Online Diffusion-Based 3D Occupancy Prediction at the Frontier
with Probabilistic Map Reconciliation

Alec Reed, Lorin Achey, Brendan Crowe, Bradley Hayes, Christoffer Heckman

Abstract— Autonomous navigation and exploration in un-
mapped environments remains a significant challenge in
robotics due to the difficulty robots face in making com-
monsense inference of unobserved geometries. Recent advance-
ments have demonstrated that generative modeling techniques,
particularly diffusion models, can enable systems to infer
these geometries from partial observation. In this work, we
present implementation details and results for real-time, online
occupancy prediction using a modified diffusion model. By
removing attention-based visual conditioning and visual fea-
ture extraction components, we achieve a 73% reduction in
runtime with minimal accuracy reduction. These modifications
enable occupancy prediction across the entire map, rather than
limiting it to the area around the robot where sensor data
can be collected. We introduce a probabilistic update method
for merging predicted occupancy data into running occupancy
maps, resulting in a 71% improvement in predicting occupancy
at map frontiers compared to previous methods. Finally, our
code and a ROS node for on-robot operation can be found on
our website: https://arpg.github.io/scenesense/.

I. INTRODUCTION

Robots typically make decisions based only on the space
they have directly observed, either during the current de-
ployment or a previous one. In environments where no
prior information is available, an autonomous system must
rely solely on real-time observations. This limitation poses
significant challenges for navigation, as perception sensors
have restricted fields of view and can be obstructed by
obstacles. As a result, data products such as 2D or 3D
geometric maps often contain gaps in areas the sensors could
not reach — especially during runtime while the system is
actively exploring.

While there are existing methods for filling these gaps,
most focus on filling LIDAR shadows [1] or gaps in the
map [2, 3] where the geometry around the target area has
been observed. To further enhance robotic decision making,
we not only need to fill holes and gaps in the map, but
also extend map geometries beyond what can be directly
measured.

Occupancy prediction enables robots to infer and extend
maps beyond sensor-observed areas, addressing gaps in real-
time perception. While [4] demonstrates that such models
generate plausible predictions, their range-limited applica-
bility motivates prioritizing frontiers, critical regions where
observed voxels transition to unobserved space, as targets for
extending map coverage beyond immediate sensor reach.
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Fig. 1: Onboard Occupancy Prediction and Map Merging:
Green voxels represent observed occupancy and red voxels repre-
sent predicted occupancy. Gray graph points represent vertices and
yellow graph points represent vertices identified as frontier points.
(a) Spot platform is positioned in front of a t-intersection at startup
as shown in the photo of the scene. (b) The map is populated with
the observed 3D occupancy data from the LIDAR sensor. (¢) Robot-
centric (RC) occupancy prediction runs to predict occupancy data
around the robot. Then a graph is built over the space to identify
frontiers of interest for frontier-centric (FC) occupancy prediction.
(d) Finally the diffusion model predicts the occupancy around the
frontier points. These predicted maps are merged into the running
map using our probabilistic map update rule.

In this paper, we introduce key modifications to the
diffusion-based SceneSense occupancy prediction model [4]
to enable predictions at any location in the running map while
significantly reducing inference time for online occupancy
prediction. We propose a probabilistic map update rule to
integrate occupancy predictions with the “observation-only”
map generated from LIDAR data. Finally, we implement a
graph-based frontier evaluation method to identify optimal
regions for occupancy prediction and validate our approach
on a real-world robotic system. Our key contributions in-
clude:

1) 73% reduction in end-to-end runtime for the Scene-



Sense occupancy prediction model.

2) Expanded prediction capability, allowing occupancy
predictions at any location in the map rather than being
limited to robot-centric predictions.

3) 75% improvement in frontier occupancy map evalua-
tion compared to the observation-only map.

4) 71% improvement in frontier occupancy map evalua-
tion compared to the one-shot map merging method
from the original SceneSense work [4].

II. RELATED WORK
A. Occupancy Prediction

One solution to the challenge of autonomous navigation in
occluded environments is to predict occupancy distributions.
Deep Learning (DL) approaches have shown promise, but
existing methods struggle with scalability, generalization,
and handling occluded areas. Wang et al. [5] propose a DL
approach to predict occupancy distribution which involves
selectively removing data from the Matterport3D [6] dataset
during training for the model to learn occluded geometries.
This biases the model to predict occupancy for these specific
types of occlusions and does not scale well to large unseen
sections of an environment. In [7], the authors present a self-
supervised method for 3D occupancy prediction using video
sequences, which transforms 2D images into 3D representa-
tions with deformable attention layers. While effective with
nearby cameras, it struggles to predict occupancy beyond
the camera’s view due to signed distance field’s (SDF)
limitations in managing occluded geometry.

More recently, diffusion models were shown to suc-
cessfully generate occupancy predictions behind occluded
geometries in indoor environments using a single RGBD
sensor mounted on a mobile robot platform [4]. Our research
advances this method by introducing a novel, more efficient
approach to occupancy prediction, demonstrated on real
hardware.

B. Scene Synthesis

Diffusion models [8, 9], are a popular tool that has
demonstrated impressive generative results across image
[10], video [11], and natural language [12]. Building on these
successes, diffusion models are being extended to 3D scene
and shape generation. Recent work [13] demonstrates the use
of diffusion models for 3D point cloud generation for simple
shapes and objects (e.g. tables, chairs). Kim et al. [14] show
successful 3D shape generation from 2D content such as
images, and Vahdat et al. [15] demonstrate similar 3D shape
generation but using point cloud datasets rather than images.
In LegoNet [16], diffusion models are used to propose
object rearrangements in a 3D scene. In DiffuScene [17],
a denoising diffusion model is used with text conditioning
to generate 3D indoor scenes from sets of unordered object
attributes. Unlike these previous works which primarily focus
on generating simple shapes, rearranging objects, or creating
indoor scenes, our approach leverages diffusion models to
fuse generated terrain with measurements from the local
robot field of view, thereby bridging the gap between 3D

GbPlanner [5] 5
Octomap ;/éccupanci\f} Graph Potential Frontier
— — — s
[11] \_ Map Planner Path Graph Evaluation
11 P !
- ] Probabilistic
( /T IMU . Odometry " Occupancy Fusion
‘\IMU }—H\Odometry/ IO YA P2 gl
o Occupancy
- Prediction
@EEm o Observed e
3D Z . Y Occupancy | /Evaluated
EID AR}—"EOIntCIOU,C/l Octomap [11] > Oc;;llpancy ™ Diffusion \_Graph_/
— ‘ap SceneSense [20] T )
e . Robot Processing Processing

N\
§ ) Input Data | Data Node

Robot Sensor

:\ Output Data

Fig. 2: System Block Diagram: Block diagram showing the
system design for onboard SceneSense occupancy prediction. The
system is comprised of an IMU and LIDAR sensor to generate
odometry and occupancy maps. Once the occupancy map is built,
a graph is constructed to evaluate frontier points for occupancy
prediction. Local occupancy is then sub-selected around these points
and sent to the SceneSense framework that provides occupancy
predictions. These predictions are then merged with the running
occupancy map using the probabilistic update rule.

scene generation and practical, situated robotics applications.

III. METHODS
A. Problem Definition

Frontier Identification and Evaluation. Let M be
the current occupancy map, built via measurements from
an onboard sensor S and odometer measurements Q. The
map consists of voxels m that are categorized as m €
Mtree, m € Moccupied> OF M € Mynknown, Which represent
free, occupied and unknown space respectively. We identify
frontiers as regions where My,.. or Moccupieq transitions
to Mlynknown- In particular, “interesting” frontiers will max-
imize the number of unknown voxels available for occupancy
prediction while considering common exploration metrics
such a directionality, distance from target, and reachability
[18, 19].

Dense Occupancy Prediction. Dense occupancy prediction
predicts the occupancy from [0, 1] where 0 is unoccupied and
1 is occupied for every voxel m in a target region x C M.

B. Robotic System Architecture

Our robotic system consists of a quadruped (Spot), as
shown in Figure 1, along with an off-board high performance
computer to handle computationally expensive requests. A
block diagram of the system is shown in Figure 2.

Sensor Suite The equipped sensor suite was designed with
the purpose of providing 3D point cloud information and
sufficient data for accurate localization. The primary sensor
in the spot sensor suite is the Ouster OS1-64 LIDAR which
provides 3D point clouds for mapping and localization. In
addition a LORD Microstrain 3DM-GX5-15 IMU is used to
measure the linear and angular acceleration of the Ouster,
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Fig. 3: Map Merging Example: Process for generating and merging occupancy predictions with an observed map. A graph is generated
and evaluated to identify frontier nodes. Then, the frontier nodes are sorted by exploration gain as defined in Eq. 1, and d,, (min node
spacing) and nmae. (max frontier prediction nodes) are enforced on the frontier points set. For each frontier point identified for occupancy
prediction, local occupancy is selected from the observed map and sent to SceneSense for occupancy prediction. Finally, the predicted

maps are merged into the running occupancy map using Eq. 2.

for use in the localization system.

Localization. Localization is required for Spot to perform
volumetric mapping. We have implemented the popular
LIDAR-based localization method LiO-SAM [20] to provide
localization at run-time.

Occupancy Prediction. We adopt the SceneSense occu-
pancy prediction diffusion model [4] with modifications to
enable novel functionality and improve performance at run-
time. Originally, SceneSense was designed as a conditional
diffusion model where the conditioning was RGBD data
from a camera/depth sensor on the robot. However, ablation
studies of the model show that including this RGBD condi-
tioning has very little performance impact when occupancy
inpainting is enabled [4]. By removing the RGBD condition-
ing we enable two key characteristics for the model; any-
where occupancy prediction and increased inference speed.

Removing the RGBD conditioning data obviates the need
to center occupancy predictions at the robot. By removing
the need for image conditioning, occupancy can be predicted
anywhere in the observed map, allowing for occupancy
predictions at range. Secondly, we can replace the cross-
attention based noise prediction model with the equivalent
unconditional model. This reduces the number of trainable
parameters for similar unconditioned performance. Further,
this change also removes the need for a feature extraction
backbone, saving additional computation time.

Frontier Identification and Evaluation. With these
modifications to the occupancy prediction framework we can
generate occupancy predictions at any point in the map. To
identify interesting areas for prediction we adopt the graph-
based exploration planner GBPlanner [19]. GBPlanner builds
a graph where nodes are potential exploration points and
edges are feasible paths to navigate from node to node. A
ray casting algorithm is run at each node in the graph to
quantify the number of observed, free, and unknown voxels

in that node’s field of view. After finding the shortest path to
each node the Exploration Gain can be calculated for each
node in the graph as follows:

ExplorationGain(o;) = e~ 755(71:0¢p)

-} VolumetricGain(vi)e 2P (1)
j=1

where S(04, 0cap), D(v},v}) are weight functions with tun-
able factors vs,yp > 0 respectively, and m; is the number
of vertices in the path. D(v{, v}) is the cumulative Buclidean
distance from a vertex vj to the root vj along a path ;.

To improve exploration efficiency, exploration gain is used
to rank nodes for occupancy prediction, prioritizing locations
that help complete unmapped areas where occupancy cannot
be directly observed. The highest-ranked nodes are often po-
sitioned far from the robot, potentially beyond its sensor field
of view, providing occupancy predictions at a considerable
distance from its current location. Given a minimum node
spacing d,, and a maximum number of frontier prediction
nodes 1,4, SceneSense generates occupancy predictions at
this extended range, centered around the identified frontiers
as shown in Figure 3.

Mapping. The probabilistic volumetric mapping method Oc-
toMap [21] is selected as the mapping framework. OctoMap
is adopted for its log-odds update method for predicting
occupied and unoccupied cells. This approach allows for
computationally efficient fusion of observed occupancy and
predicted occupancy maps. Further discussion on map fusion
is provided in Section III-C.

C. Probabilistic Map Merging

In previous work, predicted occupancy was merged into
the running occupancy map in a “fire and forget” approach
[4]. A given occupancy prediction was temporarily merged
into the running occupancy map by setting the predicted
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Fig. 4: Multi-Prediction Occupancy Merging: SceneSense pre-
dicts various occupancy maps based on equivalent input data that
form a distribution. This distribution forms a curve where more
likely predictions occur more often, and less likely predictions occur
infrequently. These predictions are fused into the merged map using
Eq. 2. The resulting merged map naturally filters out the unlikely
voxel predictions, forming an extended occupancy map.

occupied cells to 1. Then, when a new occupancy prediction
was generated, the previous prediction would be removed
from the running map and the new prediction would be
merged in the same way. While this approach is effective in
some applications, it limits the ability to accurately maintain
a coherent and continuous understanding of the environment.
To address these issues, we modify the probabilistic occu-
pancy update formula presented for the OctoMap mapping
framework [21].

We define the probability that a voxel m is occupied given
an occupancy prediction d; or sensor reading z; as P(m|d;)
or P(m]|z) respectively. The set of sensor estimates zj.;
and diffusion estimates d;.; populate the joint set {z7.¢, d1.+}
which we denote as j;.;. As discussed in [4], SceneSense
only operates on voxels m that are not contained in the
observed set O, where z;.;—1 = @, and therefore P(m|j1.¢)
will never require an update given P(m|d;) and P(m|z;) at
the same time. As such we generate the piece-wise update
rule for merging diffusion into the running occupancy map.

P(m | jl:t) -
1—P(ml|dy) 1—P(m|j1.t—1) P(m) - .
[1 + P(mldy) P(m|j1:1_tl)1 1—P(m):| if m ¢ (]
1—P(mlz;) 1=P(m|ji.e—1) P(m) - .
[1 + P(mlz) P(m|j1::_1)1 1—P(m):| if me O.
()

In this framework P(m|z;) and P(m|d;) can be config-
ured to different values prior to runtime. Generally P(m|d;)
given a predicted occupied cell is set lower than P(m|z;)
given a sensed occupied cell, as we trust the sensor more than
our generative model. By using this probabilistic approach to
map merging, the final merged map benefits from prediction
persistence as the system explores as well as increased map
fidelity due to multi-prediction occupancy refinement.

Multi-Prediction Occupancy Refinement. As shown in
Figure 4, the occupancy predictions generated by Scene-
Sense can be unique even given the same conditioning
information. Similar to image generation tasks it is desirable
for SceneSense to generate various realistic results given
the same input data [22, 10]. Given this behavior, we can

Fig. 5: Example Occupancy Predictions: Scene images at the top
of the figure correspond to the 3 pairs of occupancy maps, where (a)
corresponds to the top pair of occupancy maps. The left column of
occupancy maps shows the observation-only map, while the right
column shows the merged observation and prediction maps. (a)
Spot approaches a hallway corner and given the LIDAR mounting
position cannot observe the floor after entering the hall junction.
SceneSense is able to fill the floor and the missing wall information
that was not observed. (b) Spot navigates down a hallway and enters
an area with a glass railing above the stairs. SceneSense does not
fill the open space, where algorithms like hole filling or normal
ground expansion may fail. (¢). Spot navigates down a hallway
generating predictions along the way. Spot’s trajectory is shown in
purple, and the identified frontier point is shown in yellow. Beyond
providing predictions for the areas that have already been observed,
SceneSense generates a frontier prediction at the 4-way intersection.
This prediction shows the left side to be a dead-end, while a hallway
or entryway is predicted on the right. In reality, these halls are really
classrooms, where doors may be open or closed to allow for robot
traversal.

collect various predictions from the same location forming
a distribution. Then we can aggregate the predictions using
the probabilistic update rule defined in Eq. 2 and generate a
map constructed from the distribution. The resulting merged
map will naturally filter out outlier occupancy predictions
and result in only the most probable voxels maintaining
occupancy in the final merged map.

Observed vs. Predicted Voxels. SceneSense uses ob-
served data (observed occupied and observed unoccupied)



for occupancy inpainting during diffusion. In this paradigm
SceneSense will never modify observed cells, and only make
occupancy prediction in unobserved space. In Eq. 2 if a voxel
has not been observed, SceneSense will generate occupancy
predictions and update the voxel given the update rule. If
that voxel is later observed, the previous P(m | j1.¢) is used
to calculate the probability of occupancy given P(n | z;). In
practice it is often the case that the user trusts the LIDAR
sensor more than the SceneSense predictions and therefore
would configure P(m | dy) < P(m | z). This means
that when a voxel that has been previously populated by
SceneSense is directly observed P(m | ji.) it will more
quickly be updated to reflect the occupancy observed by
Sensor 2.

Furthermore this approach ensures that SceneSense will
never overwrite direct observations. Observed occupancy
information (occupied information from LIDAR hits, and un-
occupied information calculated from ray casting) is mapped
into the diffusion process at every timestep ¢ to perform
occupancy inpainting. Therefore any observations, whether
those observations be occupied or unoccupied are maintained
and guaranteed to persist through the diffusion process.

IV. EXPERIMENTS AND RESULTS

Training and Implementation. To train SceneSense we
collected real-world occupancy maps from various buildings.
We gathered approximately 1 hour worth of occupancy data,
resulting in 11,296 unique poses with associated complete
local occupancy maps. Any areas that were used to train the
model are omitted from the results presented here.

We implement the same denoising network structure pre-
sented in [4]. It is a U-net constructed from the HuggingFace
Diffusers library of blocks [23] and consists of Resnet [24]
downsampling/upsampling blocks. The diffusion model is
trained using randomly shuffled pairs of ground truth local
occupancy maps z. We use Chameleon cloud computing
resources [25] to train our model on one A100 with a batch
size of 32 for 250 epochs or 88,208 training steps. We use
a cosine learning rate scheduler with a 500 step warm up
from 1076 to 10~%. The noise scheduler for diffusion is set
to 1,000 noise steps.

At inference time we evaluate our dataset using an RTX
4070 TI Super GPU for acceleration. The number of diffu-
sion steps is configured to 30 steps.

A. Inference time

We evaluate the inference time of the unconditional dif-
fusion model against the inference time of the conditional
model presented in the original SceneSense paper [4]. The
cross-attention enabling trainable parameters are removed for
the unconditional model, but the number of output channels
for the constructed U-net are held constant between both
models. As the ablation results of the original paper show
minor, or no performance gain between the conditional and
unconditional model in this configuration we do not evaluate
the results of the model predictions in these experiments.

TABLE I: Inference time and model size results. “Full
inference” and “end-to-end” evaluations are computed using
30 diffusion steps.

Cond. Model [4] Uncond. Model
Trainable Params 141,125,261 101,144,845
Diffusion Step (s) | 0.03707 0.0147
Full Inference (s) | 1.11 0.4437
Backbone (s) .55099 N.A.
End-to-end (s) 1.66 0.4437
Discussion.  As shown in Table I, removing the con-

ditioning from the diffusion model reduces the computation
requirements substantially. The unconditioned model reduces
the number of trainable parameters by 28%, the model
inference time by 60% and the end to end computation time
by 73%. These improvements enable SceneSense to operate
in real-time more effectively, allowing for more flexible
implementations for onboard robotic applications.

B. SceneSense Generative Occupancy Evaluation

For the following experiments we evaluated the occu-
pancy generation capabilities of SceneSense onboard a real
world robot in 2 unique test environments. In particular, we
examine the fidelity of predictions around the robot with
predictions at the frontiers of the map, ablating the map
update methods and the running sensor only map.

Experimental Setup. SceneSense predictions are evaluated
in 2 environments. Environment 1 was a long hallway with
cutouts for classrooms and 1 right turn. Select frames shown
in figure 5a and 5c are from Environment 1. Environment
2 consists of similar carpeted area with 4 hallways and 4
turns, forming a square shape. We evaluate the occupancy
prediction framework using the following test configurations.

1) Baseline or SceneSense: A comparison between Oc-
toMap sensor only local occupancy (BL) with the
SceneSense occupancy prediction included (SS).

2) Robot-centric or Frontier-centric: Robot-centric dif-
fusion (RC) predicts occupancy at a radius of 3.3m
about the robot while frontier-centric diffusion (FC)
predicts occupancy at a radius of 3.3m at an identified
location in the map, which has a maximum range of
7m from the robot.

3) One Shot Map Merging or Probabilistic Map Merg-
ing: One shot map merging (OSMM) simply takes
the current local occupancy map and a SceneSense
occupancy prediction and populates the predicted oc-
cupancy information in the running map. Probabilistic
map merging (PMM) keeps a running local merged
occupancy map that uses update equation 2 to update
the occupancy map for every new occupancy predic-
tion. In practice, each pose will receive 3-5 SceneSense
predictions to merge into the running map.

Occupancy Prediction Metrics. Following similar gen-
erative scene synthesis approaches [17, 26] we employ the
Fréchet inception distance (FID) [27] and the Kernel incep-
tion distance [22] (KID x1000) to evaluate the generated



local occupancy grids using the clean-fid library [28]. Gen-
erating good metrics to evaluate generative frameworks is a
difficult task [29]. FID and KID have become the standard
metric for many generative methods due to their ability to
score both accuracy of predicted results, and diversity or
coverage of the results when compared to a set of ground
truth data. While these metrics are fairly new to robotics,
which traditionally evaluates occupancy data with metrics
like accuracy, precision and IoU, these metrics have been
shown to be an effective measure for evaluating predicted
scenes [4, 17].

TABLE II: Results comparing running occupancy (BL)
to occupancy enhanced with SceneSense prediction (SS).
Evaluations of each method are provided as robot-centric
generations (RC) and frontier-centric generations (FC).

Env. 1 Env. 2
Method FID | KIDx1000 | | FID | KIDx1000 |
BL-RC 36.0 16.4 30.3 16.3
SS-RC-OSMM 26.3 7.7 20.8 10.1
SS-RC-PMM 292 10.4 21.0 9.1
BL-FC 116.9 81.6 150.6 118.8
SS-FC-OSMM 104.2 66.3 133.4 104.4
SS-FC-PMM 30.1 10.3 34.5 9.0
Results Discussion. The results in Table II show

that RC predictions are quite similar between OSMM and
PMM approaches, reducing the FID of the environments
by an average of 28.5% and 25% for OSMM and PMM
respectively. These results are similar to the simulation-based
results presented in [4]. However, the FC results show a
much greater improvement for PMM, with an average FID
reduction of 75%, compared to OSMM, which only achieves
an average FID reduction of 11%.

Interestingly, The KID values are nearly identical between
SS-RC-PMM and SS-FC-PMM, indicating that the model
occupancy predictions at range are as reasonable as the
predictions made around the robot, even though there is less
information for the predictions at range. KID is known to be
less sensitive to outliers when compared to FID [22]. It is
likely that the unreasonable predictions that can occur when
performing FC predictions are better filtered out by the KID
metric, resulting in similar scores.

The large discrepancy between OSMM and PMM results
when evaluated at frontiers is due to the sparsity of the
occupancy map at the frontier. We predict that as the number
of unknown voxels grow, so too does the distribution of
predicted scenes. Intuitively, if there are no observed voxels
to guide the prediction SceneSense will predict a wide variety
of possible occupancy maps. On the other end, if all voxels
in the target space are observed, the same occupancy map
will be generated every time.

We can analyze the number of available voxels for occu-
pancy prediction as the number of unknown voxels in the
target area x,,, as a percentage of the total observed voxels
in 2 4. Using the results from environment 2 to evaluate this
prediction, we calculate that on average 59.18% of target
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Fig. 6: Env 2 IoU Probability Mass Function (PMF). (a)
IoU histogram of RC SceneSense predictions. (b) IoU histogram
of FC SceneSense predictions. The IoU distributions show that
RC occupancy predictions are more likely to be similar than FC
predictions.

area voxels are unknown when performing RC occupancy
prediction. However, when performing FC prediction this
number jumps to 70.79%. This result supports the intuitive
statement that there are more available (unknown) voxels
for prediction around the frontiers of the map than around
the robot. To confirm that the increase in unknown voxels
widens the distribution of occupancy prediction we generate
a distribution of results by calculating the IoU of each
prediction against all other predictions made during the run.
The results of this approach as provided in Figure 6 show
that RC predictions are more likely to be similar, while FC
predictions are more likely to be dissimilar with very little
overlap. When predictions are all similar, PMM becomes
less important for accurate predictions, since OSMM would
result in a similar map each time. However PMM is needed
at range to achieve reasonable results since it can negotiate
the wider distribution of possible occupancy predictions.

V. CONCLUSIONS

In this work we present key architectural changes to the
SceneSense [4] occupancy prediction model to enable real-
time occupancy inference at any location of interest in the
map. Further we present our integration of SceneSense to a
real robotic system, a method for probabilistically merging
occupancy predictions into a running occupancy map, as well
as evaluations of these occupancy predictions. Future work
will explore how these predictions can be utilized to improve
existing planning and exploration architectures.
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