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Supervising Professor: Guillermo Araya, Ph.D.

In this study, Spatially-Developing Turbulent Boundary Layer (SDTBL) detachment is numeri-

cally analyzed via the two-dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) equations,

and its implication on passive scalar transport. In Adverse Pressure Gradient (APG), or flow de-

celerating, conditions, the transport of momentum and scalars in wall-bounded flows are impeded.

In strong APG conditions, this can result in flow separation which interrupts this transport behav-

ior. Due to the reality of engineering hydrodynamic, aerodynamic, or aerothermal designs, APG

conditions are all but avoidable, and thus must be studied. To achieve this, the proposed objectives

are:

1. Analyze the influence of strong streamwise/streamline APG’s by decelerating flow and wall

curvature on massively separated flow and SDTBL at the verge of surface detachment. The

geometries must be relevant and corollary to engineering applications.

2. Evaluate the performance of popular RANS and passive scalar turbulence models on strong

APG conditions over flat and curved walls. The first turbulence model used is the Spalart-

Allmaras model, which is common for high Reynolds numbers and is a robust RANS model.

The second model is the k−ω model with Shear Stress Transport (SST) treatment or formu-

lation due to its specialty in APG conditions. These models will be tested in high Reynolds

number flows.

3. Understand the mechanisms of passive scalar transport in highly separated or separating

v



flows.

The objectives are achieved by numerically replicating two experimental studies from the lit-

erature. In Patrick (1987) [31], an experimental investigation of SDTBL separation with reat-

tachment over a flat plate was carried out by prescribing a strong APG via flow potential and

subsequent favorable pressure gradient (FPG) by manipulating the opposite surface. The mean

flow and Reynolds stresses were measured via laser PIV, hot-wire anemometry, and pneumatic

probing techniques. The significant flow deceleration, infringed on the incoming turbulent flow,

produced a separated SDTBL over a streamwise distance of approximately 55cm, representing a

potential challenge for standard turbulence models. Additionally, the high momentum-thickness

Reynolds number range considered in [31] (Reθ ≈ 11.1e3) adds difficulties to numerical modeling

and computational resources. The second reproduced experimental setup was conducted by So and

Mellor (1972) [41]. They investigated the effect of uniform (zero-pressure gradient) and moder-

ately adverse pressure distributions on incoming SDTBL’s along convex and concave walls. The

hot-wire measurements confirmed the enhancement of turbulent mixing over the concave surface,

while the opposite occurred in the convex surface.

The Computational Fluid Dynamics (CFD) analysis is performed with the open-source flow

solver OpenFOAM using the IncompressibleFluid solver that uses the SIMPLE methodology, on

UT Austin’s TACC Lonestar6 system.

The RANS models in 2D steady CFD are able to simulate the conditions prior to and just into

separation, but struggle to reach full separation or reattachment. Additionally, the normal stresses

that a curvature imposes on the RANS models appears to cause issues with the CFD analysis

coming to a resolved solution. This may be due to the 2D steady analysis that the RANS models

are used in, and potential solutions are highlighted in this study.
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Nomenclature

0.1 Acronyms

2D Two-dimensional, lacking the spanwise dimension
APG Adverse Pressure Gradient, or decelerating flow
CFD Computational Fluid Dynamics
CPU Central Processing Unit, vernacular name for traditional processor achitecture
DNS Direct Numerical Simulation, CFD simulation to resolve all scales of motion
FPG Favorable Pressure Gradient, or accelerating flow
ID Incipient Detachment, where detachment occurs 1% of the time
ITD Intermittent Transitory Detachment, where detachment occurs 20% of the time
LES Large Eddy Simulation, CFD where resolved motions are filtered
MSc Masters of Science
NACA National Advisory Committee for Aeronautics
PDE Partial Differential Equation, where function depends on multiple parameters
PIV Particle Image Velocimetry, flow visualization by particle tracking
RAE Royal Aircraft Establishment, UK counterpart of NACA
RANS Reynolds-Averaged Navier Stokes, typically appied to turbulence modeling
RMS Root-Mean Square
SA Spalart-Allmaras, specifically the one-equation turbulence model
SST Shear Stress Transport
SIMPLE Semi-Implicit Method for Pressure Linked Equations
STDBL Spatially Developing Turbulent Boundary Layer
TACC Texas Advanced Computing Center
TKE Turbulent Kinetic Energy, k
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0.2 Variables

∇ Del operator in vector space
∇2 Laplacian operator, ∇ · ∇
α Thermal diffusivity
alpha OpenFOAM’s inversion of Schmidt number
γpu Intermittent backflow fraction, amount of flow reversed as fraction of

time
Γ Diffusion coefficient, effective if no subscript, effective is molecular if

laminar
δ Boundary layer thickness
δ∗ Displacement boundary layer thickness
ϵ Error
θ Momentum boundary layer thickness
κ von Karman constant
µ Dynamic viscosity, molecular if no subscript
ν Kinematic viscosity, molecular if no subscript
Π Wake parameter
ρ Density
σ Model constant for RANS models
τ Stress, particularly shear stress
ϕ Generic function, scalar as applicable
χ Ratio of modified viscosity, ν̃, to viscosity, ν
ω Specific dissipation of turbulence
Ω SST term to bound wall-normal stress treatment
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a Model coefficient
C? Model constant
Cf or Cf Skin friction coefficient, wall shear stress normalized by freestream ki-

netic energy
Cp Pressure coefficient, pressure difference to reference point normalized

by freestream kinetic energy
dP Pressure difference
D
Dt

Convective derivative operator, ∂
∂t
+ u · ∇

f or F Function
g Reference frame acceleration
k Turbulent kinetic energy, ||u′||2
k − ω RANS turbulence model
N Location of maximum backflow
P or p Pressure
Pr Prandtl number, ratio of momentum diffusivity to thermal diffusivity
P ′ Kinematic pressure or P/ρ
R Local radius
Re Reynolds number, subscript describes dimensional size
S Source function
Sc Schmidt number, ratio of momentum diffusivity to scalar diffusivity
streamwise Parallel to streamline
t Time
u Velocity vector
uN Velocity of maximum backflow
U or U Mean streamwise velocity
u′ Fluctuating component velocity vector
U Mean velocity vector
x Streamwise coordinate without subscript, vector component with Ein-

stein notation subscript
y Wall-normal coordinate
y′ Wall-normal coordinate normalized by boundary layer height, y/δ
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0.3 Subscripts & Superscripts

variables Ensemble time average
˜variables Model modified value

variable′ Fluctuating component of Reynolds decomposition
+ Wall units via Log Law of the Wall

∞ or inf Fresstream value

0 Reference value

τ Pertaining to shear

e Equilibrium flow value, about freestream values if boundary layer
threshold is near unity

eff Effective value for RANS model

i,j,k Components of vectors in Einstein notation

t Turbulent values

T Thermal values
T Transpose

w At the wall
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CHAPTER 1: INTRODUCTION

The proposed body of work focuses on numerical modeling and replicating wind-tunnel experi-

ments previously performed by Patrick [31] and So and Mellor [41]. These studies evaluated the

effects of streamwise and streamline APG’s due to an increasing cross-sectional section in a dif-

fuser and wall curvature on incompressible SDTBL’s. This behavior is referred to as an Adverse

Pressure Gradient (APG) [28] or flow deceleration. If the APG strength on turbulent wall-bounded

flows is large enough, the wall bounded flow (i.e., SDTBL) will experience significant distortions;

and, eventually, surface detachment. Flow separation is a pressing issue in fluid dynamics since

it induces rapid changes in the boundary layer parameters due to an abrupt thickening of the rota-

tional flow region, called a recirculation bubble, close to the wall. This unwanted effect induces a

critical reduction in the operation performance of engineering and thermal-fluids devices (e.g., air-

foils and turbine blades). The major reasons why the separation of turbulent wall-bounded flows

is so complicated to model and measure are (i) large separation of turbulent scales, (ii) highly

unsteady and non-linear phenomena, (iii) challenges to determine near-wall pressure fluctuations,

and (iv) the outer region becomes blended with the inner region and a new reverse flow region

forms [35]. To our knowledge, the influence of strong APG on scalar transport has not been scruti-

nized in detail, specifically concerning isolation of specific circumstances and effects. The numer-

ical study of the turbulent transport phenomena in SDTBL’s subject to strong pressure gradients

exhibits the following difficulties:

1. The shear behavior at the wall changes since there is an inflection point (like a change in the

profile curvature) in the wall-parallel velocity profile due to a negative curvature at the wall

(i.e., ∂2u
∂x2 |wall = 1

µ
dp
dx

< 0), given by the negative or adverse pressure gradient, dp/dx. At the

separation or detachment point, the shear is zero (i.e.: ∂u
∂x
|wall = 0) [28].

2. The different transport mechanisms of momentum and passive scalars (viscous diffusion,

convection, turbulent mixing, etc.) are significantly impacted by strong streamwise/streamline

pressure gradients, representing real challenges in modeling these flow behaviors [45].
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3. It is well known that pressure gradient is a source of dissimilarity between the momentum

and passive scalar fields [7, 8], which means that its presence causes a breakdown of the

Reynolds analogy [27].

4. High Reynolds numbers considered in wind-tunnel experiments add substantial complica-

tions to numerical modeling and computational resources. Particularly, larger computational

domains are required even under RANS approaches, making almost mandatory parallel CPU

usage.

1.1 Flow Separation Phenomenon

The transport phenomenon in realistic flows generally occur under complicated external condi-

tions, such as pressure gradients (favorable and adverse), complex geometry (concave/convex sur-

face curvatures), high Reynolds numbers, and Spatially-Developing Turbulent Boundary Layers

(SDTBL).

Figure 1.1: Cartoon of 2D Turbulent Boundary
Layer Separation. Adapted from Simpson [35].

The separation of boundary-layer flow,

caused by the presence of a sufficiently strong

Adverse Pressure Gradient (APG), represents

by far the most unwanted situation in the mo-

mentum or scalar transport of thermal-fluid

problems. The boundary layer parameters ex-

perience sudden changes due to the presence of

backflow close to the wall [45]. This negatively

impacts the performance of engineering devices (e.g., increased drag on airfoils or heat flux de-

crease to turbine blades, to name a couple). For this reason, flow separation has been the subject of

various theoretical, experimental, and numerical studies in the past few decades [34] [38], but there

is still much to investigate. Figure 1.1 shows a schematic of the 2D turbulent boundary layer sep-

aration in low-curvature and flat surfaces according to Simpson in [35]. The dashed line indicates

U = 0, and detachment (D) occurs where the time averaged wall shear stress is zero. Moreover,
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the incipient detachment (ID) and intermittent transitory detachment (ITD) take place at locations

where instantaneous backflow occurs 1% and 20% of the time, respectively. Thus, like most turbu-

lent phenomenon, the separation point fluctuates with time with a mean value approximation. As

the boundary layer encounters an APG, the near wall region flow decelerates until some backflow

first takes place at the ID point. this reverse flow is attributed to the transport of outer momentum

toward the wall by the large-scale, coherent structures [35].

Relevant to the present study is the analysis of passive scalar transport under the previously

mentioned situation. The turbulent transport of passive scalars is crucial in many industrial appli-

cations of technological importance, such as in turbine-blade film cooling, heat transfer in elec-

tronic and mechanical devices, species dissolved or suspended in fluids, contaminants or humidity

dispersed in atmospheric flow, to name a few. Furthermore, a passive scalar is defined as a diffusive

contaminant that exists in such a low concentration in a flow that it has no effect on the dynamics

of the fluid motion, Warhaft [44]. However, that low concentration of passive scalar is sufficient to

cause a significant impact on energy expenditures, air pollution and design of chemical processes.

1.2 Application

Figure 1.2: Illustration of Flow Separation
on an Airfoil. Original Figure 1-1 from [31].

The present study will contribute to the knowledge

of fluid mechanics and scalar transport as applied

to a variety of areas, including rotating machinery

[31, 41], rocket nozzles, aircraft airfoils, and other

wall-bounded flows [36]. When working with air-

foils of many applications, and likely non-airfoil

bounded flows, this separation issue determines the

bounds of the operating envelope for engineered

components [31]. Figure 1.2 shows a typical turbine blade and the separate flow distribution due

to streamwise/streamline adverse pressure gradients. The current research efforts are done with an
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incompressible flow assumption - low Mach numbers with zero divergence in the velocity field,

which is also aligned to the wind-tunnel experiments in [31] and [41]. Separation from shock

waves interacting with the incoming turbulent boundary layer is beyond the scope of the present

study. Furthermore, there are multiple ways to compensate for behavior changes caused by a sep-

aration of the boundary layer when dealing with wall-bounded flows in their applications, namely:

1. The turbulent eddy viscosity of the flow is

modified by flow separation [45]. This,

in turn, effectively changes the momen-

tum diffusivity inside the turbulent bound-

ary layer [32]. This change in one diffu-

sivity raises the question of how the diffu-

sivity of other scalars like temperature, con-

taminants or pollutants (i.e., passive scalars)

will accommodate, altering the turbulent

Prandtl/Schmidt numbers away from the

Reynolds analogy [27], reportedly more de-

termined by the wall pressure than viscosity

[23], [40]. The breakdown of the Reynolds

analogy is caused by the presence of strong

FPG as well, according to [9].

Figure 1.3: Relation of Pressure Gradient
and Reynolds Analogy Factor. Reynolds
Analogy Factor calculated using methods in
[40]. Originally Figure 1(c) from [27].

2. The mixing length can change the overall behavior of the flow [45]. Some multiple models and

correlations can be used. White and Majdalani [45] describe simple empirical models [45], and

Simpson proposes more complex ones with comparisons to canonical data [36].

3. Higher order models like the Reynolds-Averaged Navier-Stokes (RANS) models can form a

Partial Differential Equation (PDE) method for finding the same alterations. This provides a

way to calculate the scalar transport through the flow for more complex situations that would
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be experienced in an engineering context.

1.3 The Reynolds-Averaged Navier-Stokes (RANS) Equations

The premise of discretizing the fluid flow is that various fluxes and scalars convect, diffuse, are

generated or destroyed in the flow, and these activities can be simulated by solving a set of PDE’s.

The generalized form can be seen in 1.1, where Γ∇2ϕ is the diffusion term by diffusion value Γ,

and S is the source and sink terms, with sinks being negative sources. A well-known case is the

Navier-Stokes Equation, which focuses on the transport of momentum, as seen in 1.2 from [28].

Dϕ

Dt
= Γ∇2ϕ+ S (1.1)

Dρu

Dt
= µ∇2u+∇P + g (1.2)

The RANS modeling methods takes advantage of the application of the general convection-

diffusion equation to say that there are certain scalars that follow this behavior. In the case of the

Spalart-Allmaras model, a modified viscosity is what is transported by a single equation [42]. In

the case of the two-equation k-based models, the turbulent kinetic energy (TKE or k) is transported

through the flow, with a dissipation term that is transported by another equation. In this study, the k-

ω model transports a specific dissipation, which provides destruction and diffusion of the turbulent

kinetic energy [46]. Here, the variable ω is the specific rate of dissipation.

The transport, diffusion, and generation/destruction affect the momentum via the RANS mean-

momentum equation, seen in Equation 1.3 adapted from [32], which is the interface of the RANS

models to the momentum. The effective viscosity is the summation of molecular and turbulent

viscosity, i.e.: νeff = ν + νt. Turbulent viscosity, νt, comes from the average fluctuations of

turbulent flow per Equation 1.4 as adapted from [32].

D(ρU)

Dt
= ∇

(

νeff

(

∇U+
(

∇U
)T

))

− 2

3
∇k −∇P ′ (1.3)
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−u′u′ +
2

3
δk = νt

(

∇U+
(

∇U
)T

)

(1.4)

There are other ways to model turbulence for the conditions expected in the separating flow, like

Large-Eddy Simulation (LES) [32] or some hybrid method between such and RANS. However, the

assessment is focusing on if a 2D steady model can adequately model APG conditions, lending the

analysis to a RANS model. Additionally, without a known mixing length from the experiments,

tuning more advanced models may take more scope for the assessment than would be worth.

1.3.1 The Spalart-Allmaras (SA) Model

The central premise of the Spalart-Allmaras (SA) model [42] is that the effective kinematic vis-

cosity, is responsible for diffusing momentum in the Navier-Stokes equations of turbulent flows.

Equation 1.5 is the central equation for the SA model and shows the different transport mechanism

terms of the scalar ν̃. ν̃ is a modified turbulent viscosity as it is related to turbulent viscosity via a

blending function, νt = ν̃fv1, where fv1 =
χ3

χ3+C3
v1

and χ = ν̃/ν.

Dν̃

Dt
= Cb1(1−ft2)S̃ν̃+

1

σ
(∇·((ν+ ν̃)∇ν̃)+Cb2|∇ν̃|2)−(Cw1fw−

Cb1

κ2
ft2)(

ν̃

d
)2+ft1∆U2 (1.5)

The above equation 1.5 possesses five terms, and the physical meanings will be further ex-

plained. The term on the left-hand side represents the material or convective derivative of scalar ν̃,

involving the convection of the scalar that is traveling through the flow, and its rate of change. The

first term on the right-hand side is the production term. This term has a constant that is fitted to

canonical data and a function that describes the production from laminar boundary layer behavior.

The second term on the right-hand side is the diffusion term, with constants that are fitted and

confirmed to canonical data. The third term on the right-hand side is the destruction or dissipation

term. There are two sub-terms, the first is a destruction term that models near-wall behaviors,

and the second is a term that describes the destruction by laminar boundary layer behaviors. The

final term is a boundary layer trip term, which makes the SA model insensitive to boundary layer
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tripping.

For more details on the derivation and the data that is the basis for the constants and functions,

readers are referred to the original document [42] where the authors walk through the development

of the SA model in detail. However, to summarize the overall methodology, the SA model takes

advantage of the self-similarity between turbulent behaviors by fitting a model to the self-similar

parameters.

1.3.2 The k − ω Model with Shear Stress Transport (SST) Treatment

In 1988, Wilcox [46] developed the k-ω RANS model that allows turbulence and dissipation to be

transported by the turbulent kinetic energy, k, as shown by eq. 1.6, and the specific dissipation, ω,

as depicted by eq. 1.7, respectively.

Dρk

Dt
= τij

∂ui

∂xj

− β∗ρωk +
∂

∂xj

((µ+ σk1µt)
∂k

∂xj

) (1.6)

Dρω

Dt
=

γ1
νt
τij

∂ui

∂xj

− β1ρω
2 +

∂

∂xj

((µ+ σω1µt)
∂ω

∂xj

) (1.7)

However, Menter in 1993 [26] pointed out that there were significant shortcomings in this

model. First, Menter points out that the original k-ω model is extremely sensitive to the freestream

conditions that feed into the model. Second, the k-ω approach inaccurately models flow separation

under APG conditions. In this discussion, Menter’s changes to the k-ω model are glossed over to

discuss and propose the new Shear-Stress Transport (SST) modeling or treatment addition. The

SST model is an alternative formulation of RANS models to improve normal stress modeling.

Since the turbulent stresses are allowed to be transported, it follows the same convection behavior

as other scalars, as seen in equation 1.8, where the stress tensor is defined in eq. 1.9.

Dτ

Dt
=

∂τ

∂t
+ µk

∂τ

∂xk

(1.8)

7



τ = −ρu′

iu
′

j (1.9)

This changes the calculation of the turbulent viscosity from a single ratio calculation that sim-

ply considers a shear to a calculation that accepts both shear and rotational conditions, with those

rotational conditions being more prominent in separation. The basis of this calculation is shown in

equation 1.10.

νt =
a1k

max(a1ω,Ω)
(1.10)

However, this equation does not handle the blending between the SST and baseline conditions of

the standard or modified k-ω model. Thus, the eddy viscosity is finally defined by 1.11, which is

supported by the functions in eqns. 1.12 and 1.13.

νt =
a1k

max(a1ω, F2Ω)
(1.11)

F2 = tanh(a22) (1.12)

a2 = max(2

√
k

0.09ωy
,
500ν

t2ω
) (1.13)

According to the data that Menter presents in [26], there is not a strong effect on the shear stresses,

but there is a significant improvement in wall-normal forces.

1.3.3 Turbulence Models for Passive Scalar Transport

Whereas the major objective in the present project is to assess popular turbulence models, such as

the k − ω SST and the SA models, under extreme external conditions (i.e., at very high Reynolds

numbers and flow separation), an important intellectual merit of the present analysis is the pre-

diction of passive scalars under such extreme conditions. By definition, a passive scalar is that

diffusive contaminant or pollutant (e.g., temperature, humidity, etc.) that exists in such a low

concentration in a fluid flow that it does not possess any influence on the dynamics of the fluid
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motion. Such quantity is transported and does not directly affect the fluid flow described by the

momentum equation. For instance, if the temperature difference in the thermal turbulent boundary

layer is assumed small, the buoyancy forces and temperature dependence of material properties

can be assumed negligible. Therefore, the temperature may be treated as a passive scalar, and the

momentum and the passive scalar transport equations are uncoupled. The passive scalar transport

equation becomes a linear problem. It is well known that pressure gradients (either adverse or fa-

vorable pressure gradients) are sources of dissimilarity between the momentum and passive scalar

fields, causing the breakdown of the Reynolds analogy [7–9, 27]. Additionally, this can also apply

to other passive scalars, say species concentration for a suspended species in a homogeneous mix-

ture, like the titanium dioxide Patrick [31] used for PIV.

Since RANS models find turbulent viscosity, the turbulence models consider the contribution to

diffusion of momentum within the model itself. In certain applications, scalar transport like en-

ergy or species in a homogeneous mixture is a vital study for CFD. The category passive is applied

when the scalar transport does not affect the transport of mass or momentum for the fluid or ho-

mogeneous fluid mixture.

Let’s assume that the instantaneous passive scalar, ϕ, (e.g., temperature, humidity, chemical

species, pollutant, contaminant, and particles) can be decomposed using the classical Reynolds

decomposition, as seen in Equation 1.14: a time-averaged component, ϕ, plus a fluctuating compo-

nent, ϕ′. The mathematical procedure is similar to the one applied in the obtention of the Reynolds-

averaged NS equations. Briefly, the instantaneous variable ϕ is substituted in the advection-

diffusion passive scalar equation by ϕ + ϕ′ and the time average is taken in the full equation.

After breaking down all terms and by making the corresponding assumptions on the time-averaged

correlated values for mean and fluctuations, the Reynolds-averaged passive scalar transport equa-

tion is obtained. It can be shown that the turbulent diffusivity for the passive scalar results in the

gradient-diffusion hypothesis, seen in Equation 1.15 [32].

ϕ = ϕ+ ϕ′ (1.14)
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u′ϕ′ = −Γt∇ϕ (1.15)

The effective diffusion for the passive scalar is the summation of this turbulent diffusion, Γt,

and the molecular behavior diffusion, Γ, as seen in Equation 1.16. This results in an equivalent

mean flow behavior, seen in Equation 1.17. For momentum, this diffusion is obviously viscosity,

specifically kinematic viscosity, ν, in this study [32]. For thermal energy or temperature difference,

this is called thermal diffusivity, or α. The ratio of the momentum to the thermal diffusivity is the

Prandtl number, as defined by Equation 1.18, describing the ratio of diffusion of momentum to

thermal energy [45]. For species, this is simply a species diffusion, as per Fick’s law [32]. For

air, the Prandtl number will be near unity (1), but there are also algebraic solutions based on the

momentum and heat transfer conditions that come from the Crocco-Busemann relation [45].

Γeff = Γ + Γt (1.16)

Dϕ

Dt
= ∇ ·

(

Γeff∇ϕ
)

(1.17)

Pr =
ν

α
(1.18)

A more general form of the Prandtl number is the Schmidt number, which describes simply any

scalar diffusivity parameter, Γ, like in Equation 1.19. Given that diffusion breaks into a turbulent

and mean flow quantities for both momentum and the passive scalar, Schmidt, and Prandtl number,

form a turbulent quantity like

Sc =
ν

Γ
(1.19)

In a similar way that eddy viscosity models focus on setting a closure for the turbulent stresses

(convective terms) via an effective fluid viscosity (νeff = νmolecular +νt), an analogous concept is
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applied to turbulent passive scalar flux modeling. The effective passive scalar diffusivity is defined

as the contribution of the molecular and turbulent diffusivity, as shown by eq. 1.16. In the present

analysis, the simple turbulent Prandtl or Schmidt number model is used in OpenFOAM [4] to com-

pute the turbulent heat or passive scalar fluxes.

Γt = νt/Sct (1.20)

where Sct is the turbulent Schmidt number, which is assumed constant inside the turbulent bound-

ary layer, and it depends on the considered molecular Schmidt number. Furthermore, the turbulent

eddy viscosity, νt, varies in the wall-normal direction, being computed by the turbulence models

described in §1.3.1 and §1.3.2.

1.4 Overview of Original Studies

In this section, experimental studies conducted by Patrick [31] and So & Mellor [41] are summa-

rized. The collected sampling data was utilized for numerical validation purposes in this project.

For the purposes of this project, a chief assumption is that the experiments were valid and pro-

duced quality data worthy of comparison. Questions of validity and uncertainty of the data should

be addressed at the original studies.

1.4.1 Patrick Diverging-Converging Duct

Patrick [31] modified a test stand at the United Technologies Research Center to investigate the

phenomenon of incompressible turbulent boundary layer separation, specifically aimed at address-

ing a turbomachinery application. The test section is illustrated in Figure 1.4. This produces a

relatively simple set of data where the flow separation occurs over a flat plate, which removes any

surface curvature effects in the turbulence statistics. Patrick [31] then measured the fluid flow and

turbulence as the flow created a long separation bubble (of approximately 55 cm in length) where

the boundary layer had detached, as observed in the schematic of Fig. 1.5. Notice the presence of

“boundary layer scoops" in the lower diverging wall. According to [31], the scoops were designed
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to bleed the incoming APG flow and to “force the lower wall boundary layer to remain attached

throughout the strong adverse pressure gradient field required to produce 2D separation on the

test surface". Furthermore, Patrick validated a 2D assumption via measurements. The mean flow

and velocity fluctuations were measured via laser Doppler velocimetry, hot-wire anemometry, and

pneumatic probing techniques. This study provides data on the mean flow wall-normal profiles

(U and V ), wall mean pressure coefficients (Cp), skin friction coefficients (Cf ), Reynolds normal

stresses (u′2 and v′2), as well as Reynolds shear stresses (u′v′) at several streamwise stations. For

the straightforward comparison against the present RANS simulations, the following experimental

data will be employed: U , V , Cp, and Cf . It is important to mention that the wind-tunnel analysis

conducted by [31] presents the following numerical challenges:

1. Prescription of very strong APG and subsequent favorable pressure gradient (FPG) for flow

reattachment purposes by manipulating the opposite surface, which induces severe distortion to

the incoming SDTBL.

2. Massively separated flow, which is highly non-linear and unsteady.

3. Large-scale systems (wind-tunnel facility) and very high (experimental) Reynolds numbers

(Reθ ≈ 11,100 - 55,000). Where Reθ = U∞θ/ν, here U∞ is the freestream velocity, θ is

the momentum thickness, and ν is the kinematic fluid viscosity.

4. Adequate setup of the boundary layer scoop on the opposite wall with the correct outlet pressure

to avoid or minimize flow separation in that wall.

As previously mentioned, the phenomenon of massively turbulent flow separation is a highly un-

steady problem. Selecting RANS as the numerical approach to predict it might be considered a

restricted or inadequate methodology since the “RANS philosophy is to resolve the time-averaged

solutions of the Navier-Stokes equations" by basically modeling the full velocity fluctuation spec-

tra. However, it can provide important first insights into the fluid dynamics problem quickly at a

low computational cost, making it an attractive “initial exploration numerical technique" for future
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Figure 1.4: Experimental Test Section from Patrick. Adapted from Figure 3-6 in [31].

time-dependent three-dimensional flow solvers, such as Large-Eddy Simulations (LES) and Direct

Numerical Simulation (DNS).

A more thorough review and comprehensive information for readers can be found in Appendix A.

1.4.2 So and Mellor Two-Dimensional Duct

So and Mellor [41] built a wind tunnel to scrutinize the effect of uniform (i.e., streamwise zero-

pressure gradient, ZPG, or constant streamwise distribution of duct cross-sectional areas) and mod-

erately adverse pressure distributions on incoming SDTBL’s along convex and concave walls. The

latter case was achieved by adjusting the top (concave) surface in order to impose an increasing

cross-sectional area. The top wall modification generated a streamwise APG on the incoming

flow. This second case was called “separating flow" in their studies since the SDTBL never de-

tached from the convex surface. The measured mean skin friction coefficient, Cf , exhibits a clear

decreasing trend but never achieves a zero value. If those conditions were preserved for a longer

distance, the SDTBL would eventually separate from the wall. That is the major reason why they

called “separating flow" to this case. On the other hand, the first case was labeled as “constant pres-

sure flow". The selected measurement technique was the hot-wire technology. Their wind-tunnel

measurements corroborated the intensification of turbulent mixing over the concave surface, while

the opposite occurred on the convex surface. A schematic of the utilized wind tunnel is shown in
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Figure 1.5: Schematic of flow streamlines and separation bubble. Adapted from Figure 4-6 in [31].

1.6. The depth of the wind tunnel is 4 feet, which ensures a two-dimensional wall-bounded flow.

This facility produces a set of data over both curved surfaces (convex and concave) that locally

causes flow deceleration and acceleration, respectively, for the “constant pressure" and “separat-

ing" flow cases. Similar to those done by Patrick [31], So and Mellor [41] also provided mean

flow profiles and second-order turbulence statistics, which represent a good source of comparison

against present RANS efforts. In [41], the following flow statistics were collected: (i) mean flow

wall-normal profiles (U and V ), wall static mean pressure coefficients (Cp), skin friction coeffi-

cients (Cf ), Reynolds normal stresses (u′2, v′2, and w′2), as well as Reynolds shear stresses (u′v′,

u′w′, and v′w′) at several streamwise stations at the convex and concave wall.

The wind-tunnel analysis conducted by [41] exhibits the following numerical challenges:

1. In incompressible flow, the presence of convex walls induces local APG (flow deceleration);

therefore, incoming turbulent boundary layers are more prone to wall detachment. In [41], the

prescribed wall convex curvature ratio was in the order of δ/R ≈ 0.08. Here, δ in the local

boundary layer thickness and R in the local curvature radius.

2. On the contrary, the presence of concave surfaces generates local FPG (flow acceleration). In

wind-tunnel experiments by [41], the prescribed wall concave curvature ratio was approxi-
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mately δ/R ≈ -0.13 (usually, concave curvatures are considered negative).

3. According to Simpson [35], absolute values of wall curvature ratios larger than 0.1 can be con-

sidered strong (i.e., |δ/R| > 0.1); thus, the wall curvatures prescribed by [41] can be assumed

moderately strong and very strong, respectively.

4. The prescription of complex geometries (convex and concave surface curvatures) and their cor-

responding cell distribution in the computational mesh are non-trivial tasks in OpenFOAM [4].

5. The range of the momentum thickness Reynolds number (Reθ ≈ 2, 100 − 4, 000) in So &

Mellor [41] is roughly one order of magnitude lower than that of Patrick [31]. However, it still

represents an authentic numerical challenge for the RANS approach.

Readers are referred to Appendix A for further information regarding the experimental setup

in [41].
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Figure 1.6: Schematic of the curved wall wind-tunnel. Adapted from Figure 1 in [41]. Images in
original report of poor quality.

1.5 Intellectual Merit and Research Gap to be Filled

The proposed aims in the present MSc thesis will shed important light on the “gray zones" of

detached spatially-developing turbulent boundary layers (SDTBL’s); perhaps, one of the most con-

troversial and not well-understood issue in turbulence. Additionally, the effect of adverse pressure

gradient on SDTBL under the combined influence of wall curvature (convex and concave) is also

performed.

While the principal purpose of the present study is to “push the boundaries" of two popular turbu-

lence models (i.e., the k − ω Shear Stress Transport and the Spalart-Allmaras models) in extreme

external conditions (i.e., at very high Reynolds numbers, massively separated flow and strong wall
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curvatures), a crucial intellectual merit of the present analysis is the prediction of passive scalars

under such level of distortion in SDTBL’s. Two wind-tunnel experimental setups [31,41] from the

literature are replicated and modeled via a RANS approach. The available experimental data is em-

ployed for validation purposes. It is worth mentioning that the diffusion and advection of passive

scalars were not measured in previously mentioned experiments, but that the linear problem was

numerically resolved in the present study via a transport equation for passive scalars and the con-

sideration of a closure model for the turbulent passive scalar fluxes. Turbulent fluid mixing plays

a key role in several engineering applications such as fuel injection, heat transfer, and pollutant

dispersion, to name a few.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, relevant background is shown and discussed. The chapter is organized as follows:

• Background Literature

• Relevant Studies

2.1 Background Literature

2.1.1 Turbulence Models

Chapter 1 contains a summary of the turbulence models’ equations, and thus this section is con-

cerned with the implementation of the turbulence models.

Spalart-Allmaras Model

The SA model is a single equation model, and thus there is only one variable, νt or ν̃, that de-

termines the turbulence conditions. These two variables are linked via Equation 2.1, where fv1 is

determined by Equation 2.2 and 2.3 [42].

νt = fv1ν̃ (2.1)

fv1 =
χ3

χ3 + c3v1
(2.2)

χ =
ν̃

ν
(2.3)

Spalart and Rumsey note that for the freestream, or as they refer to it, ambient, values of νt and

ν̃ should be held in relation to ν to certain ratios. Values of ν̃/ν, or χ, much less than unity, they

point out, result in the model being unable to produce turbulent development. This ratio should be

between 1 and 3 to produce a proper turbulent development. Spalart and Rumsey point out that
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values above 3 will detrimentally change the behavior of the boundary layer. Finally, they point

out that values for νt outside the boundary layer need to be less than those in the boundary layer’s

outer region [43]. Spalart and Allmaras demonstrate a better consistency to the experimental data

on an RAE 2822 airfoil than other experiments do. However, Spalart and Allmaras point out

that for low Reynolds number flows, the model tends to overpredict shear and velocity profiles

for a Samuel-Joubert flow [42]. This may be due to the conditions of the case that they used

to compare the SA model to experimental data. Furthermore, ν̃ does not have an inherent wall

function in OpenFOAM, but νt has the nutkWallFunction, which allows for the calculation of

turbulent viscosity from a wall value along the trend that νt should follow for a boundary layer [6].

k-omega SST Model

Menter provides suggested freestream values in the Appendix of the k − ω SST origination paper

[26]. Menter recommends values for ω in the freestream, as can be seen in Equation 2.4, νt in the

freestream, as in Equation 2.5, which leads to the freestream values for k, as in Equation 2.6 [26].

ω∞ = A
U∞

L
, where A ∈ [1, 10] (2.4)

νt,∞ = 10−Bν∞, where B ∈ [2, 5] (2.5)

k∞ = νt,∞ω∞ (2.6)

Additionally, Menter provides a condition for ω near the wall, seen in Equation 2.7 [26]. This

differs from Wilcox’s formulation for ω near the wall, where Wilcox prescribes C = 1 [46].

ω = C
6ν

β1∆y21
, at y = 0, where C = 10 (2.7)

Menter demonstrates that the k − ω SST model matches experimental data better than the
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original k−ω model or even the k− ϵ model. There are a few weaknesses or deviations that would

be worth pointing out before proceeding with this study. The k−ω model tends to underpredict skin

friction coefficient, Cf , in certain APG regimes, as Menter demonstrates with flow along a cylinder

wall and a backward-facing step. Additionally, the model underpredicts the velocity profile in the

outer region of the boundary layers for the cylinder, backward-facing step, and NACA airfoil test

cases. However, the k − ω SST model outperforms its predecessors and appears to have good

agreement with experimental data [26]. This is only pointed out to inform the data in this study.

The CFD analyses will use the wall function for νt for the k−ω cases as the SA cases. However,

there are two more scalars to consider near the wall. Turbulent kinetic energy, k, has two main

wall functions, the kqRWallFunction and the kLowReWallFunction. The kLowReWallFunction

artificially generates a k profile based on the distance from the wall. However, the kqRWallFunction

creates a zero-gradient condition starting from a defined value. The specific dissipation, ω, has the

omegaWallFunction, which produces the profile for ω from Wilcox’s wall profile from [46] [6].

2.1.2 Turbulent Boundary Layer Theory

Flow Profiles

As previously mentioned in the review of the Spalart-Allmaras model, turbulent behavior has

self-similar behaviors that occur regardless of scales. If one were to take the distribution of the

wavenumbers relative to the energy that they contain, there is a clear trend of breakdown in energy

from the lower to higher wavenumbers that follows a standard slope across all boundary layer [32].

This indicates a fractal behavior, which means that there are trends that exist across all scales in-

dependent of those scales [22]. To do this, the streamwise velocity and height from boundary

layer can be non-dimensionalized into "wall units" via Equations 2.8 and 2.9, respectively. When

working with boundary layers, this takes the form of the Log Law of the Wall, expressed by Coles

in [14], seen in Equation 2.10, and a expression for the inner layer in Equation 2.11 [13].

u+ =
u

uτ

(2.8)
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y+ =
yuτ

ν
(2.9)

u+ =
1

κ
ln(y+) + C, where κ = 0.41 and C = 5.0 (2.10)

u+ = y+ (2.11)

Pope compiled a number of papers that argue for a Reynolds-number dependent Law of the

Wall, which can be more relevant for a wider range of condition. This does not violate the self-

similarity principal. This idea comes from pipe flow boundary layers, and rather than going into

detail, the formulation is shown in Equations 2.12, 2.13, 2.14, and 2.15. Rather than going in depth

on this formulation, one can simply point out that based on the data Pope presents, as the Reynolds

number approaches zero, these laws approach the original Log Law of the Wall.

u+ = fI(y
+) (2.12)

U∞ − u

u0

= F0(η) (2.13)

u+ =
1

κ
ln(y+) +B (2.14)

u+ = C(y+)α (2.15)

There is also an extension that takes into account the wake formation at the edge of the bound-

ary layer called the Velocity-Defect Law. In addition to the Log Law of the wall, there is a second

function that considers the wake of the boundary layer, called the Law of the Wake, which is

a function of y/δ [32]. Coles formulates this law as in Equations 2.16 and 2.17. Here, Π is a
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non-dimensional constant for a boundary layer called "wake strength parameter".

u

uτ

= fw

(

y

δv

)

+
Π

κ
w
(y

δ

)

(2.16)

w
(y

δ

)

= 2sin2

(π

2

y

δ

)

(2.17)

Taking this idea further to develop a composite boundary layer velocity profile, Guarini et.

al. [18] used a full composite profile for the boundary layer formulated in Equations 2.18 and 2.19

based on the Reichardt inner layer profile and Finley’s wake function. For the conditions Guarini

et. al. were studying, C1 = −(1/κ)ln(κ) + C, η1 = 11, b = 0.33, and Π = 0.25. It appears

that C1, η1, and b are likely universal constants for the self-similar behavior of the boundary layers,

whereas Π is dependent on the conditions of the flow [18]. It is also noteworthy that the cubic

relation will be similar to the sine-function Coles originally used.

u+ =
1

κ
ln(1 + κy+) + C1

(

1− e−y+/η1 −
(

y+

η1

)

e−by+
)

+
1

κ
wG

(y

δ

)

(2.18)

wG (y′) = y′2 − y′3 + 6Πy′2 − 4Πy′3 (2.19)

All these boundary layer relations are based on a ZPG condition. When APG conditions are

present, there may be separation that results in regions of the boundary layer that have reversed

flow, specifically closest to the wall. The outer region of the boundary layer will take a different

shape, approaching a blend between the log layer and wake layer at an infinitely strong APG [45]

[12]. The strength of the APG can be described by the Clauser factor, see Equation 2.34, and

results in an intermittent backflow fraction by time, γpu change. For γpu = 0.5, there is an equal

amount of backflow as forward flow in time for that point [35].

At the point of separation, Simpson [35] points out that the inner layer is no longer bound

by the wall and disappears in a way. For the separation region, a new relation for γpu ∈ (0, 0.5)
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describes the flow profile relative to the backflow behavior is in Equation 2.20. Simpson uses N to

be the height where the maximum streamwise negative velocity, uN , occurs, and A = 0.3. Once

y > 1.0N , the outer region of the boundary layer behavior dominates. A viscous layer profile

does appear and is described by Equation 2.21. Here, P1 is a pressure gradient parameter that is

analogous to a local Clauser parameter for the viscous region, defined in Equation 2.22.

u

|uN |
= A

( y

N
− ln

∣

∣

∣

y

N

∣

∣

∣
− 1

)

− 1, for y ∈ (0.2, 1.0)N (2.20)

u

|uN |
= −C

y

N
+

P1

2

( y

N

)2

, for y ∈ [0, 0.2]N (2.21)

P1 =
N2

ρν|UN |
dP

dx
(2.22)

Boundary Layer Sizes

In addition to the profile dimensions, an important measurement to the wall-bounded flow behavior

are the thicknesses of the boundary layer, which is correlated to a number of things: the wake,

pressure gradient quantification [45], momentum mixing length [45], and mean flow behavior.

The first and most basic definition of boundary layer is just where the ratio of velocity to

freestream velocity meets a certain threshold, as in Equation 2.23. It seems like a common

threshold value is 99%, although there are studies that use other values [45].

U

U∞

= threshold, for y = δ (2.23)

The second definition of boundary layer is displacement boundary layer, which describes the

height of where if the flow was uniformly the freestream value, would be blocked by the presence

of a boundary layer. The definition is in Equation 2.24 from [45]. Sometimes authors use other

notations for displacement thickness, so one should be careful to verify notations.
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δ∗ =

∫ δ

0

(

1− U

U∞

)

dy (2.24)

The third definition of boundary layer is the momentum boundary layer, which describes the

height of where if the flow was uniformly the freestream value, the flow would have the same

momentum. The definition is in Equation 2.25 from [45]. Again, sometimes authors use other

notations.

θ =

∫ δ

0

U

U∞

(

1− U

U∞

)

dy (2.25)

Since in this study, scalar transport is considered, it is also worth discussing thermal and en-

thalpy boundary layer, which can be extended to other passive scalars. Like with boundary layer

thickness, thermal boundary layer is defined as Equation 2.26. For Prandtl numbers near or above

unity (Pr ⪆ 1), the ratio of the thermal boundary layer to boundary layer height is about the

Prandtl number [45].

T

Te

= threshold, for y = δT (2.26)

However, temperature is not the scalar being transported, and thus this idea is extended to

the actual scalar, energy or enthalpy, that is transported through the flow. The boundary layer

associated with this scalar, which represents the region that is the wall enthalpy if the flow is the

freestream enthalpy uniformly. The formulation is in Equation 2.27 from [45].

δh =

∫ δT

0

T − Te

Tw − Te

U

U∞

dy (2.27)

Boundary Layer Development

This study is focusing on STDBL’s, and thus the boundary layer heights and profiles and so on

will change with the streamwise direction. To do this, White [45] outlines equilibrium velocity

that follows a given power law, Ue = Cxm, allowing for a developing boundary layer. Based on
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this definition, m = 0 for uniform freestream conditions. This leads to the von Karman momen-

tum relation for a boundary layer, which simply allows for the development and dissipation of

momentum in that boundary layer, seen in Equation 2.28 [45].

dθ

dx
+ (2 +H)

θ

Ue

dUe

dx
=

Cf

2
=

uτ

Ue

(2.28)

Additionally, there is a parameter, β, called the Clauser parameter that relates the pressure

gradient to the acceleration of the flow, seen in Equation 2.29 [45]. This indicates some

β =
δ∗

τw

dPe

dx
= −λ2H

θ

Ue

dUe

dx
, where λ =

√

Cf

2
=

uτ

Ue

(2.29)

One of the parameters that is used up to this point is skin friction coefficient, Cf , defined in

Equation 2.30 [45], which is helpful to describe the momentum dissipation from the boundary

layer. This definition is not helpful for conditions where density, ρ, is not known like the Open-

FOAM analyses in this study, and thus, the alternative formulation is more useful, as in Equation

2.31.

Cf =
τw

1

2
ρU2

e

(2.30)

Cf = 2ν

du
dy
|w

U2
e

(2.31)

Finally, the shear velocity, uτ , helps define the self-similar shape of the boundary layer and

allows for non-dimensionalizing the boundary layer for its shear behavior. Shear velocity is not

a physical quantity and just describes the shear at the wall. Equation 2.32 shows the definition

from [32]. Now, this definition does imply that shear velocity is always positive, which is not

useful for reversed flow. Thus, this study uses the alternative definition to allow for better use of

the parameter for the conditions expected, as in Equation 2.33.
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uτ =

√

τw
ρ

(2.32)

uτ =
τw

||τw||

√

τw
ρ

(2.33)

Note, for values of threshold near unity (1), Ue = U∞.

2.2 Relevant Studies

Patrick’s review of the literature [31] and foundation of the methods are based on the data produced

by Simpson [36,37]. Simpson provides a variety of data that gives insight to how turbulent bound-

ary layers separate, like Patrick. Much of Simpson’s data is dedicated to time-based turbulent flow

statistics, and is thus not helpful for steady-state RANS simulation. However, as referenced in

2.1.2, Simpson had a later paper that described a better profile for flow with backflow [35].

In Paeres et. al. [29], an incoming incompressible SDTBL over a 2-D curved hill was numerically

studied via the RANS equations plus two eddy-viscosity models: the k − ω SST and the Spalart-

Allmaras turbulence models plus the consideration of passive scalar transport. The complex ge-

ometry with a combined strong adverse/favorable streamline curvature-driven pressure gradient

caused by concave/convex surface curvatures was replicated from wind-tunnel experiments by

Baskaran et al. [10]. It was concluded that the Reynolds analogy, defined by the St/(Cf/2) ratio,

was satisfied in zero-pressure gradient (ZPG) regions. On the contrary, the presence of streamline

curvature-driven pressure gradient caused Reynolds analogy breakdown. Both models were able to

reasonably capture very strong APG-induced outer secondary peaks in the Reynolds shear stresses

< u′v′ > and turbulence production, as well as the negative slope on the constant shear layer. The

presence of outer secondary peaks on < u′v′ > and u′ was also detected by [8] in DNS of SDTBL

subject to strong streamwise APG. According to DNS studies by Skote et al. [39], outer turbulent

streaks are enhanced by APG which intensify streamwise velocity fluctuations and Reynolds shear

stresses.
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In a similar vein, Sanmiguel Vila et al. [17] studies the effects of the strength of an Adverse Pres-

sure Gradient (APG) relative to the effects on the flow. Their description of strength uses an apt

non-dimensional value called the Clauser factor [12] to compare self-similar boundary layer be-

havior, defined in 2.34. Sanmiguel Vila covers a range of of Clauser factors from 0.41 to 2.38 over

a range of Reynolds numbers that were controlled by the freestream velocity. Sanmiguel Vila also

provides some more resolution in a more limited range of conditions, but for a similar geometry

as the Patrick study with a combination of LES and PIV [16]. There are a few key takeaways

from Sanmiguel Vila’s study to inform this one. First, the strength of the APG, quantified through

the Clauser factor, affects the shape and shape factor of the boundary layer, increasing the shape

factor with the Clauser factor. Second, while the distribution of Reynolds stresses is very similar

across different strengths of the APG in the inner regions of the boundary layer, the distribution of

Reynolds stresses in the outer region of the boundary layer is greatly affected by the strength of

the APG. Stronger APG’s will form a more prominent secondary peak of Reynolds stresses nearer

to the edge of the boundary layer [17].

β =
δ∗

τw

dP

dx
(2.34)

Clauser [12] notes similar trends, but also notes some other points. First, the skin friction

coefficient relative to the momentum thickness boundary layer decreases with increasing strength

of APG until the skin friction relation reaches zero.

Similar to Patrick’s study, Marusic and Perry [25] looks at the behaviors of APG boundary

layers over a flat plate with a separating mechanism opposite the plate. This study contains much

stronger APGs than the other studies, with Clauser factors reaching as high as 15.3 at low Reynolds

numbers. This does, however, provide a good overview of how the APG will affect the turbulent

behavior. Marusic and Perry provide both plotted and tabulated data that can correlate to a flat

plate boundary layer in an adverse pressure gradient. One additional set of data that Marusic and

Perry use is the Coles factor, which is used to modify the law-of-the-wall profile of the boundary

layers to account for additional behaviors like the adverse pressure gradients [24]. In the Marusic
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and Perry study, the best data is the distribution of Reynolds stress as the boundary layer separates,

and shows that stronger Clauser parameters result in stronger Reynolds stress peaks in the outer

region of the boundary layer [25]. This appears to be unaffected by local eddies in the flow.
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CHAPTER 3: METHODS

The purpose of this chapter is to provide information regarding the employed computational re-

sources, and software (flow solver, numerical schemes and postprocessing tools). It also discussed

the strategies for setting proper turbulent inflow and boundary conditions in SDTBL’s.

3.1 Computing Systems

Three computer systems produced CFD models in this study.

• Home Ubuntu System: This computer is an older desktop with Ubuntu 24.04 installed that is

using a i7-3770 with 32GB of RAM. This computer was sufficient for building and iterating on

smaller models rapidly before exporting to the larger HPC clusters.

• UTSA ARC: UTSA’s Research Computing Support Group (RCSG) maintains computing nodes

of various architectures [2]. This study used the following partitions:

– compute1: This system allocates Intel Cascade Lake nodes with 40 cores and 80 threads

with 384 GB of RAM.

– compute2: This system allocates Intel Cascade Lake nodes with 40 cores and 80 threads

with 384 GB of RAM. Unlike compute1, this partition’s nodes can be containerized or

have virtual machines placed on a node to only used the number of threads required to

perform the job.

– bigmem: This system allocates Intel Cascade Lake nodes with 80 cores and 160 threads

with 1.5 TB of RAM.

• UT Austin TACC Lonestar 6: UT Austin’s Texas Advanced Computing Center operates the

Lonestar 6 system that is meant for research [3]. On this system, this study used the following

partitions:
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– vm-small: This partition allows a user to use one quarter (1/4th) of an AMD EPYC 7763

64-core processor with 32GB of RAM. Users can use up to one virtual node at a much

lower cost than the normal partition, about 1/7th the price.

– normal: This partition contains two (2x) sockets of AMD EPYC 7763 64-core processors

with 256GB of RAM, which provides a total of 128 threads on one node. A user can

use up to 64 nodes. Note that the user pays for a whole node at any given time, so it is

recommended that the user uses the whole thing. Additionally, the queues tend to be long,

reaching up to a day and a half regularly.

– development: This partition allows more rapid use of the same node architecture of the

normal partition, but users can only use up to 4 nodes for up to 2 hours, thus better for

iteration and operations that require large computational resources for a short time.

3.2 CFD Software

OpenFOAM is an open-source CFD software that is installed on various computer systems [4]. At

its core, it is a partial differential equation (PDE) solver that can be built and modified at will, but

primarily gets applied for CFD.

Computer System OpenFOAM Version
Home Ubuntu System OpenFOAM 11
UTSA ARC OpenFOAM v2406
UT Austin TACC Lonestar 6 OpenFOAM 12

Table 3.1: OpenFOAM Versions Used on the Computing Systems

Using OpenFOAM has a few considerations outside of the details pertaining uniquely to a CFD

analysis. The primary one discovered during the project is the effect of splitting a CFD analysis

amongst MPI ranks. On one hand, splitting the CFD case amongst too few ranks results in a slow

solve that may not fit within a reasonable time for producing results. On the other hand, splitting

the CFD case amongst too many ranks results in a few issues. The primary issue is that too few

points or cells in a rank can result in instabilities for some solver conditions. Additionally, it
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results in a lower efficiency, using excessive computational resources and spending too much time

on serial portions of the solver. A short study on splitting CFD analysis amongst MPI ranks exists

in Appendix B.

3.3 Auxiliary Software - Anser

There are a host of functions, programs, and such that OpenFOAM has to make the CFD software

more usable. However, not all of the methods are readily documented, and thus during this project

a Python software called Anser [1], Latin for goose. Like geese, there are lots of smaller software

and objects that function together, using each other’s capabilities to ease the workload of any one

piece.

3.4 CFD Analyses

There are three analyses to assess the geometries, models, and behaviors that this study is interested

in. They are:

• Inlet Duct: This analysis studies the development of a boundary layer along one side of the

inlet duct for the Patrick study that the current study is replicating. This provides a few things.

1. Testing the turbulence models along a flat and assumed smooth surface will allow for an

immediate verification of the CFD code according to canonical data.

2. The developing boundary layer can then be synthesized as an inlet condition for the test

sections for each of the replicated CFD analyses.

3. Testing the operational capability of OpenFOAM on smaller analyses like the inlet ducts

allows for learning how to best utilize the software before moving to larger, more expen-

sive analyses.

• Patrick Test Section: This analysis studies the separation of a boundary layer over a flat plate

to the best faithful representation of Patrick’s 1987 experiment [31]. Additionally, it investigates

passive scalar transport to understand the physics in the same context.
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• So and Mellor Test Section: This analysis studies the separation of a boundary layer over a

curved surface to the best faithful representation of So and Mellor’s 1972 experiment [41]. In

this cases, there is no necessary inlet flow as the inlet to the So and Mellor geometry can be

assumed uniform profile with a natural development of the boundary layer.

To produce the proper viscous model, all viscosity is assumed Newtonion, i.e. constant. The

value for the viscosity is calculated by CoolProp, a free thermodynamic state software, using the

default Helmholtz equation of state [11]. Adding scalar transport into the analysis is done through

introducing a user-defined function that targets the built-in Shared Object (*.so) OpenFOAM has

for passive scalar transport outside of the main CFD solve. It is worth noting that the pressure is

set to be a zero-gradient condition (zeroGradient) at the walls. As is seen in the results, this likely

causes issues with the pressure distribution in the domain, but OpenFOAM does not provide an

adequate alternative as of the time of authorship. An interesting extension of this project would

include a custom boundary condition for the wall-normal pressure gradient that is dependent on the

wall-normal Laplacian viscous behavior instead of a zeroGradient condition. Additionally, even

though the CFD analysis uses the SIMPLE algorithm, a time step is required for its pseudo-steady

solve. The time step was calculated for an equivalent CFL of 1, or whatever round number just

below that. This was left in instead of time step sizes of 1 so that others could more easily modify

these cases to be transient conditions for later use.

3.4.1 Inlet Duct Analysis

Free Development Inlet Duct

Patrick describes the inlet duct as a duct with a 0.63cmx0.63cm trip bar. The purpose appears to be

to control the boundary layer as it enters the test section to create a controlled inlet condition for

a measurable and repeatable experiment. In the context of this study, software can synthesize an

extended inlet section to find where in the natural development of the boundary layer provides the

conditions that Patrick measured in the 1987 experiment. Rather than including the trip bar, which

would create a complex mesh, the boundary layer develops naturally, and the desired location to
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recycle the profile from will be found to match Patrick’s prescribed inlet conditions. Additionally,

the length is increased to 100δref from 32.8δref , where Patrick’s measured boundary layer thick-

ness is δref . One may notice that the opposing wall is a slip wall, and thus has zero boundary

layer height. This will have minimal effect on the fidelity of the simulation. Patrick’s duct length

of 2.47m results in a displacement boundary layer height of 2.09mm according to the Blausius

solution [45], which only changes the effective flow area of 1.07%, which should have minimal

effect on the flow profile for a low-turbulence freestream condition. There is more uncertainty that

comes from some combination of the models and the experimental data. Additionally, the behavior

will deviate from a true flat plate some with the duct behavior. The calculated freestream velocity

for Patrick’s measured displacement boundary layer height is 28.1m/s, from 27.0m/s, resulting

in a 4.09% acceleration of flow.

Figure 3.1: Illustration of Inlet Duct Domain. Not to scale. Top surface is developing boundary
layer shear surface with inlet slip surface.
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Boundary Velocity Pressure νt Turbulence
Scalar

Turbulence
Dissipation

Inlet Fixed Value Zero Gradient Calculated
Value

Uniform Value Zero Gradient

Outlet Zero Gradient Fixed Value -
Value 0

Zero Gradient Zero Gradient Zero Gradient

Leading Wall Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Flat Plate No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Opposing
Wall

Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Table 3.2: Patrick Inlet Duct Boundary Conditions

Figure 3.1 shows the set up for the CFD on the inlet duct. There is only one surface that has

shear, the top no-slip wall. The boundary layer develops along this surface. There is a preceding

slip wall to extend the domain 100 elements to allow a region for the CFD analysis to resolve plug-

to-shear changes. Additionally, the opposing wall to the shear wall is a no-slip wall to allow for

no development of a boundary layer, described in more detail in Table 3.2 as this will be absorbed

by the scoop early in the test section, and thus more calculation than would be returned in results.

In Table 3.2, the Turbulence Scalar can be either ν̃ or turbulent kinetic energy, k, for the Spalart-

Allmaras or k − ω SST turbulence model, respectively. The dissipation in this case only pertains

to the k−ω SST turbulence model as specific dissipation, ω. For the flat plate and opposing walls,

the plate will dissipate the turbulence, but the leading wall avoids dissipation to preserve the inlet

turbulence conditions up to the flat plate.

At the inlet, the turbulent kinetic energy is calculated from the expected turbulence intensity,

which Patrick measured to be 0.25% at the inlet of inlet duct [31] and calculated via a Root Mean

Square (RMS) estimate, seen in equation 3.1.

k =
3

2
(IUinf)

2 (3.1)
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At the inlet, ω, or specific dissipation is zero-gradient, and allowed to float according to the

model itself. To provide an initialization for the interior of the domain, the conditions of a

freestream corresponding to the turbulence intensity are calculated via the formula that Menter

suggests in [26], seen in equation 3.2 where L is the characteristic length of the domain. However,

this did result in an initial dissipation much higher than the steady-state values. Wilcox, on the

other hand offers a similar calculation with a different coefficient [46], seen in equation 3.3. From

some experimentation, a much better value is roughly 1.3 rather than 10 or 1 from Menter and

Wilcox, respectively.

ω = 10Uinf/L (3.2)

ω = 1Uinf/L (3.3)

The k − ω model produces a value of turbulent viscosity without requiring SST due to a zero

pressure gradient condition at the inlet, simply calculated by Equation 3.4. The CFD naturally

calculates this from the boundary condition and turbulence model.

νt =
k

ω
(3.4)

For the Spalart-Allmaras model, the turbulent viscosity comes from this calculation, and the

modified viscosity comes from the simple definition of this modified viscosity, seen in Equation

3.5. In this case, the value for χ converged to about 1.86, which seems within the range that Spalart

and Rumsey would suggest is a good turbulently quiet freestream in [43].

νt = ν̃fv1 (3.5)

In the same vein for calculating ω values, at the wall, Menter in [26] provides a calculation for

the ω at the wall based on the first element size, seen in equation 3.6, where 0.075 is a constant of
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the turbulence model, ∆y0 is the first element resolution, and 10 is the constant value selected by

Menter to reportedly give more accurate results.

ω = 10
6ν

0.075∆y20
(3.6)

This provides the CFD with an initial value for ω near the wall, but the wall function will

rapidly change the value to the proper one [6].

On the subject of wall functions, k is calculated via the kqRWallFunction, which allows for the

resolution of the inner region of the boundary layer, unlike the kLowReWallFunction [6]. Addi-

tionally, the value of turbulent viscosity comes from the nutkWallFunction. Theoretically, one can

use fixed values rather than wall functions, but it was found that this resulted in unstable solves,

and thus the wall functions were left in to provide stability, with a need to validate the results.

With this setup, the OpenFOAM splits the domain across the specified threads to allow for

parallel processing of the CFD, which provides faster computation, at the cost of some efficiency

of those resources.

To solve the analysis, OpenFOAM is solving a steady state condition for the incompressible-

Fluid solver, which uses the SIMPLE algorithm, which originated from [21]. The finite volume

schemes are:

1. Gradient Scheme: Gauss linear

2. Divergence Schemes: See Table 3.3.

3. Laplacian Scheme: Gauss linear corrected

4. Interpolation Scheme: Linear

5. Surface Normal Gradient Schemes: Corrected

6. Wall Distance Calculation: meshWave
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Furthermore, the calculation will target the convergences, tolerances, and residuals in Table

3.3. These values provided for a steady-state solution that allowed for either a solution that con-

tinues to develop through the domain or provides the best solution the mesh can allow. During

experimentation, it was found that the relaxation factors provide a high degree of influence on how

converged the solution can become. The divergence scheme for the flat plate cases with the k − ω

model did work for the linear upwind scheme, however, not so with the test sections. In the interest

of using the flat plate analyses to assess the use of the turbulence models, the divergence schemes

were kept consistent.

Flow Parameter Divergence Scheme Tolerance Residual Relaxation Factor
P 1e-6 1e-9 0.3
U Gauss linear upwind ∇U 1e-6 1e-9 0.5
ν̃ Gauss linear upwind ∇U 1e-6 1e-9 0.3
k Gauss limited linear 1 1e-6 1e-9 0.3
ω Gauss limited linear 1 1e-6 1e-9 0.3

Table 3.3: Patrick Inlet Duct Solve Settings

The analysis is repeated over three (3x) different mesh refinement levels, which are defined

by their first cell off the wall height. Seen in Table 3.4, this is done by the wall height in wall

coordinates relative to the reference boundary layer conditions Patrick measures at station 0.

Refinment ∆y+
0,ref ∆t [s]

Coarse 1.00 75e− 6
Medium 0.50 37.5e− 6
Fine 0.33 25e− 6

Table 3.4: Refinement Levels for Free Development Inlet Duct

Injected Boundary Layer Inlet Duct

This analysis is similar to the Free Development Inlet Duct, but instead of having a longer domain

with a uniform inlet profile, Anser produces a synthetic boundary layer profile from canonical

boundary layer trends and wall functions, and the domain is only 32.8δref long.

In the end, with some experimentation, this did not turn out to be a viable method since the
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profile did not match exactly would it needed to be. More will be discussed in the results chapter.

3.4.2 Patrick Test Section

Patrick provides the coordinates for a streamline that is calculated to be two-dimensional projection

of the surface that represents where no mass flux normal to that surface occurs. Given Patrick’s

short description of the curve, it is unclear what to do with these coordinates and the curve.

When the points are used to create a standard spline, as in Figure 3.2, the spline clearly does

not line up with the geometry of the test section that is explicitly described by Patrick. After the

scoop and prior to the exit duct, there are sections of the spline that are outside of the fluid region.

Figure 3.2: Spline Created from Zero Flux Coordinates Against Patrick Test Section Geometry

When the points are used to create a Bezier spline, as in Figure 3.3, where the points serve as

end points for tangent lines, the spline is more reasonably matched to the test section geometry

Patrick describes. There are some regions of negative or zero-thickness between the spline and

the geometry’s boundaries, but much closer. The main issue with this approach is that it does not

capture the scooping of the flow from the region farther from the flat plate, including the stagnation

effects.
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Figure 3.3: Bezier Spline Created from Zero Flux Coordinates Against Patrick Test Section Ge-
ometry

A compromise between the splines and the geometry places a series of curves and lines offset

from the wall to capture the effects of a heavily favorable pressure gradient, seen in Figure 3.4.

It will not be a direct comparison, but does provide what appears to be a similar surface to what

Patrick illustrates by showing the streamlines that come from smoke injection.

Figure 3.4: Synthetic Zero Flux Surface Against Patrick Test Section Geometry

Splitting the geometry up into blocks for OpenFOAM’s blockMesh mesher, the resulting split

compared to the test section geometry is in Figure 3.5.
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Figure 3.5: Blocks Based on Original Splines.

However, as the development progressed, the small blocks near the wall where the heavily

FPG is present caused consistent floating point errors. Thus, the offset is equalized to allow for

following the spline for the inlet region, but allowing for a more relaxed offset from the walls of

the test section with strong FPG, reducing the floating point error risk. This new block set is in

Figure 3.6.

Figure 3.6: Blocks Based on Equalized Offsets.

The inlet conditions for this analysis come from the Inlet Duct Analyses. A vertical plane

samples the profile that produces the closest profile to what Patrick reported.

To find the best vertical sampling plane, Anser takes a series of planes and calculates the

following parameters to determine the best location:

1. Boundary layer height (δ)

2. Displacement boundary layer height (δ∗)
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3. Momentum boundary layer height (θ)

4. Shape factor (H)

5. Skin friction coefficient (Cf )

6. Shear velocity (uτ )

7. Unit length Reynolds number (Re/x)

8. Momentum thickness Reynolds number (Reθ)

9. Shear velocity Reynolds number (Reτ )

Anser takes these calculated values from the CFD and calculates the error relative to the re-

ported conditions Patrick had at the inlet of the test section along the lines of Equation 3.7, where

i is the index of the sampling plane. These errors are then normalized via Equation 3.8, where Wi

is a weighting factor to take into account the error of the experiment and value to the calculation,

to produce a net error for the plane.

ϵi =
ϕCFD,i

ϕPatrickInlet

− 1 (3.7)

ϵL2 =
1

N

√

√

√

√

N
∑

i=0

Wiϵ2i (3.8)

The location that Patrick provides for a flow profile is upstream of the inlet of the test section,

at 24.1cm upstream of the test section inlet. The error calculation provides the best location of

Patrick’s profile measurement location. Given a viable boundary layer development, the flow will

develop to the proper profile within that lead-in distance. Using this recycled boundary layer makes

the inlet condition insensitive to issues with the boundary layer development that could propagate

into this analysis since the inlet conditions are essentially forced to be what Patrick measured.
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The outlet boundary is set to zero pressure to allow the whole simulation to be in gauge pres-

sure. Additionally, this allows for easier calculation of the scoop outlet. Patrick specifically mea-

sures a difference in pressure (dP) between the outlet and the inlet plenum to the filters to be

22.9cmH2O, which comes to be about 2.24kPa. This dP can be assumed valid from the outlet

to the scoop outlet since there should be no significant dP between the scoop outlet and the in-

let plenum of the filters. Since OpenFOAM uses a kinematic pressure, or P/ρ, the value for the

pressure at the scoop outlet becomes −1.83e3m2/ss.

Only the flat plate is simulated as a no-slip condition in the CFD. It is expected that the oppos-

ing walls will not provide any significant contribution to the behavior within the duct other than

dissipating some turbulence in the freestream. Thus, the boundary conditions in this analysis are

as described in Table 3.5.

Boundary Velocity Pressure νt Turbulence
Scalar

Turbulence
Dissipation

Inlet Recycled Pro-
file

Zero Gradient Recycled Pro-
file

Recycled Pro-
file

Zero Gradient

Outlet Zero Gradient Fixed Value -
Value 0

Zero Gradient Zero Gradient Zero Gradient

Scoop Outlet Zero Gradient Fixed Value -
Value -1.83e3

Zero Gradient Zero Gradient Zero Gradient

Flat Plate No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Opposing
Walls

Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Table 3.5: Patrick Test Duct Boundary Conditions

The wall functions remain the same as used in the flat plate study, since the results chapters

will show that these wall functions produce the correct results at least for a ZPG flat plate.

To solve the analysis, OpenFOAM is solving a steady state condition for the incompressible-

Fluid solver, which uses the SIMPLE algorithm, more is originated from [21]. The finite volume

schemes are:

1. Gradient Scheme: Gauss linear
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2. Divergence Schemes: See Table 3.6.

3. Laplacian Scheme: Gauss linear corrected

4. Interpolation Scheme: Linear

5. Surface Normal Gradient Schemes: Corrected

6. Wall Distance Calculation: meshWave

Furthermore, the calculation will target the convergences, tolerances, and residuals in Table

3.6. These values provided for a steady state solution that allowed for either a solution that con-

tinues to develop through the domain or provides the best solution the mesh can allow. During

experimentation, it was found that the relaxation factors provide a high degree of influence of how

converged the solution can become. The divergence schemes for the k− ω turbulence model were

backed off of the second-order accurate Gauss linear upwind schemes for the more stable Gauss

limited linear scheme due to instabilities that cropped up during the solve. The relaxation factors

are already low

Flow Parameter Divergence Scheme Tolerance Residual Relaxation Factor
P 1e-6 1e-9 0.3
U Gauss linear upwind ∇U 1e-6 1e-9 0.5
ν̃ Gauss linear upwind ∇U 1e-6 1e-9 0.3
k Gauss limited linear 1 1e-6 1e-9 0.3
ω Gauss limited linear 1 1e-6 1e-9 0.3

Table 3.6: Patrick Test Duct Solve Settings

Like with the inlet ducts, there are three (3x) levels of refinement for the test section. However,

there are a few differences. First, the resolution is the maximum off wall resolution, rather than the

one at the inlet that corresponds to the inlet section analysis. Thus, the test section will inherently

be finer than the inlet section analysis, but guarantees an acceptable resolution for the separation

section. This will mean OpenFOAM will be doing some interpolation as it is recycling the inlet

duct conditions to the test duct. Second, the refinement level steps have uniform increments of two
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(2) to allow for a simpler convergence analysis. Third, this also means that the reference point is

for a smaller boundary layer than the test section duct will experience. The refinement levels can

be seen in Table 3.7.

Refinment ∆y+
0,ref ∆t [s]

Coarse 1.00 60e− 6
Medium 0.50 50e− 6
Fine 0.25 40e− 6

Table 3.7: Refinement Levels for Patrick Test Duct

3.4.3 So and Mellor Test

Unlike with the Patrick study, the So and Mellor study is best performed as a single section. This

does produce a larger analysis, but given the natural development of the boundary layer in the

study, the same natural development can be replicated in the CFD.

The geometry was taken from the measurements and scale drawings So and Mellor provide

in Figure 3 from [41]. A simple tracing with dimensions produces the curves that represent the

original test geometry comes from CAD software, and then the points are exported to BlockMesh.

The comparison of the geometry is illustrated in Figure 3.7.
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Figure 3.7: Comparison of Used Geometry and Reported Geometry from So and Mellor [41].
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The inlet condition for the CFD is a uniform flow velocity since this is theoretically where the

boundary layer begins as the flow is collimated coming into this section. So and Mellor provide

a station downstream of the inlet, 24in from the inlet, where the measured freestream velocity is

70.3ft/s. According to the Blausius solution for a laminar boundary layer development [45], the

displacement boundary layer thickness is 1.14mm. Based on having two (2x) identical boundary

layers, this results in a uniform flow velocity of 21.7m/s at the inlet. This inlet should have

minimal if any turbulence, but So and Mellor measured a turbulence intensity in the freestream at

the first station of 0.5%, and is thus used at the inlet.

The outlet is a zero gradient for all values to allow the upstream effects to determine the outlet

section flow. The pressure is set to zero here to allow for calculating gauge pressure from the

outlet.

Based on the summation of the midstream arc length and the length of the inlet and outlet

ducts, the length of the test section comes to be about 2.89m, and thus provides a point to initialize

the dissipation from using Menter’s recommended value from Equation 3.2. Biasing towards the

higher dissipation forces the analysis to dissipate dissipation rather than turbulence, which leads to

a more stable solve.

All walls are no-slip in this analysis as all walls are expected to contribute to some turbulent be-

havior that the current study is interested in. The turbulence intensity at the walls will be zero, with

k using the kqRWallFunction, νt using the nutkWallFunction, and ω using the omegaWallFunction

with an initial value calculated from Equation 3.6. All the boundary conditions are described in

Table 3.8.
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Boundary Velocity Pressure νt Turbulence
Scalar

Turbulence
Dissipation

Inlet Fixed Value Zero Gradient Calculated
Value

Uniform Value Zero Gradient

Outlet Zero Gradient Fixed Value -
Value 0

Zero Gradient Zero Gradient Zero Gradient

Inlet Walls No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Convex Walls No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Concave Walls No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Outlet Walls No Slip Zero Gradient Wall Function
- Value 0

Wall Function
- Value 0

Wall Function
- Calculated
Value

Table 3.8: Patrick Test Duct Boundary Conditions

To solve the analysis, OpenFOAM is solving a steady state condition for the incompressible-

Fluid solver, which uses the SIMPLE algorithm, more is originated from [21]. The finite volume

schemes are:

1. Gradient Scheme: Gauss linear

2. Divergence Schemes: See Table 3.9.

3. Laplacian Scheme: Gauss linear corrected

4. Interpolation Scheme: Linear

5. Surface Normal Gradient Schemes: Corrected

6. Wall Distance Calculation: meshWave

Furthermore, the calculation will target the convergences, tolerances, and residuals in Table

3.9. These values provided for a steady state solution that allowed for either a solution that con-

tinues to develop through the domain or provides the best solution the mesh can allow. During
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experimentation, it was found that the relaxation factors provide a high degree of influence of how

converged the solution can become.

Flow Parameter Divergence Scheme Tolerance Residual Relaxation Factor
P 1e-6 1e-9 0.3
U Gauss linear upwind ∇U 1e-6 1e-9 0.5
ν̃ Gauss linear upwind ∇U 1e-6 1e-9 0.3
k Gauss linear upwind ∇U 1e-6 1e-9 0.3
ω Gauss linear upwind ∇U 1e-6 1e-9 0.3

Table 3.9: So and Mellor Duct Solve Settings

Like the other analyses, the So and Mellor test duct has three (3x) levels of refinement. The

reference point is the first measurement point, which is halfway through the inlet straight section.

This boundary layer is not nearly as developed as the one entering the curved section, as one would

expect, and thus the mesh is going to be well-refined for these conditions. The refinement levels

are described in Table 3.10.

Refinment ∆y+
0,ref ∆t [s]

Coarse 1.00 50e− 6
Medium 0.50 25e− 6
Fine 0.25 10e− 6

Table 3.10: Refinement Levels for So and Mellor Test Duct

3.4.4 Passive Scalar Transport

The passive scalar transport was set up to use Equation 3.9 as the diffusion. In the solution,

α = 1.40, which corresponds to Pr = 0.714, and αt = 1.10, which corresponds to Prt = 0.909.

αeff = να + νtαt (3.9)

OpenFOAM solves the scalar transport via a user function, which iterates after the velocity

field is solved via the incompressibleFluid solver iterations. All walls are set to T = 290, and the

inlet is set to T = 300, allowing an adiabatic temperature difference of Θaw = (T∞ − Taw) = 10,

which will make post-processing easier.
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CHAPTER 4: FLAT PLATE RESULTS

4.1 Inlet Duct

The Inlet Duct analyses are led by six (6x) cases that are outlined in Table 4.1.

Refinement SA Model Cases k − ω SST Model Cases
Coarse 14 15
Medium 16 17
Fine 18 19

Table 4.1: Cases Used for the Free Development Flat Plate Analyses.

4.1.1 Residuals

Residuals are the difference in the field values vs the calculated values for the convergent solve,

which allows for the study to have a sense of how well the problem was set up and an overview of

where potential issues in the setup of the CFD analysis may be.

Figure 4.1: Residuals for Case 14
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Figure 4.2: Residuals for Case 15

The residuals for the flat plate cases are displayed in Figure 4.1 and 4.2 for Case 14 and 15,

respectively. The sharp peaks are caused by restarts, as the CFD solve is never completed in one

session. In all cases, the residuals have come down to 1e− 6 at the end of the solve with the other

values continuing to iterate, showing a well-set up analysis. In the specific case of Case 15, it is

obvious where the minimum iteration control was set up, as ω stops flat-lining and continues to

iterate. For these coarse cases, the problem looks well set up, although it does take a large amount

of iterations to come to a solution for a residual of 1e− 6, 227e3 and 226e3 iterations for Case 14

and 15, respectively.
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Figure 4.3: Residuals for Case 16

Figure 4.4: Residuals for Case 17
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For the medium mesh refinement, it appears that the problem is still well set up, and the prob-

lem should reach a tight convergence 1e − 9 eventually, seen in Figure 4.3 and 4.4. The time

constraint only allowed a solution to 1e − 6. However, this is till after 333e3 and 605e3 iterations

for Case 16 and 17, respectively. Going for tighter residuals would be a higher price.

The trend of eventually reaching a convergence continues in the fine mesh refinement for both

models, residuals seen in Figures 4.5 and 4.6. Case 19 may potentially stall after some extra

iteration, but if that occurs, the order can be increased in the divergence scheme. The solution can

keep going as Case 18 represents 500e3 iterations, and 379e3 iterations for Case 19.

Figure 4.5: Residuals for Case 18
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Figure 4.6: Residuals for Case 19

4.1.2 Contour Plots

Contour plots give a qualitative way to see what the data is to better understand the trends from

quantitative data later on. The contours for the SA and k − ω models are present in Figures 4.7

and 4.8, respectively. In (a) for both, the velocity magnitude looks roughly the same and more

information will be gained from the quantitative trends. The turbulent viscosity, νt, trend reveals

some interesting differences. The SA model boundary layers show a subdued core of turbulent

viscosity as the mesh refinement increases, but this may be due to needing more iteration. The

freestream values for νt in the k− ω model vary greatly as the CFD calculates this value. Looking

forwards to the quantitative trends, this does not appear to affect the boundary layer behavior. The

SA model has large changes in the ν̃ profile with mesh refinement. What causes this is unclear,

but may suggest the SA model has less authority over the solve as the mesh refines, as ν̃ is the

only parameter the turbulence model has to transport. Looking at the scalars for the k − ω model,

the k contours look about how one would expect, excepting Case 19, which appears to have an
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underdeveloped boundary layer. This case likely needs to be iterated on more. The ω profiles

are about how one would expect, with very strong dissipation near the wall, and heavy drop off

away from the wall. Finally, the temperature profile is following the behavior that one expects

with heavy mixing near the wall where the turbulence is strong, and strong deterioration without

turbulence. Overall, most of these profiles look viable to use for recycling, maybe the fine mesh

refinement cases need more iteration.

4.1.3 Boundary Layer Trend Plots

Contour plots are a decent qualitative way to view the behavior within the CFD, but lack the quan-

titative advantage of many of the boundary layer parameters that provide a better view as to what

the flow is doing in the analysis. To set up the comparison of trends, there is a little background

that needs to be explained. First, Kays and Crawford [19] provide some boundary layer trends

relative to the momentum boundary layer thickness that are helpful. There is a good comparison

between their regressions of boundary layer behaviors and ones set by White and Majdalani [45]

for Prandtl’s data. White and Majdalani took Prandtl’s 1927 experimental data and found relations

of unit length Reynolds number, Rex, and development of the boundary layer. These relations

match Kays and Crawford’s trends well. However, White and Majdalani updated some of the in-

put values of the boundary layer to match Coles’ 1956 [13] data, there is an alternative trend that

includes the wake behavior of the boundary layer. These are the canonical trends that are displayed

in the figures.
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Figure 4.9: Skin Friction Trend vs Unit Length Reynolds Number.

The first parameter that is helpful to understand if the boundary layer is behaving correctly is

skin friction coefficient, or Cf , which non-dimensionalizes the shear relative to the freestream flow.

The trend for the cases is shown in Figure 4.9. Before discussing anything else, the boundary layer

data comes to good agreement with the expected behavior within Rex = 5.0e6, which is early in the

turbulence development, with the exception of Case 19. All RANS models are within the different

datasets. Case 19, however, needs more iteration to develop into the proper trend, which is evident

in its residual plot. With this plot, the difference in expected trends needs discussion. First, White’s

1969 paper provides a relation, seen in Equation 4.1 that is acceptable as an exact solution to the

skin friction trend that White and Majdalani emphasize [45]. Second, there is a difference for these

higher Reynolds numbers between the trends produced by Prandtl’s 1927 data and the trends using

Coles’ 1956 wake data, the fit equations seen in Equations 4.2 and 4.3, respectively. The data for

the wake trend matches the exact solution better for higher Reynolds numbers, and thus this study

will accept it as the canonical trend over Prandtl’s data. However, when comparing to momentum

boundary layer thickness, the Prandtl-based data is acceptable since this should be less affected by

the wake behavior, which leads to the Kays and Crawford trends [19]. Kays’ and Crawford’s trend

lines up with the Prandtl-based trends White and Majdalani suggest, by comparing Equations 4.4
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and 4.2, respectively.

Cf =
0.455

ln2(0.06Rex)
(4.1)

Cf = 0.0593Re−1/5
x (4.2)

Cf = 0.0271Re−1/7
x (4.3)

Cf = 0.0574Re−1/5
x (4.4)

Figure 4.10: Skin Friction Trend vs. Momentum Boundary Layer Thickness Reynolds Number.

Seen in Figure 4.10, the comparison of skin friction coefficient against the momentum bound-

ary layer thickness Reynolds number shows good agreement between the expected trend and the

RANS data. This indicates that the boundary layer is developing roughly correctly. The expected

trend follows Equation 4.5. The k − ω model cases, with the exception of Case 19, are showing

good agreement between the mesh refinement levels.
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Cf = 0.025Re
−1/4
θ (4.5)

Figure 4.11: Boundary Layer Development Trend vs Unit Length Reynolds Number.

Comparing the development of the boundary layer height shows that the boundary layer is

underdeveloping down the length of the flat plate, as seen in Figure 4.11. This, however, seems

to be an offset and the rate of change appears to follow the wake data trend closely, described in

Equation 4.7. As discussed in the methods section, the flow does increase in velocity by 4.1%,

which only accounts for either a 0.805% or 0.574% deviation in trend, depending on the preferred

exact solution. Thus, this is likely not due to the duct behavior rather than a true flat plate. It is more

likely that the offset is due to the under-resolution at the beginning of the boundary layer as it starts

from uniform flow. The under-resolution will alter the development trend as the CFD has too few

points to resolve the wall-bounded behavior. Also in Figure 4.11, Cases 18 and 19 are deviating

from the expected behavior. This indicates that the analysis needs more iteration to come to a

proper resolution. The finer cases may be more sensitive due to more of the wall-bounded behavior

being resolved by the Navier-Stokes equations and less modeled by the turbulence models. For the

rest of the discussion on the Inlet Duct, Cases 18 and 19 are ignored for this reason.
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δ/x = 0.381Re−1/5
x (4.6)

δ/x = 0.162Re−1/7
x (4.7)

Figure 4.12: Boundary Layer Development

The results of this development trend is quite clear when comparing the boundary layer height

to the expected trend, as in Figure 4.12. It is interesting that for the boundary layer height, the

wake value does produce a taller boundary layer, which is understandable considering the wake

includes an additional shelf above the law of the wall behavior. In either case, the boundary layer

height appears to be noticeably less than the expected, owing to the deficient trend seen in Figure

4.11.
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Figure 4.13: Momentum Boundary Layer Development Trend vs Unit Length Reynolds Number.

Changing the trend comparison to the momentum boundary layer thickness, θ, the RANS data

follows the expected trend much closer than the boundary layer height, as seen in Figure 4.13.

Interestingly, the data follows the Prandtl-data based trends, as in Equations 4.8 and 4.9, more

than the wake law-based trend, as described by Equation 4.10. Additionally, Kays & Crawford,

Equation 4.8, have much closer agreement with White & Majdalani, Equation 4.9, for this trend.

This would make sense as a bulk of the flow would be determined by the self-similar Log Law of

the Wall for θ. Here, the insensitivity to mesh refinement for the k − ω model is well illustrated,

excepting the odd Case 19. It is interesting that the SA model shows a sensitivity. Following the

previous hypothesis on model vs NS equations, this may indicate that the SA model has a more

significant floor to resolution vs required iteration than the k − ω model. Also, the logarithmic

scale of the y-axis for this plot may allow us to be more critical than may be necessary for this

trend.

θ/x = 0.036Re−1/5
x (4.8)

θ/x = 0.0371Re−1/5
x (4.9)
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θ/x = 0.0158Re−1/7
x (4.10)

Figure 4.14: Momentum Boundary Layer Development

The results of this development trend are clearly present in the development of the momentum

boundary layer, as seen in Figure 4.14. The momentum boundary layer heights for the RANS data

is underpredicted to an extent, but generally shows good agreement with the expected trends.

Figure 4.15: Momentum Boundary Layer Development Trend vs. Momentum Boundary Layer
Thickness Reynolds Number.
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The development trend for momentum thickness boundary layer is displayed in Figure 4.15

follows the expected trend, described in Equation 4.11 that was derived from Kays & Crawford

trends, closely. This would indicate that some of the seen deviation does exist from some offset in

the development, and there is some caused by the solving of the RANS analysis. It appears that

Case 16 by this trend has some iteration required to converge to a proper downstream solution.

θ/x = 0.036
(

(Reθ/0.036)
5/4

)

−1/5

(4.11)

Figure 4.16: Shape Factor vs Unit Length Reynolds Number

Finally, the shape factor allows an assessment of if the boundary layer is structured correctly.

Kays & Crawford offer a value of 1.29, which is in agreement with White & Majdalani’s 9/7, and

somewhat close to Coles’ 1.32 [31]. The RANS data converges near these values as the boundary

layer develops, seen in Figure 4.16, and for higher Reynolds numbers, 5.0e6 and above, the RANS

models show good agreement with the expected trend and to each other.

Comparing these trends through quantification helps determine how much uncertainty there is

from the RANS models against the exact solutions. To do this, the data is limited to the regions

where the streamwise gradient of shape factor is less than 0.50% of the shape factor at a given
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point. This should limit the data to the boundary layer that has developed to turbulent. This data

is then calculated in an L2 error norm calculation, as in Equation 4.12. The values for each of the

flow parameters considered are in 4.2. In the last row is the uncertainty associated with the acceler-

ation of the flow vs if this was a true flat plate case, calculated via the ratio of velocities in the exact

solution. A few things immediately stick out. First, the skin friction coefficient generally outper-

forms the uncertainty from the duct, which indicates that the shear normalized by the freestream

conditions are insensitive to the freestream conditions. Second, the momentum boundary layer

thickness development normalized by the momentum boundary layer thickness fits within the as-

sociated uncertainty. The boundary layer development by streamwise length is likely due to the

under-resolution issues discussed earlier. Finally, the shape factor has a tight uncertainty bounds.

Case Cf by x Cf by θ H δ/x θ/x by x θ/x by θ
14 0.538% 1.64% 0.342% 3.99% 2.96% 1.67%
16 0.653% 2.25% 0.280% 4.92% 4.70% 3.77%
18 - - 0.333% 6.51% 7.18% 6.90%
15 1.26% 0.842% 0.379% 6.30% 4.17% 3.07%
17 0.964% 1.17% 0.404% 6.11% 3.87% 2.67%
19 3.87% 2.75% 0.707% 10.2% 11.7% 12.3%
Duct 7.70% 1.01% - 0.574% 0.574% 4.30%

Table 4.2: L2 Norm Error for Inlet Duct Free Development

ϵL2 =
1

N

√

Σ

(

ϕ

ϕexact

− 1

)

(4.12)

Ideally, a true flat plate case should be used to compare the flat plate data, but this became

impractical with the exponentially rising queue times for the HPC partitions.
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CHAPTER 5: PATRICK TEST SECTION

The Test Duct analyses are done in six (6x) cases that are outlined in Table 6.1.

Refinement SA Model Cases k − ω SST Model Cases
Coarse 0 1
Medium 2 3
Fine 4 5

Table 5.1: Cases Used for the Patrick Duct Analyses.

5.1 Residuals

The residuals for the coarser mesh cases show are seen in Figures 5.1 and 5.2. The coarse SA case,

Case 0 is clearly well set up with no hindrances towards convergence. The coarse k−ω case, Case

1, appears to level off the pressure residual at about 5e − 7. It appears the limiting factor is the k

iteration, and perhaps changing the divergence scheme to a higher order scheme could solve this

issue. However, the other residuals come down to 1e− 9 for Case 1. Case 0 and 1 represent 250e3

and 337e3 iterations, respectively.
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Figure 5.1: Residuals for Case 0

Figure 5.2: Residuals for Case 1
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Figure 5.3: Residuals for Case 2

Figure 5.4: Residuals for Case 3
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The residuals for the medium case are similar to the coarse case. Case 2, residuals in Figure

5.3, is a well-set up problem that will converge, given enough iterations. Case 2 is already at 500e3

iterations in these results. Case 3, residuals in Figure 5.4, is unclear if it would converge, or if it

would stagnate like Case 1. Most likely it would stagnate, and it would need a similar number of

iterations to reach this, with Case 3 already being at 171e3 iterations.

5.2 Contour Plots

The contour plots match the expected data that Patrick at least from a qualitative comparison. As

seen in Figure 5.5, there is a separation bubble on the flat test surface. As seen in Figure 5.6, within

the bubble, the flow profile reverses. In both of these sets of figures, there is clearly a difference

between the two cases and turbulence models. The structure of the separation effect is displayed

in Figure 5.8 that shows the turbulent viscosity of the separation bubble. There is clearly a more

local and striated effect in the k−ω case of Case 1 than the SA case of Case 0, where the turbulent

viscosity forms a smooth bubble. The different scalars, seen in Figure 5.9, also show a different

behavior between the turbulence models. The ν̃ contours for Case 0 follow the distribution of

turbulent viscosity closely. But, there is clearly a tail of turbulent kinetic energy, k, for the k − ω

model that follows the rim of the separation bubble. It is also interesting that the dissipation, seen

in Figure 5.10, leads the separation and disappears following the separation. However, these two

cases show agreement in the pressure distribution, seen in Figure 5.11. One notices that the final

turn into the outlet of the test duct produces a strong low-pressure zone that drops the pressure

of the flow profile going into this duct. Looking at the data Patrick presents, this does not seem

physical and may be an issue with the zero-gradient wall conditions that may not be valid for this

set of conditions. Finally, it also appears that the scalar transport behavior is in good agreement

between the models, seen in Figure 5.12. There is some discrepancy as to the inlet conditions, but

discounting this, that does appear to be the case.
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5.3 Data Comparison Plots

Another way to look at the data is comparing the results from the CFD analyses to the data Patrick

gathered directly via the plots Patrick produced.

First, the inlet profile of the flow needs to be correct. Patrick measured upstream of the inlet

of the test section by about 0.23m, and the comparison is drawn for the inlet of the CFD domain,

which should have the difference of a slightly stronger wake, which can be seen in Figure 5.13.

In a quantitative comparison of inlet conditions, the skin friction coefficient is appreciably lower

than both the Patrick and Coles measured values, roughly 4%, seen in Table 5.2. However, when

compared to the expected exact solution, described by Equation 4.5 from Kays & Crawsford [19],

the calculated value is above what would be expected, 2.35e − 3, which differs by 4.59%. Com-

paring the shape factor at the inlet to the measured values from Patrck and Coles, there is strong

agreement between the values, as seen in Table 5.3.

Figure 5.13: Inlet Flow Profile Comparison. Patrick data, shown in circles, used from Figure 4-2a
of [31]
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Case No Cf % Difference from Patrick % Difference from Coles
0 2.56e− 3 −4.26 −0.14
1 2.46e− 3 −7.96 −4.00

Table 5.2: CFD Inlet Case Skin Friction Coefficients and Comparison to Patrick’s Measured Data
and Coles’ Theoretical Data

Case No H % Difference from Patrick % Difference from Coles
0 1.29 2.05 −1.82
1 1.30 1.49 −2.36

Table 5.3: CFD Inlet Case Shape Factor and Comparison to Patrick’s Measured Data and Coles’
Theoretical Data

Next, the mean behavior of the flow can be expressed by the coefficient of pressure at the

wall, displayed in Figure 5.14. During the separation bubble, the RANS models diverge from

each other as to what the pressure distribution should be. Given that in Case 1, the k − ω SST

model case, the pressure distribution is more correct, this represents an improvement that the SST

formulation provides the model. Both models show differences in the separation and re-attachment.

The separation pressure distribution difference is not significant, only being premature and having

the same slope, but the re-attachment is extremely different. The RANS cases show a premature

re-attachment and then negative pressure value. It is possible, but also unlikely, that the outlet

pressure boundary conditions could be causing this, but even with errors in the methods, it should

not result in this drastic of behavior. Instead, it is more likely, going back to Figure 5.11, that

the pressure behavior going into the outlet section of the duct is not well-formulated and results

in this behavior, if it is due to the pressure behavior. The pressure boundary condition should be

formulated as in Appendix C to compensate. Additionally, and most likely, this is a 2D steady

CFD, where as turbulence is a 3D unsteady phenomena, with turbulent structures have 3D shapes.

There is a simple test to prove the transient contribution. The same CFD analysis can be done with

an unsteady method. If the separation/reattachment behavior is time-dependent, the distribution

of location for separation/reattachment throughout time should have a non-Gaussian distribution,

potentially with some skew. It is almost inevitable that the spanwise dimension, not represented
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here, strongly affects the behavior, but this contribution is not strongly captured by the RANS

models. To this end, there is nothing left to do but perform a 3D simulation.

Figure 5.14: Flat Plate Pressure Coefficient Comparison. Patrick data used from Figure 4-7 from
[31].

The shear behavior of the wall is also important, and emphasizes the issues with the reattach-

ment, as seen in Figure 5.15. The two RANS cases are in strong agreement into the separation

bubble with the experimental data, then as it reattaches, the discrepancy begins. The reattachment

is premature, and exaggerated troughs and peaks. Given the agreement between the RANS models,

it is likely not a model issue, but the application of the models. Additionally, this is more evidence

that the RANS models model leading to and beginning separation.
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Figure 5.15: Flat Plate Skin Friction Coefficient Comparison. Patrick data used from Figure 5-7a
from [31]

One of the largest behaviors of separation that is of interest is the separation bubble and the

velocity profiles as they pass through the separation bubble. A selection of rakes that show the ve-

locity profile are in Figure 5.16. The first thing that stands out is that the curve of zero-streamwise

velocity is more subdued than Patrick’s measured data would suggest. This is odd since the initial

separation is in good agreement with Patrick’s data. Moving out from the plate, the other obser-

vation is that the peak velocity is much closer to the plate than in Patrick’s data. In Patrick’s data

the maximum velocity is very close to the opposing walls rather than the center of the flow profile.

Given that the velocity profiles are in good agreement in the regions where viscosity dominates the

behavior, this would indicate that there is a behavior in the CFD models that is causing the wake

region to deviate from the proper behavior.
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Figure 5.16: Flow Profiles Comparison for Rakes 6, 11, 13, 16, 18, 20, 22, 24, 26, 28, 30, and 31.
Patrick data used from Figure 5-4 from [31].
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The most helpful figure that describes what is happening is Figure 5.17. The relation of the two

shape factors is what Patrick uses to compare the separation phenomena. The separation follows

the previous data well, but stops short of the full separation, limited by the top curve that is well-

supported by other experimental data. This indicates that the RANS modeling is not leading to the

full separation behavior that would be expected.

Figure 5.17: Comparison of Shape Factors as Correlated with Separation & Reattachment Phe-
nomena

The transverse velocity profiles, as in Figure 5.18, reveal more issues with the behavior. The

profile near the wall does not agree with the experimental data going into separation, but does

during and after the premature reattachment.

Finally, it is helpful to see where the strength of the mechanisms behind separation are. The
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(a) Into Separation. Patrick data used from Figure 4-11a from [31]

(b) During and After Separation. Patrick data used from Figure 4-11b
from [31]

(c) After Separation. Patrick data used from Figure
4-11c from [31]

Figure 5.18: Transverse Velocity Profile Comparisons for Selected Measurement Stations
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Clauser parameter is plotted for the streamwise direction in Figure 5.19. Prior to separation, the

Clauser parameter is very strong. A reliable peak, based on the smoothed trend with a 20-span

averaging filter, is about 100-200, which means that thus study produces Clauser parameters much

larger than the literature studied previously.

Figure 5.19: Clauser Parameter Profile Down Streamwise Direction
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CHAPTER 6: SO AND MELLOR TEST SECTION

The Curved Duct analyses are done in six (6x) cases that are outlined in Table 6.1.

Refinement SA Model Cases k − ω SST Model Cases
Coarse 0 1
Medium 2 3
Fine 4 5

Table 6.1: Cases Used for the Patrick Duct Analyses.

6.1 Residuals

The residuals indicate that for all mesh refinement levels, the 2D steady RANS model is struggling

to come to a resolution on the model. For the SA model cases, in Figures 6.1, 6.2, and 6.3,

the model is working on resolving the pressure field as the turbulence model is solving quickly

alongside the velocity and momentum. For the k − ω model cases, in Figures 6.4, 6.5, and 6.6,

it is a similar issue, although it appears that for these cases, the residuals may level out before a

solution.
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Figure 6.1: Residuals for Case 0

Figure 6.2: Residuals for Case 2
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Figure 6.3: Residuals for Case 4

Figure 6.4: Residuals for Case 1
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Figure 6.5: Residuals for Case 3

Figure 6.6: Residuals for Case 5
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6.2 Contour Plots

Note that the following cases have not been completed yet. The strong effect of curvature on a

separating boundary layer is apparent in this geometry. The boundary layer is well-attached to the

walls up to a point as it travels over the curve, where it separates, which can be seen in Figure 6.7.

After separation, there are clearly strong eddies that form as the flow exits the duct. This is where

the CFD is still creating a solution.

Figure 6.7: Velocity Magnitude for Cases 0 and 1.

Looking at the pressure field, it is apparent that the CFD is still working on a solution, as seen

in Figure 6.8. There is a strong negative pressure zone or zones near the outlet of the duct.
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Figure 6.8: Pressure for Cases 0 and 1.

The turbulence picks up as the flow passes over the curved surfaces, as is shown in Figure 6.9.

The turbulence then advects towards the outlet. The generation appears to be very strong compared

to the dissipation, shown for Case 1 in Figure 6.10 alongside the modified viscosity for Case 0.

Figure 6.9: Turbulent Viscosity for Cases 0 and 1.
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Figure 6.10: Turbulence Dissipation for Case 1 on the Right.

Finally, it appears that the turbulence generation is impeding the transport of the passive scalar,

shown by temperature in Figure 6.11. This is likely that the scalar has dissipated, thus the wall

temperature is dominating.

Figure 6.11: Temperature for Cases 0 and 1.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 From the Setup and Methods

Overall, OpenFOAM is shown to scale well. The optimum target is 100,000 points per MPI rank

for performance, but there are issues with scaling to large analyses since the decomposition and

reconstruction are serial processes. OpenFOAM overall provides a variety of options to flexibly

study PDE’s, or ODE’s, in domains to a variety of applications. The built-in CFD solver could do

with some external patches and improved order of accuracy, but provides a good baseline for this

project.

In general, the passive scalar transport works as expected,

7.2 From the Flat Plates

In the case of the smooth, ZPG conditions, the turbulence models generally follow a good boundary

layer development trend that is expected based on canonical data. Across data from multiple

sources and experiments, the CFD as set up is producing a good boundary layer to draw data from.

The outer regions for RANS do appear to behave differently than expected, which results in what

appears to be an underdeveloped boundary layer height relative to the momentum boundary layer

height. However, this may be due to the analysis being a duct rather than a true flat plate. Finally,

the inner regions of the boundary layer are verified to behave as expected and the mean flow has a

high degree of accuracy to the canonical data.

7.3 From the Patrick Duct

The diverging-converging duct did separate the boundary layer on the flat plate as Patrick’s 1987

study would suggest. The initial separation is in good agreement with the experimental data. How-

ever, the wake of the outer region of the boundary layer deviates from what is expected from the

experiment and the separation bubble collapses early in the stream. The maximum velocity of
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the profile is closer to the flat plate than the experimental data would suggest. When the flow re-

combines into the following near-ZPG condition, the velocity profile agrees with the experimental

data better. Comparing the shape of the boundary layer, it became clear that this separation bubble

never reaches a full separation and the 2D steady RANS only allows it to reach an initial separation

state.

7.4 From the So and Mellor Duct

The 2D steady RANS models struggle to form a solution to the So & Mellor geometry and con-

ditions. Based on this, strong normal stresses on the RANS models likely prevent a solution from

forming for 2D steady analyses, and this may require a 3D or unsteady analysis to better understand

the behavior.

This said, the results leading up to separation look promising, as the Patrick study also indicates

that RANS models are sufficient for these conditions.

7.5 Future Work

There are a few next steps that are obvious. First, improving the pressure boundary condition

via a better patch, as in Appendix C would help remove some of the inherent assumptions about

pressure in the model. Second, moving to an unsteady analysis would indicate the influence of

transient behavior on separation. Looking at the distribution of separation point and angle would

indicate this influence. Third, it is advisable to look at a 3D geometry as turbulence is well-known

to be a 3D phenomena with structures that take shape in the spanwise direction, as well as wall-

normal and streamwise.

With this success, then better conculsions can be drawn from separation behavior. This would

improve understanding of turbulent behavior by drawing correlations to things like mixing length

to pressure gradient conditions. It is unlikely that it is the RANS models themselves that are

causing issues, but the context they are used in.
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APPENDIX A: EXPERIMENTAL DATA FOR RANS VALIDATION -

ADDITIONAL SETUP INFORMATION

A.1 Original Studies

A.1.1 Patrick (1987)

One of the test RANS cases in this study corresponds to a wind tunnel test over a flat plate and

an opposite diverging-converging wall. The wind tunnel was owned and operated by the United

Technologies Research Center in East Hartford, Connecticut, and supported by NASA’s Lewis

Research Center, now the Glenn Research Center. Rather than going into depth on the tunnel that

is illustrated in A.1 and described in detail in [31]. Some highlights of the design:

1. The temperature and air quality are controlled by the heat exchanger and HEPA filter, respec-

tively.

2. The boundary layer is tripped from a laminar state to a developing turbulent state by the bar

shown in Detail A. This will control the boundary layer as it travels into the test section.

3. The lower diverging wall is adjustable and has a boundary layer scoop to remove the effects of

a duct flow to study purely the boundary layer on the top surface. The second scoop section

was not used.
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Figure A.1: Wind Tunnel Diagram. Originally Figure 3-2 from [31].

4. The test section is equipped with the following instrumentation:

Quantity Instrumentation

120 Static Pressure Taps
55 0.63cm dia Probe Ports

Table A.1: The Test Section Top Surface Instrumentation.
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Figure A.2: Top Plate Instrumentation Placement. Originally Figure 3-7 from [31].

Quantity Instrumentation

20 Static Pressure Taps
20 0.63cm dia Probe Ports

Table A.2: The Test Section Bottom Surface Instrumentation.
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Figure A.3: Diverging Duct Instrumentation Placement. Originally Figure 3-6 from [31]. Probing
points are along the centerline of the tunnel.

5. The instrumentation could be either hot wire or total pressure probes

6. Laser velocimetry measures the movement of the flow via suspended titanium dioxide powder.
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7. The flow on the test flat

plate was visualized via "tuft

trees," which are tubing man-

ifolds that inject a "red low-

viscosity fluid".

8. The flow was measured as

a two-dimensional (2D) flow

with the following flow pa-

rameters calculated:

• U

• V

•
√

u2

•
√

v2

• uv Figure A.4: Tuft Trees. Originally Figure 4-3 from [31].

9. The following conditions were measured during the study:

• Reθ = 11, 400

• Vinf,in = 27[m/s]

• Tin = 22.2[◦C]

• Pin = 15.08[psia]

• δ = 76.7e− 3[m]

10. A form of flow resistance was between the outlet turning guide vanes and the filter inlet plenum

seen in A.1. This generated a 22.9 cmH2O pressure difference between the filter inlet plenum

and the outlet of the test section. For the sake of this study, the pressure difference between the

filter inlet plenum and the boundary layer bleed scoop out let will be zero.
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Based on the measurements of the experiment, there is a streamline that separates the flow

bounded by the flat plate from the flow that is opposing this flow and bounded by the walls on the

opposite side, illustrated in A.3. This allows for a more informed splitting of the test section CFD

domain, which will provide better mesh quality and geometry creation.

Figure A.5: Midstream Separating Flat Plate-Bounded Flow from Opposing Flows. Originally
Figure 4-23 from [31]
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Table A.3: Points of Midstream Separating Flat Plate-Bounded Flow from Opposing Flows. Orig-
inally Figure 4-23 from [31]

There is much more data that Patrick measured from the experiments. This data comes in both

figure and tables that are contained in «PATRICK DATA APPENDIX».

A.1.2 So and Mellor (1972)

The focus of So and Mellor’s study from 1972 is turbulent boundary layer development and sep-

aration over specifically curved surfaces. Their study is a follow-on to Schmidbauer (1936) [33],

Schneider and Wade (1967), Patel (1968b) [30], and Gortler (1940), all of which studied turbulent

boundary layer development over curved surfaces. There were others in the literature review, but

the authors pointed out issues with those studies not mentioned here.

So and Mellor built a wind tunnel to perform the study on with lower curvature surfaces than

many of the previous studies they reviewed. In their study, the convex surface had a normalized
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curvature of δ∗

R
= 0.010, and the concave surface had a normalized curvature of δ∗

R
= 0.007. Again,

rather than going in depth on the experimental setup, illustrated in Figure A.6 and described in

detail in [41], here are the highlights:

Figure A.6: Wind Tunnel Diagram. Originally Figure 1 from [41].

1. The inlet conditions are taken from the surroundings, which can be assumed ambient conditions.

2. The flow is collimated and then contracted into the straight inlet section.

3. The boundary layer was theoretically tripped to become turbulent with a piano wire. However,

based on the figures So and Mellor present, like Figure A.7, it appears that it could have been

the curvature or natural transition that caused it, which led to no analogous effect in the CFD
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Figure A.7: Wind Tunnel Diagram. Originally Figure 79 from [41].

4. The curvature is normalized to the displacement boundary layer thickness to control the flow via

its potential outside the boundary layer. The convex surface had a normalized curvature of δ∗

R
=
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0.010, and the concave surface had a normalized curvature of δ∗

R
= 0.007. The displacement

boundary layer thickness is calculated via Equation A.1. So and Mellor produced the curves

that are drawn to scale in Figures A.8 and A.9.

δ∗(x) =
0.037x

Re
1/5
x

(A.1)

Figure A.8: So and Mellor Convex Curve. Originally Figure 3 from [41].
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Figure A.9: So and Mellor Concave Curve. Originally Figure 4 from [41].

5. The walls are lined with static pressure taps to expressly measure the velocity in the freestream.

Some ports have off-center taps as well as centerline. Measuring the flow profile was done by

Conrad probes, which had a yaw axis to measure three-dimensional flow. The downside of the

Conrad probes is that they interfere with the flow itself. Hot wire probes measure both the mean

flow and turbulence behavior. Like the Conrad probes, these also have a yaw axis, although of

different limits. So and Mellor provide their own calibration of these probes.

6. The fan that drove the wind tunnel had two settings. So and Mellor reported that the lower

setting was used, but the measured data indicates that the higher setting produced the reported

data. This study will match the measured data.
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APPENDIX B: MPI RANK STUDY

Cases 8 and 9, a coarse flat plate 32.8δref ’s in length were run with varying amounts of MPI

ranks. The results are in Figure B.1.

Figure B.1: MPI Rank Study Results
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APPENDIX C: IMPROVED PRESSURE BOUNDARY CONDITION

FORMULATION

One of the assumptions made in the set up of the CFD was a zero gradient condition for pressure

at all the walls. The question after the results is - is this a valid assumption?

C.1 Equations

To understand the physics behind the 2D incompressible case, the three equations that drive the

solution are continuity, as in Equations C.1 and C.2, and the Navier-Stokes momentum equations,

as seen in equations C.3, C.4, and C.5.

∇ · u = 0 (C.1)

∂u

∂x
+

∂v

∂y
= 0 (C.2)

Du

Dt
= ν∇2u−∇(P ′) (C.3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(

∂2u

∂x2
+

∂2u

∂y2

)

− ∂P ′

∂x
(C.4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν

(

∂2v

∂x2
+

∂2v

∂y2

)

− ∂P ′

∂y
(C.5)

If one were to differentiate the Navier-Stokes equation with their respective components, and

combine with the incompressible continuity equation, the pressure would form a relation as in

Equation C.6, as Anderson et. al. did in [15].
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∇2P ′ = 2

(

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)

(C.6)

At the wall for a no-slip condition, velocity is zero, i.e.: u = v = 0. Thus, all velocity gradients

at the wall are also zero, ∇u = 0, and furthermore ∂2

∂x2 = 0. This also means due to continuity that

∂v
∂y

= 0. Our study is also considering a steady state flow, thus ∂
∂t

= 0. Thus, Equations C.4, C.5,

and C.6 can be written as C.7, C.8, and C.9. These equations are at a point were the solver can

prescribe a boundary condition to the analysis.

∂P ′

∂x
= ν

∂2u

∂y2
(C.7)

∂P ′

∂y
= ν

∂2v

∂y2
(C.8)

∇2P ′ = 0 (C.9)
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