy
w; almost everywhere. Then Theorem [[5(iv) will imply v;, and consequently p;, is rectifiable.
This type of proof cannot be used to prove Theorem [[LT] because the cancellation present in the
definition of the principal value does not behave well when decomposing a measure into small

pieces.

a linear transformation of u;, denoted by v;, has small density gap, i.e., — 1 is small
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Proof. Fix some A : R" — GL(n,R) so that for p a.e. a,

(5.13) Ay, = {a ' % —-1<(1- 2k)5n} .

For k > 2 and €, > 0 to be chosen later, decompose GL(n,R) into countably many neighbor-
hoods {U;* }ien as in (1)), so that
M'B(0,(1 —e;)) C MB(0,1) C M'B(0, (1 +¢))  VYM,M €U, .
Define E; , = {a € Ay : A(a) € U/*}. Since
1 (R*\ Uik E; ) =0,
rectifiability of ;1 follows from confirming uL F; j is rectifiable for each i, k.
Fix some ¢,k € N. Suppose M € US* and define

par = (M 1)y(ul Eig).
Since M € U{*,
(5.14) Ba(a, (1 —€;)r) C By(a,r) C Ba(a, (1 + e;)r).

Since M is bilipschitz, pas is rectifiable if and only if p L Fjj is rectifiable. The Lebesgue
Besicovitch differentiation theorem ensures that for p a.e. a € E; g,

m,* L E: _ pm*
(515) Hﬁb (ILL Z,k? a’) Hé\b (/’[/7 a)
Ox.(nL Eig,a) = 0% (1, a).
In particular, (5.14]) implies
p(Bala, (1 — a)r)) _ pas(BOM~a,r)) _ p(Bala (1 +)r))

so that (5.15) and (5.I3]) respectively guarantee

0 (M) (L )™ O ()
07 (o, MTa) = (1= )™ 07 (n, )
Lee)™ 141 o k)5,) -1
(1 —ep)™
Therefore, if € is chosen small enough so that
(1 + Ek)m

(5.16) (14+(1 =275, —1<6,

(1-— Ek)m
then the measure ujs satisfies Theorem [[5(iv) and consequently is countably m-rectifiable.
Thus p L E; ) is rectifiable and since p (R" \ Ui,kEz‘,k) = 0, this implies p is countably m-
rectifiable. 0

We now put together all the pieces to prove Theorem

Proof. For (1) <= (ii), note that by Lemma B.4] (A(a)™!)yTan(pu,a) C M, if and only if
Tanp (p,a) C My, . But the prior condition is equivalent to Tan(u,a) C My, ,, so Theorem
L5 now verifies (1) <= (ii). The equivalence (1) <= (iii) follows similarly. That (i) =
(1) and (iv) = (1) are respectively Theorem (.2l and Theorem (.3

Clearly (i) = (iv), so it suffices to show (1) = (i). Since by m-rectifiable, we in partic-
ular mean p < H™, it follows that there exist countably many m-dimensional C'!' embedded
manifolds >; so that p (]R" \ UZ-EZ-) = 0. Without loss of generality, each Y; has a global chart
©; : X — R™. Fix (¥;, ;) and define v on R™ as the image measure (y;)fu. Since p; is a C!
diffeomorphism onto its image, v < L™ L ¢;(%;). Hence, by Radon-Nikodym and additionally
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the Lebesgue differentiation theorem in the form of [Fol99, Theorem 3.21], for v almost every

z,

dv (2) = lim v(E,(x))
dLm r—0 ﬁm(Er (1’))

€ (0,00)

for v almost every x and for any family of sets F,(x) shrinking nicely to {z}. In particular
when E,(z) = ¢(Ba(¢~(z),7)). By the Lebesgue differentiation theorem in the form of [Fed14]
Theorem 2.9.11],

(5.17)

lim :U’(BA(a’ T) N Ei) _
r—0 M(BA((Z, T))

for u almost every a € ¥;. Consequently, for almost every a € ¥;,

fim #Balas ) (BA(a ) N%)
r—0 rm r—0
— [ im %m( 1L Xi(Ba(a,r)) m
_ (Lo ) (Mo Btr) )
im ol (SO a)))
() iy L L
il T) (@) i A i £ (0,00),

#30 L7 (B, (@)

where the final conclusion of positive and finite is justified for almost every a since ¢ is a
C' diffeomorphism and (5I7). Thus for any ¥; and p almost every a € ¥; we have shown

0% (1, a) € (0,00). Since p(R™\ U;X;) = 0 this proves (i). O
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